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Self-bound clusters of one-dimensional fermionic mixtures
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Diffusion Monte Carlo calculations on the possibility of having self-bound one-dimensional droplets of
SU(6) × SU(2) ultracold fermionic mixtures are presented. We found that, even though arrangements with
attractive interactions with only two spin types are not self-bound, mixtures with at least three kinds of fermions
form stable small drops. However, that stabilization decreases for very tight confinements, where a universal
behavior is found for Fermi-Fermi and Fermi-Boson clusters including attractive and repulsive interactions.
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I. INTRODUCTION

In a liquid droplet the attractive interaction between parti-
cles should be balanced by repulsive forces in order to prevent
the collapse of the system [1]. That is as true in a classical
setting as when we are dealing with the ultradilute quan-
tum drops [2] observed in Bose-Bose mixtures with either
isotropic [3–5] or dipolar interactions [6,7]. In the context of
ultradilute cold atoms, which is the one we will be limited to
in this work, liquid is customarily understood as a synonym
of self-bound, i.e., with a lower (more negative) energy than
that of the isolated units that constitute it (see, for instance,
Refs. [1–3,8–11]). In particular, it does not imply any par-
ticular kind of internal structure different from that of a gas
as it does in condensed-matter physics. The study of these
self-bound systems started after a suggestion by Petrov [12]
(even though there is at least a work [13] on the same topic
that predates it), whose theoretical study of binary bosonic
arrangements with both attractive and repulsive interactions
showed that terms of purely quantum origin prevented the
collapse predicted by mean-field descriptions. Examples of
those liquid bosonic droplets and their stability limits could
be found already in the literature [2,9–11,14–17].

Beyond that frame, we can find works dealing with mix-
tures of ultracold bosons and fermions [8,18–22], whose
stability for repulsively interacting bosons was found to be
enhanced in one-dimensional (1D) setups [8]. All those stud-
ies use in some form or another mean-field approximations
and are limited (except for the homogeneous arrangements in
Ref. [22]) to the weakly interacting regime and to clusters in
which the number of fermions is much smaller (ranging from
an order of magnitude smaller to a single impurity) than the
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number of bosons. Considering all this, the goal of this work
is to go further with boson-boson and boson-fermion mixtures
in two ways: first, we explore the possibility of having stable
self-bound 1D drops made up exclusively of fermions with no
bosons included. In a sense, this is a continuation of previous
work on similar systems (see, for instance, Refs. [23–27]), but
for a number of fermion species larger than two. Second, since
a set of distinguishable fermions can be considered effectively
as a set of bosons, we explore the stability limits of small 1D
Bose-Fermi droplets in the strong interacting limit, including
correlations effects that are out of reach of mean-field approx-
imations. We also establish the minimum droplet composition
to have self-bound droplets.

It is well known that a couple of spin-up and spin-down
1D fermions that attract each other via a δ potential will pair
to form a “molecule” irrespectively of the strength of their
interaction [28]. This means that, in principle, if we have a set
of two different kinds of fermions with the same number of
atoms each, we will have as many “molecules” as the number
of particles of each set. What we do not know is how those
molecules interact with each other and how the internal spin
composition of the 1D clusters affects the possible phases
we may have. To study that, we analyze mixtures of the
fermionic isotopes of ytterbium, 173Yb and 171Yb [29–31].
The atoms of the first species can have up to six different
spin values [SU(6) symmetry], while the second is a more
conventional SU(2) arrangement [30], similar to 6Li. These
systems have several advantages: first, those mixtures have
already been obtained [31], which means that the conclu-
sions of this work can be experientially checked; second,
their masses, m, are close enough to be modeled by a single
parameter. This simplifies considerably the picture, since we
do not have to take into account the effect of mass imbalance.
And last, the strong attraction between the 173Yb and 171Yb
atoms produces always molecules belonging to different iso-
topes, irrespective of the spin composition of the mixture.
This means that when we have spin-polarized 173Yb and
171Yb the system is equivalent to a conventional SU(2) system
made up of, for instance, 6Li atoms that have only two spin
states.
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Considering all of the above, we have studied mixtures
of 173Yb and 171Yb with different spin compositions in
one-dimensional environments. In accordance with previous
literature, and given the very low temperatures at which ex-
periments involving ultracold atoms are done, we suppose
those systems to be adequately described by the ground state
(equivalent to consider T = 0) of the strictly 1D Hamiltonian
[32,33]:

