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The variational quantum eigensolver (VQE) is a hybrid algorithm to find the minimum eigenvalue/vector
of the given Hamiltonian by optimizing a parameterized quantum circuit (PQC) using a classical computer.
Sequential optimization methods, which are often used in quantum circuit tensor networks, are popular for
optimizing the parameterized gates of PQCs. In this paper, we focus on the case where the components to
be optimized are single-qubit gates, in which the analytic optimization of a single-qubit gate is sequentially
performed. The analytical solution is given by diagonalization of a matrix whose elements are computed from
the expectation values of observables specified by a set of predetermined parameters, which we refer to as the
parameter configurations. In this paper, we first show that the optimization accuracy significantly depends on
the choice of parameter configurations owing to the statistical errors in the expectation values. We then identify
a metric that quantifies the optimization accuracy of a parameter configuration for all possible statistical errors,
named configuration overhead/cost or C-cost. We theoretically provide the lower bound of C-cost and show that,
for the minimum size of parameter configurations, the lower bound is achieved if and only if the parameter
configuration satisfies the so-called equiangular line condition. Finally, we provide numerical experiments
demonstrating that the optimal parameter configuration exhibits the best result in several VQE problems. We
hope that this general statistical methodology will enhance the efficacy of sequential optimization of PQCs for
solving practical problems with near-term quantum devices.
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I. INTRODUCTION

The variational quantum eigensolver (VQE) [1–3] is a
classical-quantum hybrid algorithm that is implementable
on near-term quantum devices, for finding the minimum
eigenvalue/vector of a given Hamiltonian; the recipe is simply
to prepare a parameterized quantum circuit (PQC) U (θ), also
called ansatz, and then find a parameter θ that minimizes
〈H〉 = 〈ψ |U (θ)†HU (θ) |ψ〉 with some initial state |ψ〉. Note
that VQE is a class of variational quantum algorithms (VQAs)
[4,5], where the cost, in general, is a nonlinear function of
the expectation values of some Hamiltonians. A VQA has a
wide range of applications, such as quantum chemical calcu-
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lations [1,2,6], combinatorial optimization [7–9], and linear
equation solvers [10–13].

The core question is how to model the PQC U (θ) and
how to minimize 〈H〉 with some classical optimizer. There
has been extensive investigation into this problem [4]. The
sequential optimization method has been used in a variety
of settings, such as quantum circuit tensor networks [14–18],
where θ corresponds to a set of local unitaries, and they are
sequentially optimized one by one. In this paper, we focus on
the special type of sequential optimization method developed
in Refs. [19–23]. In this framework, θ’s are the parameters
characterizing the set of single-qubit rotation gates such as
Ry(θ ) = eiθY (Y is the Pauli y matrix) in the case of ROTO-
SOLVE [19,20]. Then the sequential optimization method takes
the strategy to exactly optimize the single rotation gates one
by one. For example, consider the step where we optimize
the Ry(θ ) gate contained in the PQC shown in Fig. 1 by
minimizing the cost 〈H〉 as a function of θ . The point is
that, in this case, 〈H〉 must be of the form of a sinusoidal
function with respect to θ , and thus, the optimal θopt can be
exactly determined once we identify the sinusoidal function
shown by the black curve in the figure. As the nature of
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FIG. 1. A general view to explain how the estimated optimal
solution varies depending on the parameter configuration when there
are statistical errors in determining the cost function.

the sinusoidal function, specifying the mean values of three
observables corresponding to the three points of θ allows
us to exactly identify 〈H〉; we call the alignment of these
three points of θ the parameter configuration. In the case
of free-axis selection (FRAXIS) [21], where the freedom of
a single-qubit rotation gate is served by the rotation axis
with a fixed rotation angle in the Bloch sphere, 〈H〉 takes
the form of a quadratic function of a real normalized vector
n = (x, y, z)T , which can also be exactly minimized. This
setup was further generalized to free quaternion selection
(FQS) [22,23] so that the rotation angle can also be tuned;
then 〈H〉 takes the form of a quadratic function of a real
normalized vector q = (w, x, y, z)T . In this case, as shown
later, the mean values of 10 observables corresponding to 10
points of q identify 〈H〉; we also call this {q1, . . . , q10} the
parameter configuration. Note that a sequential optimization
method for two-qubit gates has also been proposed, named the
unitary block optimization scheme (UBOS) [24], where 〈H〉
takes a quadratic form of a unit weighting vector of two qubit
Pauli strings. In UBOS, unlike ROTOSOLVE, FRAXIS, and FQS,
the unit weighting vector cannot be arbitrary due to the unitary
constraint and is parameterized by SU(4) gate parameters
based on the Cartan decomposition. Thus, UBOS employs a
numerical optimization of the quadratic form with respect to
the parameters, which does not guarantee optimality.

The above sequential optimization strategy relies on the
critical assumption that the mean values of observables, and
accordingly 〈H〉, are exactly identified. In reality, however,
those mean values can only be approximately obtained as the
average of a finite number of measurement results; that is,
practically, there is always a statistical error in 〈H〉. In the
above one-dimensional (1D) case, as illustrated in Fig. 1, the
energy curve θopt, and consequently the minimum value of
〈H〉, may largely fluctuate depending on the parameter con-
figuration. Hence, the question is, what is the best parameter
configuration for achieving a small fluctuation of min〈H〉?
In the above 1D case, we have the intuition that the best
configuration might be such that the three parameters are
equally spaced (i.e., equidistant), as shown in the left bottom
of Fig. 1, which is indeed true as proven later. However, the

general case is, of course, nontrivial; will we have such an
equidistant configuration in some sense, or would some biased
configuration be the best?

In this paper, we develop the theory for determining the
optimal parameter configuration. As a preliminary result, in
Sec. II, we prove that, if the exact expectation values are
available without any statistical error, then we have an an-
alytical solution of the best parameters achieving min〈H〉
(almost) without respect to the parameter configuration for
every method of Refs. [19–23]. Then in Sec. III, we give the
most essential result providing the basis of the theory; that
is, we derive the explicit form of the fluctuation of min〈H〉
under statistical errors with respect to the parameter configu-
ration. This enables us to introduce the C-cost (configuration
cost/overhead), a useful metric for determining min〈H〉 and
thereby providing us with the optimal parameter configura-
tion. Section IV gives numerical experiments to demonstrate
that the optimal parameter configurations obtained using C-
cost yield the best result in the sense of the statistical error of
estimating 〈H〉.

Notably, beyond such utilization for numerically determin-
ing the configuration, the C-cost satisfies several interesting
mathematical properties, suggesting the relevance of this met-
ric. The first is that the lower bound of C-cost is 1; moreover,
we prove that, for the minimum size of the parameter set, this
bound is achievable if and only if the parameter configuration
satisfies a geometric condition called the equiangular line
condition, an important and beautiful mathematical concept in
algebraic graph theory. Here, each parameter q corresponds
to a line that passes the origin and q. This condition rig-
orously supports our above-described intuition that it would
be desirable for the parameters to be equally spaced for the
ROTOSOLVE case shown in Figs. 1 or 2(a); this intuition holds
for the case of FRAXIS, showing that there is a unique pa-
rameter configuration (up to the global rotation) satisfying the
equiangular line condition, as displayed in Fig. 2(b). However,
interestingly, this intuition does not apply to the most general
FQS case due to the nonexistence of 10 equiangular lines
in R4. That is, the so-called Gerzon bounds [25], Neumann
theorem [26], and Haantjes bound [27] prove that a set of 10
lines satisfying the equiangular line condition in R4 does not
exist; the maximum number of such lines is 6. Nevertheless,
the C-cost is still useful in this case since it gives us a means
to numerically obtain the optimal parameter configuration,
which is displayed in Fig. 2(c). Furthermore, if redundant
measurements are allowed, there exist parameter configura-
tions that achieve the theoretical lower bound of the C-cost,
one of which is illustrated in Fig. 2(d).

Finally, we note that equiangular lines in complex spaces
are equivalent to symmetric informationally complete (SIC)
positive operator-valued measures (POVMs) [28] whose prop-
erties have been much studied, e.g., it is conjectured that there
is always a set of d2 equiangular lines in Cd [29] (it has been
proven up to some large d theoretically and numerically).
The SIC POVMs defined from such lines are informationally
complete because the results of other measurements can be
computed from those of the SIC POVMs. In this paper, we
obtain similar results connecting equiangular lines in real
spaces with the variational quantum circuits using parameter-
ized single-qubit gates.
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FIG. 2. Optimal parameter configurations for ROTOSOLVE, FRAXIS, and FQS models. Blue spheres represent the optimal configuration of
{qi}N

i=1, and green spheres represent its opposite position {−qi}N
i=1. (a) ROTOSOLVE: The diagonal lines between qi and −qi constitute three

equiangular lines in two-dimensional (2D) space (red lines). (b) FRAXIS: The diagonal lines constitute six equiangular lines in three-dimensional
(3D) space. (c) FQS: The four positions and their opposite in the first term of the right-hand side constitute a regular cube in a hyperplane;
the six positions in the second term (outer blues) constitute a regular octahedron in a hyperplane. The opposite of the last six positions (inner
greens) also constitutes a regular octahedron. The yellow diagonals are apparently doubly overlapped due to the stereographic projection, but
they are not actually overlapped. (d) FQS (N = 12): The 24-cell polytope in four-dimensional space, which achieves C(A) = 1 as a redundant
parameter configuration.

