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First passage time statistics of non-Markovian random walker: Dynamical response approach
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A non-Markovian process, in which stochastic evolution of the system depends on its past history, often shows
up in soft matter, living cells, and other complex systems. Despite its importance, however, the statistics of
first passage time in such systems is not well understood. This is largely due to the fact that most theoretical
frameworks are based on Markovian description, and incorporation of the memory effect into the problem
remains a challenge. Here, we argue that a key quantity in the problem, i.e., the average behavior of a
non-Markovian walker after the first passage, can be linked to its dynamical response, and propose a simple
framework to compute important observables in the first passage problem. We perform a mean-field analysis and
demonstrate semiquantitative description of the one-dimensional fractional Brownian motion in the presence of
an absorbing boundary.
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I. INTRODUCTION

How long does it take for a random walker to reach a
destination? Such a question on the first passage time (FPT)
is relevant to a broad range of situations in science, tech-
nology, and everyday life applications as encountered, for
instance, in diffusion-limited reactions [1–3], barrier cross-
ing [4–7], target search processes [8,9], cyclization of DNA
molecules [10–13], price fluctuation in the market [2], and
spread of diseases [14]. Today, the concept of the FPT and
its importance in the study of stochastic processes are well
recognized, and theoretical methods for its computation are
standardized [1,2]. However, most of them are devised for
Markovian random walkers, whose decision-making does not
depend on its past history, and thus are not applicable to
non-Markovian walkers despite their ubiquitousness.

Indeed, a growing body of evidence suggests that the non-
Markovian dynamics is found quite generally in rheologically
complex matters typically, but not exclusively, with viscoelas-
tic properties. Classical examples are found in the diffusion of
interacting particles in narrow channels [15] and the motion
of tagged monomers in long polymer chains [16,17]. Other
notable representatives include colloidal particles in polymer
solutions [18] or nematic solvents [19], lipids molecules and
cholesterols in cellular membrane [20], proteins in crowded
media [21], and chromosome loci [22] as well as membrane-
less organelles in living cells [23].

Such systems commonly exhibit a slow dynamics in
the form of subdiffusion MSD(t ) ∼ tα characterized by the
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anomalous exponent α < 1, where MSD(t ) stands for the
mean-square displacement of the observed particle during
the time scale t . Here, the physical mechanism at work is
the interaction of the observed degree of freedom with the
collective modes with a broad range of time scales underlying
the complex environment. Because of its importance in, e.g.,
intracellular transport, the theoretical tools to describe and di-
agnose such anomalous diffusion phenomenology have been
well developed in the last few decades [24]. However, most
of them rely on MSD and related quantities, while much less
attention has been paid to the FPT, despite its fundamental and
practical importance to characterize the underlying stochastic
process. This is particularly true for systems possessing mem-
ory, as nontrivial information on the history dependence of
the system is encoded in the FPT statistics [25]. It has long
been known that the anomalous transport properties affect the
rates of chemical and biochemical reactions [26], and such
reactions are initiated by the encounter of reactant molecules,
so precisely quantified by means of the FPT statistics.

Unfortunately, our current understanding on the FPT of
non-Markovian walker lags far behind that of its Markovian
counterpart, where the difficulty is largely associated with the
lack of an appropriate theoretical foothold [25,27,28]. While
the Fokker-Planck equation and its related methods play a key
role in analyzing the time evolution of the probability distri-
bution of the Markovian walkers, their careless application is
problematic for walkers with memory, a defining property of
the non-Markovian process. At present, available results are
quite limited, with notable examples being the perturbative
and scaling arguments to estimate the asymptotic exponents
characterizing the distribution of FPT and related quantities
in the unbounded domain [25,29–31], some approximation
schemes to calculate the mean FPT of the polymer looping
process [3,10–13], and more recent analytical treatment to
compute the mean FPT in confined domains [28]. However,
neither the full distribution of FPT or the position distribution
of non-Markovian walkers in the presence of the boundary
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FIG. 1. (a) Example trajectory of fBM with α = 0.5 starting
from the initial position x = x0. Before (after) the first hitting on
the absorbing boundary at x = 0, the trajectory is drawn by a solid
(dotted) curve. The first passage event can be viewed as a large
fluctuation to create a nonequilibrium state at t = τ . (b) The aver-
age behavior after the first passage (t > τ ) resembles the relaxation
process; for subdiffusive fBM, the viscoelastic memory effect is
represented by the harmonic restoring force, whose spring constant
gets smaller algebraically in longer time scales [17].

are available, making the computation of these quantities in
non-Markovian processes a fundamental challenge.

