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The idea of simulating quantum physics with controllable quantum devices had been proposed several decades
ago. With the extensive development of quantum technology, large-scale simulation, such as the analog quantum
simulation tailoring an artificial Hamiltonian mimicking the system of interest, has been implemented on
elaborate quantum experimental platforms. However, due to the limitations caused by the significant noises and
the connectivity, analog simulation is generically infeasible on near-term quantum computing platforms. Here
we propose an alternative analog simulation approach on near-term quantum devices. Our approach circumvents
the limitations by adaptively partitioning the bath into several groups based on the performance of the quantum
devices. We apply our approach to simulate the free induction decay of the electron spin in a diamond NV−

center coupled to a huge number of nuclei and investigate the nonclassicality induced by the nuclear spin
polarization. The simulation is implemented collaboratively with authentic devices and simulators on IBM
quantum computers. We have also applied our approach to address the nonclassical noise caused by the crosstalk
between qubits. This work sheds light on a flexible approach to simulate large-scale materials on noisy near-term
quantum computers.
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I. INTRODUCTION

Simulating quantum physics has long been a widely known
challenging problem [1]. One of the primary difficulties lies
in the exponential growth of the Hilbert space of a large
quantum system with increasing constituent components. This
would require a huge amount of computer memory to store the
quantum states and the quantum operations acting on them. In
particular, if we are further interested in the time evolution of
the quantum system, the burden imposed on the computational
resource would become even heavier and rapidly exceed the
computational power of conventional computers.

Instead of developing sophisticated, but inevitably approx-
imate, classical algorithms, an alternative proposal for solving
the problem of simulating quantum physics is to harness the
power of quantum mechanical systems [1–5], underpinned by
the intuitive idea that nature itself ultimately behaves quantum
mechanically. An appealing approach is to directly map the
Hamiltonian of a less controllable system of interest onto
that of a quantum simulator consisting of well-controlled
quantum systems, referred to as analog quantum simulation
(AQS) [6–8]. With the extensive development of quantum
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technology, AQS has been implemented with many quan-
tum mechanical systems, including superconducting circuit
[8–10], ultracold atoms [7,11], Rydberg atoms [12,13], and
trapped ions [14–16]. Noteworthily, these successful demon-
strations of AQS are implemented on the elaborate quantum
experimental platforms, which are generically inaccessible to
public.

On the other hand, many programable quantum computing
platforms have emerged in recent years. They are featured
by the accessibility to the public via online user interfaces,
opening an avenue for the public to experience the princi-
ples of quantum mechanics. In particular, theorists are able
to design prototypical experiments running on the quantum
computers to examine and demonstrate theoretical concepts.
Consequently, many demonstrations of the fundamental prin-
ciples of quantum mechanics have been achieved on these
state-of-the-art quantum computing platforms [17–25].

In addition to the aforementioned demonstrations of fun-
damental quantum-information-theoretic principles, quantum
computers are also conceived to be versatile in the simula-
tion of open quantum system dynamics [26–29]. However,
the near-term quantum computers are still in an era of noisy
intermediate-scale quantum (NISQ) devices [30]. Except
for some prominent breakthroughs of quantum computers
outperforming conventional computers [31–33], due to the
limitations on the performance caused by the significant
noises and the qubit topological connectivity, a straightfor-
ward simulation of large-scale materials remains intractable.
Either the simulation of a few atoms arranged in an one-
dimensional chain [26], hybrid quantum-classical algorithm

2643-1564/2023/5(4)/043139(17) 043139-1 Published by the American Physical Society

https://orcid.org/0000-0001-7244-0708
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.5.043139&domain=pdf&date_stamp=2023-11-09
https://doi.org/10.1103/PhysRevResearch.5.043139
https://creativecommons.org/licenses/by/4.0/


YUN-HUA KUO AND HONG-BIN CHEN PHYSICAL REVIEW RESEARCH 5, 043139 (2023)

[34–36], or variational quantum algorithms [37–39], can be
efficiently implemented. There is one another approach, re-
ferred to as Trotterization [26,40–42], attainable on near-term
quantum computers. This approach approximates the whole
time-evolution operator by discretizing and decomposing it
into a series of smaller ones according to the Suzuki-Trotter
formula. The primary drawback of the Trotterization is the
errors introduced during the decomposition. Additional over-
head analyzing the impacts of the decomposition errors is
necessary. A quantum hardware-efficient approach capable of
simulating large-scale materials in an AQS manner free from
the Trotterization decomposition errors is desirable.

On the other hand, an unambiguous demonstration of cer-
tain genuine quantumness of interest out of classicality has
long been a vigorous studying topic [43–46]. Along with the
development of quantum theory, these studies have provided
deeper insights into the quantumness of nature. Prominent
paradigms includes the nonclassical correlations [47–49] and
the nonclassicality of quantum states [50–52]. Additionally,
an emerging type of nonclassicality investigates the nature of
quantum dynamical processes. Various definitions have been
put forward to elucidate different aspects of nonclassicality
of quantum dynamical processes [53–61]. Recently, we have
also approached this issue with the technique of canonical
Hamiltonian ensemble representation (CHER) [62–64] and
applied it to the free-induction-decay (FID) process of a neg-
atively charged nitrogen-vacancy (NV−) center in diamond
[65].

In this work we propose an alternative analog simulation
approach capable of not only simulating large-scale mate-
rials on near-term quantum computing platforms, but also
reflecting the physical mechanisms underlying the observed
phenomena at a microscopic level. Our approach circumvents
the limitations on the performance by adaptively partitioning
the bath into several groups based on the performance of the
quantum devices. We apply our approach to simulate the FID
process of the electron spin of an NV− center in diamond lat-
tice and perform the simulation on IBM quantum computers
(IBMQ) [66].

To do this, we first design a quantum circuit implement-
ing the total Hamiltonian of an NV− center coupled to a
huge nuclear spin bath. Additionally, to realize the effects of
various nuclear spin polarizations, we also design a family
of polarization oracles accompanied with ancillary qubits. In
order to adequately divide the nuclear spin bath into smaller
groups fitting into the performance of the quantum devices, we
test their capabilities by a series of preliminary examinations
with a few number of nuclei. Based on their performance,
we can simulate the FID process either in an collaboration
with authentic quantum device and classical simulator, or fully
on classical simulator of IBMQ. With this adaptive partition
approach, we can reproduce the nonclassical FID process in
the presence of a transversely polarized nuclear spin bath and
estimate the corresponding CHER. Noteworthily, our AQS
circuit model on quantum computers is free from Trotteriza-
tion decomposition errors.