II. ENERGY MINIMIZATION WITH
MATRIX FACTORIZATION

A. Brief review of Rotosolve, Fraxis, and FQS

The FQS method [23] describes the procedure to com-
pletely characterize the energy landscape with respect to a
single-qubit gate in a PQC. The parameterized single-qubit
gate, which we call the FQS gate, is none other than the
general single qubit gate U (4) expressed as [23,30]

U (4)(q) = wI − xiX − yiY − ziZ = q · �ς, (1)

where the superscript indicates the number of parameters:
q = (w, x, y, z)T ∈ R4 satisfying ‖q‖2 = 1. Here, i is the
imaginary unit, I is the 2×2 identity matrix, and X,Y, Z are
the Pauli matrices. Also, �ς = (ςI , ςX , ςY , ςZ )T denotes an
extension of the Pauli matrices defined as

�ς = (I,−iX,−iY,−iZ )T . (2)

The dimension of the parameter q is four, but because the
parameter q is constrained on the unit hypersphere, the degree
of freedom of the parameter is three.

In FRAXIS, the rotation angle is constrained to π , which
corresponds to the case w = 0 of Eq. (1) as

U (3)(n) = −xiX − yiY − ziZ, (3)

where the parameter of the gate is n = (x, y, z)T such that
‖n‖2 = 1. We term this U (3) as the Fraxis gate. Thus, the
Fraxis gate has two degrees of freedom.

In ROTOSOLVE, the rotation axis is fixed, and the rotation
angle serves as the parameter. The Rx gate fixes the rotation

axis to the x axis; in the form of Eq. (1), this corresponds to
y = z = 0, and thus,

U (2)(r) = wI − xiX, (4)

where the parameter of the gate is r = (w, x)T such that
‖r‖2 = 1. Thus, the degree of freedom of the Rx gate is one.
Similarly, Ry and Rz gates are obtained by replacing X in
Eq. (4) with Y and Z , respectively.

In what follows, we use the most general FQS gate to
describe the optimization algorithm. The sequential optimiza-
tion method takes the strategy to update respective FQS gates
in a coordinate-wise manner, where all parameters are fixed
except for the focused FQS gate U (4)(q). The entire quan-
tum circuit containing FQS gates is supposed to be the PQC
V = ∏

i U (4)
i (qi )Wi on the n-qubit system, where U (4)

i is the
ith FQS gate and Wi is a fixed multiqubit gate.

Now, let V1 and V2 be the gates placed before and after the
focused FQS gate U (4)(q). Then a density matrix ρ prepared
by the PQC is expressed as

ρ = V2U
(4)(q)V1ρinV †

1 [U (4)(q)]†V †
2 , (5)

where ρin is an input density matrix. Thus, the expectation
value 〈H〉 of a given Hamiltonian H with respect to ρ is then

〈H〉 = Tr(HV2U
(4)(q)V1ρinV †

1 [U (4)(q)]†V †
2 )

= Tr(H ′U (4)(q)ρ ′
in[U (4)(q)]†), (6)

where H ′ = V †
2 HV2 and ρ ′

in = V1ρinV †
1 . Substituting Eq. (1)

into Eq. (6) yields

〈H〉 = qT G(4)q, (7)
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where G(4) is a 4×4 real-symmetric matrix:

G(4) =

⎡
⎢⎢⎣

GII GIX GIY GIZ

GIX GXX GXY GXZ

GIY GXY GYY GY Z

GIZ GXZ GY Z GZZ

⎤
⎥⎥⎦, (8)

and each element Gμν (μ, ν = I, X,Y, Z ) is defined by

Gμν = 1
2 Tr[ρ ′

in(ς†
μH ′ςν + ς†

ν H ′ςμ)]. (9)

Thus, the energy landscape with respect to the FQS gate is
completely characterized by the matrix G(4). Because Eq. (7)
is a quadratic form with respect to the parameter q with the
constraint ‖q‖2 = 1, the eigenvector p1 associated with the
lowest eigenvalue λ1 of the matrix G(4) minimizes the energy
in Eq. (7); see Appendix A for the details.

In the following, we call the matrix G(4) the FQS matrix.
Note that the above result can be directly extended to the case
of FRAXIS and ROTOSOLVE, in which case Eq. (8) is replaced
by

G(3) =
⎡
⎣GXX GXY GXZ

GXY GYY GY Z

GXZ GY Z GZZ

⎤
⎦, (10)

and

G(2) =
[

GII GIX

GIX GXX

]
, (11)

respectively.

B. FQS with arbitrary parameter configurations

Because G(4) is a real-symmetric matrix, we can expand
Eq. (7) in the following form:

〈H〉 = GIIw
2 + GXX x2 + GYY y2 + GZZz2

+ 2GIX wx + 2GIY wy + 2GIZwz

+ 2GXY xy + 2GXZxz + 2GY Zyz. (12)

Equation (12) indicates that, if we know all 10 coefficients
(GII , . . . , GY Z ), we can exactly estimate the expectation 〈H〉
for any parameter q. In other words, only algebraic cal-
culations on classical computers are required to find the
parameters achieving the minimum expectation value for the
target gate.

Therefore, it is crucial to obtain the coefficients with as
few measurements as possible. To consider this problem, we
define the function h(4)(q) that outputs the normalized vector
(‖h(4)(q)‖ = 1):

h(4)(q) = (w2, x2, y2, z2,
√

2wx,
√

2wy,
√

2wz,
√

2xy,
√

2xz,
√

2yz)T , (13)

and the vector g(4):

g(4) = (GII , GXX , GYY , GZZ ,
√

2GIX ,
√

2GIY ,
√

2GIZ ,
√

2GXY ,
√

2GXZ ,
√

2GY Z )T . (14)

Then the relation between the parameter q and the expectation
〈H〉 is expressed as

〈H〉 = h(4)(q)T g(4). (15)

Suppose measurements with different parameters
{q1, . . . , qN } and the N expectation values of the
measurement results b = (b1, . . . , bN )T were obtained;
we can also write the relations between the expectation values
b and the coefficient vector g(4) as

b = A(4)g(4), (16)

where the matrix A(4) ∈ RN×10 is

A(4) = [h(4)(q1), . . . , h(4)(qN )]T , (17)

which encodes the information of the parameter configura-
tions {q1, . . . , qN }.

It is obvious that, if N < 10, g(4) is not uniquely deter-
mined. Hence, we suppose N � 10 throughout this paper. If
rank(A) = 10, AT A is invertible, and there exists the gener-
alized inverse A+ := (AT A)−1AT [31]. Accordingly, we can
obtain the vector g(4) by solving linear equations as

g(4) = A+b. (18)

In other words, a single execution of FQS requires at least 10
sets of parameters and the corresponding observables. How-
ever, it may not necessarily be the case when input states
and/or the Hamiltonian has symmetry, which reduces the
number of required measurements to construct G(4) in Eq. (8).
We also note that it is possible that rank(A) < 10 if the rows
of A are dependent on each other. However, it is plausible
to exclude such a situation because the input parameters are
controllable. Hereafter, we suppose that all columns of A are
independent of each other, equivalently, rank(A) = 10.

The same argument is applicable to the Fraxis gate as

〈H〉 = GXX x2 + GYY y2 + GZZ z2

+ 2GXY xy + 2GXZ xz + 2GY Zyz, (19)

h(3)(n) = (x2, y2, z2,
√

2xy,
√

2xz,
√

2yz)T , (20)

g(3) = (GXX , GYY , GZZ ,
√

2GXY ,
√

2GXZ ,
√

2GY Z )T . (21)

Likewise, for Rx gates

〈H〉 = GIIw
2 + GXX x2 + 2GIX wx, (22)

h(2)(r) = (w2, x2,
√

2wx)T , (23)

g(2) = (GII , GXX ,
√

2GIX )T . (24)

The minimum sizes of the parameter configuration required to
construct G(d ) are d (d + 1)/2, i.e., 6 in FRAXIS (d = 3) and
3 in ROTOSOLVE (d = 2). For simplicity, we omit superscript
d from G(d ), h(d ), and g(d ) for d = 2, 3, 4 in the following
sections and formulate them based on the FQS framework
unless otherwise noted.

III. C-COST WITH FINITE RUNS OF QUANTUM CIRCUITS

A. Evaluation of the parameter configurations

If the infinite number of measurements were allowed, there
would be no estimation errors in the expectation values b
and the resulting vector g is exactly obtained if the matrix
A is invertible. This allows for the exact evaluation of the
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optimal solution of the FQS matrix. In this section, we quan-
titatively evaluate the error propagation from the shot noise
in the expectation values b to the estimation of the minimum
expectation value for a target gate. Although we focus on the
FQS for generality, it can be easily applied to other sequential
quantum optimizers, ROTOSOLVE and FRAXIS. Suppose an
FQS matrix is estimated using N parameters {q1, . . . , qN } by
Eq. (18). Due to the finite number of shots, the expectation
values are no longer deterministic and randomly distributed
around the true values b∗ obtained with infinite shots as

b = b∗ + ε, (25)

where ε is the random variable reflecting the errors in the
measurements.