One way to analyze the FPT statistics is to look at the
behaviors of random walkers after the first passage (Fig. 1).
Along this line, a basic starting point is a renewal equation,
which has proved to be useful, at least, to the Markovian
case [2]. Our aim here is to find a way to incorporate the
memory effect into the renewal-type framework. To this end,
we argue that the essential aspect of the memory effect is
encoded in the dynamical response of the system, which
could thus be linked to the walker’s average behavior after
the first passage. Although nontrivial, this link allows us
to construct a simple mean-field framework to calculate the
FPT statistics of non-Markovian walkers, to verify earlier
scaling formulas, and to propose the approximate functional
form of the FPT distribution over entire time scales, and
also the walker’s position probability distribution function.
Importantly, our formalism allows one to unveil how and why
the textbook standard “method of image” [2,32] breaks down
by pinpointing the role of memory built up during the first
passage process. Here, we focus on the subdiffusive fractional
Brownian motion [33] (fBM with α < 1), an important class
of non-Markovian walkers found in widespread complex sys-
tems including living cells and nuclei [20–23].

II. FRAMEWORK

A. Random walker with power-law memory

As a paradigm, consider a random walker in one-
dimensional half space with an absorbing boundary at the
origin. A walker is initially positioned at x = x0(> 0) at t =
0, and evolves according to the equation ẋ(t ) = η(t ), where
ẋ = dx(t )/dt and η(t ) is the fractional Gaussian noise, which
is characterized by its stationarity and long-lasting temporal
correlation. Specifically, for a large time scale, its autocor-
relation decays according to the power law 〈η(t )η(t ′)〉 �
−Dα|t − t ′|α−2 (0 < α < 1), with Dα being the generalized

diffusivity. For a walker in free space (no boundary), its
position probability distribution P(x, t ; x0) is simply given
by N (x, x0, 2Dαtα ), where N (x, A, B) = (2πB)−1/2e(x−A)2/2B

denotes Gaussian distribution of x with the average A and the
variance B.

B. Process after first passage

We now set a stage by introducing an absorbing boundary
at the origin x = 0 such that the walker performs fBM in half
space x > 0 with the same initial condition as before. Using
the free space distribution P(x, t ; x0), the walker’s position
probability P+(x, t ; x0) is now represented as

P+(x, t ; x0) = P(x, t ; x0) − Q(x, t ; x0), (1)

where Q(x, t ; x0) is the position distribution of the dead
walker, who touched the absorbing boundary by this moment.
Note that while one usually looks at the walker’s behavior in
the physical domain (x � 0) up to the absorption (t � τ ) in
the context of FPT, Eq. (1) holds in entire space and time do-
mains in a spirit similar to Ref. [28]; the absorbing boundary
at x = 0 necessitates P(x, t ; x0) = Q(x, t ; x0) for x � 0.

Using the FPT distribution F (τ ; x0), Q(x, t ; x0) is repre-
sented as

Q(x, t ; x0) =
∫ t

0
F (τ ; x0) P(x, t ; x0|FPT = τ )dτ, (2)

where P(x, t ; x0|FPT = τ ) is the conditional probability of the
walker’s position at time t after its first passage at time τ . For
the Gaussian process (including fBM), one expects the form

P(x, t ; x0|FPT = τ ) = N (x, 〈x(t )〉FPT=τ , 〈[δx(t )]2〉FPT=τ ), (3)

for t > τ with the mean 〈x(t )〉FPT=τ and variance
〈[δx(t )]2〉FPT=τ of the walker’s position after the first passage
at t = τ .

Using Eq. (3) in Eq. (2), we integrate Eq. (1) over a half
space (x � 0) to find the integral equation

1 − erf

(
x0√

4Dαtα

)
=

∫ t

0
F (τ ; 1){ 1 − erf[h(t, τ )]} dτ, (4)

with

h(t, τ ) ≡ 〈x(t )〉FPT=τ√
2〈[δx(t )]2〉FPT=τ

. (5)

We note that Eq. (4) is exact aside from the Gaussianity
assumption. In the absence of memory effect, h(t, τ ) = 0
as 〈x(t )〉FPT=τ = 0 irrespective of the starting position x0. In
this case, Eq. (4) immediately leads to the classical result
of the survival probability S(t ; x0) = 1 − ∫ t

0 F (t ′; x0)dt ′ =
erf (x0/

√
4D1t ) for the Markovian case [2], see also Sec. III D.

Thus, all the non-Markovian effect is encoded in h(t, τ ),
which we call the memory function.

