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Effect of sparsity on network stability in random neural networks obeying Dale’s law
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This paper examines the relationship between sparse random network architectures and neural network
stability by examining the eigenvalue spectral distribution. Specifically, we generalize classical eigenspectral
results to sparse (not fully connected) connectivity matrices obeying Dale’s law: neurons function as either
excitatory (E) or inhibitory (I). By defining α as the probability that a neuron is connected to another neuron,
we give explicit formulas that show how sparsity interacts with the E-I population statistics to scale key features
of the eigenspectrum in both the balanced and unbalanced cases. Our results show that the eigenspectral outlier
is linearly scaled by α, but the eigenspectral radius and density now depend on a nonlinear interaction between
α and the E-I population means and variances. Contrary to previous results, we demonstrate that a nonuniform
eigenspectral density results if any of the E-I population statistics differ, not just the variances. We also find
that local eigenvalue outliers are present for sparse random matrices obeying Dale’s law, and demonstrate that
these eigenvalues can be controlled by a modified zero row-sum constraint for the balanced case, however,
they persist in the unbalanced case. We examine all levels of connection sparsity 0 � α � 1 and distributed E-I
population weights to describe a general class of sparse connectivity structures which unifies all the previous
results as special cases of our framework. Sparsity and Dale’s law are both fundamental anatomical properties
of biological neural networks. We generalize their combined effects on the eigenspectrum of random neural
networks, thereby gaining insight into network stability, state transitions, and the structure-function relationship.
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I. INTRODUCTION

Understanding the spatiotemporal dynamics of large popu-
lations of neurons in the cortex is a fundamentally difficult
open problem in both theoretical and experimental neu-
roscience, particularly the relationship between network
connectivity and dynamics. Theoretically, this has been
typically studied by either averaging over the synaptic con-
nection weights, thereby sacrificing network structure, or via
large-scale numerical simulations of neural models that are
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mathematically intractable. An effective approach that pre-
serves the statistical structure of the synaptic connectivity
while still being mathematical feasible is to study the dy-
namics of partially random networks of neurons. Network
dynamics in this framework are examined through changes in
the eigenvalue spectral distribution of the network Jacobian,
which is a function of the synaptic connectivity matrix [1].
This paper mathematically examines the stability properties of
the Jacobian’s eigenspectrum when a more realistic anatomi-
cal structure is incorporated into the connectivity matrix, such
as sparsity, network (im)balance, and Dale’s law.

A key feature of biological neural networks is that they
are not fully connected, namely, neurons do not receive in-
put from every other neuron in the network [2–4]. Usually
the number of connections is relatively small, but varies de-
pending on spatial scale, location, network size, and specific
population wiring related to function. We introduce sparsity
into the synaptic connectivity matrix by defining a sparsity
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parameter, α, as the probability that a neuron is connected to
another neuron, so α=1, denoting a fully connected network.
Previous analyses only considered fully connected networks
[1,5–7], sparse networks with constant weights describing
each of the excitatory and inhibitory populations [8–10], or
sparse one population random networks [10,11]. Furthermore,
these works [8,9] are only valid in the very sparse limit, i.e.,
α << 1. This paper generalizes the previous results to include
all levels of sparsity 0 � α � 1 in two-population networks
with differently distributed weights and different network im-
balances.

There is a considerable amount of experimental [3,12,13]
and theoretical [2,14–16] evidence that strongly suggests
that brain activity crucially depends on the dynamic balance
between excitation and inhibition, and is essential for brain
function [3,6]. Many anatomical and physiological network
properties adjust homeostatically to maintain balanced E-I
input [17], and network imbalances can lead to pathological
brain dynamics, such as epileptic seizures [7]. However, the
concept of network balance is ambiguous [18] and needs to be
defined carefully. Functional network balance is a dynamical
property that changes depending on the network activity.
Specifically, we define the functional network balance as
the sum of synaptic inputs, i.e., the weights multiplied by
the firing rates [2,19]. However, in this paper we do not
consider the firing rates, and focus instead on structural
network balance. Structural network balance in biological
neural networks is intrinsically tied to Dale’s law, where
neurons in the cortex are either excitatory (E) or inhibitory (I)
in their action on target neurons [20]. Dale’s law introduces a
macroscopic anatomical constraint upon the random synaptic
connectivity matrix; i.e., a partially random neural network.
Therefore, we define structural E-I network balance to be the
network state in which the mean excitatory (E) weights equals
the mean magnitude of the inhibitory (I) weights [2,3,19]. We
examine both structurally balanced and unbalanced networks
in combination with sparsity in this framework to understand
their impacts on brain dynamics, particularly state transitions
to physiologically realistic asynchronous activity [8].

In this paper, we consider the combined effects on network
stability of incorporating both sparsity and Dale’s law. We
commence by reviewing previous results related to random
neural networks (Sec. II) and eigenvalue spectral properties
of synaptic connectivity matrices (Secs. III A and III B). In
Sec. III C, we extend these previous results by analyzing the
eigenvalue distribution (including outliers) of the networked
Jacobian for sparse balanced and unbalanced random synaptic
connectivity matrices obeying Dale’s law. Specifically, we de-
duce a number of mathematically explicit formulas that extend
previous analyses [1,7,10], yielding a quantitative relationship
between sparsity, the E-I populations statistics, and principal
properties of the eigenspectrum.

II. NETWORK MODEL AND ANALYSIS

In this paper, the neural network dynamics are described
by

ẋi(t ) = −xi(t )

τ
+

N∑
j=1

wi jφ(x j (t )), (1)

where xi(t ) is the current of the ith neural unit, τ is the time
constant, wi j is an entry in a N×N partially random network
connectivity matrix W , and φ(xi(t )) is an activity-to-firing rate
coupling function. The function φ is defined as a real valued,
bounded, smooth, and strictly monotonically increasing odd
function on the infinite domain with φ(0) = 0, φ′(0) = 1, and
φ → ±1 for x → ±∞, e.g., φ(x) = tanh(x) [5,7,8,21].

The equilibria of this network model are the solutions of
the general expression

x∗ = τW φ(x∗), (2)

where x∗,φ(x∗) ∈ RN . Hence, these solutions are directly
dependent on the structure of the connectivity matrix W .
Networks described by Eq. (1) and a random connectivity
matrix with zero mean always yield a trivial homogeneous
equilibrium solution. However, in the case of random net-
works obeying Dale’s law the existence of a homogeneous
equilibrium solution requires that the sum of the rows of the
connectivity matrix is equal across all rows, formally,

N∑
j

wi j = Nμr, (3)

where μr is the average connectivity weight. If Eq. (3) is sat-
isfied, then there exists a homogeneous equilibrium solution
when x∗

k = x∗
0 , provided that

x∗
0 = τNμrφ(x∗

0 ) (4)

has a solution for all units k = 1, . . . , N . Networks that
satisfy the row-sum condition and structural (E-I) balance,
yield a trivial homogeneous equilibrium solution, x∗

0 = 0. If,
however, a network satisfies the row-sum condition, but is
structurally E-I unbalanced, a constant homogeneous equi-
librium solution exists, x∗

0 = ξ. Alternatively, if the row-sum
condition is not satisfied and the network is structurally E-I
unbalanced, then the system permits heterogeneous equilibria,
i.e., different neurons i attain two or more different equilib-
rium values.

