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Econophysics aims to understand the macroscopic behavior of financial markets from the underlying mi-
croscopic decision-making dynamics. In particular, the order splitting of large metaorders is one of the most
important trading strategies in this literature: while traders have large potential metaorders, they split the large
orders into small pieces (called child orders) to minimize market impact. This strategic behavior is believed to
be important because it is a promising candidate for the microscopic origin of the long-range correlation (LRC)
in the persistent order flow. Indeed, Lillo, Mike, and Farmer (LMF) [Phys. Rev. E 71, 066122 (2005)] introduced
a simple microscopic model of the order-splitting traders to predict the asymptotic behavior of the LRC from
the microscopic dynamics, even quantitatively. The plausibility of this scenario has been investigated by Tóth
et al. [J. Econ. Dyn. Control 51, 218 (2015)] at a qualitative level. However, no solid support has been presented
yet on the quantitative prediction by the LMF model in the lack of large microscopic data sets. In this paper,
we have provided a quantitative statistical analysis of the order-splitting behavior at the level of each trading
account. We analyze a large data set of the Tokyo stock exchange (TSE) market over nine years, including the
account data of traders (called virtual servers). The virtual server is a unit of trading accounts in the TSE market,
and we can effectively define the trader IDs by an appropriate preprocessing. We apply a strategy clustering to
individual traders in terms of market orders to identify the order-splitting traders and the random traders. The
length distribution of metaorders is empirically estimated for each stock every year. For most of the stocks, we
find that the metaorder length distribution obeys power laws with exponent α, such that P(L) ∝ L−α−1 with
the metaorder length L, as theoretically assumed in the LMF model. By analyzing the sign correlation of order
flow C(τ ) ∝ τ−γ , we draw the scatterplot between α and γ , directly confirming the LMF prediction γ ≈ α − 1.
Furthermore, we discuss how to estimate the total number of splitting traders only from public data via the
autocorrelation function prefactor formula in the LMF model. Our work provides quantitative evidence of the
LMF model, strongly supporting the order-splitting hypothesis as the origin of LRC.
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I. INTRODUCTION

The ultimate goal of statistical physics is to reveal the
macroscopic behaviors of physical systems from their mi-
croscopic dynamics, and physicists have broadly applied this
concept to interdisciplinary topics, such as financial markets,
beyond traditional physics [1–4]. Recently, econophysicists
have greatly benefited from high-frequency financial data on
the microscopic level of individual traders [5–8]. In this paper,
we focus on the microscopic origin of the long-range cor-
relation (LRC) of the order flow by providing a systematic
statistical analysis of a large comprehensive data set on the
level of individual trading accounts.

In recent financial markets, traders are required to submit
limit orders or market orders for their trading activities. The
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limit order is an option to show the traders’ potential will to
buy or sell the stock by specifying their prices in advance.
All the limit orders are collected as the limit-order book,
which displays the current potential prices for transactions.
Limit-order submissions are called liquidity provision in the
economic context, and they are highly appreciated because
they stabilize the market. On the other hand, if traders wish
to transact immediately, they can submit market orders to buy
or sell the stock at the best price (i.e., the highest bid or low-
est ask price). Market-order submissions are called liquidity
consumption, in contrast to limit-order submissions. In other
words, financial markets are composed of the flows of limit
orders and market orders, and the main target of this paper is
the market-order flow, particularly regarding its persistence.

The market-order flow exhibits strong persistence in fi-
nancial markets: the buy (sell) market orders tend to follow
another buy (sell) market order for a long time. In other words,
once you observe a buy (sell) order, you are more likely to ob-
serve buy (sell) orders in the future (e.g., a typical order-sign
series is given by {ε(t )}t = {+1,+1,−1,+1,+1,+1, . . . },
where ε(t ) = +1 [ε(t ) = −1] denotes a buy (sell) mar-
ket order). More quantitatively, the power-law decay of
the sign autocorrelation function (ACF) characterizes this
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FIG. 1. Schematic of the order-splitting hypothesis. In this hy-
pothesis, several traders hold large latent orders (called metaorders)
and split them into small child orders. The plus (minus) sign “+”
(“−”) represents a buy (sell) market order. By definition, the child
orders have the same order sign; thus, the order-sign sequence of the
whole market exhibits a long memory due to this order splitting.

phenomenon [3,9–12], called the long-range correlation
(LRC) in this paper:

C(τ ) := lim
t→∞〈ε(t )ε(t + τ )〉 ≈ c0

τ γ
, γ ∈ (0, 1) (1)

for a large time lag τ 	 1 with the characteristic power-
law exponent γ and the prefactor c0. Here 〈A〉 denotes the
ensemble average of the stochastic variable A. This LRC is
ubiquitously observed in various financial markets, such as
stocks [9,10,13–15], foreign exchange (FX) [16], and cryp-
tocurrency markets [17], and therefore it is believed to be an
essential of the financial market microstructure.

What, then, is the microscopic origin of the LRC? One
of the most promising hypotheses is the order-splitting be-
havior at the level of individual traders [3] (see Fig. 1 as a
schematic). According to this hypothesis, several traders hold
large latent orders (called metaorders). Typically, the size of
a metaorder is much larger than the revealed liquidity on
the order book, and therefore the traders have no choice but
to split the metaorder into a long sequence of small market
orders (called child orders) to minimize the transaction cost
(called the market impact), naturally leading to the LRC in the
sign ACF. From the standpoint of empirical analyses, this sce-
nario has been supported qualitatively. While it is difficult to
perform statistical analyses of comprehensive data, including
all trader IDs, various fragmented data support the plausibility
of the order-splitting hypothesis [3]. In addition, Ref. [18]
provided crucial evidence on the qualitative importance of the
order splitting based on a comprehensive data set: the authors
of Ref. [18] decomposed the ACF C(τ ) into the contribu-
tion by the same traders Csame(τ ) and that by other traders
Cother (τ ). They finally showed that the former contribution is
much larger than the latter one as |Cother (τ )/Csame(τ )| 
 1 for
large τ , suggesting the strong relevance of the order-splitting
behaviors at least qualitatively

To organize this scenario more quantitatively and pre-
cisely, Lillo, Mike, and Farmer proposed a simple theoretical
microscopic model (called the LMF model [19]) of the order-
splitting behavior at the level of individual traders. They
provided a clear explanation of the macroscopic LRC nature
from the microscopic dynamics. Specifically, they assume that

the length L of metaorders obeys the power-law distribution

P(L) ≈ L−α−1, α > 1. (2)

Under this assumption, they made a powerful quantitative
prediction that the macroscopic behavior of the LRC should
be directly related to the microscopic parameter of the model,
such that

γ = α − 1. (3)

While the LMF model has been regarded for 18 years as
a stylized microscopic model of order-splitting, its empirical
foundation has not been fully verified, particularly for its
quantitative prediction (3). While it is obviously appealing to
provide its direct empirical verification, several severe diffi-
culties have prohibited such empirical research: (i) Estimating
the microscopic parameter α requires special comprehensive
data sets, including all trader IDs. However, such data sets are
scarce from the viewpoint of data availability. (ii) The quanti-
tative confirmation of the prediction (3) is expected to require
very large data sets. Indeed, because γ empirically distributes
between 0 and 1, the estimation errors in the power-law ex-
ponents α and γ should be controlled roughly less than 0.1
even for drawing the scatterplot. This suggests that larger data
sets are more necessary than the usual financial data analyses.
(iii) Furthermore, the intrinsic long-memory character of the
LRC essentially causes a slower convergence of its statistical
estimator in estimating γ than usual (in our estimation, at least
an order-sign sequence longer than 0.5 million transactions
is necessary for obtaining even one data point of γ ). Due
to these three fundamental problems, the direct verification
of the LMF model has been a crucial unsolved problem in
econophysics.

In this paper, together with the companion paper [20], we
present a quantitative verification of the LMF prediction (3)
by analyzing a large high-frequency data set on the level
of trading accounts. We have studied a large comprehensive
order-book data set on the Tokyo Stock exchange (TSE) mar-
ket, the biggest stock-exchange platform in Japan. This data
set covers the nine-year period from 2012 to 2020 for all the
stocks. Remarkably, this data set includes the virtual server
ID, which is a unit of the trader accounts in the TSE platform.
By appropriately analyzing the virtual server IDs, these data
allow us to virtually track the trading behavior of all individual
traders. Based on this data set, this paper addresses first the
trading-strategy classification on the level of individual traders
in terms of market orders. We classify all traders as either
random traders (RTs) or splitting traders (STs) by the binomial
test, directly confirming the presence of STs for most of the
stocks. We next measure the metaorder-length (run-length)
distribution among the STs for each stock. As assumed in
the LMF model, we confirm that the metaorder length for the
STs obeys power laws, such that P(L) ∝ L−α−1 for large L
with α > 1. By measuring the power-law exponent γ in the
LRC [C(τ ) ∝ τ−γ ], we provide the scatterplot between α and
γ and then directly verify the LMF prediction (3) even at
the quantitative level. Finally, we study the estimation of the
total number of order-splitting traders from public data via the
LMF theory regarding the prefactor c0.