C. Memory function and dynamical response

The memory function includes 〈x(t )〉FPT=τ and
〈[δx(t )]2〉FPT=τ as its ingredients. For the latter, we assume

〈[δx(t )]2〉FPT=τ = 2Dα (t − τ )α, (6)

which is motivated as a straightforward generalization of the
Markovian result 〈[δx(t )]2〉FPT=τ = 2D1(t − τ ), and we have
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FIG. 2. Time evolution of the average 〈x(t )〉FPT=τ and (inset)
variance 〈[δx(t )]2〉FPT=τ of the position of fBM (α = 0.5) after the
first passage at t = τ . Units of length and time are x0 and τx0 ,
respectively (see the text). Shown is the numerical data from the
subensemble with τ = 0.2 compared to the formulas (thick black
curves) Eqs. (10) and (6).

indeed checked that Eq. (6) agrees well with the numerical
simulation result (Fig. 2 inset), see also Fig. 8 in Appendix B.
On the other hand, the Markovian result 〈x(t )〉FPT=τ = 0 for
the former does not provide any clue for its non-Markovian
generalization. A rigorous calculation of 〈x(t )〉FPT=τ for the
general non-Markovian process would be a formidable task.
Below we seek an alternative quantity, which also captures
the memory effect of the non-Markovian walker, and can be
compared to 〈x(t )〉FPT=τ through the analysis of dynamical
response of the system.

To this end, we generalize the time evolution equation of
fBM by including the time-dependent external force f (t ) [17],

ẋ(t ) =
∫ t

−∞
μ(t − t ′) f (t ′)dt ′ + η(t ), (7)

where μ(t ) is the mobility kernel, which is related to the
noise autocorrelation via the fluctuation-dissipation relation
〈η(t )η(t ′)〉 = T μ(|t − t ′|) with T being the noise strength.
Now consider that we switch on the force at t = 0, operate
it according to some protocol f (t ), and switch off at t = τ .
Using Eq. (7), one can calculate the average position of the
walker 〈x(t )〉 f , where the subscript ( f ) indicates the external
forcing over 0 < t � τ . For the Markovian case, the average
position evolves until t = τ and stays at 〈x(τ )〉 f after turning
the force off (t > τ ) because of its memory-less nature. How-
ever, the relaxation process follows for the non-Markovian
case due to the memory effect; for fBM, it can be viewed
as the relaxation in harmonic potential field, whose spring
constant decays algebraically with the time scale. To link such
a memory effect in dynamical response to the FPT problem,
we require the condition 〈x(τ )〉 f = 0, see Fig. 1. This corre-
sponds to a necessary condition for the first passage at t = τ ,
making the otherwise unrelated two quantities 〈x(t )〉FPT=τ and
〈x(t )〉 f apposable. Our conjecture is stated as follows: there
exists a specific force protocol f (t ) such that 〈x(t )〉FPT=τ =
〈x(t )〉 f for t > τ .

D. Mean-field approximation

A proof of the conjecture would be as difficult as solv-
ing the original FPT problem. Here, we employ the simplest

scenario of the constant force (dubbed temporal “mean-field”)
protocol and examine its predictability through quantitative
comparison with numerical simulation. With yet undeter-
mined force magnitude f0, the protocol is now f (t ) = f0 for
0 < t � τ and f (t ) = 0 for t > τ . From Eq. (7), we obtain

〈ẋ(t )〉 f = f0 ×
{∫ t

0 μ(t − t ′)dt ′ (t � τ )∫ τ

0 μ(t − t ′)dt ′ (t > τ ).
(8)

The “self-consistent” FPT condition 〈x(τ )〉 f = 0 determines
the force magnitude

f0 = −T x0

Dα

τ−α. (9)

As already stated, for the Markovian case μ(t − t ′) ∼ δ(t −
t ′), Eq. (8) (second line) results in 〈ẋ(t )〉 f = 0, thus 〈x(τ )〉 f =
0 for t > τ . For the non-Markovian case, however, the time in-
tegral of Eq. (8) (second line) with Eq. (9) leads to a nontrivial
relaxation behavior (see Appendix A),

〈x(t )〉 f = x0

[
1 +

(
t − τ

τ

)α

−
(

t

τ

)α]
(t > τ ). (10)

Combined with our conjecture, we obtain the memory func-
tion

h(t, τ ) = 1√
2(t − τ )α

[
1 +

(
t

τ
− 1

)α

−
(

t

τ

)α]
. (11)

Note that, from here onwards, we measure the length and
the time in units of x0 and τx0 = (x2

0/2Dα )1/α , respectively,
which are the sole characteristic length and time scales in the
problem, making the initial position x0 = 1 upon rescaling.