To further showcase the versatility of our approach, we
have also applied it to address the nonclassicality in the non-
local noise caused by the crosstalk between qubits, which
constitutes the primary source of error in our simulations

and is hard to be mitigated with postprocessing of gathered
data. Our approach suggests a convenient way to suppress
the crosstalk by optimally grouping the bath and launching
appropriate qubits. With these paradigmatic simulation tasks,
we achieve demonstration of the flexibility and capability of
our approach in the exploration of new physics behind the
simulated materials.

II. DYNAMICS OF NV− CENTER

Our approach is developed in the spirit of analog quantum
simulation (AQS), which manipulates the tunable Hamilto-
nian of a well-controlled quantum system to numerically
mimic a less controllable one. The circuit model of our ap-
praoch will be designed specifically according to the details of
the target material. Therefore, before explaining the construc-
tion of the quantum circuit, it would be instructive to elucidate
the target to be simulated.

A. Hamiltonian of NV− center

We consider a single negatively charged nitrogen-vacancy
(NV−) center in diamond lattice consisting of a substitutional
nitrogen (N) and a vacancy (V) in an adjacent lattice site, as
shown in Fig. 1(a). The axis joining V and N defines an intrin-
sic z axis for the electron spin. There are totally six electrons
confined in the V site, forming a complicated electron spin
configuration. The ground state of the electron spin is a spin
triplet state with S = 1. Figure 1(b) shows the energy level
structure of the electron spin ground state. There is a zero-field
splitting D/2π = 2.87 GHz between the sublevels mS = 0
and mS = ±1. In the absence of the external magnetic field,
the two sublevels mS = ±1 degenerate; while the degeneracy
will be lifted due to the Zeeman effect by applying an external
magnetic field �B. For simplicity, we assume that the external
magnetic field �B = Bz�ez is aligned with the z axis. Due to the
Zeeman splitting, we can selectively excite the two different
spin transitions |0〉 ↔ | ± 1〉 with microwave (MW) pulses at
an appropriate frequency. Therefore, the free Hamiltonian of
the electron spin triplet is given by

ĤNV = DŜ2
z + γeBzŜz, (1)

where γe/2π = 2.8025 MHz/G is the electron gyromagnetic
ratio.

The diamond lattice sites are mostly occupied by the spin-
less 12C nuclei [light gray spheres in Fig. 1(c)], which have
negligible effects on the electron spin free-induction-decay
(FID) process. The electron spin dephasing is mainly caused
by the randomly distributed 13C isotopes of natural abundance
about 1.1% [dark gray spheres in Fig. 1(c)] with nuclear spin
J = 1/2. Then the free Hamiltonian of the nuclear spin bath
consisting of 13C isotopes indexed by k is given by

ĤC =
∑

k

γCBzĴ
(k)
z , (2)

with γC/2π = 1.0704 kHz/G being the gyromagnetic ratio of
the 13C nuclei.

The coupling between the electron spin and the 13C nuclear
spin bath is given by the hyperfine interaction with interaction
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FIG. 1. (a) A NV− center in diamond lattice is a point defect consisting of a substitutional nitrogen (N) and a vacancy (V) in an adjacent
lattice site. The axis joining V and N defines an intrinsic z axis, along which an external magnetic field �B = Bz�ez is applied. (b) For the electron
spin triplet ground state, there is a zero-field splitting D/2π = 2.87 GHz between the sublevels mS = 0 and mS = ±1. In the presence of an
external magnetic field, the degeneracy between mS = ±1 can be lifted due to the Zeeman splitting. Then the two different spin transitions
|0〉 ↔ | ± 1〉 can be selectively addressed with MW pulses at an appropriate frequency, forming a logical qubit. (c) Schematic illustration of
an NV− center in diamond lattice interacting with 13C nuclear spin bath (dark gray spheres). To guarantee the validity of the dipole-dipole
hyperfine interaction, all 13C nuclei lie outside a radius of 0.5 nm. Furthermore, we also assume that only the nuclei within a polarization area
(yellow shadow) of radius 1 nm can be identically polarized in a controllable manner via the DNP technique.

Hamiltonian expressed as

ĤI = Ŝ ·
∑

k

→
A

(k)
·Ĵ (k). (3)

Since the electron wave function is tightly confined in the V
site, the Fermi contact risen by the overlap with the electron
wave function becomes negligible for nuclei farther away than
0.5 nm from the NV− center. In our simulation, we postse-
lect a randomly generated configuration with all 13C nuclei
lying outside a radius of 0.5 nm, as schematically shown in
Fig. 1(c). Therefore, the hyperfine interaction (3) is caused by
the dipole-dipole interaction and the hyperfine coefficients are
given by

A(k)
i j = μ0γeγC

4π |�r (k)|3 [�ei · �e j − 3(�e(k) · �ei )(�e(k) · �e j )], (4)

with μ0 the magnetic permeability of vacuum, �r (k) the dis-
placement vector toward the kth nucleus, and �e(k) the unit
vector of �r (k). Note that, due to the three order of magnitude
difference between γe and γC, the internuclei interaction has
negligible effects on the FID process. This has also be verified
with the cluster-correlation expansion technique [67,68]. We
therefore ignore the internuclei interaction here.

Moreover, it is worthwhile to note that the dilute 13C nu-
clear spin bath leads to a relaxation time T1 of the electron
spin in the order of milliseconds [69,70] and a dephasing
time T ∗

2 of microseconds [71–73]. Due to this experimentally
measured three order of magnitude difference between T1 and
T ∗

2 , the electron spin dynamics can be well approximated by
pure dephasing on the time scale under study. Therefore, it is
relevant for us to neglect the terms proportional to Ŝx and Ŝy in
Eq. (3) and consider only the Ŝz component phenomenologi-
cally. Then the total Hamiltonian can be expressed as

ĤT = DŜ2
z + γeBzŜz +

∑
k

γCBzĴ
(k)
z + Ŝz

∑
k

�A(k)
z · Ĵ (k), (5)

and only the three hyperfine coefficients �A(k)
z =

(A(k)
zx , A(k)

zy , A(k)
zz ) left. Additionally, it is critical to note

that the total Hamiltonian (5) can be expressed in a block

diagonal form with respect to the electron spin basis as

ĤT =
∑

mS=0,±1

|mS〉〈mS| ⊗ ĤmS , (6)

where ĤmS = (m2
SD + mSγeBz ) + ∑

k
��(k)

mS
· Ĵ (k), ��(k)

0 =
��0 = (0, 0, γCBz ), and ��(k)

±1 = ± �A(k)
z + ��0.