H =
Np∑
i=1

−h̄2

2m
∇2

i + g173−171
1D

N173∑
i=1

N171∑
j=1

δ
(
x173

i − x171
j

)

+ g173−173
1D

6∑
b>a

n173,a∑
i=1

n173,b∑
j=1

δ
(
x173

a,i − x173
b, j

)

+ g171−171
1D

2∑
b>a

n171,a∑
i=1

n171,b∑
j=1

δ
(
x171

a,i − x171
b, j

)
, (1)

Here, Np is the total number of fermions, and N173 and N171 are
the total number of 173Yb and 171Yb atoms. In this work, we
dealt only with balanced clusters, i.e., N173 = N171 = Np/2.
No harmonic potential in the x direction that could spuriously
stabilize the drops was imposed. n173,ab and n171,ab are the
number of atoms with spins a and b. The second term in
Eq. (1) takes into account the interactions in which a member
of a pair is a 173Yb atom and the other a 171Yb particle, which
do not depend on spin [29], so the positions of the particles,
xi, j , are labeled by isotope type only. On the other hand,
the next two terms deal with 173Yb - 173Yb and 173Yb - 171Yb
pairs, so the different spin types a and b have to be included
in the position labels. No interactions were considered for
fermions of the same species, since those were kept apart by
Pauli’s exclusion principle.

Since we are interested in self-bound systems, we do not
include a longitudinal confinement in the x direction, some-
thing usually done by the introduction of a term of the type
1/2mω2

‖x2
i . The transverse confinement that produces the 1D

setup is included in an effective way in the g1D parameters
defined below [34], and it is customarily described by a ra-
dial harmonic oscillator with differences between consecutive
energy levels given by h̄ω⊥. Those levels are not populated
beyond the ground state since ω‖ = 0 � ω⊥ [35]. This means
that it is more favorable for the particles of the system to
accommodate any possible repulsive effective interactions by
spreading in the longitudinal direction than to be promoted to
the next transverse mode. In addition, when we have more
than two spin species the interaction between molecules is
attractive (see Results section below), which implies that to
promote some of those units to the next transverse mode we
have to provide the energy to overcome that attraction.

The values of the g1D’s can be obtained via gα,β

1D =
−2h̄2/ma1D(α, β ), where the 1D scattering lengths, a1D, are
defined by [34]

a1D(α, β ) = − σ 2
⊥

a3D(α, β )

(
1 − A

a3D(α, β )

σ⊥

)
, (2)

with A = 1.0326. σ⊥ = √
h̄/mω⊥ is the oscillator length

in the transversal direction, depending on the transversal
confinement frequency ω⊥. This implies that the transverse

confinement is harmonical and not of any other type, for
instance, boxlike. a3D(α, β ) stands for the three-dimensional
set of scattering lengths taken from Ref. [29], i.e., 10.55 nm
(173Yb - 173Yb), −0.15 nm (171Yb - 171Yb), and −30.6 nm
(171Yb - 173Yb) [29], where the minus signs mean attractive
interactions. We considered that the only source of change
for a1D comes from variations in the transverse confinement,
since modifying the three-dimensional scattering lengths in
Yb isotopes is problematic due to their particular electronic
structure [30]. This means that the type of interaction between
atoms is fixed by the sign of the scattering length in three
dimensions: a negative a3D(α, β ) implies gα,β

1D < 0 (attractive)
and vice versa.

II. METHOD

To check if one can have self-bound 1D drops of 173Yb and
171Yb atoms we have to solve the Schrödinger equation de-
rived from the Hamiltonian of Eq. (1) with free boundary
conditions. This means that no spurious periodicity and no
confining external potential (such as one or several hard walls
or an harmonic term) is imposed on the system. Under such
conditions, the solutions corresponding to that Hamiltonian
in the absence of interaction between atoms are waves with
any possible (positive) energy value in a continuous spec-
trum [28]. To solve the full problem, we used the fixed-node
diffusion Monte Carlo method [36], which provides us with
an exact solution within some statistical uncertainties, for the
ground state (T = 0) of a system of interacting fermions when
the positions of the nodes of the exact wave function describ-
ing the system are known. Fortunately, in strictly 1D systems
we can have nodes only when two particles are exactly on
top of each other [37]. This information is easily included in
the so-called trial function, which is the initial approximation
to the many-body real wave function the DMC algorithm
needs. The use of a Monte Carlo method allows us to go be-
yond mean-field approximations by introducing correlations
between particles, something that can be necessary to describe
accurately dilute gas systems (see, for instance, Refs. [12,38],
which provide a comparison of mean-field, quantum Monte
Carlo, and experiment for one of those systems). When the
trial wave function happens to be the real many-body function
describing the system, the DMC technique gives us the value
of the energy without statistical errors.