This paper is organized as follows. We describe our data
set, the TSE market rule, and our mathematical notation in
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FIG. 2. Summary statistics on the TSE markets from 2012 to 2020. (a) Daily transaction volume on the arrowhead system V (t ) normalized
by the volume in 2012 [i.e., V (2012)]. This figure is based on the public data provided by the TSE about the monthly/yearly transaction-volume
statistics. These data show the increase in transaction volumes, particularly in the second section and Mothers markets. (b) Typical daily
transaction numbers each year for the stock markets used for this study. As described later, we studied only stocks whose yearly transaction
number is over 0.5 million. We calculated each stock’s yearly average transaction number and then took its simple average across stocks for
this plot.

Sec. II. In Sec. III, we provide a short review on the LMF
model and its related literature. In Sec. IV, we apply our
strategy-clustering algorithm to measure α for each stock. In
Sec. V, we describe our statistical method to measure γ for
each stock. The scatterplot between α and γ is provided in
Sec. VI as the main result. We conclude in Sec. VII. A total of
10 Appendixes follow as a supplement to the main text.

II. DATA DESCRIPTION AND THE MARKET RULE

A. Data set

Here we describe our high-frequency data set on the TSE
market in detail. Our data set was provided by the Japan
Exchange (JPX) Group, Inc., which is the platform manager
of the TSE market. This data set covers all the stocks in the
TSE market during the nine-year period from January 4, 2012
to December 30, 2020. This comprehensive data set includes
the order ID (i.e., the unique identifier to track the life cycle
of any order), type (i.e., buy or sell), order type (i.e., limit
order, cancellation order, and market order), price, and virtual
server ID.

The TSE trading system is called the arrowhead. The ar-
rowhead system was updated three times in our data set. For
example, while the reaction speed of the arrowhead was 2
ms at the beginning of our data set, it was updated to be 1,
0.3, and 0.2 ms on July 17, 2012, September 24, 2015, and
November 5, 2019, respectively. The high reaction speed of
the arrowhead facilitates tradings, and the number of transac-
tions increases in the TSE second section and Mothers [see
Fig. 2(a)]. Because sufficient observations are crucial for pre-
cise measurement of the power-law exponent γ , it is expected
that the measurement precision of γ will be better as time goes
by, particularly after 2015 [see Fig. 2(b)].

B. Definition of trader IDs: Virtual server IDs and trading desks

One of the remarkable advantages of our data set is that
it includes the virtual server ID. The virtual server is a unit
of the trader accounts in the TSE. The virtual server ID is a
consistent identifier of the TSE participants, but technically it

is not completely equivalent to the membership ID. Indeed,
there is an option for any trader to possess several virtual
server IDs. For example, there is a limit on the number of
submissions from a single virtual server during a fixed time
interval. Some traders possess several virtual servers to avoid
this submission limit for high-frequency tradings.

One of the technical solutions to this problem is to use the
trading desks as an effective proxy of the membership ID,
which was introduced by the work by Goshima, Tobe, and
Uno [21]. The outline of their idea is to aggregate several vir-
tual server IDs to allocate a unified ID (i.e., the trading desk) if
we detect that the virtual servers are associated with the same
membership.1 For example, let us consider the case in which
a trader possesses two virtual servers “V1” and “V2,” submits
a new limit order, and then cancels it finally. Typically, the
virtual server IDs are identical between the submission and

1While the virtual server IDs are kept identical for most of the
periods, they were shuffled when the arrowhead system was updated
on September 24, 2015 and on November 4, 2019.

TABLE I. Schematic idea of the trading desk ID. Let us consider
the case in which a trader issues submission and cancellation orders.
Typically, the virtual server IDs between these orders are identical
(see the order flow of the order ID “O1” with the same virtual server
ID “V1”). At the same time, if the trader possesses two virtual servers
“V1” and “V2,” the trader can issue the cancellation order from a
different virtual server “V2.” For such a case, we infer that both
virtual servers “V1” and “V2” are issued by the same trader and then
allocate a single trading desk ID “T1.” In this paper, the trading desk
ID is regarded as representing an effective membership and is called
the trader ID for short.

Order ID Virtual server ID Type Trading desk ID

O1 V1 submission T1
O1 V1 cancellation T1
O2 V1 submission T1
O2 V2 cancellation T1
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cancellation orders (see the order flow in Table I with the
order ID “O1”). Sometimes, however, there are nontypical
cases in which the virtual server IDs are not identical between
the submission and cancellation orders (see the order flow in
Table I with the order ID “O2”): e.g., when the trader submits
a submission order with the order ID “O2” from the virtual
server “V1” and subsequently submits a cancellation order
with the order ID “O2” from the virtual server “V2,” it is
reasonable to infer that both virtual server IDs “V1” and “V2”
are associated with the identical trader. The concept of the
trading desk is to merge these two server IDs to allocate a
single label as the effective trader ID (i.e., “T1” in Table I). For
a detailed implementation, see Refs. [21,22]. In this paper, the
trading desk is regarded as the effective membership ID and
is called the trader ID for short.

It should be noted that in Japan, the TSE is not the sole
stock market available. Various venues, including the propri-
etary trading system (PTS), exist where identical stocks can be
traded. In addition, if a “final client,” e.g., a mutual fund, can
trade with different market members, their multiple IDs might
be aggregated. In such cases, our trader ID might combine
multiple metaorders from diverse clients, which would then
be treated as a unified metaorder in our analyses.

C. Market rule

Here we describe the market rule in the TSE market. The
TSE provides three types of trading periods: (i) the open-
ing auctions (during 08:00–09:00 and 12:05–12:30), (ii) the
continuous double auctions (during 09:00–11:30 and 12:30–
15:00), and (iii) the closing auctions (at 11:30 and 15:00).
Throughout this paper, time is based on Japan Standard Time
(JST, UTC+9).

During the opening auctions, all the orders are collected but
wait for their transaction until the fixed transaction time 9:00
or 12:30. During the continuous double auctions, all orders
can be immediately executed under the time priority rule if
the supply and demand match. In this paper, we focus on the
continuous double auction periods.

In TSE, there are three types of orders: the limit order, the
cancellation order, and the market order. Any limit order is
composed of the price, the volume, and the type (i.e., bid
or ask). When a trader is potentially willing to buy (sell)
the specified volume of the stock at the specified price, the
trader will submit a bid (ask) limit order. The limit order can
be canceled if the trader is unwilling to buy (sell) the stock
anymore.

D. Limit order book

While the background knowledge of the limit order book
(LOB) is not essential in understanding our main findings, we
briefly explain several important concepts related to the LOB,
since they are useful in discussing the possible implications of
our findings.

All the live limit orders are collected to form the LOB.
A part of the LOB is publicly displayed and is used as an
information source for decision-making by traders. The most
important part of the LOB is the best bid (ask) price, defined
by the highest bid (lowest ask) price in the LOB. Also, the

market spread, defined by the difference between the best
ask and bid prices, is an important measure of the effective
transaction cost. We note that submitting limit orders is re-
garded as a beneficial contribution to market liquidity. Indeed,
if there are plenty of bid and ask limit orders, anyone will
be able to make a large volume of transactions with a small
transaction cost. In this sense, traders keeping plenty of bid
and ask limit orders are sometimes called liquidity providers
or market makers.

On the other hand, the market order is the order to make
a transaction at the available best prices. For example, if a
trader submits the buy (sell) market order, the trader imme-
diately buys (sells) the stock at the best ask (bid) prices. In
contrast to the limit-order submissions, submitting market or-
ders are regarded as liquidity consumption. Therefore, traders
who submit market orders are sometimes called liquidity con-
sumers or takers.

E. Mathematical notation

1. The fundamental quantities

Here we explain the mathematical notation for our analyses
of one data point. In this paper, we focus on the following
fundamental quantities [see Fig. 3(a) for a scheme]:

�TR: the set of all trader IDs. The total size of the traders
is finite, such that |�TR| = NTR < ∞. Therefore, the trader
IDs can be rewritten as �TR = {i | i = 1, 2, . . . , NTR} without
losing generality.

ε(t ): the market-order sign at the discrete time t ∈ N in the
whole market, with the set of natural integers N = {1, 2, . . . }.
Here, the order sign ε(t ) = +1 [ε(t ) = −1] signifies the buy
(sell) market order, and the time t is measured as a positive
integer time (called tick time), incremented every transac-
tion. The total number of market orders is denoted by Nε :=
|{ε(t )}t |, which is finite for real data analyses.

ε (i)(t ): the market-order sign issued by the trader i ∈ �TR

at time t . If the trader i did not issue any order at time t , ε
(i)
t

is set to be zero: ε (i)(t ) = 0. By definition, an identity holds
such that

ε(t ) =
∑

i∈�TR

ε (i)(t ). (4)

Here, the fundamental set � := (�TR, {ε(t )}t∈N,

{ε (i)(t )}t∈N,i∈�TR ) completely characterizes our analyses.
We note that the volume information on any market order is
not used in this paper.

2. Other important quantities

In addition, we can define the following quantities as
derivatives of the fundamental quantities � [see Fig. 3(b) for
a schematic]:

C(τ ): the market ACF with the time lag τ � 0, defined
by C(τ ) := 〈ε(t )ε(t + τ )〉, where 〈A〉 denotes the ensemble
average of any stochastic quantity A.