To evaluate the local stability of the system around the
equilibria, we study the eigenspectrum of the networked Ja-
cobian

J (x∗) =
[
− 1

τ
IN + W �′(x∗)

]
, (5)

where IN is the identity matrix and �′(x∗) is a N×N matrix.
When the real part of at least one of the eigenvalues of the
Jacobian Eq. (5) becomes positive, the equilibrium solution
becomes unstable and spontaneous dynamics emerge [9,22].
Hence, the local stability and neural dynamics is influenced by
the eigenspectrum of the Jacobian, which from random matrix
theory depends on the statistical structure of the synaptic
connectivity matrix W .

If the homogeneous equilibrium is the trivial zero solu-
tion, x∗

0 = 0, then the matrix �′(x∗
0 ) = IN since φ′(0) = 1.

Thus, the eigenspectrum of the Jacobian depends only on
the synaptic connectivity matrix W with diagonal offset of
−1/τ . However, if the homogeneous equilibria is a constant
value, ξ for all units i, x∗

0 = ξ, the matrix �′(x∗) = γ IN since
φ′(ξ) = γ . This introduces an additional dependence in the
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Jacobian without changing the overall statistical structure, as
γ only scales all of the connectivity strengths of W .

In contrast, the network Jacobian of heterogeneous equi-
librium solutions, x∗, incorporates an additional (nested)
dependence of the connectivity matrix through the term
�′(x∗). �′(x∗) correlates the structured and random compo-
nents of the connectivity matrix. Further, this term correlates
the Jacobian, J (x∗), to the individual realization of the
random part of the connectivity matrix [23]. Therefore, to
examine the influence of the statistical structure of the con-
nectivity matrix W on heterogeneous equilibrium solutions,
x∗, the eigenvalues of the Jacobian, and hence the net-
work dynamics, dynamical mean-field techniques are required
[23,24]. This analysis is outside the scope of this investigation.

In this paper, we focus our analysis on the effects of
implementing anatomically realistic structures into a random
connectivity matrix, namely, Dale’s law, structural E-I imbal-
ance, and sparsity, on the eigenvalue spectral distribution of
Eq. (5) evaluated at x∗

0 = 0 and assuming a unit scaling factor
φ′(0) = 1.

III. EIGENVALUE SPECTRAL PROPERTIES
OF SYNAPTIC CONNECTIVITY MATRICES

To investigate the impact of Dale’s law, structural E-I
imbalance, and sparsity in random neural networks obeying
Dale’s law, we analyze the changes in the eigenspectral distri-
bution of the network Jacobian Eq. (5). We use the following
key result from random matrix theory to examine this relation-
ship.

A. Eigenvalues of a random matrix

The elements in large synaptic connectivity matrices are
sampled randomly from a Gaussian or any identically inde-
pendent distribution. Therefore, we use results from random
matrix theory in this investigation [1,7]. A central result of
random matrix theory is Girko’s circular law. This law states
that the empirical spectral distribution of a random matrix, A,
with entries ai j independently and identically distributed (iid)
with mean μ = 0, variance σ 2 = 1

N , converges to the unit disk
on the complex plane [1,11,25–27]. A secondary result states
that an eigenvalue outlier escapes the eigenspectral disc if A
has nonzero mean [28]. Consequently, an iid random matrix
AN with mean μ �= 0, variance σ 2 = 1

N , and finite fourth mo-
ment has an eigenspectrum with a central eigenspectral disc,
with radius R = σ

√
N , and a single eigenvalue outlier, λO,

that escapes to the point λO = μN on the complex plane.

B. Sparse random matrices

Previous work studying sparse random matrices exam-
ined the eigenvalue spectral distribution of Boolean random
matrices, sparsified Gaussian random matrices [10,11], and
sparsified low-rank networks [10]. Two previous papers of
note [9,29] studied sparse random matrices obeying Dale’s
law, however, Dale’s law is implemented by setting all ex-
citatory and inhibitory units to constants, W̄e, W̄i, essentially
removing the underlying random distribution of connectivity
elements before sparsity is applied. In this paper, we exam-
ine a more general class of sparse random matrices and we

note that these previously studied matrices and corresponding
results are all special cases of the following class of sparse
random matrices.

A sparse random matrix, W , is characterized by three
statistics: the probability of a nonzero element α, the mean
μ, and variance σ 2 of the nonzero entries. We construct our
connectivity matrix W by combining sparse, random, and de-
terministic components as per Eq. (6) below. AD is the random
component, and M is a low-rank deterministic component.
Incorporating network sparsity is achieved by a Hadamard
(elementwise) product of AD + M with a Boolean random
matrix S. A sparse random matrix is defined as

W = S ◦ (AD + M ), (6)

where S is an iid Boolean random matrix with probability α of
an element being nonzero, ◦ is the element wise product, A is
an iid random matrix with zero mean and unit variance, D is a
diagonal matrix of standard deviations, D = diag(σ, . . . , σ ),
M = uv
 is a rank-one matrix perturbation with row vectors
u = (1, . . . , 1)
, v = (μ, . . . , μ)
. If μ �= 0, then the con-
nectivity matrix W is structurally (E-I) unbalanced.

We scale the mean and standard deviation by
√

N to ensure
that the properties of the eigenvalue spectrum are as indepen-
dent as possible from the system size. Specifically, we use
scaled variables μ̃ = μ√

N
, and σ̃ = σ√

N
.

C. Eigenvalues of sparse random matrices

A typical eigenspectrum for an structurally E-I imbalanced
matrix W is illustrated in Fig. 1(a). The two primary prop-
erties are the location of the eigenvalue outlier, λO, and the
radius of the eigenspectral-disc, R. Results from random ma-
trix theory predict that λO = E(wi j )N and R = √

Var(wi j )N
[1,11,25,27,28]. However, these results are only explicitly
proven for fully connected networks with nonzero mean and
sparse random matrices with zero mean.

We build on these previous results to predict the location of
λO = E(wi j )N and the radius R = √

Var(wi j )N for sparse
unbalanced random connectivity matrices. For sparse random
matrices that obey Dale’s law, we compute λO and R by
first deriving expressions for the means and variances of the
weights wi j .

We relate (Appendix A) the mean of the weights, E(wi j ),
to the normalized mean μ̃ and sparsity parameter α, by

E(wi j ) = αμ̃. (7)

Therefore, we predict that the location of the eigenvalue out-
lier is given by

λO = αμ̃N. (8)

We compare the predicted eigenvalue outlier defined in Eq. (8)
to the eigenvalue outlier in the numerical eigenspectrum of
sparse random matrices constructed using Eq. (6). Numeri-
cal eigenspectra are calculated using MATLAB, and this is
performed for a large number of realizations of the sparse
random matrix. We compute the eigenvalue with the largest
magnitude for each realization and average the eigenvalue
outliers over all realizations to obtain a numerical estimate for
λO. The predicted eigenvalue outlier and average numerical
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FIG. 1. (a) Eigenspectrum of W [Eq. (6)] with N = 5000,

μ̃ = − 1√
N
, σ̃ = 1√

N
, α = 0.99. (b) The eigenvalue outlier (left) and

the radius of the eigenspectral disc (right), plotted against the spar-
sity parameter α, for the matrix W . The eigenvalue outlier λo was
calculated theoretically (black) from Eq. (8) and numerically (red)
from W . The eigenspectral radius (black) was calculated theoreti-
cally using Eq. (10) and numerically by the average second largest
eigenvalue of W . The numerical quantities in red were averaged over
100 realizations of W and are shown with standard error bars.

eigenvalue outlier over 100 realizations of the matrix W is
shown in Fig. 1(b).