Finally, the total unitary time-evolution operator

ÛT(t ) = exp(−iĤTt )

=
∑

mS=0,±1

|mS〉〈mS| ⊗ ÛmS (t ), (7)

is also block diagonal with respect to the electron spin basis
with conditional evolution operators ÛmS (t ) = exp(−iĤmS t ).

B. FID process of electron spin

The FID process of the electron spin is a pure dephasing
dynamics caused by the 13C nuclear spin bath. The initial
state of total system is assumed to be a direct product of all
constituent componets

ρT(0) = ρNV(0) ⊗
∏

k

ρ (k), (8)

where ρ (k) = [̂I (k) + �p(k) · σ̂ (k)]/2 is the initial state of the
kth nuclear spin with polarization �p(k), and Î (k) and σ̂ (k) are
the identity and the Pauli operators, respectively, acting on
the kth nuclear spin Hilbert space. In a conventional FID
experiment, the electron spin will be first optically polarized
to |0〉 by a 532-nm green laser, and a subsequent π/2 MW
pulse will set the electron spin state to a superposition state
|�NV(0)〉 = (|0〉 + |1〉)/

√
2. Therefore, in our simulation, the

electron spin is described in a qubit manifold with Hilbert
space spanned by the two sublevels mS = 0 and mS = 1.

Once the electron spin state is set to ρNV(0), the hyperfine
interaction in Eq. (5) is turned on and the time evolution of
the total system is governed by the block diagonal unitary

043139-3



YUN-HUA KUO AND HONG-BIN CHEN PHYSICAL REVIEW RESEARCH 5, 043139 (2023)

operator

ÛT(t ) = |0〉〈0| ⊗
∏

k

Û (k)
0 (t )

+|1〉〈1| ⊗ e−i(D+γeBz )t
∏

k

Û (k)
1 (t ), (9)

where Û (k)
0 (t ) = exp[−i(�0σ̂

(k)
z )t/2] and Û (k)

1 (t ) =
exp[−i( ��(k)

1 · σ̂ (k) )t/2], and �u(k) = ��(k)
1 /| ��(k)

1 | is the axis
of nuclear spin precession.

The electron spin reduced density matrix ρNV(t ) =
TrCÛT(t )ρT(0)Û †

T (t ) is obtained by tracing over the 13C nu-
clear spin bath from the total system, and the electron spin
pure dephasing dynamics is characterized by the dephasing
factor

φ(t ) = 〈0|ρNV(t )|1〉
= ei(D+γeBz )t

∏
k

Tr
[
Û (k)†

1 (t )Û (k)
0 (t )ρ (k)

]
. (10)

Moreover, since we are paying particular attention to the pure
dephasing dynamics caused by the 13C nuclear spin bath, it is
clear that the leading factor exp[i(D + γeBz )t] plays no role in
describing the profile of φ(t ) but merely introducing a rapidly
rotating phase. Consequently, for our purpose, we can neglect
the leading factor. Finally, with the help of the prescription
(�u · σ̂ )(�v · σ̂ ) = (�u · �v )̂I + i(�u × �v) · σ̂ and the orthogonality
of the identity and the Pauli operators Trσ̂ j σ̂k = 2δ jk , the
dephasing factor can be expressed analytically as

φ(t ) =
∏

k

[(
cos

�0t

2
− ip(k)

z sin
�0t

2

)
cos

�
(k)
1 t

2

+u(k)
z

(
sin

�0t

2
+ ip(k)

z cos
�0t

2

)
sin

�
(k)
1 t

2

+i
(
p(k)

x u(k)
x + p(k)

y u(k)
y

)
cos

�0t

2
sin

�
(k)
1 t

2

+i
(
p(k)

x u(k)
y − p(k)

y u(k)
x

)
sin

�0t

2
sin

�
(k)
1 t

2

]
. (11)

C. Nuclear spin polarization

Equation (11) suggests that one is possible to manipulate
the dynamical behavior of the electron spin by engineering
the polarization �p(k) and the precession axis �u(k) of the nu-
clear spin bath. One of the extensively developed techniques
engineering the nuclear spin bath is the dynamical nuclear
polarization (DNP) [74–84], which utilizes the hyperfine in-
teraction and the resonance between the electron spin and
the nuclei to transfer the electron spin polarization to the
surrounding nuclear spins, achieving a hyperpolarized nuclear
spin bath.

On the other hand, since the underlying mechanism of the
DNP relies on the hyperfine interaction between the electron
spin and the nuclei, which attenuates rapidly with increasing
displacement, as can be seen from Eq. (4), it is generically
infeasible to polarize the whole nuclear spin bath. Therefore,
we assume that only the nuclei within a polarization area of

radius 1 nm [yellow shadow in Fig. 1(c)] can be polarized with
identical polarization �p; otherwise �p = 0 for �r (k) � 1 nm.

III. DYNAMICAL PROCESS NONCLASSICALITY

From the above discussion, we acquire the fact that the
decoherence of the electron spin is caused by the hyper-
fine interaction to the 13C nuclear spin bath. In fact, this
phenomenon of decoherence is ubiquitous in any quantum
systems, as they are impossible to be fully isolated from their
environments, and the inevitable interactions to their environ-
ments constitute the origin of decoherence [85–90]. From the
quantum-information-theoretic perspective, the interactions
will establish complicated correlations between them; while
the correlations are subject to the destructions arising from the
fluctuations in the huge environments, rendering themselves
fragile and transient.

Consequently, an intriguing question is naturally raised:
Given exclusively the FID signal, to what extent can the exper-
imentalist infer the essential of the correlations between the
electron spin and the nuclear spin bath? To this end, we have
developed a technique of canonical Hamiltonian ensemble
representation (CHER) to characterize the nonclassicality of a
dynamical process according to the witness of the nonclassical
correlations between the primary system and its environments
[62–64].

Our definition of process nonclassicality is constructed
based on the possibility to explain a dynamical process in
an ensemble-averaged manner. The mathematical tool of fun-
damental importance in our definition is the Hamiltonian
ensemble (HE) {(pλ, Ĥλ)}λ, which consists of a collection of
traceless Hermitian operators Ĥλ ∈ su(n) associated with a
probability pλ of occurrence [91,92]. For a given HE, it will
give rise to an ensemble-averaged dynamics expressed as

ρ(t ) = Et {ρ(0)} =
∫

pλÛλ(t )ρ(0)Û †
λ (t )dλ, (12)

where Ûλ(t ) = exp(−iĤλt ) is the unitary time-evolution op-
erator generated by the member Hamiltonian operator Ĥλ.