{ε (i)
k }k∈N : the reduced order-sign sequences, by removing

zeros from the original order-sign sequences {ε (i)(t )}t∈N . The
total number of market orders for the trader i is denoted by
N (i)

MO := |{ε (i)
k }k|, which can be finite.

043131-4



QUANTITATIVE STATISTICAL ANALYSIS OF … PHYSICAL REVIEW RESEARCH 5, 043131 (2023)

FIG. 3. (a) Schematic example of the fundamental quantities � := (�TR, {ε(t )}t , {ε (i)(t )}t,i ) for the case NTR = |�TR| = 2. Here, + (−) is
an abbreviation of +1 (−1), representing a buy (sell) order. (b) Reduced-sign sequences {ε (i)

k }k are defined by removing zeros from the original
order sequences {ε (i)(t )}t for i ∈ �TR. Runs {L(i)

k }k are also defined as the numbers of successively the same signs for the trader i.

{L(i)
k }k∈N : the runs for the reduced-sign sequences {ε (i)

k }k∈N

for the trader i ∈ �TR. For a given reduced-sign sequence
{ε (i)

k }k∈N of the trader i ∈ �TR, we define the runs similarly
to the Wald-Wolfowitz runs test [23]. In other words, for
{ε (i)

k }k , we count the numbers of adjacent equal elements (e.g.,
L(1)

1 = 4 and L(1)
2 = 3 for {+ + + + − − − + · · · }) to define

the runs {L(i)
k }k (see Fig. 3).

As will be explained in Sec. IV, we apply a strategy clus-
tering in terms of market orders to define the following classes
of traders:

�RT: the set of random traders.
�ST: the set of splitting traders.
By definition, we have �TR = �RT ∪ �ST.

3. Sample label for the integrated statistical analysis

More technically, the fundamental quantities � are defined
for each data point. By introducing a sample label s ∈ S to
identify each data point with the sample set S , {�s}s∈S is
finally analyzed as the integrated statistical analysis to pro-
duce Figs. 11 and 12 (e.g., the scatterplot between α and γ in
Sec. VI). One data point �s corresponds to a yearly order-sign
sequence for one stock market (i.e., the label s signifies the set
of stock ticker code and year). The total number of the data
points is denoted by NS := |S|. However, if the expression
clearly makes sense in the context, the sample label s is often
omitted for brevity.

4. Filter on the sample markets

In this paper, we focus on the markets whose total trans-
action number is over 0.5 million, such that Nε > 5 × 105.
This filter is introduced to suppress the estimation errors in
the power-law exponents α and γ .

5. Other mathematical notation

We next describe our notation for the probability the-
ory. The probability density function (PDF) characterizes the
probability that the stochastic variable x′ resides in the range
[x, x + dx) as P(x)dx. The complementary cumulative distri-
bution function (CCDF) is defined by P>(x) := ∫ ∞

x dyP(y).
For a given series {xk}k , we can define the empirical PDF

and CCDF as

P(x) := 1

|{xk}k|
∑

k

δ(x − xk ),

P>(x) :=
∫ ∞

x
dyP(y) = N>(x)

|{xk}k| ,
(5)

where N>(x) := ∫ ∞
x

∑
k δ(y − xk )dy is the total number of

elements larger than x, and δ(x) is the Dirac delta function.

F. Data preprocessing

Here we explain our data preprocessing to extract data
by removing the influence of intraday seasonality. Intraday
seasonality is one of the stylized facts in financial markets [3],
and the market activity typically exhibits high intensity around
the opening and closing times of the auctions (called the
U-shape profile). Indeed, we confirmed the U-shape profile
in terms of the market-activity statistics (see Appendix A).

This intraday seasonality should be considered in interpret-
ing the results of any data analysis because there are various
factors unique to the opening and closing times of the auctions
(such as the lifestyle of traders and the position management
[24], for example). Such factors are not included in the LMF
model; therefore, the data during such high-activity periods
are not suitable for the data calibrations.

For these reasons, we used the market-order sign sequence
during the continuous double auction periods with the 10-min
sequences excluded around the opening and closing auctions.
In other words, we used the data from 9:10 to 11:20 and from
12:40 to 14:50 as a daily order-sign sequence. The daily order-
sign sequences are segmented on a yearly basis for each stock
to obtain one data point �.

III. LITERATURE REVIEW ON THE LMF MODEL

This section reviews the LMF model in terms of the model
setup, quantitative prediction, and the current qualitative em-
pirical evidence. This section aims to provide background
knowledge on this econophysics topic for the general audience
to clarify the novelty of our results. Since this review sec-
tion is prepared independently of the other sections, readers
interested only in our main results may skip this section.

A. Microscopic model: The original LMF model

Let us assume that the total number of traders NTR > 0 is
a time-constant positive integer and the volume of any market
order is always the minimum executable unit for simplicity.
For any trader i ∈ �TR, two microscopic variables are de-
fined: z(i)(t ) := (ε (i)(t ), R(i)(t )), where ε (i) is the order sign
of the metaorder and R(i) is the remaining volume of the
metaorder. The macroscopic variable of the market is given
by the market-order sign ε(t ). The LMF model is formulated
as the Markovian stochastic process for the state variable
Z := (ε; z1, . . . , zNTR ) on the discrete time t ∈ N.

043131-5



YUKI SATO AND KIYOSHI KANAZAWA PHYSICAL REVIEW RESEARCH 5, 043131 (2023)

FIG. 4. Schematic of the Lillo-Mike-Farmer (LMF) model proposed in Ref. [19]. At the microscopic dynamics, the total number of traders
is NTR and all the traders are assumed to be splitting traders (STs). STs hold large metaorders and they randomly split them into small orders.
Here we assume that the run length L obeys the power-law distribution P(L) ∝ L−α−1 with α > 1. At the macroscopic dynamics, the order-sign
sequence of the whole market exhibits the long-range correlation C(τ ) ∝ τ−γ . Furthermore, the LMF model theoretically predicts γ = α − 1
as Eq. (7), connecting the macroscopic power-law exponent γ and the microscopic exponent α. The state variables and model parameters are
summarized in Table II.

The concrete dynamics of this model is given by the fol-
lowing stochastic difference equations (SDEs; see Fig. 4): At
the time t + 1, a trader i = π (t + 1) is randomly selected with
the uniform distribution, such that

Pt+1(π ) = 1

NTR
for any π ∈ �TR. (6a)

The π (t + 1)th trader executes their metaorder with the order
sign:

ε(t + 1) = ε[π (t+1)](t ). (6b)

After the execution by the trader π , the remaining volume
R(π )(t + 1) decreases by 1 if R(π )(t ) > 1. If all the metaorder
is executed [i.e., R(π )(t ) = 1], the metaorder and its sign are
randomly reset for the trader π . In summary, the dynamics of
z(i) is given as follows for all i ∈ �TR:

R(i)(t + 1) =

⎧⎪⎨
⎪⎩

R(i)(t ) if i 
= π (t + 1),
R(i)(t ) − 1 if i = π (t + 1) and R(i)(t ) > 1,

L if i = π (t + 1) and R(i)(t ) = 1; L obeys P(L);
(6c)

ε (i)(t + 1) =
⎧⎨
⎩

ε (i)(t ) if i 
= π (t + 1) or R(i)(t ) > 1,

+1 with prob. 1/2, if i = π (t + 1) and R(i)(t ) = 1,

−1 with prob. 1/2, if i = π (t + 1) and R(i)(t ) = 1,

(6d)

with an independent and identically distributed (IID) random
integer number L > 0 obeying the discrete PDF P(L).

The set of the SDEs (6) completely characterizes the
(2NTR + 1)-dimensional Markovian dynamics with the state
variable Z(t ) on the discrete time t ∈ N. In this sense,
the SDEs (6) are the fundamental “equations of motion” for
the LMF model at the microscopic level of the financial
dynamics. We will consider the dynamics of this stochastic
process until the final time t = Nε := |{ε(t )}t | (i.e., the total
number of transactions). See Table II for a summary of the
state variables and the model parameters.

In this framework, all traders are assumed to simply split
their metaorders without complicated strategies according to
the order-splitting hypothesis, and the discrete PDF P(L) can
be interpreted as the distribution of the metaorder lengths
(or the run lengths). For consistency with the realistic data
analysis, it is customary to assume the power-law metaorder
distribution:

P(L) ∝ L−α−1 for large L

with a realistic value [3,25,26] around α ≈ 1.5 (see
Appendix B for a detailed implementation in generating

TABLE II. The summary of the state variables and the model parameters for the LMF model (6).

State variable Meaning Model parameters Meaning

ε(t ) Order sign in the whole market NTR Total number of the traders
{ε (i)(t )}i Order sign of the trader i Nε Total number of the transactions
{R(i)(t )}i Remaining metaorder length of trader i P(L) ∝ L−α−1, α > 1 Metaorder length distribution
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FIG. 5. Verification of the LMF prediction (3) in the previous
work [19]. We extracted the data from figure 7 of Ref. [19] by
measuring the coordinates of the data points using Adobe Illustrator.
Here we additionally plot the regression line (led) with the slope
0.07 (statistically insignificant), far from the theoretical coefficient
1. We note that they measured γ based on the DFA (see the related
discussion in Sec. V).

power-law random numbers). We can straightforwardly gen-
eralize this model to introduce heterogeneity of splitting
strategies (see Ref. [27]).