Before proceeding to the analysis of integral equation (4),
let us check how Eq. (10) works as a proxy for 〈x(t )〉FPT=τ .
Comparison with numerical simulation (Fig. 2 for α = 0.5
and τ = 0.2) shows a reasonable agreement between Eq. (10)
and 〈x(t )〉FPT=τ . However, we note that the average relaxation
behavior of fBM after the first passage is far more involved
than our mean-field result indicates; see Appendix B for
detailed analysis, which reveals a systematic deviation from
Eq. (10) more evidently for smaller α. Nevertheless, we show
below that our framework with the memory function (11) pro-
vides a reasonably good description for several key quantities
in FPT statistics, and also yields the correct nontrivial scaling
exponents characterizing the asymptotic behaviors of fBM in
the presence of an absorbing boundary [25,29–31].

III. RESULTS AND DISCUSSION

A. First passage time distribution

We now determine the leading order solution of Eq. (4) in
the form

F (τ ; 1) = Cα exp

[
− 1

2τω

]
τ−(1+p), (12)

where Cα is a normalization constant. This function, a general-
ization of the Markovian result [2] ω = 1, p = 1/2, exhibits a
peak at τ = τ ∗ = [ω/2(1 + p)]1/ω, and develops a power-law
tail F (τ ; 1) ∼ τ−(1+p) at τ � τ ∗. With this in mind, we plug
the ansatz (12) into Eq. (4) and perform the asymptotic anal-
ysis in the long time limit (t � 1), which yields p = 1 − α/2
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FIG. 3. (a) FPT distribution F (τ ; 1) for subdiffusive fBM
(α = 0.8, 0.5). Inset shows the double logarithmic plot of the large
τ regime, where the asymptotic slope p + 1 = 2 − α/2 is clearly
visible. The data for α = 0.8 is shifted downward (×10−2) for visual
clarity. Both in the main panel and the inset, symbols represent
simulation results and the curves correspond to the analytical for-
mula (12), with p = 1 − α/2 and ω given by Eq. (13). The error bars
represent 95% CI. (b) Exponent ω as a function of α, which charac-
terizes the early time regime in FPT distribution. Blue solid circles
are obtained by fitting the numerical simulation data for several α

values [two of them shown in Fig. 3(a)] with the formula (12). Fitting
these data with Eq. (13) fixes the parameter c1 = 0.12.

in agreement with the previous scaling argument [25,29] (see
Appendix C). In addition, our formulation allows us to obtain
the exponent ω, which satisfies the relation

(2 − α)2ω(2 + α)α

ωα
= 3ωcω(α−1)

1 (13)

with a numerical constant c1 of order unity (see Appendix C).

In Fig. 3, we compare our analytical formula for F (τ ; 1)
with the results obtained from numerical simulation. As
shown, the agreement is excellent, encompassing the short
time singularity to the peak and the eventual long time power-
law tail, which are characterized by the exponents ω and p,
respectively. The peak position τ ∗ is rather sensitive to the
value of ω. This is particularly true for small ω, which is the
case for the small α, shifting the peak position τ ∗ vanishingly
small in the limit α → 0.

B. Probability distributions of dead walkers

We are now in a position to take a close look at Q(x, t ; 1),
which is the distribution of walkers after their first passage.
From Eqs. (2) and (3), we immediately find that the memory
effect in the form of restoring force represented by nonzero
〈x(t )〉FPT=τ (Fig. 2) breaks the reversal symmetry with respect
to x = 0, i.e., Q(x, t ; 1) = Q(−x, t ; 1) that clearly manifests
the breakdown of the image method, see Sec. III D below for
further discussion.

C. Probability distributions of survived walkers

Given the analytical predictability of Q(x, t ; 1) shown in
Fig. 4, we proceed to plot in Fig. 5 the normalized position
probability P̃+(x, t ; 1) ≡ P+(x, t ; 1)/S(t ; 1) of the survival
walker from Eq. (1). Again, our prediction captures all the
salient features seen in numerical simulations, but one starts
to see a deviation for small α in the long time regime, which
is ascribed to the error in representing 〈x(t )〉FPT=τ through our
mean-field estimate.