A particularly inspiring example considers a single
qubit subject to spectral disorder with the HE given by
{(p(ω), ωσ̂z/2)}ω, where p(ω) can be any probability distribu-
tion function, then the ensemble-averaged dynamics describes
pure dephasing:

ρ(t ) =
∫ ∞

−∞
p(ω)e−iωσ̂zt/2ρ0 eiωσ̂zt/2dω

=
[

ρ� ρ↑↓ φ(t )
ρ↓↑ φ∗(t ) ρ�

]
(13)

with the dephasing factor φ(t ) = ∫
p(ω) exp(−iωt )dω being

the Fourier transform of p(ω).
Crucially, it has been shown that [62] if a primary system

and its environments remain at all times classically corre-
lated without establishing nonclassical correlations during
their interactions, then the reduced system dynamics Et can be
explained in terms of a HE in the sense of ensemble-averaged
dynamics (12). Namely, the incoherent dynamical behavior
can be conceived as a result of the consumption of classi-
cal correlations. On the contrary, if nonclassical correlations
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emerge during the interactions, then one may fail to construct
a HE with legitimate probability distribution function pλ, and
necessarily appeals to a quasidistribution℘λ with negative val-
ues instead. Consequently, the quasidistribution℘λ, referred to
as the CHER, can be used to characterize the nonclassicality
of a dynamics Et [62–64].

Considering the FID process governed by the unitary op-
erator (9), the electron spin undergoes a pure dephasing
dynamics characterized by the dephasing factor (11). In view
of Eq. (13), the corresponding CHER℘(ω) of the electron spin
FID is determined by the inverse Fourier transform

℘(ω) = 1

2π

∫ ∞

−∞
φ(t )eiωt dt . (14)

It is interesting to note that the electron spin FID has shown
to be nonclassical when the 13C nuclear spin bath is trans-
versely polarized; moreover, the degree of nonclassicality will
become stronger with increasing polarization and magnetic
field [65]. In the following, we will design a quantum circuit
capable of reproducing the nonclassical effects induced by
the nuclear spin path polarization on the electron spin FID
process.

IV. ADAPTIVELY PARTITIONED AQS FOR NV− CENTER

After elucidating the target material to be simulated and
the underlying physics of nonclassicality to be revealed, we
proceed to explain how to design the quantum circuit model
implementing the adaptively partitioned AQS for NV− center
coupling to a huge 13C nuclear spin bath. The whole procedure
consists of several steps outlined in the following:

Step 1: AQS quantum circuit. Since the total Hamiltonian
(5) will generate the corresponding unitary time-evolution
operator (9), our approach begins with the design of a quan-
tum circuit implementing Eq. (9), as well as all the relevant
experimental setup, including the initial state preparation and
the nuclear spin polarization.

Step 2: Preliminary examination. To fully simulate the
effects of the whole nuclear spin bath in an AQS manner,
the quantum circuit should launch several hundreds of qubits.
This is obviously infeasible on near-term quantum computing
platforms. We therefore adaptively partition the bath into sev-
eral groups based on the performance of the quantum devices.
To this end, the second stage is to preliminarily examine the
performance of available quantum devices by testing proto-
typical circuits designed in the first stage.

Step 3: Adaptive partition. Based on the limitations of the
quantum devices examined in the previous stage, the third
stage is a partition of the nuclear spin bath into smaller groups
fitting into the performances of the available quantum devices.
Then each individual group is attainable on the quantum de-
vices and can be performed separately.

Step 4: Combination of groups. Ultimately, according to
Eq. (11), the final results can be obtained by combining the
output of each group.

Detailed implementations of each stage are explained in
the following.

A. AQS circuit model for NV− center

The purpose of the AQS is to tailor an artificial Hamilto-
nian with controllable quantum systems mimicking the one of
interest. We therefore design a quantum circuit by mapping
the total unitary time-evolution operator

ÛT(t ) = |0〉〈0| ⊗
∏

k

Û (k)
0 (t ) + |1〉〈1| ⊗

∏
k

Û (k)
1 (t ) (15)

into quantum gates. Note that the factor exp[−i(D + γeBz )t]
has been neglected from Eq. (9). This factor is given by the
energy-level spacing between |0〉 and |1〉 states described by
the electron spin free Hamiltonian (1). It is responsible for
the rapid oscillation in the FID profile. However, here we
are interested in the dephasing caused by the interaction to
the nuclear spin bath. Consequently, for our purpose, we can
neglect the this factor.

It is crucial to observe that the hyperfine interaction in
Eq. (5) gives rise to an intrinsic conditional operation con-
ditioned on the electron spin state. This can be realized by the
controlled-U gates on IBMQ after the following manipulation
of Eq. (15):

ÛT(t ) =
(

|0〉〈0| ⊗
∏

k

Î (k) + |1〉〈1| ⊗
∏

k

Û (k)
1 (t )Û (k)†

0 (t )

)

×
(

Î (NV) ⊗
∏

k

Û (k)
0 (t )

)
, (16)

where Î (NV) is the identity operator acting on the qubit playing
the role of electron spin. Then the above unitary operator can
be realized with quantum gates as:

ÛT =
(

C(NV)
∏

k

Û (k)(θ (k), ϕ(k), λ(k), γ (k) )

)

×
(

Î (NV) ⊗
∏

k

R̂z(�0t )

)
. (17)

The second term denotes a series of identical and independent
R̂z(�0t ) rotations, with matrix representation

(18)

on the qubits playing the role of 13C nuclear spins, followed
by the controlled-U gates conditioned on the electron qubit
denoted by the first term. They can be realized by the circuit

(19)

on IBMQ; meanwhile, the gate parameters can be determined
according to the Hamiltonian (6) as follows:

θ (k) = 2 cos−1

√
cos2 �

(k)
1 t

2
+ sin2 �

(k)
1 t

2
u(k)2

z

ϕ(k) = −π

2
− �(k) + �(k)
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FIG. 2. The overall quantum circuit implementing the AQS for NV− center coupling to the whole 13C nuclear spin bath. To prepare the
qubit initial states satisfying the experimental condition, each qubit will go through a stage of state preparation. The Hadamard gate on the
electron qubit sets the qubit state to (|0〉 + |1〉)/

√
2, reflecting the effect of a π/2 MW pulse. While the mixed state of the nucleus qubit can

be realized by a polarization oracle P (k) acting on the kth nucleus qubit associated with an additional ancilla qubit. The desired nuclear spin
polarization can be achieved by the polarization oracles listed in Table I. At the end of the electron qubit, the QST is applied to construct the
time evolution of the dephasing factor φ(t ) along a time sequence.