B. Quantitative prediction: From micro to macro

Since the microscopic model is fixed as the high-
dimensional Markovian stochastic process (6), the macro-
scopic character of this model can be deduced in principles.
Such a statistical-mechanical program was provided by the
original paper [19] by Lillo, Mike, and Farmer. Indeed, the
ACF of the order-sign sequence {ε(t )}t is asymptotically given
by

C(τ ) := lim
t→∞ 〈ε(t )ε(t + τ )〉 ∝ τ−γ , γ := α − 1 (7)

for large τ . This formula implies that the macroscopic pa-
rameter γ is directly related to the microscopic parameter
α. In this paper, the expression “the quantitative prediction
of the LMF model” refers to this relationship (7). Note that
this relation holds even for a generalized LMF model with
heterogeneous strategies [27].

In the pioneering work in Ref. [19], a scatterplot was
provided between α and γ by analyzing an off-book market
data set as a proxy for hidden orders. We extracted the data
in the figure in Ref. [19] and we plot it as Fig. 5 with the red
regression line added. These data show two points:

(i) The theoretical line passes roughly through the center
of the data points, suggesting the minimum qualitative consis-
tency between data and theory.

(ii) At the same time, the theoretical line does not exhibit a
good fit in explaining the “variations in the measured values.”
Indeed, the red regression line has the coefficient of the slope

0.07, which is far from the theoretical coefficient.2 This may
be due partly to their “improper proxy”3 and the smallness of
the sample size.

It should be noted that Refs. [25,26] showed that α ≈
1.5 is empirically obtained on the basis of the aggregated
distribution, suggesting the LMF prediction is consistent at
least qualitatively. However, to establish the LMF quantitative
prediction (7), it is necessary to solve the second problem by
analyzing a large and proper data set.

C. Qualitative prediction and the corresponding
empirical evidence

While the quantitative prediction (7) is interesting, it can
be another option to examine a rather weaker prediction by
the LMF model. According to Ref. [18], let us decompose the
ACF C(τ ):

C(τ ) := Csame(τ ) + Cother (τ ). (8)

Here Csame(τ ) is the contribution where the same trader issues
orders at t and t + τ , whereas Cother (τ ) is the contribution
where two distinct traders issue orders at t and t + τ . If the
order-splitting hypothesis is correct, the following relation-
ship is expected to hold:

|Csame(τ )| 	 |Cother (τ )|, τ 	 1. (9)

In this paper, we call this relationship (9) “the qualitative pre-
diction of the LMF model,” in comparison to the qualitative
prediction (7). Reference [18] addressed this problem and
showed that the quantitative prediction (9) actually holds in
their data set. This is the best empirical evidence supporting
the order-splitting hypothesis, to the best of our knowledge.

D. Goal of this paper

The excellent evidence in [18] suggests the strong rel-
evance of the order-splitting hypothesis as the microscopic
origin of the LRC, at least on a qualitative level (9). At the
same time, it is remarkable that the LMF model further pro-
vides the quantitative prediction (7), which is much stronger
than the qualitative prediction (9). This relationship (7) is
obviously appealing. However, there has been no systematic
and solid evidence to support this prediction at the quantitative
level.

The goal of this paper is to examine and establish the
quantitative prediction (7) by analyzing our large data set on
the TSE market. To prove the relationship (7), it is sufficient
to draw a scatterplot between α and γ with a sufficiently large
sample size. Therefore, we basically proceed with our data
analysis in the following three steps (see also Appendix C for
a summary of the technical problems to be solved): (i) mea-
surement of the microscopic parameter α, (ii) measurement of
the macroscopic parameter γ , and (iii) drawing the scatterplot
between α and γ .

2They state, “As a stronger test, one might hope that variations in
measured values of α might predict variations in measured values of
γ . The model fails this test” in Ref. [19].

3They state, “Because we lack the proper data to test the model, we
have used an imperfect proxy to test the model” in Ref. [19].
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IV. MEASUREMENT OF THE THE METAORDER-LENGTH
DISTRIBUTION

Here we classify the random and order-splitting strategies
in terms of the market orders to finally measure the mi-
croscopic parameter α in the metaorder distribution P(L) ∝
L−α−1 for large L.

A. Measurement of metaorder lengths for individual traders

We first define the metaorder series at the level of in-
dividual traders. Basically, we follow the rule described in
Sec. II E 1 to extract the order-sign sequence {ε (i)

k }k for the
ith trader and to construct the corresponding run sequences
{L(i)

k }k . The run sequences are regarded the metaorder-length
sequences in this paper.

For a practical reason, however, we introduce one ex-
ceptional rule: if the time interval between two successive
orders is sufficiently longer, we assume that two orders belong
to different metaorders according to Ref. [17]. This rule is
introduced to avoid overestimation of unrelated orders. For
example, let us consider the case in which a trader submits ten
buy orders within a day, stops orders for one month, and then
submits ten buy orders. It is not realistic to assume that the
metaorder length is 20 because the one-month resting seems
too long. We expect that this exceptional rule will reduce the
risk of such overestimation. In this paper, we set this time
threshold to be one business day.

B. Strategy clustering: Random versus order-splitting traders

We next identify the order-splitting traders (STs) at
the level of individual traders. Our basic idea is to apply
the binomial test in statistics to define the random traders
(RTs) and then define STs as non-RTs. The details of our
strategy-clustering methods and the corresponding results are
described below.

1. Methods: The binomial test

Let us define the RTs by the binomial test as follows: If a
trader i randomly issues market orders, it is expected that the
sign sequence {L(i)

k }k is generated according to the symmetric
Bernoulli process. In other words, the sign sequence obeys the
rule

P
(
ε

(i)
k = +1 | ε

(i)
k−1, . . . , ε

(i)
1

) = 1
2 (10)

for any k � 1.
On the basis of this picture, we set the following null

hypothesis:

H0 : the sign sequence of the trader i obeys

the symmetric Bernoulli process. (11)

This hypothesis is examined by the one-sided binomial test
with the significance level θ := 0.01 as follows: Let us con-
sider the reduced order-sign sequence {ε (i)

k }k of the ith trader.
The total number of their market orders is given by N (i)

MO :=
|{ε (i)

k }k| and the corresponding run-length sequence is given
by {L(i)

k }k . We focus here on the total number of runs defined
by N (i)

run := |{L(i)
k }k|. If the null hypothesis H0 is correct, the

total number of runs N (i)
run must obey the binomial distribution,

P(N (i)
run ) = 1

2N (i)
MO−1

(
N (i)

MO − 1

N (i)
run

)
. (12)

We thus apply the one-sided binomial test to testify the null
hypothesis H0. If this null hypothesis is rejected, we classify
the trader i as an ST, such that i ∈ �ST with the set of the
STs �ST; otherwise, the trader i is classified as an RT (i.e.,
i ∈ �RT with the set of the RTs �RT). The first-kind error (the
false-positive rate) is controlled in our statistical test, and the
clustering for the STs.

2. Results 1: The existence of the order-splitting traders

Let us show the overview of our clustering results. We
applied the clustering algorithm in Sec. IV B 1 to all traders
for all stock every year (i.e., one data point 
) to obtain �ST

and �RT. We can define the ratio of the STs |�ST|/|�TR| for
each data point. We first show the empirical distribution of the
STs percentage as Fig. 6(a). The typical percentage of the STs
is given by 25%, showing the direct evidence of the presence
of the STs in our data set.

Interestingly, while the number of the STs is typically less
than that of the RTs, the STs typically exhibits the dominant
contribution to the market orders. To show this characteristic,
let us define the market-order contribution percentage by the
STs as the ratio of the number of market orders issued by
the STs to the total number of market orders. Figure 6(b)
shows the empirical distribution of the market-order contribu-
tion percentage by the STs, illustrating that the STs typically
contribute 80% to the total market orders. In addition, the
presence of STs shows a tendency to increase over the years
[see Fig. 6(c)].

3. Results 2: Metaorder-length distributions

We then study the metaorder-length CCDF for the STs
(see also Appendix D for the clustering results of RTs as a
reference). Let us consider the joint run-length sequences for
STs and the corresponding metaorder-length CCDF:{

LST
k

}
k

:=
⋃

i∈�ST

{
L(i)

k

}
k
,

P>

(
LST) := N>(LST)∣∣{LST

k

}
k

∣∣ , N>(LST) :=
∫ ∞

LST
dy

∑
k

δ
(
y − LST

k

)
.

(13)

The empirical metaorder distribution for STs is plotted in
Fig. 7(a) for Toyota 2020, showing the power law P>(L) ≈
L−α . We confirm that this character is robustly observed even
for other data points.