To calculate the radius of the eigenspectral disk, the vari-
ance of the weights, Var(wi j ) = E(w2

i j ) − E(wi j )2 is derived
as a function of the three primary statistics; the normalized
mean μ̃, the normalized standard deviation σ̃ , and sparsity
parameter α; see Appendix A for details. The expression for
the variance is now dependent on both the mean and sparsity
parameters:

Var(wi j ) = α(1 − α)μ̃2 + ασ̃ 2. (9)

Therefore, we can now compute the radius of the eigenspectral
disc as

R =
√

N[α(1 − α)μ̃2 + ασ̃ 2]. (10)

Note that in accordance with the circular law [11,28], all the
eigenvalues will converge to lie within a disk of radius R as
N → ∞. The expressions in Eqs. (8) and (10) show that the
normalized scaling ensures that the eigenvalue outlier location
is of order O(

√
N ) and the radius of order O(1) as N gets

large. From this point, our analysis implicitly assumes this
respective scaling.

This choice of scaling is justified by our focus on balanced
or inhibitory dominated networks that are close to balanced
as opposed to excitatory dominated. In excitatory dominated
networks, the eigenvalue outlier lies to the right of the disk and

causes network activity to diverge and saturate to the upper
bound of the firing rate function as the system size increases
[O(

√
N )]. This activity is not of interest from a physiological

perspective as it does not generate the spontaneous asyn-
chronous activity associated with normal brain function, for
example, the resting state [6,8,9]. Nontrivial spontaneous be-
havior only emerges when the eigenspectral disc crosses the
imaginary axis and the network activity becomes unstable but
not divergent. For this to occur, the network must be either
balanced or inhibitory dominant so the radius of the eigen-
spectral disk can grow with the variance of the connectivity
matrix.

Previous work on sparse random matrices with zero mean
[11] finds that the radius of the eigenspectral disc scales lin-
early with the sparsity and the variance. By comparison, when
the mean is nonzero, we find the radius is dependent on all
three statistics μ̃, σ̃ , α, and the system size N . Figure 1 shows
the predicted expression in Eq. (10) and the numerically cal-
culated average radius of the eigenspectral disc. To calculate
the average radius, we extract the eigenvalue with the second
largest magnitude for each realization, and then average these
values over all realizations. Based on results from random
matrix theory, we know that the eigenvalue with the second
largest magnitude should lie exactly on or just within the
radius of the eigenspectral disk [11]. We find that there is
agreement between the predicted eigenvalue outlier and radius
and the numerical estimates of the eigenvalue outlier and
radius, and the relative error between the estimates is of the
order 10−4.

D. Eigenspectral properties of sparse random
matrices that obey Dale’s law

Distinct neural populations (Dale’s law) are incorporated
into the synaptic connectivity matrix by specifying two
separate but related Gaussian distributions for each of the
excitatory and inhibitory populations. The sparse random ma-
trix is partitioned into N f excitatory columns (μ̃e, σ̃ 2

e ) and
N (1 − f ) inhibitory columns (μ̃i, σ̃ 2

i ). The synaptic connec-
tivity matrix still takes the form of Eq. (6), where S and A are
defined as before. However, D is now a diagonal matrix of
excitatory and inhibitory variances,

D = diag(σ̃e, . . . , σ̃e︸ ︷︷ ︸
N f times

, σ̃i, . . . , σ̃i︸ ︷︷ ︸
N (1− f ) times

), (11)

and the perturbation M = uv
 is an outer product matrix of
population means, with

u = (1, . . . , 1)
, v = (μ̃e, . . . , μ̃e︸ ︷︷ ︸
N f times

, μ̃i, . . . , μ̃i︸ ︷︷ ︸
N (1− f ) times

)
. (12)

The matrix M consists of N f columns with identical entries
μ̃e and the remaining N (1 − f ) columns with entries μ̃i.
Here, structural (E-I) balance is defined in terms of the com-
bined relative contributions of the excitatory and inhibitory
neurons, i.e., the expected value of the entries, E(wi j ). We
exploit this formalism to examine sparse structurally (E-I)
unbalanced synaptic connectivity matrices, E(wi j ) �= 0, and
refer to these networks as sparse unbalanced random networks
obeying Dale’s law.
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A typical eigenspectrum for a sparse unbalanced random
matrix W that obeys Dale’s law is shown in Fig. 2(a). This
figure shows the eigenvalue outlier, λO, and the radius of
the eigenspectral disc, R, as the two primary properties of
the eigenspectral distribution. These properties are hypothe-
sized to be defined by λO = E(wi j )N and R = √

Var(wi j )N
[1,11,28]. Note that in this case not all eigenvalues will lie
within the radius of the eigenspectral disc, a few local outliers
are located outside the disk radius. In the fully connected case,
these outliers are controlled by a zero row sum (ZRS) condi-
tion [1,28] which we extend to the sparse case and discuss
later.

We commence as before by deriving expressions for the
mean and variance of the weights wi j in W , where W is
defined by Eq. (6). The mean and variance are given by

E(W ) = f μse + (1 − f )μsi, (13)

Var(W ) = f σ 2
se + (1 − f )σ 2

si, (14)

where

μsk = αμ̃k, (15)

σ 2
sk = α(1 − α)μ̃2

k + ασ̃ 2
k (16)

are the means and variances of the excitatory and inhibitory
weights (k = e, i) derived in Appendix B.

Therefore, the location of the eigenvalue outlier and ap-
proximate (not including the local outliers, discussed later
in Sec. III D 2) radius of the central eigenspectral disc for
sparse unbalanced random matrices that obey Dale’s law can
be expressed as

λO = N[ f μse + (1 − f )μsi], (17)

R =
√

N
[

f σ 2
se + (1 − f )σ 2

si

]
. (18)

We compare our theoretical eigenvalue outlier values and
radii to numerical eigenspectra of sparse random matrices
constructed using Eq. (6). This comparison of the eigenvalue
outlier values and the radius of the central eigenspectrum
disk is shown in Fig. 2(b) [and Figs. 6(a) and 6(b) in
Appendix C]. The predicted eigenvalue outlier location and
radius of eigenspectral-disc radius have excellent agreement
with the numerically calculated eigenvalue outlier and radius
of the eigenspectral disc.

We observe that sparsity appears linearly in the expres-
sion for the degree of structural E-I balance, and hence the
eigenvalue outlier Eq. (17). Additionally, the radius of the
eigenspectral disk is nonlinearly dependent on the sparsity
parameter, α, the normalized population means μ̃e, μ̃i, and
normalized population variances σ̃ 2

e , σ̃ 2
i . From Eq. (18) we see

that for fully connected matrices α = 1, the radius depends
only on the population variances, a result consistent with
[1,7,28]. However, once sparsity is introduced into the con-
nectivity, 0 < α < 1, the eigenspectral disk radius changes as
a function of all population statistics (α,μk, σ

2
k ).