λ(k) = π

2
− �0t − �(k) − �(k)

γ (k) = �0t

2
+ �(k)

�(k) = Arg

[
cos

�
(k)
1 t

2
− i sin

�
(k)
1 t

2
u(k)

z

]
�(k) = Arg

[
u(k)

x + iu(k)
y

]
. (20)

Further details are shown in Appendix A. Consequently, the
total unitary time-evolution operator (15) can be realized with
the AQS circuit succinctly shown below:

(21)

B. State preparation and polarization oracle

Once the total unitary time-evolution operator (15) has
been realized with quantum circuit, following the discussions
in Sec. II, the next step is to prepare the initial state as given
in Eq. (8) according to the FID experiments.

The qubit initial state on IBMQ is preset to |0〉. A
Hadamard gate realizes the effect of a π/2 MW pulse setting
the electron spin state to (|0〉 + |1〉)/

√
2, as shown in Fig. 2.

On the other hand, a single-qubit gate on nucleus qubit is
insufficient to realize various nuclear spin states, particularly
those of mixed states. To do this, we design the polarization
oracle P (k) acting on the kth nucleus qubit associated with an
additional ancilla qubit, as shown in Fig. 2. After the operation

of an appropriate P (k), tracing out the ancilla qubit leaves the
nucleus qubit in the state ρ (k) = [̂I (k) + �p(k) · σ̂ (k)]/2 with a
corresponding polarization vector �p(k). Table I shows a family
of polarization oracles P (k) and the corresponding polariza-
tion vectors �p(k). Therefore, we can manipulate individual
nucleus qubit state and realize a nuclear spin bath of exper-
imental condition schematically shown in Fig. 1(c).

At the end of the AQS circuit, the quantum state tomogra-
phy (QST) is applied to probe the state of the electron qubit.
Additionally, since we are aiming at simulating the electron
spin pure dephasing characterized by the dephasing factor
(11), its time evolution can be constructed by measuring σ̂x

and σ̂y along a time sequence according to φ(t ) = 〈σ̂x〉t −
i〈σ̂y〉t . Finally, the overall layout of the circuit is shown in
Fig. 2. Note that merely the electron qubit is measured for
QST at the end of the AQS circuit. The nucleus and the ancilla
qubits are ignored after the AQS block. This reflects the trace
over the nuclear spin degrees of freedom in Eq. (10).

C. Preliminary examination

To perform the AQS circuit on IBMQ [66], we have to map
the circuit onto the qubits of the quantum devices. However,
due to the qubit topological connectivity, it is obviously infea-
sible to map the whole circuit simulating hundreds of nucleus
qubits onto IBMQ devices.

To verify the validity of the circuit, as well as to bench-
mark the performance of the IBMQ devices for later purpose,
we first perform two prototypical circuits simulating the
effects of three and six 13C nuclei on ibm_auckland and
ibm_washington, respectively. The qubits launched and the
labels on IBMQ devices are shown in Fig. 3. The red qubits
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TABLE I. Polarization oracle and polarization vector.

play the role of the electron spin, and the dark gray and orange
qubits denote the nucleus and the ancilla qubits controlling the
nuclear spin polarizations, respectively.

Figures 4 and 5 show the results of the prototypical simula-
tions of three and six nuclei, respectively. We demonstrate the
results of two polarizations, i.e., �p(k) = (0, 0, 0) and (0,0,1),
at various values of the magnetic field. In Fig. 4, the results
obtained from ibm_auckland for �p(k) = (0, 0, 1) (bottom pan-
els) are in good agreement with the theoretical calculations
given by Eq. (11); while the ones for �p(k) = (0, 0, 0) (top
panels) show prominent discrepancies. These discrepancies
can be understood from two aspects. The first one is the polar-
ization oracles listed in Table I. Polarization �p(k) = (0, 0, 1)
corresponds to the preset qubit state |0〉 without additional
operation. However, the one for �p(k) = (0, 0, 0) requires an
additional CNOT gate coupling to an ancilla qubit for each
nucleus qubit, which constitutes one source of the noise on

FIG. 3. The qubits launched in the simulation on the
(a) ibm_auckland and (b) ibm_washington quantum devices.
The red, dark gray, and orange qubits play the role of the electron
spins, the nuclear spins, and the ancilla qubits controlling the nuclear
spin polarizations, respectively.

IBMQ devices. Later we will further investigate the second
source of the nonlocal noise caused by the crosstalk between
qubits on IBMQ devices. We will find that this nonlocal noise
is also nonclassical, and constitutes the primary source of
error, particularly the erroneous imaginary part Im[φ(t )].

Additionally, we have also increased the number of nuclei
to six and shown the results in Fig. 5. It can be seen that
the results obtained from ibm_washington deviate even more
considerably from the theoretical calculations. The reason for
this enhanced deviation can be understood from the topolog-
ical connectivity of IBMQ devices. As shown in Fig. 3(b),
an electron qubit can at most physically connect to three
nucleus qubits, to each of which an additional ancilla qubit
is appended. Further nucleus qubits will lie at farther po-
sitions away from the electronic qubit, leading to remotely
controlled-U gates. Due to the limited connectivity, the re-
motely controlled-U gates are implemented in the back end
by appending additional SWAP gates as

(22)

and each swap gate will introduce three more CNOT gates as

(23)

This results in a rapidly increasing number of CNOT gates
in the back end implementation, as well as the detrimental
noises. Furthermore, an increasing number of CNOT gates
also implies a deeper circuit, which requires a longer exe-
cution time approaching, or even exceeding, the lifetime of
physical qubits, rendering the results unreliable.

Finally, we have also performed the AQS for ten nuclei
on ibmq_qasm_simulator. We find that the results from the
simulator fit the theoretical calculations very well besides
tiny errors due to the approximations introduced by classical
simulation algorithm; whereas, this simulator has a limited
computational capability and can simulate the effects of at
most ten nucleus-ancilla qubit pairs in a single task. The
results and further discussions are shown in Appendix B.