Note that the relation between b and g is no longer valid
under the finite number of measurements. Alternatively, we
employed the least-square solution g:

g = arg min
g̃

‖b − Ag̃‖2 = (AT A)−1AT b = A+b, (26)

as a plausible estimate of g∗. Apparently, Eq. (26) has the
same form as Eq. (18), but the resulting vector g is an estimate
of the true vector g∗ in the context of maximum likelihood
[32] and deviates from the ideal vector g∗ due to errors for
finite measurement. Substituting Eq. (25) into Eq. (26), we
get

g = A+b = A+(b∗ + ε) = g∗ + A+ε, (27)

where the third equality follows g∗ = A+b∗. Equation (27)
implies the errors of the estimated coefficient vector g − g∗ =
A+ε are amplified by the linear transformation A+ from the
shot errors ε.

Let G be an FQS matrix generated from the estimated vec-
tor g with a finite number of measurements. Below, we focus
on the FQS procedure to estimate the minimum eigenvalue
of G. Here, for convenience, we define the half-vectorization
function vech : R4×4 → R10 such that

vech(G) = (GII , GXX , GYY , GZZ , GIX , GIY , GIZ ,

GXY , GXZ , GY Z )T , (28)

where the order of elements corresponds to g. In addition, the
scaling matrix D is defined as

D = diag(1, 1, 1, 1,
√

2,
√

2,
√

2,
√

2,
√

2,
√

2). (29)

Using these notations, we have the following relations:

g = D vech(G) ⇔ G = vech−1(D−1g), (30)

where the function vech−1 is a linear mapping as vech−1(s +
t) = vech−1(s) + vech−1(t) for s, t ∈ R10. Accordingly, G is
expressed as

G = vech−1(D−1g) = G∗ + vech−1(D−1A+ε), (31)

which implies that the ideal FQS matrix G∗ =
vech−1(D−1A+b∗) is perturbed by vech−1(D−1A+ε).

In the following part, we quantitatively evaluate the matrix
perturbation effect on the optimization result. Let λ∗

i and p∗
i be

the ith lowest eigenvalue and the corresponding eigenvector of
G∗. Likewise, λi(ε) and pi(ε) are the ith lowest eigenvalue and
its corresponding eigenvector of the estimated matrix G. For

quantitative evaluation of the perturbation, we suppose two
metrics: (1) Var[λ1(ε)], the variance of the lowest eigenvalue
which corresponds to the estimated minimum value of 〈H〉,
and (2) E[	E ], the mean error in the expectation values after
an FQS procedure with and without the shot noise. That is,
	E is the deviation of the expectation value with the esti-
mated parameter set p1 from the true minimum expectation
value, defined as

	E = pT
1 G∗p1 − p∗T

1 G∗p∗
1 � 0, (32)

where the positivity of 	E comes from the fact that p∗
1 gives

the minimum value of the quadratic form. We suppose that
Var[λ1(ε)] is a measure for verifying the estimated energy λ1

by one-time execution of FQS, while E[	E ] is a measure to
qualify the estimated parameter p1. Throughout the following
parts, for simplicity, we employed Var[λ1] as the indicator of
shot errors (see Appendix B 3 for E[	E ]).

Because G is a 4×4 symmetric matrix, it is represented by
eigendecomposition as

G = P
PT , (33)

where P = (p1, . . . , p4)T and 
 = diag(λ1, . . . , λ4). From
the first-order perturbation theory [33], the minimum eigen-
value λ1 of G is approximated as

λ1 = λ∗
1 + p∗T

1 vech−1(D−1A+ε)p∗
1. (34)

Then Var[λ1] is evaluated as

Var[λ1] = Var[p∗T
1 vech−1(D−1A+ε)p∗

1]. (35)

To deal with Eq. (35), we apply a simple model to the
measurement errors ε satisfying as

E[ε] = 0, (36)

E[εiε j] =
{

0 for i �= j
σ 2/s for i = j

, (37)

where s denotes the number of measurement shots to evaluate
an expectation value of observables and σ 2 is a part to specific
to observables.

In addition, we assume the first eigenvector p1 follows a
uniform distribution on the unit sphere. Based on the models,
Eq. (35) can be further calculated as

Var[λ1] = σ 2

sd (d + 2)
Tr
[
(AT A)−1

(
1d 1T

d + 2I
)]

, (38)

where d = dim(q) (4 for FQS, 3 for FRAXIS, and 2 for Rx) and
1d ∈ Rd (d+1)/2 is the vector that the first d elements are unity,
and the others are zero (e.g., 1d = (1, 1, 1, 1, 0, 0, 0, 0, 0, 0)T

for FQS). Derivation of Eq. (38) is detailed in Appendix B 2.
For convenience, let us define the total number of shots

S, which is required for a one-time optimization. Since the
number of shots s is used to evaluate 〈H〉 with a single
parameter qi, S = sN holds for the parameter configuration
{q1, . . . , qN } of the size N . As a special case of s for N =
Nmin := d (d + 1)/2, we also define s̃, and thus, S = s̃Nmin. To
focus on the optimization performance, suppose that N varies,
while S is kept to constant.
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Because sN = s̃Nmin for a redundant parameter configura-
tion with N > Nmin, s = s̃Nmin/N . As a result,

Var[λ1] = σ 2

s̃
C(A), (39)

where we define the C-cost C(A), as

C(A) := N

Nmind (d + 2)
Tr
[
(AT A)−1(1d 1T

d + 2I
)]

. (40)

Equation (39) indicates that Var[λ1] is separable into the
number of shots (s̃) dependent and the parameter configura-
tion dependent, i.e., a 50% reduction of C(A) is equivalent
to doubling the number of shots. The C-cost is a metric to
estimate Var[λ1] under the condition that the number of shots
to optimize a single-qubit gate is constant.

Now, the conditions for the minimum C(A) are of interest
to minimize the estimation error. We rigorously give the lower
bound of the C-cost as the following theorem (see Appendix C
for the proof of this theorem):

Theorem 1. For the C-cost C(A) in Eq. (40), C(A) � 1
holds with equality if and only if the parameter configurations
{qi}N

i=1 satisfy

AT A = N

d (d + 2)

(
1d 1T

d + 2I
)
. (41)

In other words, the parameter configuration that satisfies
Eq. (41) is optimal for minimizing the effect of shot noise.
Although it may not be straightforward to find the optimal pa-
rameter sets that satisfy Eq. (41), in the case of the minimum
parameter set (N = Nmin), a useful formula is available as the
following corollary of Theorem 1 (see Appendix C for the
proof):

Corollary 1. For the minimum number of parameters
(N = Nmin), the C-cost C(A) in Eq. (40) is always C(A)� 1
with equality if and only if the parameter configurations
{qi}N

i=1 satisfy

|qi · q j | = 1√
d + 2

(for all i �= j). (42)

The equality condition in Corollary 1 tells us that the
parameters must be equiangular unit vectors. This equian-
gular property is known as equiangular lines in real spaces
[25,34,35], equivalent to the algebraic graph theory of two-
graphs [36]. The existence of Nmin = d (d + 1)/2 equiangular
lines in Rd is known as the Gerzon bounds and has only been
shown to hold for d = 2, 3, 7, and 23. For our optimal param-
eter configurations, only in the cases of Rx and Fraxis gates
(d = 2, 3), there exists a unique set of Nmin equiangular unit
vectors (up to rotation), and such a parameter configuration
uniquely achieves the minimum value of C-cost C(A). The
nonexistence of such an optimal parameter configuration for
an FQS gate (d = 4) is due to the nonexistence of equian-
gular lines satisfying the condition of Corollary 1, which is
attributed to Haantjes [27] and Neumann in Ref. [25] (see also
Ref. [26]).

B. The rotation invariance of C-cost

The C-cost C(A) in Eq. (40) is invariant to the rotation
of a parameter configuration. In other words, a parame-

Algorithm 1. Algorithm to reuse optimization results of the
previous gate.

Input: The parameter qpre of the target gate, the estimated
minimum eigenvalue λpre in the previous FQS, and the
optimal parameter configurations {q∗

1, . . . , q∗
N }.

Output: The optimized parameter of the target gate qopt and
the updated cost λ.

1: Find a rotation matrix R such that qpre = Rq∗
1.

2: Set b1 = λpre [instead of measuring b1 = 〈H〉 (q∗
1)].

3: for i = 2 to N do
4: Measure bi = 〈H〉 (Rq∗

i ).
5: Set G = vech−1(DA+b).
6: Diagonalize G and obtain the minimum eigenvalue λ and

the corresponding eigenvector qopt.
7: Return qopt and λ.

ter configuration (q1, . . . , qK ) and its rotated configuration
(Rq1, . . . , RqK ) have the same value of the C-cost, where
R ∈ Rd×d is a rotation matrix (RT R = I ). See Appendix D
for the proof of rotation invariance. This implies that, for any
parameter q of a single-qubit gate of interest, there exists an
optimal parameter configuration {qi} such that q ∈ {qi}. This
property allows us to skip evaluating an expectation value for
one parameter in the matrix construction, i.e., to reduce the
number of required expectation values to 2 for ROTOSOLVE,
5 for FRAXIS, and 9 for FQS by reusing the previous results
to the subsequent gate update. The reduction for ROTOSOLVE

has been known [20] but not for FRAXIS and FQS. In each
step of the sequential optimizations, the resulting cost value
after the parameter update can be estimated without additional
measurement. As all parameters are fixed except for that of
the target gate, this estimated cost can be regarded as one
of the observable expectation values b1 in the subsequent
application, where the parameter q1 of the next gate of interest
is diverted from the previous application.