1. Nonuniform spectral density of eigenvalue distribution

Previous studies [1,7,28] have shown that a difference in
the variances of the excitatory and inhibitory weights, σ 2

e , σ 2
i ,

FIG. 2. (a) Eigenvalue spectrum of W with μi = − 4.7√
N
, σi = 4.7√

N
,

α = 0.99. (b) Eigenvalue outlier (left) and radius of the eigenspectral
disc (right) of W , plotted against α for μi = − q√

N
, σi = q√

N
. The

theoretical outliers and radii were calculated using Eqs. (17) and
(18), respectively, for different ratios, q, of inhibition to excitation
(blue, orange, yellow, purple). The outlier λo is zero for the balanced
case (orange) and was theoretically calculated (black) using Eq. (17)
and numerically (red) from W . R was calculated theoretically (black)
using Eq. (10) and numerically (red) by the average second largest
eigenvalue of W . Numerical computations were averaged over 100
realizations of W and are shown with standard error bars. (c) Spec-
tral density plotted against disk radius for different sparsity, α, for
theoretical solid lines and numerical points averaged over 500 re-
alizations of W for μi = − 4√

N
, σi = 4√

N
. The inset figure zooms

in ρ(r) = [0, 0.15] as the eigenvalue spectral radius is crossed for
different levels of sparsity. Note the difference between the analytical
(lines) and numerical (dots) density drop offs, indicating that a small
number of eigenvalues escape the spectral disk radius.. All plots used
parameters of W : N = 2000, f = 0.8, μe = 1√

N
, σe = 1√

N
.
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cause the density of the eigenvalue distribution to be nonuni-
form. We extend these results to the sparse case and show that
it is the difference in variances of the sparsely connected ex-
citatory and inhibitory weights, σ 2

se, σ
2
si that causes the density

to be non-uniform. This phenomena is observed in Figs. 2(a)
and 2(c).

The central result of [1] is the derivation of the expres-
sion of the non-uniform eigenspectral density for connectivity
matrices obeying Dale’s law. The density is a function of
the distance to the center of the disk on the complex plane,
|z|, and the expression was simplified further in Ref. [7]. We
incorporate our expressions for the sparse neural population
variances Eq. (16) into the spectral density expression defined
in Ref. [7].

The global spectral density for a sparse (un)balanced ran-
dom connectivity matrix obeying Dale’s law is

ρRA(z) =
{

1
πNσ 2

si

[
1 − g

2H f

(
g |z|2

Nσ 2
si

)]
|z| � R

0 |z| > R,
(19)

with

g = 1 − σ 2
si/σ

2
se = 1 − (1 − α)μ2

i + σ 2
i

(1 − α)μ2
e + σ 2

e

(20)

and

H f (x) = 2 f − 1 + x√
1 + x(4 f − 2 + x)

+ 1. (21)

By symmetry an equivalent expression holds for σ 2
si and σ 2

se
interchanged in Eq. (19) and Eq. (20), with 2 f − 1 replaced by
1 − 2 f in Eq. (21). Note that the conditions on σ 2

sk for k = e, i,
and g stated in Ref. [7] are not required, as the symmetrical
expressions yield the equivalent outputs regardless of whether
these conditions are met.

Using this expression, the spectral density curves for a
sparse balanced and unbalanced random connectivity matri-
ces obeying Dale’s law are calculated and compared with
numerically simulated density curves for the same parame-
ters. The agreement between the analytical expression and the
numerical simulation is shown in Fig. 2(c) [and Fig. 6(c) in
Appendix C]. As expected, the results indicate that the spec-
tral density curves are dependent on the variances of the sparse
excitatory and inhibitory weights σ 2

si and σ 2
se. Consequently,

the density curves are also dependent on the sparsity parame-
ter α, the population means μe, μi, and population variances
σ 2

e , σ 2
i . In particular, Eq. (20) highlights the conditions for

which the density will be uniform, i.e., g = 0. Previously, the
density was only nonuniform if the neural population vari-
ances were not equal, σ 2

e �= σ 2
i [1,7]. However, by introducing

sparsity, a uniform density (g = 0) becomes the special case,
when the population means and variances obey |μe| = |μi|,
and σ 2

e = σ 2
i , respectively. Every other case for nonfully con-

nected networks now has a nonuniform density.
We reformulate the expression for the spectral density

such that the formula is symmetric with respect to the two
variances. Let Psk = 1

σ 2
sk

for k = e, i be the precision of the
excitatory and inhibitory weight distributions, respectively.
Hence, we define the spectral density in terms of the sum
of the precisions, �P = Pse + Psi, the difference in the pre-
cisions, P = Pse − Psi, and the difference of proportions,

 f = 2 f − 1, as

ρ(z) =
{

1
2πN [�P − PH f (P|z|2)] |z| � R
0 |z| > R,

(22)

where

H f (x) = x −  f N√
(x −  f N )2 + N2(1 −  f 2)

. (23)

The differences in precisions P and proportion  f can be
switched around to favor inhibition, and the expression is
equivalent. This formulation emphasizes that the nonunifor-
mity is linked to the |z|2 term, which is paired only with the
difference in the precisions P. Therefore, it is P that cause
the nonuniform spectral density. By definition, P depends
on the sparsity parameter and the mean and variance of the
excitatory and inhibitory weights, and hence so does the spec-
tral density. This reformulation gives a detailed insight into
the interaction of the statistics with the density of eigenvalues
across the disk.

2. Local eigenvalue outliers: A zero row-sum condition

In both the sparse and fully connected cases, we observe a
small number of local eigenvalue outliers escaping the circular
support Fig. 3(a). These eigenvalue crossings have been pre-
viously studied for fully connected balanced random matrices
obeying Dale’s law [1,7,28]. We extend the analysis here
firstly to fully connected unbalanced random matrices obeying
Dale’s law and then to the sparse case.

To control these eigenvalue outliers, previous work [1,7,28]
defined a projection operator to ensure that the row sum of the
synaptic connectivity matrix is zero, referred to as the zero
row sum (ZRS) condition. This condition ensures that in the
thermodynamic limit all eigenvalues converge to lie within the
circular support radius.

For fully connected balanced random matrices obeying
Dale’s law, the ZRS condition implemented through a pro-
jection operator P is defined as [1,7,28]

P = IN − uu


N
, (24)

with u = (1, . . . , 1)
. The operator P is used such that the
synaptic connectivity matrix takes the form

W = ADP + uv
, (25)

with v defined by Eq. (12). In Refs. [1,28], the operator P is
applied to the entire connectivity matrix W , but by construc-
tion v
P = v
 in the balanced case, as v
u = 0, so P need
only be applied to the first term. It has been shown in this
case that the bounded rank perturbation uv
 has no effect
on the eigenvalues within the circular disk, i.e., the matrix
ADP + uv
 and ADP have identical eigenvalues [1,28].

In the unbalanced case, if the projection operator is applied
to the entire connectivity matrix W then, by construction, P
enforces a ZRS but also removes the imbalance imposed by
uv
. However, imbalance can be retained if P is applied to
only the random component AD, i.e., W = ADP + uv
. Then
the argument in Ref. [1] may be extended as follows to show
that all eigenvalues of ADP + uv
 are the same as those ADP,
except for the outlier eigenvalue from the rank-1 perturbation.
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FIG. 3. Eigenvalue spectra plots of W with N = 100 and D =
1√
N
IN for (a), (b) the balanced case and (c), (d) the unbalanced case.

(a) Eigenspectra of the matrix AD + uv
 and (b) with projection
operator applied ADP + uv
 to ensure a ZRS. When ZRS is applied,
the eigenvalues of ADP and ADP + uv
 are identical with no lo-
cal eigenvalue outliers. (c) Eigenspectra for the unbalanced matrix
AD + uv
 and (d) with projection operator applied ADP + uv
.
Note that in the balanced case, the projection operator annihilates the
deterministic term uv
 only acting on the random term ADP within
W . However, in the unbalanced case, the projection operator P is
only applied to the random component ADP. This distinction is made
because if P is applied to the entire connectivity matrix W in the
unbalanced case, then P enforces a zero row sum but also removes
the imbalance imposed by uv
.

Further, these shared eigenvalues converge to lie within the
circular disk [28] in the thermodynamic limit.