Following Refs. [32,33], we used the following as a trial
function:

�
(
x1, . . . , xNp

) = A
[
φ(r11′ )φ(r22′ ) · · · φ(

rN173,N171

)]
×

6∏
b>a

n173,a∏
i=1

n173,b∏
j=1

ψ
(
x173

a,i − x173
b, j

)
(
x173

a,i − x173
b, j

)

×
2∏

b>a

n171,a∏
i=1

n171,b∏
j=1

ψ
(
x171

a,i − x171
b, j

)
(
x171

a,i − x171
b, j

) , (3)

where A[φ(r11′ )φ(r22′ ) · · · φ(rN173,N171 )] is the determinant of a
square matrix whose dimension is N173 × N171 [39] (for a bal-
anced cluster N173 = N171) and takes care of the interactions
between pairs of particles of different isotopes. φ(ri j′ )’s are
functions that depend on the distance between those particles
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ri j′ = |x173
i − x171

j′ | and are chosen as the exact solution of the
Schödinger equation corresponding to a pair of nonconfined
1D particles interacting with an attractive δ potential, i.e., [28]

φ
(∣∣x173

i − x171
j′

∣∣) = exp

[
−

∣∣g173,171
1D

∣∣
2

∣∣x173
i − x171

j′
∣∣]. (4)

Since we are dealing with strictly 1D systems, we can take that
as an exact solution for the two-body interaction term without
the regularization needed in higher dimensions. All this means
that we can write any row of A[φ(r11′ )φ(r22′ ) · · · φ(rN173,N171 )]
as

exp
(−∣∣g173,171

1D

∣∣ri1′/2
)
, exp

(−∣∣g173,171
1D

∣∣ri2′/2
)
, . . . ,

exp
(−∣∣g173,171

1D

∣∣ri,N171′
/

2
)
, (5)

where i stands for a particular 173Yb and the second index
varies to consider all the atoms belonging to the 171Yb isotope,
irrespectively of their spin. The use of that structure implies
that the trial function is antisymmetric with respect to the
interchange of two atoms of the same isotope [39]. It also
means that when two same-species atoms are on the same
position the trial function is 0, as it should be for a couple
of identical fermions.

The above determinant should describe accurately a system
in which all 173Yb atoms are spin polarized and the same is
true of all the 171Yb ones. However, if we have, for instance,
two sets of 173Yb particles with different spins, this is not so.
The reason is that the atoms of those two different sets are
distinguishable particles and not bound by the Pauli exclusion
principle. If we still use A[φ(r11′ )φ(r22′ ) · · · φ(rN173,N171 )], we
are going to have nodes for positions for which 173Yb atoms
of different spins are on top of each other, something that is,
in principle, not true.

To correct that, we have to look at how the determinant
is built. We can write down two consecutive rows accounting
for the interaction of two distinguishable atoms at coordinates

xi and x j in the 173Yb subset with all the 171Yb particles (at
coordinates x1′ , x2′ , . . . , xN171′ ) as∣∣∣∣exp

(−∣∣g173,171
1D

∣∣ri1′/2
) · · · exp

(−∣∣g173,171
1D

∣∣ri,N171′ /2
)

exp
(−∣∣g173,171

1D

∣∣r j1′/2
) · · · exp

(−∣∣g173,172
1D

∣∣r j,N171′ /2
)∣∣∣∣,

and when xi → x j , we can write

φ(rik′ ) = exp
(−∣∣g173,171

1D

∣∣|xi − xk′ |/2
)

= exp
(−∣∣g173,171

1D

∣∣|x j + 
 − xk′ |/2
)
, (6)

with 
 = xi − x j → 0. Expanding to the first order in 
, we
have

φ(rik′ )

= φ(r jk′ ) − ∣∣g173,171
1D

∣∣exp
(−∣∣g173,171

1D

∣∣r jk′/2
)
(x j − xk′ )


2r jk′
.

(7)

This means that we can write A[φ(r11′ )φ(r22′ ) · · · φ(rN173,N171 )]
as a sum of two determinants, the first one with two equal rows
(and hence null) and the second one including the correction
given by the last term of the right-hand side of Eq. (7). With
that in mind, we can see that the origin of the spurious node
at xi − x j → 0 is the dependence of all the elements of that
determinant row on 
. This can be corrected by dividing those
elements by, in this case, xi − x j . This is completely equiva-
lent to considering a factor 1/(xi − x j ) in the trial function.
We can repeat this procedure for any pair of distinguishable
atoms in the 173Yb and 171Yb ensembles. This is the origin of
the terms (xα

a,i − xα
b, j ) in the denominator of Eq. (3) [32,33].