The empirical PDF P(α) of the power-law exponent α is
shown in Fig. 7(b). Approximately 90% of the stocks have
power-law exponent α < 2 in our data set. This finding is con-
sistent with the standard assumption that α < 2 in the LMF
model. The power-law exponent α is estimated by Clauset’s
algorithm [28,29] as one of the established statistical estima-
tion methods. According to Ref. [28], the estimation errors in
the power-law exponent are generally small, at least compared
with the errors in another power-law exponent γ . We thus
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FIG. 6. Summary statistics of STs. (a) Empirical distribution of the percentage of STs in each market. Approximately 25% (10–50 %) of
traders are classified as STs in each market. (b) Empirical distribution of the market-order contribution percentage by STs. 80% of the total
market orders are typically submitted by STs. These two figures suggest that STs dominantly contribute to the market orders, while their
number is relatively lower than that of RTs. (c) Yearly plot of average daily transaction numbers by STs, showing the growing presence of STs.

ignore the estimation errors of the power-law exponent α

throughout this paper.

4. Parameter estimation for the LMF model

Here we describe our method to estimate the parameters
for the LMF model.

NST: the total number of the active STs, trading at least
1000 times in the year, is estimated as the yearly average
number of all the STs:

NST = 1

Dyear

∑
i∈�ST

D(i), (14)

where Dyear is the total number of business days in that year,
and D(i) is the total number of active days by the ith ST.
We used NST as a proxy for the parameter calibration of
NTR because the influence of inactive traders is expected to
be negligible on the empirical autocorrelation function. In
addition, it is numerically known that the asymptotic behavior

FIG. 7. Characters of metaorder-length distribution on STs in
each markets. (a) The aggregated metaorder-length CCDF for all
STs for Toyota Motor Corporation in 2020 as a typical example.
The metaorder-length CCDF obeys the power law such that P>(L) ∝
L−α . (b) The empirical PDF of the power-law exponents α in our
whole data set. The exponent α was measured by Clauset’s algo-
rithm [28,29] across all the markets. Typically, α distributes within
1 < α < 2, consistently with the standard assumption for the LMF
model.

of the autocorrelation function is robust regarding the total
number of traders NTR [3], and thus the technical details of the
parameter calibration of NTR are expected to be insensitive to
the final results.

Nε : we substitute the total number of market orders for the
stock during the year into Nε .

α: the power-law exponent of the metaorder length PDF
PST(L) ∝ L−α−1 for large L. This power-law exponent is esti-
mated by the Clauset algorithm as described in Sec. IV B 3.

This parameter estimation method was used for the numer-
ical simulations in Sec. V.

V. MEASUREMENT OF THE SIGN
AUTOCORRELATION FUNCTION

Here we describe the measurement of the power-law expo-
nent γ in the sign ACF C(τ ) ∝ τ−γ for large τ . Our method is
composed of three steps: (i) application of the naive estimator
γNLLS by the nonlinear least squares (NLLS) to the empirical
ACF or power-spectral density (PSD), (ii) construction of an
unbiased estimator based on the LMF model, and (iii) applica-
tion of the unbiased estimator to obtain the final γunbiased. Let
us explain these steps one by one.

A. Estimations by the nonlinear least squares

We employed two NLLS estimation methods based on the
ACF and PSD for our statistical analyses. Both methods show
similar and consistent results, implying the robustness of our
analyses. While there are many sophisticated estimation meth-
ods [such as the estimation based on the detrended fluctuation
analysis (DFA) [10]], we employ this simple method because
we find that the NLLS estimation has the consistency for an
infinite sample size and has less bias for a finite sample size
than other methods.

1. Estimation based on the sample ACF

Let us first describe the measurement method based on the
sample ACF. The basic idea is to apply the power-law fitting
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to the sample ACF Csample(τ ), such that

Csample(τ ) := 1

Nε − τ

Nε−τ∑
t=1

ε(t )ε(t + τ ) ∝ τ−γ
(a)
NLLS , (15)

where the superscript (a) signifies the ACF estimator. A
detailed implementation is described in Appendix E 1. The
theoretical advantage of this method is that the sample ACF
is expected to converge to the true ACF for the infinite sample
size:

lim
Nε→∞

Csample(τ ) = 〈ε(t )ε(t + τ )〉 = C(τ ) (16)

under the ergodicity assumption. In general, ergodicity is a
weak assumption irrelevant to the underlying microscopic
dynamics (in our case, the microscopic dynamics are assumed
to be governed by the LMF model). Therefore, it is expected
that the NLLS estimator has the consistency for general setups
as shown in Sec. V B.

2. Estimation based on the sample PSD

Another method we employed is based on the PSD. The
basic idea is to utilize the one-to-one correspondence between
the PSD S(ω) and the ACF C(τ ), guaranteed by the Wiener-
Khinchin theorem,

S(ω) =
∫ ∞

−∞
C(τ )e2π iωτ dτ. (17)

Considering the integral identity [30] for γ ∈ (0, 1),∫ ∞

−∞
e2π iωτ |τ |−γ dτ = 2γ πγ−1
(1 − γ ) sin

πγ

2
|ω|γ−1,

(18)

if the sample PSD obeys the power-law asymptotics for small
ω,

Ssample(ω) ∝ ω−H , (19)

the Hurst exponent H is related to γ as H = 1 − γ . In other
words, the NLLS estimator γ

(s)
NLLS is defined by

γ
(s)

NLLS = 1 − H, (20)

where H is determined by the NLLS method for the PSD. The
superscript (s) signified the PSD estimator. As with the sample
ACF, the sample PSD converges to the true PSD under the er-
godicity assumption. Therefore, this estimation is expected to
be robust regarding the consistency (see Sec. V B). A detailed
implementation is described in Appendix E 2.

3. Comparison between the ACF and PSD methods

We discuss theoretical differences between the ACF and
PSD methods for comparison. The NLLS fitting for the PSD
sometimes provides negative values of γ < 0 ⇐⇒ H > 1
due to methodological artifacts. Negative γ implies mono-
tonic increasing of the ACF for large τ , which does not make
sense. We excluded such data points because of the obvious
failure of the estimation.4

4The total number of data points was 16, which needs exceptional
handling with γ < 0.

The PSD estimator is theoretically valid only for H ∈
(0, 1), or equivalently α ∈ (1, 2). This fact means the estima-
tion fails for α > 2 in principle, even for infinite observations.
Also, the estimation accuracy tends to be worse near the
critical point α = 2.

These disadvantages contrast with the ACF method, which
is expected to work for any α in principle for infinite obser-
vations, and they provide only positive γ . However, the PSD
method is broadly used to estimate the Hurst exponent and is
a realistic option for the statistical estimation of γ . Indeed, as
for the LMF simulations, we find that the overall bias due to
the finite sample size was less in the PSD method than in the
ACF method (see the value of β1 in Sec. V B 2).

B. Consistency and biasedness of the NLLS estimator

In statistics, consistency and unbiasedness are two of
the desirable characteristics of any statistical estimator. Here
we numerically confirm these characteristics of the NLLS
estimator based on the LMF model (see Figs. 8 and 9 for
the ACF and PSD methods, respectively). While the NLLS
estimator has consistency at least numerically, unfortunately
it does not have unbiasedness. This problem is heuristically
solved in Sec. V C by appropriate construction of an unbiased
estimator.

1. Consistency for the infinite sample size

Any estimator Tn is called consistent if the estimated value
converges to the true value θ for the infinite sample size
n → ∞: limn→∞ Tn = θ . We have numerically confirmed the
consistency of the NLLS estimator:

lim
Nε→∞

γNLLS = γ . (21)

To confirm this consistency (21), we have numerically gener-
ated the order-sign sequences by the LMF model with realistic
parameters of our data set: we have measured the model
parameter set (NST, α) for all sample points according to
Sec. IV B 3 except for Nε . For Nε , we employed Nε = 108

because realistic values Nε � 107 are not sufficient to con-
firm the consistency (21). Figures 8(a) and 9(a) illustrate
our numerical simulation, showing that the NLLS estimator
γNLLS numerically agrees with the theoretical formula γ =
α − 1. This numerical evidence supports the consistency of
the NLLS estimator. Note that the consistency of the NLLS
estimator is theoretically reasonable because the sample ACF
(PSD) converges to the true ACF (PSD) for the infinite sample
size under the assumption of ergodicity. Note that the PSD
method works slightly worse near α ≈ 2 than the ACF method
[see Fig. 9(a)] because α = 2 is the critical point beyond
which the PSD method fails to estimate α in principle.