Imposing the projection operator on the random compo-
nent, ADP, of the matrix W ensures that

ADPu = 0, (26)

as Pu = 0. So, u is a right eigenvector of ADP with eigenvalue
λ = 0. But u is also a right eigenvector of the full matrix W as

(ADP + uv
)u = 0 + uv
u = (v · u)u. (27)

Essentially, by adding uv
 to ADP, the eigenvalue λ = 0 of
ADP is changed to λO = v · u = N ( f μ̃e + (1 − f )μ̃e ), with
corresponding right eigenvector u.

The remaining eigenvalues λk of ADP are not equal to 0,
almost surely (i.e., with probability 1) [28]. Therefore, for

the corresponding left eigenvector, lk , we may substitute the
rearranged eigenvalue equation, lk = lkADP

λk
, to find

lkuv
 = lkADP

λk
uv
 = 0, (28)

using Eq. (27). Therefore, we have

lk (ADP + uv
) = λklk . (29)

As a result, both matrices ADP and ADP + uv
 have iden-
tical eigenvalues λk �= 0. Consequently, we conclude in the
unbalanced case that the projection operator ensures a ZRS
condition on ADP and therefore controls all eigenvalue out-
liers, except for the single eigenvalue located at λO = v · u.
This is what is observed empirically in Figs. 3(c) and 3(d).

3. Local eigenvalue-outliers: A aparse zero row-sum condition
for sparse random matrices

We also observe the phenomena of local eigenvalue-
outliers in the sparse case, see Fig. 2(a). Figure 2(b) shows
that there exists a small discrepancy between the numer-
ically estimated radius (black dots) and the theoretical
eigenspectral-disc radius (colored lines). This small discrep-
ancy is due to a small number of eigenvalue outliers as seen in
Fig. 2(a). Further, Fig. 2(c) shows the density of eigenvalues
does not drop off as precisely in the numerical estimate as
it does in the analytical calculation of the density Eqs. (19)
and (20). This highlights that the number of these eigenvalue-
outliers is relatively small and that their distance from the
circular support increases as α approaches 1.

To remove these outliers, we implement an analogous ZRS
condition to that in the previous section, i.e., a sparse zero row
sum condition (SZRS). We hypothesise that the constraint will
ensure that all eigenvalues lie within the theoretical radius in
the thermodynamic limit. A potential solution would be to
derive an analogous projection operator to ensure the rows
of W sum to zero. However, due to the nature of matrix
multiplication, such an operator will not preserve the sparsity
pattern. To ensure the sparsity pattern is preserved, we instead
enforce a ZRS numerically by subtracting the average of the
rows from each nonzero entry in the connectivity matrix W .
This is succinctly defined as

W = S ◦ (AD + uv
) − B, (30)

where Bi j = Si jW̄i and the average of the row

W̄i =
∑

j

Wi j/
∑

j

Si j . (31)

It is important to note that similar to the projection operator
for fully connected balanced matrices, the SZRS condition is
applied to both components of W . However, due to the intro-
duction of sparsity, both terms S ◦ AD and S ◦ uv
 are now
random matrices and the SZRS now acts on both components
(instead of annihilating with uv
 like in the fully-connected
case).

The SZRS condition enforces a ZRS and strictly preserves
the sparsity pattern specific to the realization of W . Further,
the implementation is equivalent to the original condition
introduced for fully connected balanced matrices [1,7,28].
We observe that by applying the SZRS condition to sparse

043132-7



HARRIS, MEFFIN, BURKITT, AND PETERSON PHYSICAL REVIEW RESEARCH 5, 043132 (2023)

balanced random matrices obeying Dale’s law, the eigenvalues
of W converge to lie within the circular disk.

Similar to the fully connected unbalanced matrices obeying
Dale’s law, this condition cannot be applied in the sparse
unbalanced case without completely removing the imbalance
imposed by uv
. However, we can still apply the constraint
to the first component of W to ensure a partial ZRS, i.e.,
Bi j = Si j J̄i,

J̄i =
∑

j

Ji j/
∑

j

Si j . (32)

with J = AD, thus preserving the imposed imbalance, and
partially controlling the local-outliers.

In the next section, we investigate this phenomenon further
by constructing a numerical homotopy to examine how spar-
sity and Dale’s law affect eigenvalue crossings with respect
to the eigenspectral-disc theoretical radius. Specifically, we
explore the effects of the SZRS condition and partial SZRS
condition for the balanced and unbalanced cases, respectively.

4. Construction of a homotopic mapping to illustrate the effects
of the sparse zero row-sum conditions

In fully connected random balanced connectivity matrices
obeying Dale’s law, it is the separation of the means of the
two neural distributions that results in eigenvalues crossing
the eigenspectral-disc radius to become outliers [1,28]. We in-
vestigate this phenomenon further for sparse random matrices
obeying Dale’s law.

A homotopy is a continuous (but not necessarily homeo-
morphic) mapping from one limiting case to another limiting
case. For example, H = κF + (1 − κ )G such that as κ goes
from 0 → 1, where κ is the homotopy parameter, then H
goes from the function G to the function F [30]. Specifically,
we map how the excitatory and inhibitory neural distribu-
tions deform from a single Gaussian distribution [μ = κ = 0,

σ = 1/
√

(N )] into two distinct Gaussian distributions with
means μe = κ , and μi = −κ and identical variances σ 2

e =
σ 2

i = 1/N = σ 2. This linear homotopic mapping will show
that as the excitatory and inhibitory distributions separate, the
proportion of eigenvalues that escape and cross the theoretical
eigenspectral disk radius increases.

In this section, we perform the homotopic mapping for two
cases: (i) sparse balanced and (ii) sparse unbalanced random
matrices obeying Dale’s law. For each case, we compare
the proportion of crossings when no row-sum condition is
implemented and when the SZRS condition or partial SZRS
condition is enforced on (i) and (ii), respectively.

The homotopy parameter κ defines the degree of separation
of the means of the two neural distributions. When κ = 0, the
entries wi j of the connectivity matrix form a single Gaussian
distribution with a large peak at zero for the sparse case,
Fig. 4(a). The peak at zero changes only with the sparsity
parameter α. As κ increases, the Gaussian distribution widens,
continuously deforming one population into two populations.
As κ → σ , the single Gaussian distribution separates into
two distinct Gaussian peaks, with a large peak at zero in
the sparse case. At this point, the means of the excitatory
(inhibitory) populations are significantly different, i.e., two

FIG. 4. (a) Histogram of the distribution of entries in the con-
nectivity matrix W . From left to right, a single Gaussian distribution
(κ = 0) is continuously deformed via κ into two distinct Gaussian
distributions (κ = σ ), with a zero peak due to sparsity. (b) Numerical
homotopy for the sparse balanced case. Plots show the average pro-
portion of eigenvalue crossings (outliers) as a function of κ = 0 → σ .
The proportion is an average calculated over 100 realizations, and the
standard error is included as bars on each point. Plots were calculated
with the means of the two populations, μe = κ , μi = −κ , and iden-
tical population variances σ 2

e = σ 2
i = 1/N = σ 2 for N = 2000 and

f = 0.5. Each subfigure shows the homotopy for different values
of α. (c) Numerical homotopy for the sparse (α = 0.5) balanced
case indicating finite size effects on the outliers. Solid lines are the
average and the shading indicates the standard error. The homotopy
is calculated for no ZRS and when SZRS is applied, with above
parameter sets with increasing system size N = 2000, 5000, 10000
and realizations r = 250, 50, 10, respectively.
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standard deviations of separation, thus Dale’s law is effec-
tively implemented into the connectivity matrix, Fig. 4(a).