The detailed procedure is as follows: (1) Prepare an
optimal parameter configuration {q∗}, the gate parameter
set {q(m)} for m = 1, . . . , M, and the temporal cost value
〈H〉 ({q(m)}), where m and M denote the gate index and the
total number of parameterized gates, respectively. (2) Find
a rotation matrix R such that q∗

1 = RT q(m), where the mth
gate is of interest and sets b1 = 〈H〉. (3) Measure the cost
values with the parameter {Rq∗

i } for i = 2, . . . , Nmin, setting
bi = 〈H〉 (Rq∗

i ). (4) Construct the matrix G from b and {Rq∗
i }.

(5) Diagonalize the matrix to estimate the new parameter q(m)

and the new cost 〈H〉, which can be reused in the next iteration
and go back to (2) until convergence. The pseudocode of this
procedure is given in Algorithm 1.

C. Optimal configurations

The minimum sizes of parameter configuration (Nmin) for
Rx, FRAXIS, and FQS are 3, 6, and 10, respectively. Ac-
cording to Corollary 1 in the case of the Rx gate, the three
equiangular vectors on a unit circle are trivially represented by
q = [cos 2

3πnθ, sin 2
3πnθ ]T for n = 0,±1, that is, the vector

angle 	θ = 2π/3 (equivalently π/3), as shown in Fig. 2(a).
Conversely, the original parameter configuration proposed in
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ROTOSOLVE [20] was 	θ = π/2, which resulted in C(A) = 3
2 .

As our optimal parameter configuration (	θ = 2π/3) gives
C(A) = 1, it requires two-thirds as many shots as the original
parameter configuration (	θ = π/2) to achieve the same es-
timation accuracy. It is worth noting that Ref. [19] argued that
arbitrary parameter configurations can be used due to the si-
nusoidal property of the expectation value but did not discuss
the estimation accuracy dependent on the parameter configu-
rations under the finite measurements. The use of 	θ = 2π/3
was also proposed in Ref. [37], but no quantitative arguments
about its advantages were given.

Corollary 1 is also instrumental for FRAXIS with d = 3
because it is also possible to find the equiangular formation of
six unit vectors in three-dimensional (3D) space. Figure 2(b)
shows the unique optimal parameter configuration except for
the rotational degrees of freedom, where they form a regular
icosahedron. The original parameter configuration of FRAXIS

has C(A) = 1.8 [21] (see Appendix E). Thus, the optimal
configuration improves the estimation accuracy 1.8 times with
a consistent number of shots.

Conversely, it was proved that Nmin (=10) equiangular
unit vectors cannot be placed in d (= 4)-dimensional Eu-
clidean space. Namely, Corollary 1 tells us that no parameter
configuration satisfies C(A) = 1 for N = 10. In addition,
Corollary 1 also implies that the minimum size of the pa-
rameter configuration (N = 10) may not be the most efficient
if the total number of shots is limited for a single FQS
execution, even though it is not straightforward to know
the analytical minimum value and the corresponding pa-
rameter configurations. Instead, we searched the numerical
solution by classical optimization, where C(A) is minimized
based on the gradient descent method. As the algorithm may
lead to a local minimum solution, we repeated the algo-
rithm independently 105 times, starting from random initial
configurations.

For N = 10, we have obtained the same optimized C-cost
value [C(A) ≈ 1.033172] from all the initial configurations
as far as our experimental trials, which implies that all sim-
ulations presumably reached the global minimum. Although
the obtained configurations were not numerically identical,
we found that they were attributed to a unique configu-
ration just by reversal and rotational operations. Since the
reversal of each parameter does not affect the expectation
value [i.e., h(q) = h(−q)] and the uniform rotation of the
parameter configuration gives the identical value of the C-cost
(see Sec. III B), all the configurations were equivalent, which
seem to be optimal.

Figure 2(c) shows the unique optimal parameter con-
figurations for the FQS case. In this figure, the parameter
configurations are projected into 3D space by a stereographic
projection. It means that extra 1D components that cannot be
displayed are projected in the radial direction. See Appendix E
for the parameter values of the optimal and other parameter
configurations. From the parameter values of the (numeri-
cally obtained) optimal parameter configuration [Eq. (E7)],
we can see the optimal parameter configuration has highly
symmetrical structure; the first four parameters {q1, . . . , q4}
and their opposite {−q1, . . . ,−q4} constitute a regular cube in
a hyperplane, and the last six parameters {q5, . . . , q10} consti-

TABLE I. C-cost values for the different sizes of parameter
configurations of FQS. (A) Comparison of the C-cost C(A) with
a constant number of shots for evaluating an expectation value.
(B) Comparison of scaled C-cost (N − 1)C(A)/N with a constant
number of shots per single-gate optimization. Boldface indicates best
performance.

N 10 11 12

(A) 1.03317 1.00539 1.00000
(B) 0.92985 0.91399 0.91667

tute a regular octahedron in a hyperplane (their opposite also
constitute another regular octahedron), as shown in Fig. 2(c).

For FQS, the original parameter configuration has C(A) =
3.0, and the optimal parameter configuration estimated with
numerical experiments is approximately C(A) ≈ 1.033172.
Thus, to achieve a certain accuracy, the optimal parameter
configuration reduces the number of required shots 3 times
that of the original.

Likewise, we also conducted numerical optimization to
find the optimal parameter configuration for redundant mea-
surements with N = 11, 12. As a result, all the optimizations
converged to a consistent value of C(A) within computa-
tional precision, which is consistent with the case of N =
Nmin. However, the optimal configurations are not necessarily
unique, which is in contrast to N = Nmin. While the obtained
C(A) ≈ 1.005390 for N = 11, C(A) was exactly converged
to unity for N = 12. It is also notable that the optimal
configurations of C(A) = 1 for N = 12 include the regular
24-cell polytope in four-dimensional (4D) space, as shown in
Fig. 2(d).

Therefore, if the total number of shots for A matrix
construction is constant, the optimal sizes of N are 3 for
ROTOSOLVE, 6 for FRAXIS, and 12 for FQS.

Next, we focus on the optimal N , allowing the reduction
of measurements exploiting the rotation invariance as men-
tioned in Sec. III B. Assuming a constant number of shots
per gate, the measurement reduction modifies the relation
between C(A) and s̃ as

Var[λ∗
1] = σ 2

s̃

N − 1

N
C(A), (43)

where the C-cost is apparently scaled by (N − 1)/N . Note that
this factor does not change the optimal N for ROTOSOLVE and
FRAXIS. Thus, it is most efficient to revert the estimated value
in the previous optimization to construct A and additionally
execute 2 and 5 measurements for ROTOSOLVE and FRAXIS,
respectively. It is worth noting that Table I shows that the
optimal N for FQS is shifted from 12 to 11 by measurement
reduction, although the difference is <1%. Altogether, under
the limitation of the total number of shots, it is most efficient
to construct the matrix A by 3-, 6-, and 12-type measurements
for the expectation values at the beginning of ROTOSOLVE,
FRAXIS, and FQS optimizations, respectively. Conversely,
during the sequential optimization, matrix A should be made
by one estimation value from the previous step and 2, 5,
and 10 values from subsequent measurements of ROTOSOLVE,
FRAXIS, and FQS, respectively.
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FIG. 3. Two-qubit ansatz.

It should be also noted that this optimal condition may
differ depending on the supposed condition of real devices.
For instance, if parallel computation is allowed, where a con-
stant number of shots is available for evaluating an expectation
value even though when N varies, C(A) would not be an
appropriate metric because the assumption about the number
of shots is not valid, and thus, one should trivially employ as
large N as possible.

IV. EXPERIMENTS

In the following, we provide several experiments to nu-
merically verify our proposed method on the condition of
N = Nmin; it is 10 for FQS, 6 for FRAXIS, and 3 for ROTO-
SOLVE.

A. Estimation accuracy of one-time optimization
with different parameter configurations

We focused on the one-time optimization rather than an
entire VQE process. To this end, we examined the averaged
error of FQS between the exact minimum and the estimated
minimum energies with a limited number of shots for several
parameter configurations. We used the two-qubit hydrogen
moleculelike Hamiltonian [38], defined as

H = I ⊗ Z + Z ⊗ I + X ⊗ X (44)

in this experiment. We use the two-qubit ansatz in Fig. 3,
where we applied the corresponding single-qubit gate repre-
sentation of ROTOSOLVE (=RzRy), FRAXIS, and FQS methods
to Ui. Here, the target gate to be optimized is U2 for FQS and
FRAXIS, and the Ry gate in U2 for the ROTOSOLVE case. The
experiments were performed with the following procedure:
(1) Prepare 100 distinct parameter configurations (100 sets
of {q1, . . . , qN }) by sampling each qi in the state random
manner. (2) Optimize the respective parameter configurations
by the steepest decent with 50 iterations using C(A) as a
cost function. This process is required to put the C(A) dis-
tribution in a modest range. Otherwise, the initial random
parameter configurations often have extremely large values
of C(A) beyond 104. (3) Evaluate A+ and C(A) of the 100
parameter configurations. (4) Randomly initialize the PQC in
the state-random manner for the respective single-qubit gates
[21]. (5) Obtain b (and b∗) by the observable measurements
based on the 100 parameter configurations, and evaluate FQS
matrices G (and G∗) using the respective sets of A+, b (and
b∗). (6) Execute FQS (FRAXIS/ROTOSOLVE) for G (and G∗) to
obtain p (and p∗). We repeat the procedure (4)–(6) 104 times
and evaluate the averaged error 〈	E〉 in Eq. (32) for each
parameter configuration. In Fig. 4, we plotted 100 indepen-
dent parameter configurations in the C(A) vs 〈	E〉 graph. By
definition, C(A) and 〈	E〉 are metrics to qualify the estimated
energy and the estimated parameter, respectively. Although

both metrics are linked through the following equation:

Nmind

N
C(A) + sd (d − 1)

kσ 2
E[	E ] = Tr[(AT A)−1], (45)

the concrete behaviors are not necessarily trivial because of
dependency on A and the observable. Here, we confirmed
that the energy errors 〈	E〉 are roughly proportional to C(A)
for all the cases, and 〈	E〉 is inversely proportional to the
number of shots approximately. We also found that the opti-
mal parameter configuration (red) achieves the lowest error
〈	E〉, indicating that the optimal parameter configurations
are effective in minimizing the estimation error. Although the
magnitude of 〈	E〉 in FQS is seemingly larger than that of
ROTOSOLVE, we note that it does not necessarily indicate the
advantage of ROTOSOLVE with respect to error suppression be-
cause the single-gate expressibility is not comparable among
the respective methods. For instance, sequential ROTOSOLVE

applications of a series of three single-qubit gates are com-
parable to one-time FQS applications. In this case, however,
it is not straightforward to compare them because of error
propagation, which is beyond the present framework. In the
next section, instead, we examine the effect of the parameter
configuration on the entire performance in comparison with
the optimization methods.

B. The influence of the C-cost on VQE performances

We investigate the effect of different parameter configura-
tions on the results of VQE when we sequentially optimize
single-qubit gates in quantum circuits by the framework of
FQS [23]. We employed the five-qubit quantum Heisenberg
model [39], defined as

H = J
5∑

i=1

∑
σ=X,Y,Z

σiσi+1 + h
5∑

i=1

Zi, (46)

where σi = I⊗i−1 ⊗ σ ⊗ I⊗5−i(1 � i � 5), σ6 = σ1. We
herein set J = h = 1. We used a Cascading-block ansatz,
shown in Fig. 5, where the gates within the dashed lines
are repeated L times. We set L = 1, 3, 5 in this experiment.
According to the optimization method, we applied the
respective single-qubit representations to Ui in the PQC. We
begin VQE by randomly initializing PQC in a state-random
manner for respective single-qubit gates in the PQC. In VQE,
we sequentially applied ROTOSOLVE/FRAXIS/FQS to Ui in the
order of subscripts in Fig. 5, i.e., from the top left to right
bottom. We term this procedure to update all gates in the
PQC once as a sweep. In a single VQE run, we carried out
100 sweeps to obtain the estimated minimum eigenvalue E
of the Hamiltonian. We performed independent 100 VQE
runs and plotted the error distribution 	E := E − E∗ for
respective 100 trials in Fig. 6, where E∗ is the exact minimum
eigenvalue of the Hamiltonian. We evaluated the resulting
distributions using the number of shots to 100, 1000, 10 000,
and ∞ for two or three different parameter configurations
(see Appendix E for the specific parameter values). Note
that we used a statevector for VQE with an infinite number
of shots. Figure 6 suggests that parameter configurations
strongly affect the entire VQE performance and shows that
the optimized parameter configuration [C(A) � 1] achieves
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FIG. 4. The average energy error for one-time optimization with different parameter configurations. Each subplot shows the averaged
deviations of the estimated minimum from the true minimum energy (vertical axis), where the former energy was evaluated from G made with
randomly generated parameter configurations under the limited total number of shots, while the latter energy was obtained via STATEVECTOR

SIMULATOR. The left, center, and right columns show the results with 10, 100, and 1000 shots per circuit, respectively. The top, center, and
bottom rows show the results for ROTOSOLVE, FRAXIS, and FQS, respectively. The results of the original and optimal parameter configurations
are highlighted in the figure. The description of the number of shots above each subplot represents the number of shots used for a single mean
value of the Hamiltonian based on a parameter configuration.

the smallest errors on all the conditions with finite numbers
of shots. The optimal parameter configuration works more
effectively as the number of shots is smaller, which is in line
with the analysis of the one-time application to a single-qubit
gate in Fig. 4. In addition, the impact of the parameter

FIG. 5. Cascading-block ansatz.

configuration on the VQE performance is not visible on the
shallow circuit and more distinct as the number of the layer
increases. In general, more expressive ansatz can potentially
approximate the state of interest with higher precision.
Correspondingly, one has to increase the number of shots
because, for accuracy ε, the number of required shots scales
in O(1/ε2). Otherwise, the enhanced expressibility by the
circuit extension may not be highlighted. As the gain of C(A)
is equivalent to the increase of measurements, the optimal
parameter configuration will be more beneficial as the desired
accuracy in VQE becomes higher. In fact, FQS is superior
to ROTOSOLVE and FRAXIS, and the statevector simulation
implies that FQS with the ansatz of L = 5 can potentially
achieve the accuracy ε < 10−2. However, this energy level
was not achieved by the original and symmetric parameter
configurations with the 10 000 shots, which is a practical
standard for the present quantum devices, e.g., IBM-Q device.
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FIG. 6. Comparison of the variational quantum eigensolver (VQE) performance with different parameter configurations. The vertical axis
represents the deviation of the resulting VQE energy from the exact ground-state energy. The respective energies were evaluated after 100
sweeps, where one sweep stands for sequential updates of all the single-qubit once. The box-and-whisker plots show the statistics of the energy
deviations (	E ) obtained by independent 100 VQE runs. We carried out the VQEs with the circuit layers (L) from 1, 3, and 5 and showed the
results in respective subplots.

Therefore, the parameter configuration optimization assists
VQE in lowering the reachable energy level distinctively,
although it is not the case for ROTOSOLVE and FRAXIS

because the number of shots available is sufficient relative to
their expressibility.

V. CONCLUSIONS

In this paper, we showed that the parameter configuration
affects the performance of analytical optimization of a single-
qubit gate. This estimation error was quantified by the C-cost
C(A), the variance of the estimated value of the cost function.
We theoretically proved that the lower bound of C(A) is unity.

We also showed that, when the size of the parameter configu-
ration is minimal, the C-cost becomes unity if and only if the
parameter configuration satisfies the equiangular condition.
Exploiting this property, we found the optimal parameter con-
figuration for ROTOSOLVE and FRAXIS. Although we revealed
no parameter configuration of minimum size for FQS achieves
C(A) = 1, it turned out the parameter configuration of N = 12
corresponding to the regular 24-cell polytope in 4D space
satisfies C(A) = 1. In addition, we also demonstrated how to
reduce the number of measurements for matrix construction
by making use of the rotation invariance of C(A). Then the
optimal parameter configurations exhibited the best results,
improving efficiency by 1.5 times for ROTOSOLVE, 1.8 times
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for FRAXIS, and 3.0 times for FQS, compared with the original
parameters. Additional numerical experiments showed that
the parameter configuration affects the performance of not
only the one-time optimization but also the entire VQE. We
also found that the parameter configuration is more instrumen-
tal in eliciting the VQE performance as the ansatz becomes
more expressive.

ACKNOWLEDGMENTS

R.R. would like to thank Prof. David Avis of Kyoto
University for discussion on equiangular lines. H.C.W. was
supported by JSPS Grants No. 20K03885 and 23K03266.
N.Y. and H.C.W. were supported by the MEXT Quantum
Leap Flagship Program Grants No. JPMXS0118067285 and
No. JPMXS0120319794.

APPENDIX A: FREE QUATERNION SELECTION

We show the minimum value of Eq. (7) is the minimum
eigenvalue λ1 of G achieved when q = p1 for the correspond-
ing eigenvector p1 of G.

For the Lagrange multiplier method, we first define a func-
tion l (q, λ) corresponding to the above optimization problem
as

l (q, λ) = qT Gq − λ(‖q‖2 − 1), (A1)

where λ is a Lagrange multiplier. Taking the partial derivatives
for l (q, λ) and setting them to zero, we can obtain

Gq = λq. (A2)

Thus, the candidates for the local minimum/maximum value
of l (q, λ) and the solutions are the eigenvalues λi and its
normalized eigenvectors pi, respectively.

Substituting the normalized eigenvectors pi into Eq. (7),
we get

〈H〉 = pT
i Gpi = pT

i (λipi ) = λi. (A3)

This means the global minimum value of Eq. (7) and its
solution are given by the minimum eigenvalue λ1 and the
corresponding normalized eigenvector p1.

APPENDIX B: DERIVATION OF ANALYTICAL
FORM OF THE MEASURES

1. Expectation value over an orthogonal basis

We show several equations that are useful for the derivation
of the analytical form of the measures.