2. Bias for the finite sample size

Any estimator Tn is called unbiased if the expectation of
the estimator is equivalent to the true value θ for the finite
sample size n < ∞: 〈Tn〉 = θ . Unfortunately, we have nu-
merically confirmed that the NLLS estimator does not have
unbiasedness:

〈γNLLS〉 
= γ for finite Nε . (22)
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FIG. 8. Numerical simulations of the LMF model to test consistency and biasedness of the NLLS estimator γ
(a)

NLLS based on the ACF
method. (a) Consistency of the ACF-NLLS estimator γ

(a)
NLLS. The theoretical formula γ

(a)
NLLS = α − 1 holds for a sufficiently large sample size

Nε = 108, supporting the consistency of the NLLS estimator γ
(a)

NLLS. The parameter sets (NST, α) are based on the measurement of our data set.
(b) For realistic sample sizes Nε � 107, the ACF-NLLS estimator γ

(a)
NLLS exhibits biasedness due to the finite sample size. We have simulated

the LMF model by assuming that the parameter sets (NST, Nε, α) are identical to those measured in our data set. We find that the theoretical
formula γ

(a)
NLLS = α − 1 does not hold due to the finite sample size. The deviation from the theoretical line is particularly serious for large

α − 1 > 1, showing the nonuniform convergence of the NLLS estimator. Based on this empirical finding, we focus on the range α − 1 ∈ (0, 1)
and apply the linear regression (23) to obtain the navy line. (c) Check of the numerically constructed unbiased ACF estimator γ

(a)
unbiased. The

unbiased estimator is constructed by γ
(a)

unbiased := (γ (a)
NLLS − β

(a)
2 )/β (a)

1 . As expected, the theoretical formula γ
(a)

unbiased ≈ α − 1 holds even for the
realistic sample sizes. (d), (e) Parameter distribution of β

(a)
1 and β

(a)
2 , the coefficients of the regression formula (23) in constructing the unbiased

estimator γ
(a)

unbiased. The means of β
(a)
1 and β

(a)
2 were given by 0.592 and 0.147, respectively.

To confirm this character, we have numerically generated
the order-sign sequences by the LMF model with realistic
parameters of our data set: we measured the model param-
eter set (NST, α, Nε ) for all sample points according to the
method in Sec. IV B 3. Under the measured parameter sets,
we numerically performed the Monte Carlo simulations of
the LMF model. The scatterplots are generated 100 times as
IID realizations, and take their ensemble average based on the
bootstrap method to draw the final scatterplot.

Under realistic parameter sets, as shown in Figs. 8(b) and
9(b), we find the systematic deviation between the theoretical
line γ = α − 1 and the numerical data points. This suggests
the NLLS estimator has finite-sample-size bias. In addition,
we find that the convergence speed is very slow for finite Nε

and is not even uniform in terms of α. It is reasonable that the
convergence is nonuniform in terms of α. Indeed, the decay
speed of the ACF is so fast for larger α that the power-law
part of the ACF cannot be observed for a wide range of τ . For
this practical reason, we have restricted our analyses to the
range α ∈ (1, 2), which agrees with the standard assumption
of the LMF model.

By focusing on the range α ∈ (1, 2), let us apply the linear
regression between γNLLS and α as shown in Fig. 8(b) accord-
ing to the formula

γNLLS = β1(α − 1) + β2, (23)

where β1 and β2 are regression coefficients. This relation
is used to numerically construct an unbiased estimator [see
Figs. 8(c) and 9(c) for the ACF and PSD methods, respec-
tively] as shown in Sec. V C.

If the NLLS were an unbiased estimator, the relations
〈β1〉 ≈ 1 and 〈β2〉 ≈ 0 would hold. To test these relations,
we repeated the numerical simulations of the LMF model and
linear regressions (23) to obtain the empirical histograms of
β1 and β2 [see Figs. 8(d) and 8(e) for the ACF method, and
Figs. 9(d) and 9(e) for the PSD method]. We numerically find
that 〈β (a)

1 〉 = 0.592 and 〈β (a)
2 〉 = 0.147 for the ACF method

and 〈β (s)
1 〉 = 0.753 and 〈β (s)

2 〉 = 0.083 for the PSD method in
our simulations. These values clearly show the biasedness of
the NLLS estimator due to the finite sample size. To solve
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FIG. 9. Numerical tests for consistency and biasedness of the NLLS estimator γ
(s)

NLLS based on the PSD method. The test was based on the
LMF model. (a) Consistency of γ

(s)
NLLS for a sufficiently large sample size Nε = 108. The parameter sets (NST, α) are based on the measurement

of our data set. (b) For realistic sample sizes Nε � 107, the PSD-NLLS estimator γ
(s)

NLLS exhibits biasedness due to the finite sample size. The
LMF model was simulated by assuming that the parameter sets (NST, Nε, α) are identical to those measured in our data set. We applied the
linear regression (23) for the range α − 1 ∈ (0, 1) to obtain the navy line. (c) Confirmation of the numerically constructed unbiased PSD
estimator γ

(s)
unbiased. The unbiased estimator is constructed by γ

(s)
unbiased := (γ (s)

NLLS − β
(s)
2 )/β (s)

1 . As expected, γ
(s)

unbiased ≈ α − 1 holds even for the
realistic sample sizes. (d), (e) Parameter distribution of β

(s)
1 and β

(s)
2 , the coefficients of the regression formula (23) in constructing the unbiased

estimator γ
(s)

unbiased. The means of β
(s)
1 and β

(s)
2 were given by 0.753 and 0.083, respectively.

this finite-sample-size bias problem, we will approximately
construct a numerical unbiased estimator in Sec. V C.

3. Other methods: The detrended fluctuation analysis

There are several other methods to estimate the power-law
exponent γ , and one of the famous methods is based on the
Hurst exponent with the detrended fluctuation analysis (DFA)
[31]. Indeed, some researchers claim that the DFA analy-
sis provides much better results than the NLLS estimation
[10,19]. In this paper, the estimated exponent by the DFA is
called the DFA estimator and is denoted by γDFA.

We do not use the DFA estimator because we numerically
find a serious problem of the DFA estimator in terms of the
finite-sample-size bias. We numerically generated the order-
sign sequences by the LMF model and measured γDFA to ob-
tain Fig. 10. The sample size is set to be Nε = 108 because the
NLLS estimator showed consistency under this sample size.

The DFA estimator is numerically implemented by using
the referred PYTHON package provided by Ref. [32]. Remark-
ably, the DFA estimator γDFA systematically deviates from
the theoretical line (3). Since the theoretical line (3) is the
exact solution for the LMF model, this deviation signifies
the serious bias of the DFA estimator. Unfortunately, within

FIG. 10. Inconsistency of the DFA estimator γDFA even for the
LMF model. We used the same parameters (NST, α) as those mea-
sured in our data set and set Nε = 108. The theoretical relationship
γDFA = α − 1 does not hold even for large sample size, rejecting the
numerical consistency of the DFA estimator γDFA at least under a
realistic computational resource.
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our computational resource, we could not even confirm the
consistency of the DFA estimator for a larger sample size.

We are not sure about its main reason currently, but one
of the potential reasons might be related to the stronger sta-
tistical assumption required by the DFA estimator. While the
consistency of the DFA estimator was recently proved for
the fractional Brownian motion [33], it is nontrivial whether
the consistency of the DFA estimator is still kept even for
systems not obeying the fractional Brownian motion. In our
case, there is no solid reason why the sign sequence generated
by the LMF model can be regarded as the fractional Brownian
motion. On the contrary, the NLLS estimator relies only on
the ergodic assumption: the sample ACF converges to the true
ACF for a large sample size. In this sense, the NLLS estimator
requires weaker statistical assumptions than the DFA estima-
tor. This might be a potential reason causing the difference
between γNLLS and γDFA.

Here we do not claim inappropriateness of the DFA in a
general context. However, since our aim is to verify the quan-
titative prediction (3) based on the LMF model, we should use
a less biased estimator in terms of the scatterplot between γ

and α at least for the LMF simulations. Thus, we do not use
the DFA estimator in this paper.

C. Numerical construction of an approximate
unbiased estimator

While the NLLS estimator numerically exhibits the consis-
tency, it is biased for finite sample size with slow convergence
speed. This problem should be solved before the direct ver-
ification of the LMF prediction (3). In this subsection, we
approximately construct an unbiased estimator based on the
LMF model.

Our idea for our unbiased estimator is based on our numer-
ical observation of the scatterplot in Figs. 8(b) and 9(b) for
the ACF and PSD methods, respectively. For the numerical
simulations of our LMF model, we numerically find that γNLLS

follows the linear regression relation (23) for the range α ∈
(1, 2) at least approximately. Since the relation (3) holds for
the LMF model, the approximate relation γNLLS ≈ β1γ + β2

should hold between the NLLS estimator γNLLS and the true
γ . Therefore, we numerically construct an unbiased estimator
γunbiased as

γunbiased := γNLLS − β2

β1
, (24)

which exhibits the approximate unbiasedness, at least for the
LMF simulations [see Figs. 8(c) and 9(c) for the ACF and PSD
methods, respectively], as

〈γunbiased〉 ≈ γ . (25)

For the verification of the LMF prediction (3) in Sec. VI, we
use the unbiased estimator γunbiased.

VI. VERIFICATION OF THE LMF PREDICTION

Let us proceed with the main result of this paper, namely
the direct verification of the LMF prediction (3). We then
discuss the relationship to previous works, possible future
implications, and some open questions.

A. Scatterplot about the power-law exponent

For the verification of the LMF prediction (3), we plot
the scatterplot between α and γunbiased for α ∈ (1, 2) [see
Figs. 11(a) and 11(d) for the ACF and PSD methods, respec-
tively]. We set bins along the α axis and plotted the average
γunbiased within each bin. The average line (red) agrees with the
theoretical line (black) well, strongly supporting the validity
of the LMF prediction even at the quantitative level. We also
provide boxplots in Figs. 11(b) and 11(e) for the ACF and
PSD methods, respectively, where the statistical quantities,
such as the first, second, and third quartiles, are calculated
within each bin along the α axis. Furthermore, we provide the
empirical PDF of the errors η := α − 1 − γunbiased as shown
in Figs. 11(c) and 11(f) for the ACF and PSD methods,
respectively. Since the average error is small, 〈η(a)〉 = 0.03
for the ACF method and 〈η(s)〉 = 0.003 for the PSD method,
respectively, our statistical analysis is self-consistent.