The numerical homotopy directly demonstrates how this
degree of separation, κ , affects the proportion of eigenvalue
crossings for sparse balanced matrices obeying Dale’s law.
Specifically, Fig. 4(b) plots the proportion of eigenvalue cross-
ings (averaged over 100 realizations) with and without a SZRS
condition, i.e., Eq. (30), implemented (red), and not imple-
mented (black). In the balanced case, we observe that for all
degrees of distribution separation κ , the SZRS condition (red)
ensures that only a very small proportion of eigenvalues cross
the disk. In the sparse limit α → 0, we observe that the num-
ber of outliers for matrices with no SZRS condition decreases
to a constant value (0.01) for all degrees of separation κ .
Further, with the SZRS condition, the proportion of crossings
goes to zero as α → 0, due to the matrix being closer to an iid
distribution.

Figure 4(c) shows that as N becomes larger, the proportion
of eigenvalue crossings decreases when the SZRS condition is
applied, indicating that they are most likely a finite size effect,
consistent with previous results [1,28].

Conversely, for the sparse unbalanced case, these outlier
eigenvalues cannot be controlled with the SZRS condition
without removing the imposed imbalance. Instead, we apply
a partial SZRS condition to the unbalanced case. We observe
in Fig. 5 that for low degrees of distribution separation κ <

0.01, the partial SZRS condition works most optimally to
ensure that only a few eigenvalues cross the eigenspectral-disc
radius. Moreover, we find that the partial SZRS condition
works better for κ < 0.01 if the matrix is closer to being
fully connected, α > 0.9. When κ = σ , the numerical homo-
topy shows the breakdown of the ability of the partial SZRS
condition to minimise the number of eigenvalue outliers.
Even when the network is almost fully connected α = 0.99
[see Fig. 4(b)], the SZRS condition ensures only that there are
fewer eigenvalue outliers, and becomes less effective as the
network becomes more sparse.

IV. DISCUSSION

In this paper, we examined the stability of random neu-
ral networks with more realistic anatomical structures in the
form of sparse connectivity and Dale’s law. Specifically, we
examined the eigenspectrum of the associated network Ja-
cobian for sparse (un)balanced random synaptic connectivity
matrices obeying Dale’s law. The results presented here con-
sider all levels of network sparseness 0 � α � 1 and also
implement Dale’s law using distributed weights. Therefore,
the expressions derived significantly extend previous studies
which only separately considered (i) fully connected random
matrices obeying Dale’s law [1,7], (ii) one population sparse
random matrices with zero mean [10,11], or (iii) sparse ma-
trices (in the sparse limit α << 1) with constant weights
describing each of the excitatory and inhibitory populations
[8,9,29].

A. The distribution of eigenvalues of sparse random matrices

The eigenspectrum of the network Jacobian evaluated at
the homogeneous equilibrium consists of an eigenvalue outlier

FIG. 5. Numerical homotopy for the sparse unbalanced case with
no ZRS and a partial SZRS applied. Plots shows the average propor-
tion of eigenvalue crossings (outliers) as a function of the continuous
deformation from κ = 0 to κ → σ . The proportion is an average
calculated over 250 realizations, and the standard error is indicated
by the shaded area. The vertical dashed lines denote the point where
κ = σ and there is sufficient separation between the two distribu-
tions such that the excitatory and inhibitory population statistics are
distinct. Plots were calculated with μe = κ , μi = −5κ , σ 2

e = 1/N ,
σ 2

i = 42/N , N = 1000, and f = 0.8. Each subfigure shows the ho-
motopy for different values of sparsity α.

λO (for the unbalanced case), an eigenspectral-disc with radius
R, and nonuniform density of eigenvalues across this disk.
We demonstrate that the location of the eigenvalue outlier is
linearly related to the sparsity parameter (α) and structural
(E-I) (im)balance. Interestingly, we show that the variance of
the connectivity matrix and, consequently, the radius of the
eigenspectral disc scales nonlinearly with the sparsity param-
eter and the means and variances of both populations [Eq. (18)
and Fig. 1(b)].

Our results also demonstrate that introducing sparsity to
a network of distinct excitatory and inhibitory neural popu-
lations changes the spectral density to become nonuniform,
even when the population variances are the same. Specifically,
by reformulating the spectral density formula in terms of the
difference between the precisions Eq. (22), we demonstrate
that nonuniform density depends not only on the difference
in the population variances σ 2

e �= σ 2
i , but also the difference

in the magnitude of the population means |μe| �= |μi|. This
additional requirement is counterintuitive due to the nonlin-
ear interaction between sparsity α and the population means
when α �= 1. Furthermore, if we extend this analysis and
define population-specific sparsity parameters αe, αi, then the
nonuniform spectral density further depends on this difference
as well. These findings are important because they show an
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intricate interplay of all of the statistics rather than just be-
tween the variances of the excitatory and inhibitory weights
as shown previously [1,7].

B. Local outliers, a different ZRSC, and homotopy analysis

Our results show that a small number of local eigenvalue
outliers escape the eigenvalue spectral disk radius for sparse
random matrices obeying Dale’s law (Fig. 2). Previous works
[1,28] have shown that local eigenvalues escape the disk if
the connectivity matrix W is fully connected (α = 1) and the
means of the excitatory and inhibitory distributions are dif-
ferent. A ZRS condition removes the local eigenvalue outliers
by forcing the eigenvalues of the random component to be
the same as those of the connectivity matrix W , excluding the
eigenvalue outlier that is generated by structural E-I imbal-
ance.

Reference [28] proves that a projection operator for the
fully connected balanced case ensures a ZRS condition
Eq. (24) that forces the local eigenvalue-outliers to converge
to lie within the spectral disk in the thermodynamic limit. We
extend this proof to the fully connected unbalanced case and
show that these eigenvalue outliers can also be controlled if
the projection operator is applied to the random component
only.

In this paper, we also derived and implemented an anal-
ogous numerical ZRS condition for sparse balanced random
matrices obeying Dale’s law Eq. (30). This SZRS condition
works effectively to ensure convergence of the eigenvalue out-
liers to lie within the disk radius. We note that this condition
does not work for the sparse unbalanced case, as not only
are the local eigenvalues removed but also the largest outlier
imposed by the imbalance is removed. To retain imbalance,
we implement a partial SZRS on the term S ◦ AD. Unlike the
equivalent condition applied to the fully connected case, the
partial SZRS condition only ensures that fewer eigenvalues
escape the eigenspectrum-disc radius in the thermodynamic
limit Fig. 5. We hypothesize that this is due to the fact that the
second term S ◦ uv
 in the matrix W is also random and not
purely deterministic, as in the fully connected case.

C. Interaction of sparsity with structural E-I balance

Our results show that there exists a fundamental interplay
between sparsity and the population means and variances that
affect key eigenspectral distribution properties. When Dale’s
law is implemented in sparse random matrices, the structural
(E-I) balance linearly scales with the sparsity parameter α

Eq. (13). However, introducing sparsity changes both the vari-
ances of the excitatory and inhibitory weights σ 2

sk, (k = e, i),
and the overall variance of the matrix W , Var(wi j ). This,
in turn, nonlinearly scales the radius and spectral density of
the eigenvalue spectral disk. The radius is dependent on the
non-linear interaction between the sparsity parameter, α, the
square of the population means μ2

e, μ
2
i , and population vari-

ances σ 2
e , σ 2

i Eq. (18). Therefore, unless α = 1 and/or μe =
μi = 0, the radius now depends on the population means
and not just the variances as in Refs. [1,7]. Interestingly, if
the matrix is structurally E-I balanced, i.e., E(W ) = 0, the
radius of the eigenspectral disk still scales as a function of the

sparsity parameter and the population means and variances
[see Fig. 6(b) in the Appendix].