Let Z ∈ Rd×d be a random symmetric matrix that satisfies
E[Zi j] = 0 for all i, j. Independently, let P = (p1, . . . , pd )T ∈
Rd×d be a random orthogonal matrix [i.e., the matrix is uni-
formly sampled from the orthogonal group O(4)]. Then the
following equations hold:

E
[
p∗T

i Zp∗
j

] =
∑
k,l

E[(p∗
i )k (p∗

j )lZkl ]

=
∑
k,l

E[(p∗
i )k (p∗

j )l ]E[Zkl ]

= 0, (B1)

and so,

Var
[
p∗T

i Zp∗
j

] =E
[(

p∗T
i Zp∗

j

)2]− E
[
p∗T

i Zp∗
j

]2

=E
[(

p∗T
i Zp∗

j

)2]
. (B2)

For i = j,

Var
[
p∗T

i Zp∗
i

] = E

⎧⎪⎨
⎪⎩
⎡
⎣∑

k,l

(pi )kZkl (p j )l

⎤
⎦

2
⎫⎪⎬
⎪⎭

=
∑

k,l,m,n

E[(pi )k (pi )l (pi )m(pi )n]E[ZklZmn]

=
∑
k(=l )

∑
m(=n �=k)

E
[
(pi )

2
k (pi )

2
m

]
E[ZkkZmm]

+
∑

k(=m)

∑
l (=n �=k)

E
[
(pi )

2
k (pi )

2
l

]
E
[
Z2

kl

]

+
∑
k(=n)

∑
l (=m �=k)

E
[
(pi )

2
k (pi )

2
l

]
E[ZklZlk]

+
∑

k

E
[
(pi )

4
k

]
E
[
Z2

kk

]

=
∑
k,l

E[ZkkZll ] + E
[
Z2

kl

]+ E[ZklZlk]

d (d + 2)

=
∑
k,l

E[ZkkZll ] + 2E
[
Z2

kl

]
d (d + 2)

. (B3)

For the fourth equality, we employed the following relation:

E[(xT Zx)2] =d (d + 2)E

[(
xT

‖x‖Z
x

‖x‖
)2
]
, (B4)

where x is a random vector in Rd , which follows the
d-dimensional multivariate standard normal distributions
N (0, I ), and x, Z are independent of each other.

To evaluate Eq. (B2) for i �= j, we suppose another random
vector y as x, but independent of x and Z:

E[(xT Zy)2] =E

⎧⎪⎨
⎪⎩
⎡
⎣∑

i, j

(x)iZi j (y) j

⎤
⎦

2
⎫⎪⎬
⎪⎭

=E

⎡
⎣∑

i, j,s,t

(x)i(x)sZi jZst (y) j (y)t

⎤
⎦

=
∑
i, j,s,t

E[(x)i(x)s]E[(y) j (y)t ]E[Zi jZst ]

=
∑
i, j,s,t

δ j,sδi,tE[Zi jZst ]

=
∑
i, j

E
[
Z2

i j

]
. (B5)

Here, we introduce two vectors as

y‖ = (y · x)

‖x‖2
x, y⊥ = y − y‖. (B6)
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Using these vectors, we obtained the following relation:

E[(xT Zy)2] = E{[xT Z (y‖ + y⊥)]2}
= E[(xT Zy‖)2] + E[(xT Zy⊥)2]

+ 2E[(xT Zy‖)(xT Zy⊥)]

= E[(xT Zy‖)2] + E[(xT Zy⊥)2]. (B7)

For the third equality, we use the probability distribution f
that satisfies f (x, y‖, y⊥) = f (x, y‖,−y⊥), and thus,

E[(xT Zy‖)(xT Zy⊥)] = E{(xT Zy‖)[xT Z (−y⊥)]}, (B8)

equivalently,
E[(xT Zy‖)(xT Zy⊥)] = 0. (B9)

On the other hand,

E
{[

p∗T
i Zp∗

j( �=i)

]2} = E

[(
xT

‖x‖Z
y⊥

‖y⊥‖
)2
]

= 1

E[‖x‖2]E[‖y⊥‖2]
E[(xT Zy⊥)2]

= 1

d (d − 1)
E[(xT Zy⊥)2], (B10)

where we suppose that the probability distribution f sat-
isfies f (x/‖x‖, y⊥/‖y⊥‖) = f (pi, p j( �=i) ), a.e., E[‖x‖2] = d
and E[‖y⊥‖2] = d − 1.

In addition, the first term in Eq. (B7):

E[(xT Zy‖)2] = E

[
‖x‖2‖y‖‖2

(
xT

‖x‖Z
y‖

‖y‖‖
)2
]

= E[‖x‖2]E[‖y‖‖2]E

[(
xT

‖x‖Z
y‖

‖y‖‖
)2
]

= d E
[(

p∗T
i Zp∗

i

)2]
=
∑
k,l

E[ZkkZll ] + 2E
[
Z2

kl

]
d + 2

. (B11)

where the second equality arises from the independence of
the random variables, and the third equality is based on

x/‖x‖ = y‖/‖y‖‖, f (x/‖x‖) = f (pi ), a.e., E[‖x‖2] = d and
E[‖y‖‖2] = 1.

From Eqs. (B3), (B7), (B10), and (B11), we finally obtain

Var
[
p∗T

i Zp∗
j( �=i)

] = E
{[

p∗T
i Zp∗

j( �=i)

]2}
=
∑
k,l

dE
[
Z2

kl

]− E[ZkkZll ]

d (d − 1)(d + 2)
. (B12)

2. Derivation of analytical form of Var[λ1(ε)]

Using the noise model 〈εi〉 = 0, 〈εiε j〉 = σ 2δi, j/s and the
uniformly distributed model of the first eigenvector p∗

1. We
show the analytical form of Var[λ1(ε)] in Eq. (35):

Var[λ1(ε)] = Var
[
p∗T

1 vech−1(D−1A+ε)p∗
1

]
.

For simplicity, we write Z = vech−1(D−1A+ε). Note that
Z is a symmetric matrix and satisfies E[Z] = O because
E[D−1A+ε] = D−1A+E[ε] = 0. Thus, using Appendix B 1,

Var
[
p∗T

1 Zp∗
1

] =
∑

i, j E[ZiiZ j j] + 2E
[
Z2

i j

]
d (d + 2)

. (B13)

Then we deal with the first term
∑

i, j E[ZiiZ j j] and the
second term

∑
i, j E[Z2

i j] separately. To this end, we intro-
duce some useful representations. We note Eq. (15) can be
rewritten as

〈H〉 = h(q)T g = (qT ⊗ qT )vec(G). (B14)

Here, q is the parameter of the target single-qubit gate, G is
the FQS matrix, and vec : Rd×d → Rd2

is the vectorization
operator for matrices.

Next, we introduce a linear transformation L ∈
Rd2×d (d+1)/2 between the vector g and vec(G) in the Rx,
FRAXIS, and FQS gates as

L =

⎡
⎢⎢⎣

1 0 0
0 0 c
0 0 c
0 1 0

⎤
⎥⎥⎦,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
0 0 0 c 0 0
0 0 0 0 c 0
0 0 0 c 0 0
0 1 0 0 0 0
0 0 0 0 0 c
0 0 0 0 c 0
0 0 0 0 0 c
0 0 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0
0 0 0 0 c 0 0 0 0 0
0 0 0 0 0 c 0 0 0 0
0 0 0 0 0 0 c 0 0 0
0 0 0 0 c 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 c 0 0
0 0 0 0 0 0 0 0 c 0
0 0 0 0 0 c 0 0 0 0
0 0 0 0 0 0 0 c 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 c
0 0 0 0 0 0 c 0 0 0
0 0 0 0 0 0 0 0 c 0
0 0 0 0 0 0 0 0 0 c
0 0 0 1 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B15)
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respectively, where c = 1/
√

2. Note that the transformation
satisfies

LT L = I, (B16)

vec(G) = Lg, (B17)

and so,

(qT ⊗ qT )L = h(q)T . (B18)

We may also consider the inverse transformation of vectoriza-
tion vec−1 : Rd2 → Rd×d as

vec−1(Lg) = G ∀g ∈ Rd (d+1)/2, (B19)

and vech−1 : Rd2 → Rd×d ,

vech−1(D−1g) = G ∀g ∈ Rd (d+1)/2. (B20)

This leads to

Z = vech−1(D−1A+ε) = vec−1(LA+ε). (B21)

Then the first term in Eq. (B13) is rewritten as∑
i, j

E[ZiiZ j j]

= E

⎡
⎣∑

i, j

vec−1(LA+ε)iivec−1(LA+ε) j j

⎤
⎦

= E{[vec(I )T LA+ε][vec(I )T LA+ε]}

= σ 2

s
[vec(I )T LA+ · vec(I )T LA+]

= σ 2

s
vec(I )T LA+(A+)T LT vec(I )

= σ 2

s
1T

d A+(A+)T 1d

= σ 2

s
1T

d (AT A)−11d , (B22)

where I is the identity matrix, and 1d := LT vec(I ) is the
vector in Rd (d+1)/2 whose first d element is unity, and the rest
are zero. For the sixth equality, we used the following relation:

A+(A+)T = [(AT A)−1AT ][(AT A)−1AT ]T

= (AT A)−1AT A(AT A)−1

= (AT A)−1. (B23)

The second term in Eq. (B13) is also rewritten as

∑
i, j

E
[
Z2

i j

] = E

⎡
⎣∑

i, j

vec−1(LA+ε)i jvec−1(LA+ε)i j

⎤
⎦

= E[(LA+ε)T (LA+ε)]

= σ 2

s
Tr[(LA+)T (LA+)]

= σ 2

s
Tr[A+(A+)T LT L]

= σ 2

s
Tr[(AT A)−1], (B24)

Summarizing Eqs. (B13), (B22), and (B24), Var[λ1(ε)] is
expressed as

Var[λ1] = σ 2

sd (d + 2)

{
1T

d (AT A)−11d + 2Tr[(AT A)−1]
}

= σ 2

sd (d + 2)
Tr
[
(AT A)−1

(
1d 1T

d + 2I
)]

, (B25)

where the following identity:

1T
d (AT A)−11d = Tr

[
(AT A)−11d 1T

d

]
, (B26)

is employed for the last equality.