ψ (xα
a,i − xα

b, j ) (α = 173 and 171) is a Jastrow function that
introduces the correlations between pairs of particles of the
same isotope belonging to different spin species a and b.
Particles of the same isotope with the same spin are assumed
to interact via Pauli exclusion only. For the 173Yb - 173Yb pair,
we have chosen, following the previous literature for a pair of
repulsively interacting particles [40],

ψ
(
x173

a,i − x173
b, j

) =
⎧⎨
⎩

cos
(
k
[∣∣x173

a,i − x173
b, j

∣∣ − Rm
]) ∣∣x173

a,i − x173
b, j

∣∣ < Rm,

1
∣∣x173

a,i − x173
b, j

∣∣ � Rm,
(8)

where k was obtained by solving

ka1D(173, 173) tan(kRm) = 1 (9)

for each value of a1D(173, 173) deduced from Eq. (2) for
a given transverse confinement. ω⊥ was taken in the range
2π×0–100 kHz, in line with previous experimental values
[41]. The value of Rm was the output of a variational calcu-
lation. When the pair of particles of the same isotope attract
each other, as in the 171Yb - 171Yb case, the Jastrow has the
form of Eq. (4) [32,40], but with a different value of the
defining constant g171,171

1D .
DMC being a statistical method, one has to be careful

to avoid all possible sources of error. The first one comes
from spurious correlations. Those could arise when we per-

form a single simulation and average the results after every
single DMC step. To avoid that, for each Monte Carlo his-
tory comprising 2.5×105 steps (after thermalization), we used
configurations separated by 100 Monte Carlo steps to obtain
the averages. This means 2500 values instead of 2.5×105.
In addition, all the energies and other observables given be-
low are the result of averaging six different Monte Carlo
histories and the error bars will correspond to the standard
deviations of those six values. This follows closely the pro-
cedure of Ref. [32]. The second source of error could come
from the election in the number of walkers Nw. Following
Refs. [32,42], we performed a study of the convergence of the
energy (after decorrelation) as a function of that parameter
and found that any number of walkers equal or larger than
1000 produced the same values. For instance, for a cluster
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FIG. 1. Dependence of the DMC energy per particle on the DMC
time step (
τ ) for a cluster with two sets of three 173Yb atoms and
a spin-polarized subcluster with six 171Yb particles for ω⊥/(2π ) =
25 kHz. The number of walkers was Nw = 1000.

comprising 12 particles, with two sets of three 173Yb atoms
with different spins and six spin-polarized 171Yb atoms, we
have that for a time step of 
τ = 6×10−4 (h̄ω⊥)−1 the energy
values per particle for ω⊥/(2π ) = 25 kHz (the experimental
value of Ref. [41]) were −0.246 ± 0.007 h̄ω⊥ for Nw = 1000,
−0.249 ± 0.007 h̄ω⊥ for Nw = 1500, and −0.248 ± 0.007
h̄ω⊥ for Nw = 2000, all within the error bars of each other.
This justifies the election of 1000 walkers for all the energy
results given below. This is the same number used in Ref. [32]
for a similar system.

Another possible source of error is the DMC time step

τ . Figure 1 shows the results of the extrapolation of the
energy to the limit 
τ → 0 for the same cluster considered
above. In that figure, the dotted line is a least-squares fit to
a quadratic form corresponding to the propagator used [43].
The energy per particle, including the error bars derived from
the fitting procedure, is −0.240 ± 0.005 h̄ω⊥, within the error
bar of the value obtained for 
τ = 6×10−4 (h̄ω⊥)−1. From
that and after having done similar studies in other clusters, we
concluded that an adequate value for the DMC time step was

τ = 6×10−4 (h̄ω⊥)−1. We have also tested that this time
step was large enough to provide a proper sampling of all the
possible particle configurations.