FIG. 4. Probability distribution Q(x, t ; 1) of the position of absorbed subdiffusive walkers. Plots of Q(x, t ; 1) for subdiffusive fBM (a)–(c)
with α = 0.8 and (d)–(f) with α = 0.5 at early, middle, and late times (t = 0.2, 1, 10, respectively). Analytical prediction (green solid curve)
is obtained using Eqs. (2), (3), and (12), which quantitatively reproduces the numerical simulation results (red circles). The error bar evaluated
as 95% CI is smaller than the size of the symbol. Blue dashed curves represent the free space distribution P(x, t ; 1). The asymmetry in Q(x, t ; 1)
grows with the memory effect, which is stronger for smaller α.
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FIG. 5. Probability distribution P+(x, t ; 1) of the position of
survived subdiffusive walkers. Plots of the normalized position prob-
ability P̃+(x, t ; 1) ≡ P+(x, t ; 1)/S(t ; 1) for subdiffusive fBM with
(a) α = 0.8 and (b) α = 0.5 at early, middle, and late times
(t = 0.2, 1, 10, respectively). Analytical prediction (dashed curve)
is obtained using Eq. (1), which captures the numerical simulation
results (symbols). Error bars represent 95% CI.

One notable feature in P̃+(x, t ; 1) is that the slope
[∂P̃+(x, t ; 1)/∂x]x→0 at the boundary is vanishingly
small [34]. Such an anomalous behavior of P̃+(x, t ; 1) ∼ xδ

close to the boundary with nontrivial exponent δ can be
quantified from our expression for Q(x, t ; 1) as follows.
Note first that in the long time limit t � 1(⇔ x2

0/Dαtα � 1
in original unit), the asymptotic behavior of P̃+(x, t ; 1)
is obtained by taking x0 → 0 limit [30]. For the walker
absorbed at time τ , its characteristic travel distance during
the subsequent time interval s = t − τ is evaluated as
	x(s) ∼ sα/2. This indicates that, for a given location x, the
walker only starts substantially contributing to Q(x, t ; 1) after
the time t (x) = x2/α . From Eq. (2), we thus find

Q(x, t ; 1) ∼
∫ t−τ ∗

t (x)
(t − s)−(2−α/2) s−α/2 ds

∼ t−α/2(1 − t−(2−α)x(2−α)/α)
. (14)

The first term cancels the free space distribution P(x, t ; 1) ∼
t−α/2, leaving P+(x, t ; 1) ∼ t−(2−α/2)x(2−α)/α , or equiva-
lently, P̃+(x, t ; 1) ∼ t−1x(2−α)/α . The predicted exponent
δ = (2 − α)/α agrees with that obtained from heuristic scaling
argument [30].

FIG. 6. Illustration of the method of image applicable to the
Markovian case. Shown here is the position distribution P(x, t ; 1)
of the walker in free space (dotted green) and that P(x, t ; −1) of
the image walker, whose initial position is x = −1 (dotted yel-
low). The latter and the former constitute the position distribution
Q(x, t ; 1) (solid green) of the dead walker for x � 0 and x � 0,
respectively. The hatched area represents the survival probability
S(t ; 1) = ∫ ∞

0 P+(x, t ; 1)dx.

For the Markovian case α = 1, the slope at the boundary
is finite (δ = 1), which multiplied by diffusion coefficient is
the outgoing flux. The peculiar nature of the flux for the
α = 1 case implies the breakdown of Fick’s law, and makes
the implementation of a reflective boundary nontrivial. This
rephrases a fact that there is no diffusion (more generally
Fokker-Planck) equation for non-Markovian walkers in the
ordinary sense.

D. Failure of the method of image

To see the point, let us see that Q(x, t ; 1) for Marko-
vian walkers (α = 1) can be constructed by the method of
image, see Fig. 6, where Q(x, t ; 1) in the physical domain
(x � 0) is given by the position distribution of the image
walkers P(x, t ; −1). Q(x, t ; 1) in the negative domain (x < 0)
is simply given by Q(x, t ; 1) = P(x, t ; 1) due to the absorbing
boundary at x = 0, hence P+(x, t ; 1) = 0 for x < 0. From this
construction, it is clear that the reversal symmetry Q(x, t ; 1) =
Q(−x, t ; 1) holds; see the green solid curve in Fig. 6. Inte-
grating Eq. (1) over the entire space (including the negative
domain), one finds S(t ; 1) = 1 − ∫ ∞

−∞ Q(x, t ; 1)dx, where the
surviving probability S(t ; 1) = ∫ ∞

0 P+(x, t ; 1)dx is denoted by
the hatched area in Fig. 6. Equivalent to the above relation is∫ ∞

0 Q(x, t ; 1)dx = [1 − S(t ; 1)]/2 thanks to the reversal sym-
metry of Q(x, t ; 1) with respect to x = 0, producing a factor
of 1/2. The same relation is obtained by integrating Eq. (2)
over the positive x domain with 〈x(t )〉FPT=τ = 0. Therefore,
the validity of the method of image relies on the condition
〈x(t )〉FPT=τ = 0.