D. Adaptive partition of the bath

From the previous preliminary examinations, it can be
seen that the number of nuclei simulated in a single task is
very limited, far from simulating large-scale materials in an
AQS manner. To circumvent these limitations, we design a
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FIG. 4. The AQS results for three nuclei obtained from ibm_auckland. We demonstrate the results for two polarizations, �p(k) = (0, 0, 0)
(top panels) and �p(k) = (0, 0, 1) (bottom panels), at various values of the magnetic field. The simulation results for �p(k) = (0, 0, 1) fit the
theoretical calculations well since the polarization corresponds to the preset qubit state |0〉 without additional operation. On the other hand,
to prepare the nuclear spin polarization �p(k) = (0, 0, 0) requires a CNOT gate, resulting in obvious discrepancies, particularly the erroneous
imaginary part Im[φ(t )].

simulation algorithm by adaptively dividing the nuclear spin
bath into several groups, each of which fits into the perfor-
mance of the quantum devices.

In our simulation, we first generate a nuclear spin config-
uration of natural abundance about 1.1%, consisting of 520
13C nuclei randomly distributed over the diamond lattice sites.
Then we list the nuclei according to the distance |�r (k)| to the
electron spin in an increasing order. To ensure the validity of
the dipole-dipole interaction described by Eq. (4), we have
also verified that all nuclei are farther away than 0.5 nm from
the electron spin.

Table II shows how we partition the 520 nuclei. For exam-
ple, the first row denotes a group consisting of three nuclei
lying within the polarization area (0.5 nm < |�r (k)| < 1 nm).

Then the effect can be simulated on ibm_auckland with a
circuit launching seven qubits [Fig. 3(a)], and the polarization
vector �p(k) is controllable with appropriate polarization oracle
listed in Table I. In our configuration, there are ten nuclei lying
within the polarization area. For the unpolarized nuclei with
�p(k) = (0, 0, 0) outside the polarization area, e.g., the group
consisting of nuclei ranging from �11 to �20, the circuits are
simulated on ibmq_qasm_simulator.

Then the effects of the whole nuclear spin bath are im-
plemented in a collaboration between the authentic device
ibm_auckland and the simulator ibmq_qasm_simulator on
IBMQ. Finally, according to Eq. (11), the desired dephasing
factor φ(t ) accounting for 520 nuclei is given by the product of
the results of all groups, and the corresponding CHER ℘(ω)

FIG. 5. The AQS results for six nuclei obtained from ibm_washington. We demonstrate the results for two polarizations, �p(k) = (0, 0, 0)
(top panels) and �p(k) = (0, 0, 1) (bottom panels), at various values of the magnetic field. Due to the limitation imposed by the topological
connectivity of IBMQ devices, nucleus qubits exceeding three will lie at farther positions away from the electronic qubit, resulting in a rapidly
increasing number of CNOT gates. This not only enhances the noise, but also deepens the circuit, rendering the simulation unreliable.
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TABLE II. Partition of the 520 nuclei and the implementation of each group.

k |�r (k)| (nm) �p(k) Device Amount of 13C Amount of qubits

�1–�3 0.5 ∼ 1 Controllable ibm_auckland 3 7
�4–�6 0.5 ∼ 1 Controllable ibm_auckland 3 7
�7–�9 0.5 ∼ 1 Controllable ibm_auckland 3 7
�10 0.5 ∼ 1 Controllable ibm_auckland 1 3

�11–�20 >1 (0,0,0) ibmq_qasm_simulator 10 21
�21–�30 >1 (0,0,0) ibmq_qasm_simulator 10 21
...

�511–�520 >1 (0,0,0) ibmq_qasm_simulator 10 21

can be estimated according to the inverse Fourier transform
(14).

V. SIMULATION RESULTS

We first show the results in Fig. 6 for an unpolarized
nuclear spin bath, i.e., �p(k) = (0, 0, 0) for both the ten nu-
clei simulated on ibm_auckland and the outer nuclei on
ibmq_qasm_simulator, denoted by the colored dots. As ex-
pected from the top panels of Fig. 4, we can observe
significant errors in Fig. 6, particularly in the beginning of
the time evolution. As a comparative study, we also demon-
strate a counterpart fully performed on ibmq_qasm_simulator,
denoted by the colored circles. Although the simulator gives
better results than those of collaborative simulation, the algo-
rithmic errors now become visible in the imaginary parts, due
to the amplification caused by the production over all groups
of nuclei.

In the bottom panels of Fig. 6, we show the corresponding
CHER ℘(ω) at various values of the magnetic field. The theo-
retical calculations show that the CHER should be positive in

the case of unpolarized nuclear spin bath, whereas the errors
caused by ibm_auckland result in negative wings. In view of
the physical meaning of the negativity as a witness of non-
classical system-environment correlations [62], the negative
wings imply that there are certain nonclassical, and nonlocal,
correlations established between the nucleus-ancilla super-
conducting devices and the environmental degrees of freedom
in the substrate during the pulse operations. This effect is
referred to as the crosstalk between the nucleus-ancilla qubit
pairs and gives rise to nonlocal noises between qubit pairs,
which in turn come into play in the dynamics of the electron
spin qubit and is captured by the negativity in the CHERs.
Later we will address this issue by suppressing its effect
with appropriate qubit pairs. On the other hand, the results
fully given by ibmq_qasm_simulator reproduce the central
peak very well. However, the algorithmic errors give rise to
irregularly wavy wings on both sides of the central peak.

In Fig. 7, we show the effects of a z-polarized nuclear spin
bath. Similarly, the colored dots denote the results simulated
in a collaborative manner, where the ten polarized nuclei with
�p(k) = (0, 0, 1) are simulated on ibm_auckland and the outer

FIG. 6. The adaptively partitioned AQS results for 520 unpolarized nuclei at various values of the magnetic field (top panels) and the
corresponding CHER (bottom panels). The collaborative simulations with ibm_auckland and ibmq_qasm_simulator are denoted by the colored
dots, and the ones fully given by ibmq_qasm_simulator are denoted by the colored circles. The errors caused by the ibm_auckland are
prominent, particularly in the beginning of the time evolution. The simulator gives better results besides the amplified algorithmic errors
in the imaginary part. Although the CHER in the case of unpolarized nuclear spin bath should be positive, the errors caused by the crosstalk
on ibm_auckland give rise to negative wings. On the other hand, the results fully given by ibmq_qasm_simulator reproduce the central peak
very well; while the algorithmic errors give rise to irregularly wavy wings on both sides of the central peak.
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FIG. 7. The adaptively partitioned AQS results for a z-polarized nuclear spin bath at various values of the magnetic field (top panels) and
the corresponding CHER (bottom panels). The collaborative simulations with ibm_auckland and ibmq_qasm_simulator are denoted by the
colored dots, and the ones fully given by ibmq_qasm_simulator are denoted by the colored circles. Due to the null operation of the polarization
oracle implementing �p(k) = (0, 0, 1), the collaborative simulations are in good agreement with the theoretical calculations. Remarkably, the
emergence of the sharp peaks in the profile of the CHER has also been well reproduced in our simulations.