III. RESULTS

To solve the Schrödinger equation derived from the Hamil-
tonian in Eq. (1), we need to deduce the g1D parameters
for the interactions between ytterbium isotopes. This can be
done with the help of Eq. (2), which relates the physical
magnitudes that define the system (m, ω⊥, and the different
three-dimensional scattering lengths a3D) to the correspond-
ing g1D’s. Of those magnitudes, m and a3D are fixed, but

FIG. 2. Dependence of the g1D parameters of Eq. (1) on the
transverse confinement h̄ω⊥. Full line, g173−173

1D ; dashed line, g1D
173−171;

dotted line, g171−171
1D .

we can change ω⊥ (2π×0–100 kHz) to modify the effective
interaction between particles. The results of such variation
on the values of the g1D’s are displayed in Fig. 2. There, we
can see that the 173Yb - 173Yb interaction is always repulsive,
while the 173Yb - 171Yb is always attractive and of the same
order of magnitude. At the same time, g171,171

1D ∼ 0 in all the
ω⊥ range. It is also important to stress that we have cho-
sen to consider only interaction parameters compatible with
experimental conditions. This means that, for instance, the
ratio g173,173

1D /g173,171
1D cannot be varied arbitrarily, being fixed

by Eq. (2). With that in mind, we solved the Schrödinger
equation corresponding to the Hamiltonian in Eq. (1) for a set
of balanced clusters with different number of total particles,
Np = 4, 6, 8, 10, and 12.

We started with arrangements in which all the 173Yb and
171Yb atoms were spin-polarized, i.e., belonged to the same
spin species. That system would be similar to a set of paired
spin-up and spin-down 6Li atoms. For all values of the trans-
verse confinement, the total energy was −NpEb/2, with Eb

being the binding energy between 173Yb - 171Yb pairs with no
statistical error. That energy is [28,35]

Eb = h̄ω⊥
4

(
g173,172

1D

h̄ω⊥σ⊥

)2

. (10)

This means that the particles arranged themselves in pairs
formed by atoms of different isotopes with no attraction
between them. As indicated above, this implies that the
trial function including a single determinant of the type
A[φ(r11′ )φ(r22′ ) · · · φ(rN173,N171 )] is the real wave function of
the system of pairs. This is similar to what happens in three
dimensions but with a subtle difference: for instance, in
Ref. [44], the system had periodic boundary conditions, and
the total energy, after subtracting the energy corresponding
to the binding of the pairs, was positive, not 0 as in our
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FIG. 3. Energy per particle in units of h̄ω⊥ for a set of bal-
anced clusters with the total number of particles Np equal to 12 as
a function of the |g173−171

1D | parameter. The clusters are named as
(
∑s173

a=1 n173,a)/(
∑s171

b=1 n171,b). The energies of two of the droplets are
given with their corresponding error bars. When not shown, those
bars are of the same size as the ones displayed for the same values of
|g173−171

1D |. The dotted line corresponds to Eb/2 = −(g173−171
1D )2/8.

free boundary conditions arrangement. Those molecules do
not interact with each other due to the avoidance of both
elements of the pair by fermions of the same species in other
pairs brought about by the Pauli exclusion principle. That
precludes the formation of self-bound drops, and it should
be a common property of any SU(2) balanced system with
very short-range (δ or its counterpart in higher dimensions)
attractive interactions. Thus, to check if a droplet is stable,
we have to verify that the total energy of the cluster is below
−NpEb/2, i.e., more negative than that corresponding to a set
of noninteracting paired molecules. This is exactly the same
criterion used in 3He drops [45–47].

Figure 3 reflects the change in the previous situation when
we have more than one spin species for the 173Yb set of
atoms and keep the 171Yb spin polarized. There, we display
the energy per particle for balanced clusters with Np = 12 in
units of h̄ω⊥ as a function of the absolute value of g173−171

1D (in
units of h̄ω⊥σ⊥). Those units are the ones customarily used in
the literature and can be translated into experimental physical
magnitudes via Eq. (2). From Eq. (10), we can deduce that
the energy per particle of a spin-polarized cluster should be
−Eb/2 = −(g173−171

1D )2/8, the value displayed in Fig. 3 as a
dotted line. What we see is that for small values of |g173−171

1D |,
corresponding to relatively loose confinements, the energy
per particle for any cluster composition becomes appreciably
more negative than the one for the case of two spin-polarized
isotopes, but that for tighter confinements (larger |g173−171

1D |’s)
it gets progressively closer to that number. The fact that the
total energy of the clusters is lower than that corresponding to
a set of Np/2 pairs is the signature of a self-bound system, as it

FIG. 4. Same as in the previous figure but for clusters of different
compositions. In the 6/(3 + 3) cluster, the error bars are of the same
size as the symbols.

can be seen in Ref. [48] for a single light impurity embedded
in a 1D system of heavier atoms.