For reference, the original scatterplot between α and γNLLS

(i.e., the consistent but biased estimator) is provided in Ap-
pendix F. In addition, we provide the scatterplots aggregated
for every three years between α and γunbiased as a robustness
check (i.e., threefold cross-validation) in Appendix G.

We have shown that the power-law exponent γ in the
ACF C(τ ) is directly related to the microscopic power-law
exponent α in the metaorder-length PDF ρ(L). Since α is
not observable from public data, our result implies that the
LMF theory is useful for statistical estimation of microscopic
parameters from public data.

B. Discussion 1: Estimation of the total number of traders

Since we show the feasibility of statistical estimation of
α from the ACF power-law exponent γ , it is a natural idea
to infer other microscopic quantities from the ACF prefactor
c0. In this subsection, we discuss the estimation of the total
number of STs NST from the ACF prefactor c0 based on the
LMF theory.

1. Review of the original LMF theory on the prefactor c0

The LMF theory predicts that the ACF prefactor should be
given by

cLMF
0 := 1

αN2−α
ST

(26)

on the assumption that the intensity distribution {λ(i)}i∈�ST

among the order-splitting traders is uniform, such that

λ(i) = 1

NST
for any i ∈ �ST. (27)

This prediction is applicable to inferring the total number of
the order-splitting traders NST, such that

NST ≈ NLMF
ST (c0, γ ) :=

[
1

(γ + 1)c0

] 1
1−γ

, (28)

where the right-hand side is composed of publicly avail-
able quantities from the sample ACF or PSD. Let us call
NLMF

ST (c0, γ ) the LMF estimator for the total number of the
STs. Since NST is not observable from public data, the pre-
diction (28) is appealing from both academic and practical
viewpoints.
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FIG. 11. Direct verification of the LMF prediction (3) based on the ACF method (a)–(c) and the PSD method (d)–(f). (a), (d) Scatterplot
between α and γunbiased. We set bins along the α axis, and the red line signifies the averages within the bins. (b), (e) Box plot between α

and γunbiased, where statistical quantities [e.g., the first, second (median), and third quartiles] are calculated within the bins along the α axis.
(c), (f) Empirical PDF of the errors η := α − 1 − γunbiased. The average error is very small such that 〈η(a)〉 = 0.03 for the ACF method and
〈η(s)〉 = 0.003 for the PSD method, respectively.

Note that the LMF estimator has the singularity γ = 1 at
which the estimation fails in principle. Therefore, it is more
realistic to study

[
NLMF

ST (c0, γ )
]1−γ = 1

(γ + 1)c0
(29)

by removing the singularity at γ = 1.

2. Review of a generalized LMF theory on the prefactor c0

During our data analysis, however, we noticed that the as-
sumption (27) for homogeneous intensities is very unrealistic
because time intervals between submissions are broadly dis-
tributed in our data set. Furthermore, in Ref. [27], the authors
recently proposed a generalized LMF model by incorporat-
ing the inhomogeneous intensities and clarified the following
points:

(i) Let us assume that all traders are order-splitting traders,
but their intensity distribution is nonuniform, such that λ(i) 
=

1
NST

for some i ∈ �ST.
(ii) The ACF power-law exponent formula (3) robustly

holds for any intensity distributions {λ(i)}i∈�ST .
(iii) On the other hand, the ACF prefactor formula (26) is

very sensitive to the system-specific details and does not hold
anymore for general {λ(i)}i∈�ST . Instead, the prefactor formula

is replaced with

cSK
0 := 1

α

∑
i∈�ST

(λ(i) )3−α. (30)

(iv) Furthermore, the homogeneous LMF formula (26) sys-
tematically underestimates the actual prefactor, in the sense
that

cSK
0 � cLMF

0 . (31)

These heterogeneous LMF results imply that the LMF es-
timator NLMF

ST (c0, γ ) provides a lower bound of the true NST:

NLMF
ST (c0, γ ) � NST. (32)

3. Scatterplot between NLMF
ST (c0, γ ) and NST

On the basis of the above theoretical predictions, we drew
the scatterplot Fig. 12 between the true log10(NST)1−γ and
the LMF estimator log10(NLMF

ST )1−γ after the finite-sample-
size bias is removed (see Appendix H for details). Since we
should stick to empirically available quantities, the estima-
tors are based only on γNLLS and c0,NLLS for both ACF and
PSD methods. The ACF and PSD methods were employed
Figs. 12(a) and 12(b) and Figs. 12(c) and 12(d), respectively,
and they showed consistent results. We observed that the LMF
estimator NLMF

ST is highly correlated with the true NST. This
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FIG. 12. Estimation of the total number of STs via the LMF theory for the ACF (a), (b) and PSD (c), (d) methods. (a), (c) Scatterplots
between the unbiased LMF estimators [log10(NLMF

ST )1−γNLLS ]unbiased and the actual values of log10(NST)1−γNLLS . (b), (d) Corresponding boxplots.
We find that the LMF estimator is strongly correlated with the actual NST. However, the LMF estimator systematically underestimated the
actual NST, which is consistent with the theoretical inequality (32) for a generalized LMF model in [27].

fact implies that the ACF prefactor c0 has potentially useful
information on NST in principle. On the other hand, the LMF
estimator NLMF

ST systematically underestimates the actual value
of NST, which is consistent with the theoretical expectation
(32) for the heterogeneous LMF model. Therefore, the LMF
estimator NLMF

ST should be interpreted as a lower bound of the
total number of STs.

We thus conclude that the LMF theory qualitatively works
even for the estimation of NST only from public data. How-
ever, its theoretical estimation is systematically biased due
to traders’ heterogeneity in order-splitting strategies. In this
sense, the strategies’ heterogeneity needs to be considered for
a more quantitative estimation of NST.

C. Discussion 2: Relation to previous results

In the original article [19], Lillo, Mike, and Farmer showed
a scatterplot between α and γ by using the off-book market
data as an imperfect proxy. While their figure does not statis-
tically reject the LMF prediction (3) due to small sample size,
it does not strongly support the validity of the strong LMF
prediction (3) at the quantitative level. On the contrary, we
have provided clear statistical evidence in Fig. 11 with enough
sample size, which strongly supports the validity of the LMF
prediction, even at the quantitative level. Furthermore, we
have successfully demonstrated that the ACF prefactor has
information on the total number of the order-splitting traders
NST as shown in Fig. 12.

There are two more technical advantages of our statis-
tical method than the previous one. The first advantage is
that we directly estimated the metaorder-length (run-length)
distribution at the level of individual traders, instead of
the metaorder-volume distribution. This is in contrast to
the statistical analysis in Ref. [19], which is based on the
metaorder-volume distribution in the absence of an appropri-
ate data set. When one uses the metaorder-volume distribution
to estimate α, one has to assume that STs split their orders
with constant volume for statistical analyses. However, this
assumption is not realistic because volume specified by a
market order is known to obey the power-law distributions
empirically. On the other hand, we utilized a proper data
set and directly measured the metaorder-length distribution.
This analysis does not require the assumption of the constant

volume splitting. In this sense, we believe that our estimated
exponent α would be more reliable for the calibration to the
LMF model.

The second advantage is that we used the NLLS-based un-
biased estimator γunbiased, instead of the DFA estimator γDFA.
In econophysics, several researchers use the Hurst-exponent
analysis based on the DFA to measure γ , and the scatterplot
of Ref. [19] (see Fig. 5) is also based on γDFA. However, we
find that γDFA has a serious problem in terms of the finite-
sample-size bias at least in our numerical LMF simulations,
and we have concluded that γDFA is an inappropriate estimator
in validating the LMF model. Since γDFA is not consistent
with the LMF prediction (3), we believe that our statistical
estimation has a much greater advantage than the previous
one.

D. Discussion 3: Implication for liquidity measurement

Our result strongly supports the validity of the LMF model
even at the quantitative level (3). Since the LMF model is
based on the order-splitting hypothesis, we believe that our
result is relevant to quantitative measurement of the market
liquidity from a different angle.

According to the order-splitting hypothesis, traders split
their large metaorders in the lack of revealed liquidity: the
volumes at the best prices are too small compared with the
metaorder volume, and traders have no choice but to split their
orders into pieces. In the LMF model, the order book for mar-
kets with smaller α and large NST is not thick enough for many
institutional investors to immediately execute metaorders.
Thus, the parameter set (α, NST) characterizes the illiquidity
of markets regarding metaorder splittings. Particularly, NST

characterizes how many institutional investors are waiting for
the order books to replenish during their order splitting, which
might have significant meaning for platform managers. Such
an aspect of liquidity shortage is not measured by traditional
liquidity measures, such as market spread and market im-
pact. We believe that it might be interesting to develop some
liquidity measures based on the order-splitting hypothesis as
another direction.