unpolarized nuclei are on ibmq_qasm_simulator according to
the partition listed in Table II, and the colored circles denote
the counterpart fully performed on ibmq_qasm_simulator.
As expected from the preliminary examinations, the collab-
orative simulations on IBMQ for �p(k) = (0, 0, 1) are much
better than those for �p(k) = (0, 0, 0) due to the correspond-
ing polarization oracles. Moreover, the results fully given by
ibmq_qasm_simulator also fit the theoretical calculations very
well besides the visible algorithmic errors in the imaginary
parts. Furthermore, the profile of the CHER varies drastically
with increasing magnetic field in this case. Several sharp
peaks emerge at strong fields. Remarkably, this phenomenon
has also been well reproduced in our simulations.

It has been shown that the nonclassicality is induced by the
nuclear spin precession in the presence of a transversely po-
larized nuclear spin bath [65]. Figure 8 shows the simulation
of the nonclassicality induced by an x-polarized nuclear spin
bath at various values of the magnetic fields. The polariza-
tion oracle implementing �p(k) = (1, 0, 0) requires a quantum
gate on the nucleus qubit to be polarized. After the amplifi-
cation of the production over all x-polarized nucleus qubits
on ibm_auckland, the errors in the collaborative simulations
become prominent; while the overall profile remains visible.
Similarly, the results fully given by ibmq_qasm_simulator
also suffer from the amplified algorithmic errors. Remarkably,
in the lower panels of Fig. 8, we can observe the emergence
of the nonclassicality in terms of the negativity in the CHER
℘(ω). Although the nonclassicality is smeared at Bz = 50
G due to the errors on ibm_auckland, it becomes visible at
stronger fields, as shown in the insets for Bz = 100 G and
200 G.

VI. NONCLASSICAL CROSSTALK BETWEEN QUBITS

From the previous simulation results, it can be realized
that, apart from the intrinsic local errors such as the gate

errors or the finite lifetimes of the qubits, our simulations are
suffering from an additional source of nonlocal noises, i.e., the
crosstalk between qubits, which in turn constitute the primary
obstacle hindering the numerical reliability of our simulations.

To address the nonlocal noises caused by the crosstalk,
we perform the prototypical circuits simulating the effects of
two 13C nuclei on ibm_auckland launching different nucleus-
ancilla qubit pairs. Figure 9 shows the results for �p(k) =
(0, 0, 0) at various values of the magnetic field. The insets
indicate the qubits launched in the circuits. It can be seen that
the circuits performed on the left-right qubit pairs [Fig. 9(a)]
significantly suppress the noises caused by the crosstalk. The
results are in good agreement with the theoretical calculations.
Crucially, the results of null imaginary part Im[φ(t )] have
been correctly reproduced; while those performed on the top-
right qubit pairs [Fig. 9(c)] give rise to the most prominent
erroneous imaginary part. Additionally, the behavior of the
errors are the same as those observed in the top panels of
Fig. 4. These preliminary simulations not only confirm the
effect of the crosstalk on the erroneous imaginary part, but
also suggest a convenient way to suppress it by launching
appropriate qubits.

Based on these preliminary simulations, we apply our
adaptive partition approach to simulate the effects of the 520
nuclei. Figure 10 shows the results for �p(k) = (0, 0, 0) at var-
ious values of the magnetic field launching different nucleus-
ancilla qubit pairs, as indicated in the insets. Similarly, the
colored dots denote the results performed in a collabora-
tive manner with ibm_auckland and ibmq_qasm_simulator,
and the colored circles denote the ones simulated with
ibmq_qasm_simulator. Compared with the FID process sim-
ulated in the top panels of Fig. 6, the results given by the
left-right qubit pairs [Fig. 10(a)] exhibit significant improve-
ments. The discrepancies in both real Re[φ(t )] and imaginary
parts Im[φ(t )] from theoretical calculations are considerably
quenched, as expected from Fig. 9(a). On the other hand,
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FIG. 8. The adaptively partitioned AQS results for an x-polarized nuclear spin bath at various values of the magnetic field (top panels) and
the corresponding CHER (bottom panels). The collaborative simulations with ibm_auckland and ibmq_qasm_simulator are denoted by the
colored dots, and the ones fully given by ibmq_qasm_simulator are denoted by the colored circles. Due to the polarization oracle implementing
�p(k) = (1, 0, 0) on ibm_auckland, the collaborative simulations ultimately deviate prominently from the theoretical calculations. In this case,
the ones fully given by ibmq_qasm_simulator also suffer from the amplified algorithmic errors. Remarkably, the negativity in the CHER
℘(ω) is enhanced against the errors at stronger fields and becomes visible, as shown in the insets. This is an indicator of the nonclassicality
reproduced in our simulations.

the results given by the top-left [Fig. 10(b)] or the top-right
qubit pairs [Fig. 10(c)] are subject to the noises caused by the
crosstalk, leading to prominent discrepancies in either real or
imaginary parts.

Noteworthily, the CHER ℘(ω) can further reveal different
insights into the effect of the crosstalk. Comparing the CHERs
given by the left-right qubit pairs [Fig. 10(a)] with those
shown in the bottom panels of Fig. 6, the erroneous negative

FIG. 9. The AQS results for two nuclei obtained from ibm_auckland launching (a) the left-right, (b) the top-left, and (c) the top-right
qubit pairs, respectively, as indicated in the insets. The crosstalk is significantly suppressed by launching merely the left-right qubit pairs.
The corresponding results are in good agreement with the theoretical calculations, particularly the null imaginary part. However, the results
given by the top-left and the top-right qubit pairs are subject to the noises caused by the crosstalk. The noises are prominent in the erroneous
imaginary parts.
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FIG. 10. The adaptively partitioned AQS results for 520 unpolarized nuclei at various values of the magnetic field and the corresponding
CHER. The colored dots denote the results performed in a collaborative manner with (a) the left-right, (b) the top-left, and (c) the top-right qubit
pairs on ibm_auckland, respectively, and ibmq_qasm_simulator. The results given by the left-right qubit pairs exhibit significant improvements,
leading to the elimination of the erroneous wings in the corresponding CHERs. However, the results given by the top-left or the top-right qubit
pairs are subject to the noises caused by the crosstalk, leading to prominent discrepancies in either real or imaginary parts, as well as the
erroneous wings in the corresponding CHERs. Additionally, the negative wings caused by the crosstalk indicate its nonclassical traits.

wings on the left, as well as the positive wings on the right,
are eliminated due to the suppression of the crosstalk. Only
the irregularly wavy wings caused by the algorithmic errors
of the simulator are left.