From the analysis of Fig. 3 we can obtain several con-
clusions. First, we can see that it is enough to flip a single
spin in the 173Yb set to obtain a self-bound droplet. This can
be deduced from the result for a (1 + 5)/6 cluster, but it is
also applicable to an 171Yb flip in a 6/(5 + 1) arrangement,
whose energies are not given by simplicity. This stabilization
is due to the relaxation of the Pauli-related restrictions, which
allows, in the first case, a single 171Yb atom to be close to
several 173Yb atoms of different spins. At the same time, those
173Yb atoms can be arbitrarily close together since they belong
to different species. The only price to pay will be a repulsive
173Yb - 173Yb interaction (not avoidance as for undistinguish-
able fermions) that can be counterbalanced by the attraction
between atoms of different isotopes. Obviously, the effects
of this relaxation increase with the number of different spin
species, making the arrangements progressively more stable.
Thus, the system with the lowest energy per particle comprises
six distinguishable 173Yb and six spin-polarized 171Yb, and it
is equivalent to a Fermi-Bose arrangement with a Fermi/Bose
ratio of 1:1. This system is stable for all the g173−171

1D (and
hence ω⊥) values considered in this work. The mean-field
approximation used in Ref. [8] would preclude the stability
of those clusters for the lowest values of g173−171

1D .
The conclusions of the previous paragraphs are fully sup-

ported by the study of similar or smaller clusters of different
compositions. For instance, in Fig. 4 we can see the effect
that the consideration of different numbers of species have for
Np = 12. The (3 + 3)/6 case is repeated from the previous
figure to serve as a comparison. The overall behavior of the
droplets is similar to that shown in Fig. 3: there is a sizable
stabilization for relatively loose transverse confinement, and
stabilization is reduced for very thin tubes. We can see also
that the larger the number of spin species is, the lower the
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FIG. 5. Energy comparisons between clusters of similar compo-
sitions but different total numbers of particles.

energy per atom is. In addition, clusters with the same number
of species but in which we kept the 173Yb atoms spin polarized
are more stable than the ones with spin-polarized 171Yb’s.
This is due to the weak attraction between 171Yb - 171Yb pairs
that kicks in when the Pauli restrictions are relaxed. A similar
set of rules can be applied to understand the clusters displayed
in Fig. 5. The only additional information is the increasing of
the stabilization of the cluster with size. There, we can see that
even clusters with a very small number of particles are stable.
This justifies us in the use of clusters with Np = 12 particles,
since one would expect further increases in stabilization with
size.

That stabilization does not imply the collapse of the clus-
ters. In Fig. 6 we can see the density profiles (number of
particles per unit length) corresponding to the (3 + 3)/6 and
6/(3 + 3) droplets. Those were calculated from DMC con-
figurations and could be appreciably different from those
obtained by using a mean-field method [38]. To avoid the bias
introduced in observables other than the energy in the DMC
algorithm, a forward-walking technique was used [49]. Since
free boundary conditions were used, the particles were able
to wander freely in 1D space. To avoid that effect, we calcu-
lated the density profiles taking as the origin of coordinates
the center of mass of the cluster. The signature of a stable
drop is then a finite width of those profiles, a width that was
checked to stay constant throughout each Monte Carlo simu-
lation. This situation is different than that for noninteracting
spin-polarized clusters of 173Yb and 171Yb, in which those
profiles become progressively wider along the Monte Carlo
run. According to that prescription, all the clusters with ener-
gies smaller than those corresponding to a set of independent
molecules have constant width, as can be been in Figs. 6–8.
The form of all the profiles, with their maxima at the center
of the cluster, implies that such small clusters are not made
up of smaller subunits close together. In Fig. 6 the solid lines
correspond to the spin-polarized isotope: 171Yb in the first

FIG. 6. Density profiles of the (3 + 3)/6 and 6/(3 + 3) clusters
for ω⊥ = 2π×25 kHz. Solid lines, spin-polarized isotopes; dotted
lines, other species. The density profiles are normalized to the num-
ber of particles, i.e., six or three, respectively. The center of the
cluster corresponds to the position of its center of mass.

case, and 173Yb in the second. The profiles are normalized
to the number of particles in that part of the arrangement, i.e.,
six. On the other hand, the dotted lines are the averages for
the (3 + 3) part of those systems, and their areas are as half