The spectral density is dependent on the differences be-
tween the sparse population variances Eqs. (19) and (20),
which are nonlinearly dependent on the sparsity parameter
and the means and variances of both the excitatory and in-
hibitory populations. The eigenvalue spectral density can be
nonuniform even if the network is structurally E-I balanced
and the population variances σ 2

e , σ 2
i are equal. This is due to

the dependency of the variances Eq. (14) of the excitatory and
inhibitory weights on the square of the means μ2

e, μ
2
i . The

analysis presented in this paper is straightforwardly extend-
able to distinct sparsity parameters for each neural population,
i.e., αe �= αi. We observe that this distinction has further impli-
cations on the structural E-I balance and hence the eigenvalue
outlier, the spectral disk radius, and the spectral density.

D. Implications on neural network dynamics

Our results provide insight into what combination of fac-
tors contribute to the stability of large networks of neurons and
other complex networked dynamical systems [22]. Regulating
neural function and dynamic E-I balance must take into ac-
count network sparsity at all levels of network connectedness.
By examining the eigenspectra of sparse random matrices
obeying Dale’s law, we find that though the eigenspectra are
similar to those in their fully connected counterparts [1], there
are a few key differences that influence the stability, and there-
fore the transition, into spontaneous asynchronous activity.

1. Inducing nontrivial dynamics

As discussed previously, nontrivial spontaneous asyn-
chronous activity occurs when the eigenspectral disc crosses
the stability boundary. This can happen via the interplay be-
tween the time constant, τ , (which positions the disk center)
and the variance of the connectivity matrix (which determines
the radius of the eigenspectral disk) [7]. However, for sparse
unbalanced random matrices obeying Dale’s law, this inter-
play is more complex.

If the sparse network obeying Dale’s law is excitatory
dominated, i.e., α( f μe + (1 − f )μi ) > 0, then the eigenvalue
outlier crosses the stability boundary. Destabilization occurs
if the real part of the largest eigenvalue, the eigenvalue outlier
λO, is greater than zero. If, however, the sparse network is
balanced, or inhibitory dominated, α( f μe + (1 − f )μi ) � 0,
nontrivial dynamics are first induced by the radius of the
eigenspectral disc crossing the stability boundary. Previous
studies found that the transition is induced solely by the inter-
play between the membrane time constant and the population
variances [1,7,9]. We find that for structural (E-I) balanced
and inhibitory dominated networks, the relationship is signif-
icantly more complex than found previously. Specifically, the
transition depends on the interaction between the membrane
time constant, the sparsity parameter, the population means,
and the population variances.

Furthermore, the nonuniform eigenspectral density ensures
that more eigenvalues lie near the center of the disk and fewer
eigenvalues lie near the edge. This means that there are fewer
eigenvalues that lie adjacent to the stability boundary (and
fewer on the other side of the disk), generating less complex
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and more structured dynamics than seen from a purely random
matrix.

2. Local eigenvalue outliers influencing destabilization
and nontrivial dynamics in sparse networks

If the connectivity matrix has structural (E-I) balance, then
the SZRS condition enforces a tight neuron-to-neuron input
balance, and the network operates under balanced input con-
ditions, i.e., dynamic balance, [3,7,18,31]. Note that the SZRS
condition could be interpreted as a stricter condition than
for the fully connected case because the condition effectively
operates on all terms in the connectivity matrix. In this more
strictly balanced case, destabilization is accurately predicted
by the eigenspectral radius, R, crossing the imaginary axis.

Contrary to this, in the case of sparse inihibitory dominated
matrices obeying Dale’s law, neuron-to-neuron balance is not
satisfied, and a partial SZRS condition does not ensure this.
As a result, local eigenvalue outliers escape the bulk, and
destabilization may not be predicted accurately by the radius,
R. An appropriate condition to constrain these eigenvalues
and preserve inhibitory dominance (imbalance) remains an
open problem. This inhibitory dominated regime due to struc-
tural E-I imbalance is thought to provide substrates for more
complex dynamics to emerge, such as endogenous and patho-
logical oscillations such as those seen in seizures [3,6,7].

E. Limitations and future research

The analysis presented in this paper examines the local
stability of the network around the homogeneous equilibrium
in the asymptotic limit. Therefore, this investigation yields
insight into the transition to spontaneous activity, but the
exact nature of such dynamics after the transition is not able
to be analyzed within this framework. Further, as discussed,
our analysis only strictly applies to homogeneous equilibria.
Heterogeneous equilibrium solutions are dependent on the re-
alization of the synaptic connectivity matrix, so an additional
dependency is introduced to the networked Jacobian. Specifi-
cally, the Jacobian Eq. (5) may no longer be statistically pro-
portional to the connectivity matrix, W , as the matrix �′(x∗)
can be heterogeneous and will influence the statistics of the
networked Jacobian. The analysis framework we present is
applicable to heterogeneous fixed points and different firing-
rate functions, as shown numerically in Refs. [8,9]. However,
it is unclear how heterogeneous the matrix �′(x∗) has to be
before it influences the statistics of the networked Jacobian
and the results from random matrix theory no longer apply.

Another limitation of the network model used here is the
assumption of instantaneous rise time in the postsynaptic po-
tentials, i.e., there is no synaptic dynamics. A possible future
extension is to incorporate synaptic dynamics, such as through
the introduction of conductance-based synapses [32]. Model-
ing synaptic dynamics is more realistic and could significantly
change the dynamics through the additional feedback non-
linearity. However, even though the network model used in
this paper is not physiologically detailed, significant insight is
generated about the neural system it describes, particularly in
regard to the relationship between connectivity and dynamics.

In this paper, we examine randomly distributed connec-
tivity weights that follow the product distribution of bino-

mial and Gaussian random variables. However, connectivity
weights in the cortex have been found to be log-normally
distributed [33]. As this paper is based on results from random
matrix theory, which hold for any iid random variable [11], the
results presented here should be extendable for any iid random
variable, including log-normal random variables.

Currently, a condition to ensure the local eigenvalues do
not escape the bulk disk for inhibitory (excitatory) dominated
(unbalanced) sparse networks does not exist. This is presently
an open problem in random matrix theory, and future work
would be to derive an appropriate condition to control these
eigenvalues.

The analysis presented here is performed for general ratios
and distributions of excitation to inhibition, and probability of
connection α. For a local cortical network, the typical ratio of
excitatory to inhibitory connections is 4:1 [34–36]. Therefore,
for structural (E-I) balance the strength of inhibition (i.e., the
number of inhibitory synapses times their amplitude) must
be four times that of excitation. A direct application of this
analysis is to examine the connectivities of a local cortical
network constructed with key statistics extracted from large
connectomic data sets [37–39]. The statistics pertain to the
ratio of inhibition to excitation, the mean and variance of
the excitatory and inhibitory connections, and the average
number of connections of a neuron to other neurons (sparsity).
We further note that synaptic self-connections (autapses) are
not very common [40,41]. However, we do not eliminate
the self-connection terms (diagonal terms) in the connectivity
matrix, as the effect of removing these is negligible for large
N. For finite-sized networks, this should be a consideration,
particularly with analysis using connectomic data statistics.