3. Discussion of E[�E] for the perturbation effect

Using the second-order perturbation theory of the matrix in
Ref. [40], the energy error 	E is approximated as

	E =
d∑

i>1

[
p∗T

i vech−1(D−1A+ε)p∗
1

]2

λ∗
i − λ∗

1

. (B27)

Note that Eq. (B27) is not applicable when the lowest-energy
eigenstate is degenerated. However, the following argument
has been found to hold well experimentally. This equa-
tion leads to

E[	E ] = E

{
d∑

i>1

[
p∗T

i vech−1(D−1A+ε)p∗
1

]2

λ∗
i − λ∗

1

}
. (B28)

However, unlike Var[p1(ε)], this measure also depends on the
probability distribution f (λ∗

1, . . . , λ
∗
d ) of the eigenvalues of

the matrix G. Assuming these eigenvalues are independent of
each other, that is,

f (λ∗
1, . . . , λ

∗
M ) =

d∏
i=1

f (λ∗
i ), (B29)

and the matrix of the eigenvectors P = (p1, . . . , pd )T is a
random orthogonal, Eq. (B28) can be written as

E[	E ] =
d∑

i>1

E

[
1

λ∗
i − λ∗

1

]

×E
{[

p∗T
i vech−1(D−1A+ε)p∗

1

]2}
= kE

{[
p∗T

2 vech−1(D−1A+ε)p∗
1

]2}
, (B30)

where k := ∑d
i>1 E[(λ∗

i − λ∗
1 )−1]. This means the measure

E[	E ] can be evaluated with some modeling of the true FQS
matrix G and the measurement errors ε.

For simplicity, we now write Z = vech−1(D−1A+ε). From
Eq. (B12):

E[	E ] = k
∑
i, j

dE
[
Z2

i j

]− E[ZiiZ j j]

d (d − 1)(d + 2)

= kσ 2

sd (d − 1)(d + 2)

{
d Tr[(AT A)−1]−1T

d (AT A)−11d
}

= kσ 2

sd (d − 1)(d + 2)
Tr
[
(AT A)−1

(
dI − 1d 1T

d

)]
. (B31)
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In addition, if C(A) = 1, i.e., the case of a theoretical lower
bound, AT A = N

d (d+2) (2I + 1d 1T
d ) holds from Theorem 1. As

a result, we obtain

E[	E ] = kσ 2

s

d (d + 2)

4N
, (B32)

where we used the following relation:

Tr
[
(AT A)−1(dI − 1d 1T

d

)]
= d (d + 2)

N
Tr
[(

2I + 1d 1T
d

)−1(
dI − 1d 1T

d

)]
= d (d + 2)

N
Tr

{[
1

2
I − 1

2(d + 2)
1d 1T

d

](
dI − 1d 1T

d

)}

= d (d + 2)

N
Tr

[
d

2
I − 1

2
1d 1T

d

]

= d (d + 2)

N

d

2
(Nmin − 1)

= d2(d + 2)2(d − 1)

4N
. (B33)

APPENDIX C: PROOF OF THEOREM 1
AND COROLLARY 1

In this section, we first present useful lemmas to prove The-
orem 1 and its Corollary 1 that allow for analytical calculation
of the optimal bound of the C-cost.

The first lemma is trivial from the singular-value decompo-
sition of a matrix A = U�V T , where U and V are orthogonal
matrices, and � is the diagonal matrix that contains the sin-
gular values of A.

Lemma 1. Let A be a real matrix. The multiset of nonzero
eigenvalues of AAT is the same as the multiset of nonzero
eigenvalues of AT A.

Lemma 2. Let A be a real symmetric matrix such that one
of its eigenvalues is a and the rest are b’s. Then it holds that
A = (a − b)uuT + bI , where u is the (normalized) eigenvec-
tor corresponding to the eigenvalue a.

Proof. By seeing that Au = au, and Av = bv hold for ev-
ery v which is orthogonal to u, i.e., vT u = 0 �.

Let A be an n × n positive definite matrix with the largest
eigenvalue λmax and the smallest eigenvalue λmin such that
κ = λmax/λmin. It is known that n2/κ � Tr(A) Tr(A−1) � n2κ

holds with equality if and only if κ = 1, i.e., A = λI for some
λ > 0. We formalize this in the following lemma.

Lemma 3. Any positive-definite real symmetric matrix A ∈
Rn×n satisfies Tr(A−1) � n2Tr(A)−1 with equality if and only
if A = λI for λ > 0.

We now prove Theorem 1 and its Corollary 1 concerning
lower bounds and its equality conditions for C-cost. Here, we
revisit Theorem 1 for convenience.

Theorem 1. Suppose a single-qubit gate is expressed by
a parameter q in Rd , where |q| = 1. Let {q1, . . . , qN } be a
parameter configuration, and let A be the corresponding ma-
trix A = [h(q1), . . . , h(qN )]T in RN×Nmin , where N � Nmin ≡
d (d + 1)/2. The C-cost C(A) is defined as

C(A) = N

Nmind (d + 2)
Tr
[
(AT A)−1

(
1d 1T

d + 2I
)]

(C1)

and satisfies C(A) � 1 with equality if and only if the param-
eter configuration {qi} and A satisfies

AT A = N

d (d + 2)

(
1d 1T

d + 2I
)
. (C2)

Proof. Using the Woodbury matrix identity giving

(
1d 1T

d + 2I
)−1 =

[
1

2
I − 1

2(d + 2)
1d 1T

d

]
, (C3)

we obtain the lower bound of Eq. (C3) as

Tr
[
(AT A)−1

(
1d 1T

d + 2I
)]

= Tr
{[(

1d 1T
d + 2I

)−1
(AT A)

]−1}
= Tr

{[
1

2
AT A − 1

2(d + 2)
1d 1T

d AT A

]−1
}

� N2
minTr

[
1

2
AT A − 1

2(d + 2)
1d 1T

d AT A

]−1

= Nmind (d + 2)

N
, (C4)

where the inequality in the fourth line is derived by Lemma 3.
To obtain the last line, we use Tr(AT A) = Tr(AAT ) = N and
Tr(1d 1T

d AT A) = N as well as Nmin = d (d + 1)/2. Therefore,
C(A) � 1.

According to Lemma 3, the equality in the fourth line in
Eq. (C4) is given as

1

2
AT A − 1

2(d + 2)
1d 1T

d AT A = λI, (C5)

where λ is a constant. Tracing over both sides of Eq. (C5), we
have

λ = N

d (d + 2)
. (C6)

Therefore, C(A) = 1 if and only if

AT A = N

d (d + 2)

(
1d 1T

d + 2I
)
. (C7)

�
Corollary 1. For the minimum number of parameters

(N = Nmin), it holds that C(A) � 1 with equality if and only if
the parameter configurations {qi}N

i=1 satisfy

|qi · q j | = 1√
d + 2

(for all i �= j). (C8)

Proof. We show Eq. (C7) is equivalent to Eq. (C8) if N =
Nmin. We first show

AT A = Nmin

d (d + 2)

(
1d 1T

d + 2I
)

�⇒ |qi · q j | = 1√
(d + 2)

(for all i �= j).

Recall that A = [h(q1), . . . , h(qN )]T . If N = Nmin, both AAT

and AT A lie in RNmin×Nmin , AT A = ∑Nmin
i h(qi )h(qi )T , and so

Nmin∑
i=1

h(qi )h(qi )
T = Nmin

d (d + 2)

(
1d 1T

d + 2I
)
. (C9)

043136-14



OPTIMAL PARAMETER CONFIGURATIONS … PHYSICAL REVIEW RESEARCH 5, 043136 (2023)

Multiplying both sides by 1d from the right, we obtain

Nmin∑
i=1

h(qi ) = Nmin

d
1d . (C10)

According to Lemma 1, AT A and AAT have an identical set of
nonzero eigenvalues, i.e., one of the eigenvalues is d + 2, and
the rest are 2. Then using Lemma 2, AAT can be expressed as

AAT = Nmin

d (d + 2)
(dvvT + 2I ), (C11)

where v ∈ RNmin is a unit vector. On the other hand, the (i, j)
component of AAT has a relation:

(AAT )i j = h(qi )
T h(q j ) = Nmin

d (d + 2)
(dviv j + 2δi j ). (C12)

Summing Eq. (C12) over j from 1 to Nmin and using
h(q)T 1d = 1 and Eq. (C10), we obtain

v j = 1∑Nmin
i vi

. (C13)

Because v is a unit vector, v = ±1Nmin/
√

Nmin, where 1Nmin ∈
RNmin is a vector whose elements are all 1. Therefore,

h(qi )
T h(q j ) = 1

d + 2
, for i �= j. (C14)

Using the relation h(qi )T h(q j ) = (qi · q j )2, we obtain

|qi · q j( �=i)| = 1√
d + 2

. (C15)

Next, we prove that

|qi · q j | = 1√
(d + 2)

(for all i �= j)

�⇒ AT A = N

d (d + 2)

(
1d 1T

d + 2I
)
.