FIG. 7. Same as the previous figure but for clusters of different
compositions. Solid lines, spin-polarized ytterbium; dotted lines, mi-
nority (or averages of equally distributed) 173Yb atoms; solid circles,
majority component in the (2 + 4)/6 clusters. All the densities are
normalized to their respective number of atoms. (1×6)/6 is short for
(1 + 1 + 1 + 1 + 1 + 1)/6. Error bars are of the size of the symbols
and not displayed by simplicity.
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FIG. 8. Density profiles for (3 + 3)/6 clusters for two different
values of the transverse confinement: ω⊥ = 2π×10 kHz (dotted lines
and solid spheres) and 2π × 90 kHz (solid lines and open circles).
Lines correspond to the 171Yb isotope and symbols to the 173Yb one.
In opposition to the case of Fig. 6 we represented the total density of
the last type of atoms, normalizing the profile to six.

as much as those of their polarized counterparts. The value of
the transverse frequency was fixed to 2π×25 kHz, the same
as the one in the experimental work of Ref. [41] for a set
of 173Yb atoms. What we observe is that the width of the
clusters is basically the same, but a little bit thinner in the
6/(3 + 3) case, due to the attraction of the 171Yb - 171Yb pairs
with different spins, but in any case different from 0. The same
can be said of the arrangements displayed in Fig. 7. In this last
case, the differences can be ascribed to the different number of
spin species of the 173Yb isotope. In all cases we have stable
self-bound finite-size drops.

We can also see the influence of the transverse confinement
in the shape of the density profiles. In Fig. 8 we can see what
happens to the (3 + 3)/6 profile when squeezed in that direc-
tion. We have chosen this particular arrangement because, as
can be seen in Fig. 5, the energy per particle is noticeably
below −0.5Eb for all the values of |g173,171

1D | considered. At
the same time, the variations in the shape of the profiles are
fairly representative of what we can find in other cases. In
that figure, we represented both the 171Yb profiles (lines) and
the sum of the 173Yb ones (symbols); i.e., this last profile is
normalized to six instead of the three in Figs. 6 and 7. What
we observe is that, while at low confinements, the total 173Yb
and 171Yb distributions are different; at ω⊥ = 2π × 90 kHz,
both of them are basically identical. This can be the product
of an increase in the repulsion among the atoms of the SU(6)
isotope, which makes the system more similar to a set of
balanced 6Li atoms. In any case, the similarity is not complete,
since there is an energy excess that stabilizes the ytterbium
clusters and will not do the same for a set of 6Li atoms.
This figure, together with the previous ones, can be used to
attest the one dimensionality of the system: the minimum

FIG. 9. Probability of finding another particle at a distance
x from the first one for (1 + 1 + 1 + 1 + 1 + 1)/6 (lines) and
(3 + 3)/6 (symbols) clusters. The profiles are normalized to one,
including the tails beyond x = 10σ⊥, not shown for simplicity.

spread on the longitudinal direction corresponds to ∼10 σ⊥
for ω⊥/(2π ) = 10 kHz, with typical values of 15–20 σ⊥ at
the experimental frequency of ω⊥/(2π ) = 25 kHz (see Figs. 6
and 7) and going up to ∼40 σ⊥ at ω⊥/(2π ) = 90 kHz. Those
are larger that the value corresponding to the transverse width,
by definition, ∼σ⊥.

Last, in Fig. 9, we show the probability of finding another
particle at a distance x of a given one. This gives us informa-
tion about the correlations between pairs. Those probabilities
were calculated for (1 + 1 + 1 + 1 + 1 + 1)/6 (lines) and
(3 + 3)/6 (symbols) clusters for a transverse confinement
of 2π × 25 kHz. Other arrangements are qualitatively simi-
lar and not shown for simplicity. The main features of this
observable are covered by representing the probabilities cor-
responding to all the possible isotope pairs; i.e., all atoms of
the same isotope are lumped together. Since in both clusters
the 171Yb is spin polarized, the 0 value of that function for
a 171Yb - 171Yb pair for x → 0 is simply a consequence of
Pauli’s exclusion principle. On the other hand, since at least
part of the 173Yb atoms belong to different spin species, in that
limit the probability of having a 173Yb - 173Yb pair is different
from 0. The position of the maxima in both 173Yb - 173Yb
and 171Yb - 171Yb functions, roughly similar to each other,
reflect the typical distance between different molecules. The
existence of those molecules can be deduced from the maxima
in the 173Yb - 171Yb probability function for x → 0.