F. Conclusion

In conclusion, network sparsity and Dale’s law are two
fundamental anatomical properties of local cortical networks
in the brain. The respective impacts of these properties have
been previously individually examined. This paper analyzes
their combined influences for structurally E-I balanced and
unbalanced networks and demonstrates that balance and spar-
sity interact in ways that are counterintuitive and have not
previously been studied. We show that sparsity linearly scales
the structural E-I balance of a connectivity matrix and the
eigenvalue outlier. However, in contrast to this, the variance
of the connectivity matrix is a function of the nonlinear
interaction between sparsity and the population means and
variances. Therefore, the eigenvalue spectral disk radius also
scales in this nonlinear fashion. Further, we find that the non-
linear interaction of sparsity with the population means and
variances also influences the nonuniform eigenvalue spectral
density. In this paper, we also addressed the problem of local
eigenvalue outliers and proved that these can be controlled
for the unbalanced fully connected case and the balanced
sparse case by deriving a different SZRS condition. We also
provided some mathematical intuition behind why they cannot
be controlled for the unbalanced sparse case, which remains
an open problem. In summary, our results indicate that there is
a dynamical and nonlinear interplay between network sparsity
and all the E-I population statistics that is fundamental to
regulating neural network dynamics.
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The analysis presented here further develops the quanti-
tative relationship between neural network architectures and
neural dynamics. This relationship is of particular impor-
tance for both theoretical and experimental neuroscience as
it pertains to the structure-function relationship found in local
cortical networks. Our results are an important step towards
developing analysis techniques that will be essential in under-
standing the impacts of larger scale network connectivity on
brain function.
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APPENDIX A: CALCULATING THE MEAN
AND VARIANCE OF THE ENTRIES OF A SPARSE

RANDOM MATRIX

We calculate the expected value and variance of the entries
in a sparse (un)balanced random matrix, W , as constructed
in Eq. (6) of the main text, with mean, μ, and variance, σ 2,
of the partially random component W = AD + M, and sparse
component S defined by the probability of connection α. The
expected value of the entries in W takes the form

E(wi j ) = 1

N2

N∑
i=1

N∑
j=1

wi j

= 1

N2

N∑
i=1

(1−α)N∑
j=1

0 + 1

N2

N∑
i=1

αN∑
j=1

ŵi j = αμ. (A1)

The variance takes the form

Var(wi j ) = 1

N2

N∑
i=1

N∑
j=1

w2
i j −

⎛
⎝ 1

N2

N∑
i=1

N∑
j=1

wi j

⎞
⎠2

= 1

N2

N∑
i=1

(1−α)N∑
j=1

02 + 1

N2

N∑
i=1

αN∑
j=1

ŵ2
i j − α2μ2

= 1

N2

N∑
i=1

αN∑
j=1

ŵ2
i j − α2μ2 = 1

M

αM∑
k=1

m2
k − α2μ2

(A2)

= α
1

αM

αM∑
k=1

m2
k − α2μ2 = α(μ2 + σ 2) − α2μ2,

(A3)

where we set M = N2, mk = ŵi, j in Eq. (A2) and note that
1

αM

∑αM
k=1 m2

k is the second noncentral moment of N (μ, σ )

Eq. (A3). Hence, the expressions for E(wi j ) and Var(wi j ) are

E(wi j ) = αμ, Var(wi j ) = α(μ2 + σ 2) − α2μ2. (A4)

APPENDIX B: CALCULATING THE MEAN
AND VARIANCE OF THE ENTRIES OF A SPARSE

RANDOM MATRIX OBEYING DALE’S LAW

We commence by separately calculating the means of the
excitatory and inhibitory weights in W constructed as in
Eq. (6):

E(wi j )e = 1

f N2

N∑
i=1

f N∑
j=1

wi j

= 1

f N2

N∑
i=1

f (1−α)N∑
j=1

0 + 1

f N2

N∑
i=1

f αN∑
j=1

wi j = αμe, (B1)

E(wi j )i = 1

(1 − f )N2

N∑
i=1

(1− f )N∑
j=1

wi j

= 1

(1 − f )N2

N∑
i=1

(1− f )(1−α)N∑
j=1

0 + 1

(1 − f )N2

N∑
i=1

(1− f )αN∑
j=1

wi j = αμi. (B2)

The mean of the entries in the matrix W is simply the weighted
sum of the means of the excitatory and inhibitory weights.
This is expressed as follows:

E(W ) = f μse + (1 − f )μsi, (B3)

where μsk = αμk are the means of the excitatory and in-
hibitory weights k = e, i.

We now calculate the variances for each neural population
and we substitute the second noncentral moment of the popu-
lation distribution to obtain separate variance expressions for
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the excitatory and inhibitory weights:

Var(wi j )e = 1

f N2

N∑
i=1

f N∑
j=1

w2
i j

−
⎛
⎝ 1

f N2

N∑
i=1

f N∑
j=1

wi j

⎞
⎠2

= 1

f N2

N∑
i=1

f (1−α)N∑
j=1

02

+ 1

f N2

N∑
i=1

f αN∑
j=1

ŵ2
i j − α2μ2

e

= 1

f M

f αM∑
k=1

m2
k − α2μ2

e

= α
1

f αM

f αM∑
k=1

m2
k − α2μ2

e

= α
(
μ2

e + σ 2
e

) − α2μ2
e, (B4)

Var(wi j )i = 1

(1 − f )N2

N∑
i=1

(1− f )N∑
j=1

w2
i j

−
⎛
⎝ 1

(1 − f )N2

N∑
i=1

(1− f )N∑
j=1

wi j

⎞
⎠2

= 1

(1 − f )N2

N∑
i=1

(1− f )(1−α)N∑
j=1

02

+ 1

(1 − f )N2

N∑
i=1

(1− f )αN∑
j=1

ŵ2
i j − α2μ2

i

= 1

(1 − f )M

(1− f )αM∑
k=1

m2
k − α2μ2

i

= α
1

(1 − f )αM

(1− f )αM∑
k=1

m2
k − α2μ2

i

= α
(
μ2

i + σ 2
i

) − α2μ2
i . (B5)

The variance of the entries in the matrix W is the weighted
sum of the variance of the excitatory and inhibitory weights.
We express this as

Var(W ) = f σ 2
se + (1 − f )σ 2

si, (B6)

where σ 2
sk = α(1 − α)μ2

k + ασ 2
k are the variances of the exci-

tatory and inhibitory weights k = e, i.

APPENDIX C: ADDITIONAL FIGURES

Additional Figures showing the eigenvalue properties for
the cases when the variance is held constant for each popu-

lation but the means are varied Fig. 6(a), and vice versa in
Fig. 6(b).

FIG. 6. This extends the results in Fig. 2 to the structurally E-I
unbalanced case. [(a), (b)] The eigenvalue outlier location (left panel)
and radius of the eigenspectral disc (right panel) for the matrix
defined in Eq. (6) as a function of the sparsity probability α with
N = 2000, f = 0.8, and q = 3, 4, 5, 8. The theoretical outlier loca-
tion and radius were calculated using definitions in Eqs. (17) and
(18), respectively. The black dots represent the numerical eigenvalue
outlier and radius averaged over 100 realizations. (a) The case where
the inhibitory mean is varied, μi = − q√

N
, and all other network

parameters are held constant, μe = 1√
N
, σe = σi = 1√

N
. (b) The case

where the inhibitory variance is changed, σi = q√
N

, and all other net-

work parameters held constant,μe = 1√
N
, μi = − 4√

N
, σe = 1√

N
. The

case where the eigenvalue outlier is zero indicates a structurally E-I
balanced network: orange in (a), and all colors in (b). (c) Nonuniform
spectral density curves as a function of normalized disk radius and
sparsity parameter α with analytical expression as solid lines and
numerical simulations as points. Parameters of W are N = 2000,
μe = 1√

N
, μi = − 5√

N
, σe = 1√

N
, σi = 4√

N
, and f = 0.8.
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