On the other hand, the CHERs given by the top-left
[Fig. 10(b)] and the top-right qubit pairs [Fig. 10(c)] reveal
erroneous negative wings, indicating the nonclassical essen-
tial of the effect of the crosstalk. It is also interesting to note
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that the positions of the erroneous negative wings caused by
different qubit pairs are different as well. This implies that the
relative phases between the wave functions of the spatially
separated superconducting devices induced by the crosstalk
are of different sign.

VII. CONCLUSION

In this work we propose to simulate large-scale materials in
a manner of analog quantum simulation on near-term quantum
computing platforms. In view of the limitations on the com-
puting capability imposed by the noises and the topological
connectivity, our simulation algorithm circumvents the obsta-
cles by adaptively partitioning the effects of huge bath into
adequate groups based on the performance of the quantum
devices.

We demonstrate our approach by simulating the FID pro-
cess of the electron spin of an NV− center coupled to a huge
nuclear spin bath and perform the simulation on IBMQ. We
design a prototypical quantum circuit implementing the total
Hamiltonian of an NV− center coupled to a huge number of
nuclei via the dipole-dipole hyperfine interaction. Addition-
ally, to reflect the experimental conditions, we also design a
family of polarization oracles implementing the nuclear spin
engineering by the DNP technique.

To investigate the capability of the quantum devices sim-
ulating the electron spin dynamics, we also perform a series
of preliminary examinations simulating the effects of a few
number of nuclei. Based on their performance, we can sim-
ulate the FID process either in a collaboration with authentic
device and classical simulator, or fully on classical simula-
tor of IBMQ. With this adaptive partition approach, we can
reproduce the effects accounting for 520 nuclei on the FID
process. In particular, we have taken into account the various
values of magnetic fields and the nuclear spin polarizations
in an experimental condition. Additionally, by the technique
of CHER, our approach can also reproduce the nonclassical
essential of the electron spin FID process induced by the
nuclear spin polarizations.

Furthermore, we also notice that the simulation results
are subject to imperfectness caused by both the noise of the
authentic quantum devices and the algorithmic errors of the

simulators. To further showcase the versatility of our ap-
proach, we have also applied it to address the primary source
of error in our simulations, i.e., the nonlocal noise caused by
the crosstalk between qubits, and its nonclassical essential.
Our analyses suggest a convenient way to suppress it by
launching appropriate qubits.

In conclusion, we achieve the demonstration of the capabil-
ity of our adaptive partition approach in the exploration of the
physical mechanisms underlying the simulated phenomena at
a microscopic level. Our approach reproduces critical physical
phenomena, including the dynamical behavior of the electron
spin, the variation of the profile of the CHER, the nonclassi-
cality in terms of the negativity in the CHER, and, crucially,
the nonclassicality in the noises caused by the crosstalk be-
tween qubits. We stress that our approach is flexible in the
sense that we can distribute the computing loading not only to
different devices, but also to different qubit groups on a same
device in a single task for improving the efficiency. Namely,
the distribution strategy is adjustable depending on the con-
dition of the available devices and the required accuracy or
efficiency.
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APPENDIX A: PARAMETERS OF THE CONTROLLED-U
GATES IN THE AQS QUANTUM CIRCUIT

Here we explain how to determine the gate parameters
(θ (k), ϕ(k), λ(k), γ (k) ) of the controlled-U gate in Eq. (17).
The matrix form of the U gate to be controlled on IBMQ is
expressed as

eiγ (k)
Û (θ (k), ϕ(k), λ(k) ) = eiγ (k)

[
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2 −eiλ(k)
sin θ (k)

2
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2
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. (A1)

On the other hand, the relation to the total Hamiltonian is given by
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FIG. 11. The AQS results for ten nuclei obtained from ibm_qasm_simulator. We demonstrate the results of three polarizations, �p(k) =
(0, 0, 0) (top panels), �p(k) = (0, 0, 1) (middle panels), and �p(k) = (1, 0, 0) (bottom panels), at various values of the magnetic field. We find that
the classical simulator ibm_qasm_simulator can simulate at most ten nucleus-ancilla qubit pairs in a single task. Regardless of the limitation
on the number of qubits, the results fit the theoretical calculations very well besides tiny errors caused by the classical simulation algorithm.

where �0 = γCBz, ��(k)
1 = �A(k)

z + ��0, �u(k) = ��(k)
1 /| ��(k)

1 |,
�(k) = Arg[cos �

(k)
1 t
2 − i sin �

(k)
1 t
2 u(k)

z ], and �(k) = Arg[u(k)
x +

iu(k)
y ]. By comparing the above equations, we obtain the

results shown in Eq. (20).

APPENDIX B: SIMULATING TEN NUCLEI
ON A SIMULATOR

Limited by the topological connectivity, it is infeasible to
simulate huge materials in a single task on the IBMQ au-
thentic devices. To circumvent this limitation, as well as to
benchmark the capability of the classical simulators provided
by IBMQ, we have also performed larger prototypical circuits
on the ibm_qasm_simulator.

Although the ibm_qasm_simulator provides 32 qubits, we
find that it has a limited computing capability simulating up to
ten nucleus-ancilla qubit pairs (21 qubits launched in a single
task). Errors occur in the back end operation if more than
21 qubits are included in a single task. This limitation can
be understood from the giant Hilbert space of size 221, corre-
sponding to the propagation of a density matrix of dimension
221 × 221.

In Fig. 11, we show the prototypical simulations for the
effects of ten 13C nuclei on ibm_qasm_simulator. It can be
seen that the results given by the simulator fit the theoretical
calculations very well for three polarizations. However, there
are still tiny errors due to the approximations introduced by
classical simulation algorithm.
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