IV. CONCLUSIONS

In this work, we have studied the possibility of the
existence of one-dimensional self-bound mixtures of
ytterbium fermionic isotopes. To be realistic, experimentally
derived parameters were used to describe the interactions
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between different species. Since the goal of this work was to
establish the possibility of having self-bound clusters and the
energy per particle was found to decrease when increasing
the number of particles, we stop at Np = 12, since our results
indicate that we can expect the trend to continue for larger
Np’s. In particular, the study of convergence (if any) to the
thermodynamic limit (Np → ∞) is out of the scope of this
work. The criterion to label a cluster as self-bound was to
check if its total energy was lower than that corresponding to
a set of Np/2 pairs. This implies that the atoms tend to stay
together due to that energy decrease and not because of the
confinement imposed by an external harmonic potential. This
means that the results presented in this work are related, but
are not directly comparable to those of Ref. [32], in which
that external constraint was imposed.

Several interesting conclusions can be afforded by the
analysis of the data above. First, the existence of self-bound
1D droplets made up of two spin-polarized sets of the same
number of fermionic atoms with attractive δ interactions is
not possible. This is because they form molecules that ex-
clude other pairs in the vicinity due to the double effect
of the Pauli exclusion principle between atoms of the same
species in different molecules. Even though this is similar
to what happens in three-dimensional SU(2) systems with
short-range interactions under periodic boundary conditions
[44], this effect has not been previously described as such.
Second, to flip the spin of a single atom is enough to produce
a stable drop. This can be seen with the help of Figs. 3 and
5, which allow one to see that the (1 + 5)/6, 2/(1 + 1), and
(1 + 1)/2 clusters are stable. In addition, we have verified
that the 6/(5 + 1), 4/(3 + 1), and (3 + 1)/4 clusters are also
self-bound and have compact density profiles. Moreover, a
close inspection of Figs. 3–5 indicates that any cluster with at
least three fermionic species is stable, providing that at least
one of the δ interactions between species is attractive. This is
a general conclusion that could be experimentally tested.

The third relevant finding of this work has to do with the
behavior of the clusters at very tight confinements, i.e., for
large values of |g173,171

1D | and g173,173
1D (see Fig. 1). With the

help of Figs. 3–5 we can see that, the tighter the confine-
ment is, the closer the value of the energies per particle to
−Eb/2 for (

∑s173
a=1 n173,a)/(Np/2) arrangements is. This means

clusters with several spin values for 173Yb and spin polar-
ized in their 171Yb part. This suggests that the ω⊥ → ∞
energy limit for those clusters is universal and equal to
−EbNp/2. Since a set of Np/2 distinguishable fermions is
akin in this context to a set of bosons, that limit would also

apply to a 1D Fermi-Boson mixture in which the boson-boson
interaction is repulsive. This is corroborated by the behavior
of the (1 + 1 + 1 + 1 + 1 + 1)/6 and (1 + 1)/2 arrange-
ments, displayed in Figs. 3 and 5. In a sense, this is equivalent
to the Tonks-Girardeau limit for 1D repulsively interacting
single fermions [50], but for pairs of molecules. In that limit,
there is no difference between the energies of a set of fermions
or bosons for harmonically confined systems. As in the Tonks-
Girardeau gas, for very tight confinements we are in the
strong interaction limit, something that cannot be dealt with
the mean-field approximations used for Fermi-Bose gases in
the previous literature [8]. However, the situation is slightly
different for (Np/2)/(

∑s171
a=1 n171,a) clusters, in which fermions

with different spins attract each other, even slightly. Then,
even though there is still an energy limit for very tight con-
finement, that limit is lower than that corresponding to −Eb/2
per particle (see Fig. 5), as a result of the residual attraction
between molecules.

As to the possibility of producing this kind of cluster,
we can say that, as indicated above, mixtures of those iso-
topes have already been obtained [31,51], albeit for larger
systems. On the other hand, it is possible to produce very
small fermionic drops [52], even in 1D environments [53].
This implies that, a priori, the kind of drops considered here
can be experimentally produced. Since our results do not
preclude the existence of larger self-bound systems with the
same compositions, to check that possibility could be worth
pursuing. Those clusters could be similar in size and stability
to those of Bose-Bose mixtures [3].

Summarizing, this study opens the door to consider new
behaviors for attractively interacting fermionic mixtures be-
yond binary compositions in both 1D and higher dimensions.
Those studies need not be limited to mixtures of Yb isotopes,
but could be extended to systems made up of atoms with
different masses providing we know all the experimentally
relevant parameters (m’s, scattering lengths, and transverse
confinements).
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