Using the relation h(qi )T h(q j ) = (qi · q j )2 and |qi|2 = 1
again, we obtain

h(qi )
T h(q j ) = 1

d + 2
+ d + 1

d + 2
δi j . (C16)

As h(qi )T h(q j ) is the (i, j) component of AAT , we can write

AAT = Nmin

d (d + 2)

(
d

Nmin
1Nmin 1T

Nmin
+ 2I

)
, (C17)

because Nmin = d (d + 1)/2. Using Eq. (C17), Lemmas 1 and
2, we can write AT A as

AT A = Nmin

d (d + 2)
(dv′v′T + 2I ), (C18)

where v′ = [v′
1, . . . , v

′
Nmin

]T is a unit vector. As AT A =∑
i h(qi )h(qi )T and ∀i, h(qi )T 1d = 1, multiplying Eq. (C18)

by 1d from the right side yields∑
i

h(qi ) = Nmin

d (d + 2)
(dv′v′T 1d + 21d ). (C19)

Summing Eq. (C16) over i and j from 1 to Nmin, we obtain∑
i, j

h(qi )
T h(q j ) = N2

min

d
, (C20)

which further yields (
1T

d v′)2 = d, (C21)

by substituting Eq. (C19) into Eq. (C20) and rearranging
the resultant equation. As ‖1d‖ = √

d , Eq. (C21) means
v′ = ±1d/

√
d . Therefore, Eq. (C18) becomes

AT A = Nmin

d (d + 2)

(
1d 1T

d + 2I
)
, (C22)

which is just the equality condition of C(A) = 1. �

APPENDIX D: PROOF OF ROTATION
INVARIANCE OF C-COST

Here, we prove the C-cost C(A) is invariant with respect to
the parameter rotations as

C(A) = C(AR), (D1)

where the subscript R stands for the rotated parameter set.
Let {q1, q2, . . . , qN } be the original parameter configuration.
Then a rotation matrix R ∈ SO(d ) gives another parameter
configuration {Rq1, Rq2, . . . , RqN }. For convenience, we de-
fine a matrix Q as

Q = (q1 ⊗ q1, q2 ⊗ q2, . . . , qN ⊗ qN )T . (D2)

Likewise,

QR = [(Rq1) ⊗ (Rq1), . . . , (RqN ) ⊗ (RqN )]T

= Q(RT ⊗ RT ). (D3)

Using Eq. (B18), Q is linked to A as

ALT = Q and A = QL. (D4)

which implies Q encodes the parameter configurations as well
as A. Thus, the matrix A for the rotated parameter set is given
as

ARLT = Q(RT ⊗ RT ) and AR = Q(RT ⊗ RT )L. (D5)

From Eqs. (B22) and (B24), the C-cost contains the Gram
matrix AT A. For the rotated parameter set, the corresponding
Gram matrix is given as

AT
R AR = LT (R ⊗ R)QT Q(RT ⊗ RT )L

= LT (R ⊗ R)LAT ALT (RT ⊗ RT )L

= RLAT ART
L , (D6)

where we denote RL := LT (R ⊗ R)L.
In fact, the first and second terms of Eq. (B13) are indepen-

dently invariant for parameter rotations as follows.
For the first term 1d (AT A)−11T

d [Eq. (B22)], the rotated
version of the first term is expanded as

1T
d

(
AT

R AR
)−1

1d = 1T
d

(
RLAT ART

L

)−1
1d

= (
R−1

L 1d
)T

(AT A)−1R−1
L 1d

= 1T
d (AT A)−11d , (D7)
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where we use the fact R−1
L 1d = 1d , which is easily derived as

RL1d = LT (R ⊗ R)LLT vec(I )

= LT LLT (R ⊗ R)vec(I )

= LT (R ⊗ R)vec(I )

= LT vec(RIRT )

= LT vec(I )

= 1d , (D8)

where we employed LLT (R ⊗ R) = (R ⊗ R)LLT and
LT L = I . This equation implies the first term is rotation
invariant.

For the second term Tr[(AT A)−1] [Eq. (B24)], the rotated
version of the second term is expanded as

Tr
[(

AT
R AR

)−1] = Tr
[(

RLAT ART
L

)−1]
= Tr

[(
AT ART

L RL
)−1]

= Tr[(AT A)−1], (D9)

where for the second equality I = RT
L RL is employed, which

is derived as

RT
L RL = L(RT ⊗ RT )LLT (R ⊗ R)L

= LT LLT (R ⊗ R)(RT ⊗ RT )L

= LT LLT [(RRT ) ⊗ (RRT )]L

= LT LLT L

= I, (D10)

where we employed LLT (R ⊗ R) = (R ⊗ R)LLT and
LT L = I . This equation implies the second term is rotation
invariant. Consequently, the C-cost is rotation invariant
because both terms in the C-cost are rotation invariant
(E[	E ] is also rotation invariant because it is the weighted
sum of these two terms). �

APPENDIX E: COMPARISON OF OUR PARAMETERS
WITH THE ORIGINAL METHODS.

We show the parameter values used as a sequential opti-
mization in the main text as follows. The parameters are in no
particular order.

1. Rx gate

The original parameter configuration for Rx gate r1, r2, r3

proposed in Ref. [20] is represented as⎡
⎢⎣rT

1

rT
2

rT
3

⎤
⎥⎦ =

⎡
⎣ 1 0

cos(π/4) sin(π/4)
cos(π/4) − sin(π/4)

⎤
⎦. (E1)

The unique optimal parameter configuration for the Rx
gate with minimum number parameter set r1, r2, r3 is analyt-
ically derived as⎡

⎢⎣rT
1

rT
2

rT
3

⎤
⎥⎦ =

⎡
⎣ 1 0

cos(π/3) sin(π/3)
cos(π/3) − sin(π/3)

⎤
⎦ (E2)

and its arbitrary rotation and (individual) reversal.

2. Fraxis gate

The original parameter configuration for the Fraxis gate
n1, n2, . . . , n6 proposed in Ref. [21] is represented as⎡

⎢⎢⎢⎢⎢⎢⎢⎣

nT
1

nT
2

nT
3

nT
4

nT
5

nT
6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= 1√
2

⎡
⎢⎢⎢⎢⎢⎢⎣

√
2 0 0

0
√

2 0
0 0

√
2

1 1 0
1 0 1
0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎦

. (E3)

The unique (up to arbitrary rotation and individual rever-
sal) optimal parameter configuration for the Fraxis gate with
minimum number parameter set n1, n2, . . . , n6 is analytically
derived as the vertices of the icosahedron:⎡

⎢⎢⎢⎢⎢⎢⎢⎣

nT
1

nT
2

nT
3

nT
4

nT
5

nT
6

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= 1√
1 + ϕ2

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 ϕ

0 1 −ϕ

1 ϕ 0
1 −ϕ 0
ϕ 0 1

−ϕ 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

, (E4)

where ϕ = 1+√
5

2 is the golden ratio.

3. FQS gate

The original parameter configuration for FQS
q1, q2, . . . , q10 proposed in Ref. [23] is represented as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

qT
1

qT
2

qT
3

qT
4

qT
5

qT
6

qT
7

qT
8

qT
9

qT
10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 1√
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
2 0 0 0

1 −1 0 0
1 0 −1 0
1 0 0 −1
1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (E5)

The symmetric parameter configuration for FQS gate
q1, q2, . . . , q10 which is only used for the experimental results
in the main text is represented as⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

qT
1

qT
2

qT
3

qT
4

qT
5

qT
6

qT
7

qT
8

qT
9

qT
10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 1√
2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
2 0 0 0

0
√

2 0 0
0 0

√
2 0

0 0 0
√

2
1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (E6)

The unique optimal parameter configuration for the FQS
gate with minimum number parameter set q1, q2, . . . , q10 is
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FIG. 7. Additional results of the average energy error for the one-time optimization on different target gates in the ansatz with various
parameter configurations.

numerically derived as⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

qT
1

qT
2

qT
3

qT
4

qT
5

qT
6

qT
7

qT
8

qT
9

qT
10

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a b b b
b a b b
b b a b
b b b a
c c d d
c d c d
c d d c
d c c d
d c d c
d d c c

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(E7)

and its arbitrary rotation and (individual) reversal, where a =√
3/2, b = −1/(2

√
3), and c2 + d2 = 1

2 , where c ≈ 0.7049,

d ≈ −0.0561.

APPENDIX F: �E DISTRIBUTIONS SAMPLED WITH
VARIOUS PARAMETER CONFIGURATIONS

In the experiment in Sec. IV A, we performed optimization
of only one gate to investigate the estimation error of the target
gate. In the main text, we show only the case of U2 (Ry gate
in U2 for ROTOSOLVE case) as the target gate. In this section,
we show another case, that is, the case of the target gate is U0

for the FQS and FRAXIS cases and the Ry gate of U0 for the
ROTOSOLVE case. Note that the number of shots per circuit S
is set to 10, 100, and 1000. The parameters of all the gates
are initialized to random values, and only the target gate is
optimized. Figure 7 shows the results of all the additional
experiments. The title of each subplot tells the target gate and
other settings.
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