The effect of the (anti)persistent memory in fBM be-
comes stronger with the departure from the Markovian limit
α = 1. This is seen, for instance, in the spatial profile of
Q(x, t ; 1) shown in Fig. 4, where the degree of the asym-
metry Q(x, t ; 1) = Q(−x, t ; 1), a hallmark of the memory
effect, becomes more evident for smaller α. To examine the
α dependence more closely, in Fig. 7, we show the posi-
tion probability of the survival walkers P+(x, t = 1; 1) for
α = 0.8, 0.6, 0.5, and 0.3, where the comparison is made for
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FIG. 7. Failure of the method of image. Plot of P+(x, t ; 1) at t = 1 for (a) α = 0.8, (b) α = 0.6, (c) α = 0.5, and (d) α = 0.3. Solid curves
(green) are obtained from our theory, which captures the numerical simulation result (red symbols) reasonably well. In contrast, the method of
image yields qualitatively wrong profiles (blue dashed curves). Since, for the α = 0.3 case, the survival probability S(t ; 1) = ∫ ∞

0 P+(x, t ; 1)dx
is already rather low at this time (t = 1), we plot the normalized probability P̃+(x, t ; 1) = P+(x, t ; 1)/Q(t ; 1) [inset of (d)] for a clear visibility.

our solution and that constructed by the method of image.
Clearly, the method of image fails to capture the profile
even qualitatively. In contrast, our method is capable of more
accurate description; the quantitative accuracy is very good
for the case of α = 0.8, and the relative accuracy over the
method of image becomes increasingly manifest for smaller
α. Still, we need to note the quantitative discrepancy between
theory and simulation data, which becomes more apparent for
lower α, and clearly visible in the plot of normalized prob-
ability P̃+(x, t ; 1) = P+(x, t ; 1)/Q(t ; 1) [inset of (d)]. This
is most probably linked to deviation from our assumption
〈x(t )〉FPT=τ = 〈x(t )〉 f , with the latter being evaluated based
on the mean-field approximation (10).

Finally, we note that if one employs a diffusion equa-
tion with the time-dependent diffusivity D(t ) ∼ tα−1, one
obtains the position probability P(x, t ; 1) = N (x, 1, tα ) in a
free space, which is the same as that of fBM. However, the
process described by such a diffusion equation is very dif-
ferent from fBM, which is clearly seen in their first passage
statistics. Indeed, writing a diffusion equation implies the
adaptation of Markovian description, thus the applicability
of the method of image, which however results in the wrong
answer.

IV. SUMMARY

In conclusion, we have provided a natural framework with
which the first passage process of non-Markovian walkers can
be analyzed, where a key quantity is the average behavior

〈x(t )〉FPT=τ of the system after the first passage. Although this
quantity is difficult to calculate, the viscoelastic nature of the
subdiffusive non-Markovian walker indicates that 〈x(t )〉FPT=τ

may be seen as a relaxation process from the first passage
point as its initial condition. This observation led us to try
representing 〈x(t )〉FPT=τ using the dynamical response 〈x(t )〉 f

of the system. The latter can be calculated using the general-
ized Langevin equation with a caution that the result depends
on the perturbation protocol to prepare the “nonequilibrium
initial state” to analyze subsequent relaxation. We adopted
the simplest constant force protocol, which in the temporal
sense corresponds to the mean-field approximation. One may
expect inevitable errors in such a mean-field approximation
given the correlation effect, in the present context, arising
from the fact that the future evolution of the non-Markovian
system depends on how the current state is prepared; for fBM,
the correlation time scale is divergent due to its power-law
memory. We have indeed shown that the systematic error is
visible in the average regression after the first passage, which
becomes larger for smaller α (Appendix B). Fortunately, we
have also found that such a flaw does not seem to affect key
quantities in FPT statistics, such as F (τ ; x0), Q(x, t ; x0) and
P+(x, t ; x0), in a crucial way, but its trail can nevertheless be
found in the plot of P+(x, t ; x0) for small α (Fig. 5). On the
whole, it may be tempting to view the current situation analo-
gous to the early-day research of phase transition and critical
phenomena, where the establishment of mean-field theory laid
the foundation for further research. We hope that the current
study will play a similar role to pave a way forward.
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APPENDIX A: CALCULATION
OF DYNAMICAL RESPONSE

Here, we sketch the calculation of the dynamical response
〈x(t )〉 f , which is used to obtain the approximate form of the
memory function h(t ). The equation of motion for fBM is
Eq. (7) with

μ(t ) = 2

γ
δ(t ) + μM (t ), (A1)

where γ is the bare friction coefficient and μM (t ) ∼ −tα−2

(for t � τ0) represents the power-law memory. For the calcu-
lation below, we adopt the form

μM (t ) =
{

−c 1
γ τ0

(
t
τ0

)α−2
(t � tmin),

0 (t < tmin),
(A2)

where τ0 is the microscopic (shortest) time scale in the prob-
lem (for instance, the monomeric time scale in the case of
tagged monomer dynamics), and we introduce a sharp cutoff
at tmin ∼ τ0. The nature of this short time-scale cutoff and the
precise value of the numerical coefficient c (of order unity) is
irrelevant to the subdiffusive dynamics MSD(t ) ∼ tα [hence
does not appear in the final expression, see Eq. (10)] as long
as the sum rule

∫ ∞
0 μ(t )dt = 0 is satisfied. Note that this sum

rule is a consequence of the relaxation nature of the subdiffu-
sive fBM [17]. In our “mean-field” treatment, the perturbation
protocol to obtain the dynamical response is

f (t ) =
{

f0 (0 � t < τ ),
0 (otherwise). (A3)

Applying the above perturbation protocol, the average ve-
locity and position of the particle are calculated as

〈ẋ(t )〉 f =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f0c
γ (1−α) (t/τ0)−(1−α)

· · · (t � τ ),
f0c

γ (1−α) { (t/τ0)−(1−α) − [(t − τ )/τ0]−(1−α)}
· · · (t > τ ),

〈x(t )〉 f =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x0 + f0cτ0

γα(1−α) (t/τ0)α

· · · (t � τ ),
〈x(τ )〉 f

+ f0cτ0

γα(1−α) {(t/τ0)α − (τ/τ0)α − [(t − τ )/τ0]α}
· · · (t > τ ).

The first passage condition 〈x(τ )〉 f = 0 fixes the force mag-
nitude f0 = −[γ x0α(1 − α)/cτ0](τ/τ0)−α = −(T x0/Dα )τ−α

[see Eq. (9)] [35], hence the relaxation process Eq. (10) is
obtained. Note that Eq. (10) suggests that it is a function of
t/τ reflecting the power-law nature of the memory.

APPENDIX B: COMPARISON: 〈x(t )〉FPT=τ AND 〈x(t )〉 f

The backbone assumption of our formalism is
〈x(t )〉FPT=τ = 〈x(t )〉 f . In order to assess the validity of
this assumption, we compare Eq. (10) with numerical
simulation data. Figure 8 shows that while the formula (10)
predicts the master curve for 〈x(t )〉 f as a function of t/τ ,
the actual numerical data for 〈x(t )〉FPT=τ reveals a clear τ

dependence, and thus a deviation from the master curve,
which is more apparent for small α. This observation
pinpoints the complexity involved in the behavior of fBM
after the first passage, which is not captured by our dynamical
response approach with the constant force protocol.

In fact, one expects that the relaxation behavior should
depend on the process of how the (nonequilibrium) initial

FIG. 8. Average (top) and variance (bottom) of fBM position after the first passage. Shown here are the case of α = 0.8 (subensemble
τ = 0.2, 0.4, 0.5), α = 0.5 (subensemble τ = 0.02, 0.2, 0.3), and α = 0.3 (subensemble τ = 0.01, 0.1, 0.2), which are compared to
analytical formulas (thick black curves) Eqs. (10) and (6), the former evaluated from the analysis of the dynamical response.
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FIG. 9. Short time part of FPT distribution of non-Markovian
walkers. Plot of F (τ ) for (a) α = 0.4 and (b) α = 0.5. The best fit
values are ω = 0.45 for α = 0.4 and ω = 0.544 for α = 0.5, which
are included in the plot of Fig. 3(b).

condition is prepared, and thus the time dependence of the
perturbation protocol. With such a caution in mind, it is
not surprising to see the failure of formula (10) to quanti-
tatively describe simulation results for the average position
after the first passage. Nevertheless, it is remarkable that our
mean-field approximation is capable of yielding excellent ap-
proximation for the FPT distribution F (τ ) (Figs. 3 and 9). The
same applies to the (normalized) position probability distri-
bution P+(x, t ; 1) (Figs. 5 and 7), although deviation starts
to appear in the late time regime for small α. We note that
our mean-field theory yields the correct persistence exponent
p = 1 − α/2 as well as δ = (2 − α)/α, which may be an
underlying reason for the overall success. Still, one may ex-
pect inevitable errors in such a mean-field treatment given the
correlation effect, which arises, in the present context, from
the temporal memory effect in non-Markovian dynamics. A
possibility for improvement over such a mean-field descrip-
tion remains to be known.

APPENDIX C: ANALYSIS OF INTEGRAL EQUATION

Our assumption based on the dynamical response idea
described above determines the memory function h(t, τ )
[Eq. (11)] in the integral equation;

To analyze the integral equation (4), we first rewrite the
memory function as

h(t, τ ) = t−α/2

√
2

g(u) (C1)

with

g(u) = (1 − u)−α/2(1 − u−α ) + (1 − u)α/2u−α, (C2)

where u ≡ τ/t . The error function in the integrand is ex-
panded as

erf[h(t, τ )] = erf

(
t−α/2

√
2

)
+

√
2

π
t−α/2[g(u) − 1]

+O(t−3α/2). (C3)

Neglecting higher-order terms O(t−3α/2), Eq. (4) becomes

S(t ; 1)

[
1 − erf

(
t−α/2

√
2

)]

�
√

2

π
t1−α/2

∫ 1

0
F [τ (u); 1]{1 − g(u)}du. (C4)

Motivated by the known analytical solution

F (τ ; 1) = C1 exp

(
− 1

2τ

)
τ−3/2 (C5)

for the Markovian case (α = 1), where C1 is a normalization
constant, we seek for the solution in the form

F (τ ; 1) = Cα exp

(
− 1

2τω

)
τ−(1+p)

= Cαt−(1+p) exp

(
− 1

2(tu)ω

)
u−(1+p). (C6)

Substituting the above ansatz in Eq. (C4), we obtain

S(t ; 1)

[
1 − erf

(
t−α/2

√
2

)]
�

√
2

π
Cα t−(p+α/2)

×
∫ 1

0
e− 1

2(tu)ω

{
αu−(α+p)[1 + O(u)]

− α

2
u−p[1 + O(u)]

}
du (C7)

To evaluate the above integral, we note the following:∫ 1

0
e− 1

2(tu)ω u−κdu �
∫ 1

u∗
u−κdu, (C8)

where u∗ = c1t−1(ω/2κ )1/ω with c1 being a numerical con-
stant of order unity. Then, at leading order in 1/t , Eq. (C7)
becomes

S(t ; 1) �
√

2

π
Cαt−(1−α/2) α

α + p − 1

×
[

c1

(
ω

2(α + p)

)1/ω
]1−α−p

, (C9)

which is asymptotically correct at large t . Calculating
−dS(t ; 1)/dt and comparing it with the assumed form of
F (t ; 1), we find the persistence exponent

p = 1 − α

2
, (C10)
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in agreement with the earlier scaling argument [29]. In addi-
tion, by comparing two expressions of prefactor, we find a
relation between ω and α:

(2 − α)

(
2 + α

ω

)α/(2ω)

c−α/2
1 = c2, (C11)

where we introduce another numerical constant c2 of order
unity to make the evaluated relation equality. Since we know
ω = 1 for the Markovian limit α = 1, one of the numerical
constants can be eliminated through

c2 = 31/2c−1/2
1 . (C12)

This leads to Eq. (13) with one fitting parameter c1, which
should be determined through the comparison with numerical
simulation data. As discussed in the main text, we found
c1 = 0.12 describes the simulation results well. The resultant
dependence of ω on α is shown in Fig. 3(b). Apparently,
the relation is close to ω = α, but the value of ω is slightly
larger than α in a systematic way. We note that, while irrel-
evant to the long time asymptotic power-law behavior, the
short time behavior is highly sensitive to this ω exponent.
For example, we show in Fig. 9 the short time part of the

FPT distribution F (τ ) for the case of α = 0.4 and 0.5, where
our formula for ω(α), but not ω = α, provides satisfactory
fittings.

APPENDIX D: NUMERICAL SIMULATION

To simulate fBM trajectories {x0, x1, . . . , xN } of length N ,
we numerically integrated the discretized version of Eq. (1)
in the main text with f = 0. The Gaussian variables ηi, called
fractional Gaussian noise, have a temporal correlation, whose
long time part is characterized by the power-law memory as
described in Sec. II A. To generate the fractional Gaussian
noise, we employed the Davies and Harte algorithm [36], and
generated m samples of length N for each α. From these sim-
ulations, we calculated the standard deviation of the walker’s
displacement 	xN ≡

√
〈(xN − x0)2〉 after N steps. To analyze

the FPT statistics, we placed the hypothetical absorbing wall
at x = x0 − c̃ 	xN such that the initial separation from the
walker to the boundary is c̃ 	x. We then reanalyzed each m
trajectory to find its first arrival at the wall, and constructed
the FPT distribution and the walkers’ distribution after the
FPT. We adopted N = 105, m = 105, and c̃ = 1 except for the
FPT distribution data for the long time regime [Fig. 2(a) inset],
where we adopted N = 106, m = 104, and c̃ = 0.5.
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