E. Discussion 4: Open questions on statistical analyses

We approximately measured the power-law exponent of
the sign ACF by the NLLS-based unbiased estimator γunbiased.
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While we believe that this estimator is practically reliable at
least for our data set, we are not sure whether this is always the
best option. Indeed, the approximate construction of the unbi-
ased estimator is based on the numerical observation of the
approximate linear regression relation (23) for α − 1 ∈ (0, 1),
which is not theoretically proved yet. In addition, this con-
struction of unbiased estimators may depend on the selection
of underlying microscopic models (i.e., the LMF model in
our case). Seeking the optimal unbiased estimator is an urgent
topic as a technical issue in statistics.

In addition, we found a serious problem of the DFA esti-
mator γDFA in terms of the finite-sample-size bias. Since we
are not sure about its critical reason, this problem should be
explored more deeply from the viewpoint of statistical analy-
ses. In particular, we are interested in its robustness in terms
of the consistency: i.e., does γDFA coincide with the true γ for
the infinite sample size, even if the time series is generated by
some microscopic model, instead of the fractional Brownian
motion? In any case, the long-memory character of the LRC is
a huge obstacle for statistical analyses, and thus development
of statistical methods will be important.

VII. CONCLUDING REMARKS

While the LMF model has been a cornerstone to support
the order-splitting hypothesis, its prediction (3) has not been
verified at the quantitative level. In this paper, we have quan-
titatively established the validity of the LMF prediction (3) by
analyzing a large data set of the TSE market over nine years.
We first identified the RTs and STs by clustering analysis,
and we measured the microscopic power-law exponent α in
terms of the metaorder length for STs. We then developed a
statistical method to measure the power-law exponent γ in
the sign ACF. The scatterplot between α and γ is provided as
the main result, strongly supporting the validity of the LMF
prediction (3). Furthermore, we discuss a practical method
to estimate the total number of order splitters from the ACF
prefactor on the basis of the LMF theory.

Our study builds upon the stream of ecological analyses
of financial markets, which is based on the trading-strategy
clustering at the level of individual traders. In the literature,
one of the pioneering studies on trading-strategy clustering
was provided in Ref. [34] in 2012 by focusing on market-
order submissions. As for limit-order submissions, strategy
clustering was first provided by Refs. [5–8] for the EBS FX
market in 2018 (i.e., regarding trend-following behavior), and
it was also provided by Ref. [21] for the TSE market in 2019
(i.e., regarding market-making behavior). In this work, we
classify traders into RTs and STs in terms of market-order
submissions. It will be interesting to investigate the roles of
RTs and STs in the ecology of the TSE market. We believe
that this research direction would be promising in developing
market microstructure for the future.

Finally, we remark on the availability of our dataset. The
data supporting the findings of this study were provided by
the JPX Group, Inc., and restrictions apply to the availability
of these data, which were used under license for our projects.
The authors are not allowed to distribute the data without the
explicit permission of the JPX Group, Inc.
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APPENDIX A: INTRADAY SEASONALITY

In our data analysis, we excluded the data during the peri-
ods around the opening and closing auctions. This exceptional
rule is applied to avoid the intraday-seasonality effect, which
is a stylized fact in various financial markets [3]. In this
Appendix, we show the statistical evidence of the intraday
seasonality in TSE, called the U-shape profile of the temporal
market-order activity, to justify our exceptional rule.

In this Appendix, we use the physical time t (minutes),
representing the elapsed time from the starting time of the
morning continuous double auction (9:00 JST) with the lunch
break (11:30–12:30 JST) excluded. For example, t = 0 rep-
resents 9:00 JST, t = 150 represents 11:30 JST, t = 151
represents 12:31 JST, and t = 300 represents 15:00 JST.

Let us focus on Toyota Motor Corporation in 2020. The
daily-total number of market orders is written as N tot

MO and
the number of market orders during [t, t + 1) is written as
NMO(t ). The temporal market-order ratio is then defined by
rMO(t ) := NMO(t )/N tot

MO. In Fig. 13, we plotted the yearly
average of the temporal market-order ratio rMO(t ). This fig-
ure shows that the market-order submissions are active around
the opening and closing times of the continuous double
auctions (i.e., t = 0, 150, and 300), consistently with the
empirical “U-shape profiles” in previous reports [3].

APPENDIX B: NUMERICAL IMPLEMENTATION OF THE
RANDOM INTEGER NUMBER OBEYING A POWER LAW

Here we describe the numerical method to generate ran-
dom integer numbers obeying a power-law relation

P(L) ∝ L−α−1 for large L (B1)

with an exponent α > 1. Let us consider a continuous posi-
tive random number x ∈ [1,∞), which obeys the continuous
Pareto distribution

P(x) = αx−α−1 (x ∈ [1,∞)). (B2)

The Pareto random number x can be generated by

x := 1

(1 − u)1/α
(B3)
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FIG. 13. Temporal market-order activity of Toyota 2020. The yearly average of the temporal market-order ratio rMO is plotted to show the
U-shape profile in its intensity: i.e., the transactions are active near the opening and closing times of the continuous double auction t = 0, 150,
and 300. Note that rMO(t ) is defined by rMO(t ) := NMO(t )/N tot

MO with the daily-total number of market orders N tot
MO and minutely total number

of market orders NMO(t ).

with a uniform random number u ∈ [0, 1). Finally, the integer
random number L is given by

L := �x�, (B4)

where the floor function �x� signifies the maximum integer
not larger than x.

APPENDIX C: SUMMARY OF THE TECHNICAL
PROBLEMS TO BE SOLVED

The validation steps for the LMF prediction are rather
straightforward. Why has this relationship (7) not been ver-
ified yet? In our view, there are three technical problems in
proving the quantitative prediction (7). Let us briefly summa-
rize these technical problems one by one.

The first problem would be the scarcity of necessary
high-quality data. To measure α, we are required to identify
order-splitting traders (STs) at the level of individual traders
by applying strategy clustering, and then measure the empiri-
cal PDF of the runs as P(L). For example, let us write the set
of STs as �ST. The empirical PDF of the runs is obtained as

P(L) ∝
∑

i∈�ST

∑
k

δ
(
L − L(i)

k

)
. (C1)

Since the STs �ST and their run sequences {L(i)
k }k,i∈�ST are the

necessary inputs for the run PDF P(L), we have to analyze
the data sets enabling us to track orders at the level of trader
accounts. However, such high-quality data are very scarce in
terms of the data availability.

The second problem would be the necessary data size.
While there are a few studies analyzing account-level data
sets, the necessary data size would need to be huge in
verifying Eq. (7). Indeed, the inputs of the scatterplot are
the power-law exponents α and γ , and their accurate mea-
surements are not easy: theoretically, they are expected to
distribute typically within the range α ∈ (1, 2) and γ ∈ (0, 1).
Therefore, it would be necessary to control their estimation
errors roughly less than 0.1. In particular, the accurate estima-
tion of γ is very hard. Assuming that the data points of C(τ )
are necessary to cover the range τ ∈ (101, 103), we have to
suppress the noise in the ACF at a low level even at τ ∼ 103.

Through our numerical simulations of the LMF model, we
estimate that a long order-sign sequence {ε(t )}t is necessary,
such as Nε > 5 × 105 at least, even to obtain one data point
(α, γ ) in the scatterplot.

The third problem is related to the fact that the LMF
model belongs to the long-memory process (see Chap. 10
in Ref. [3]), implying that the convergence speed of any
sample mean is slower than usual in terms of the sample
size Nε . Indeed, the long-memory character C(τ ) ≈ τ−γ with
γ ∈ (0, 1) suggests that ε(t ) and ε(t + τ ) are not statistically
independent with each other even for large τ > 0. Thus, the
estimation of γ will require a large data set from such a
theoretical viewpoint.

To overcome such technical difficulties, in this paper we
analyze a large TSE data set provided by the JPX Group,
Inc. These data not only include the account-level information
(i.e., the virtual-server IDs), but they also cover all the stocks
over nine years. We then finally report the first verification of
the quantitative LMF prediction (7) from the viewpoint of the
big-data analysis.

APPENDIX D: METAORDER-LENGTH
DISTRIBUTION FOR RTs

In Sec. IV B 1, we regard any trader as an RT when the
binomial test was not rejected with the significance level
θ = 0.01. In the standard theory of statistical tests, it is often
emphasized that passing tests does not necessarily mean the
acceptance (proof) of the null hypothesis, and we should not
draw hasty conclusions: the error of the first kind (false-
positive rate) is controlled within the significance level θ for
the rejection, but the error of the second kind (false-negative
rate) is not controlled for the “acceptance” in the statistical
tests. In this sense, while our clustering method is expected
to be reasonable in identifying the set of STs within the
significance level, the identification of the set of RTs might be
incomplete; some small part of non-RTs, such as STs, might
be included even in the RT cluster since we did not control the
error of the second kind.

While we acknowledge this possible incompleteness of
our clustering method for RTs, it would be helpful to check
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FIG. 14. Characters of metaorder-length distribution on RTs. (a) The metaorder-length (run-length) CCDF of all the RTs for Toyota Motor
Corporation in 2020. The run-length CCDF obeys the exponential law at least for the body part L � 10, such that P>(L) ∼ 21−L , as theoretically
expected. At the same time, we observed a theoretical discrepancy for the tail because the second-kind statistical error was not controlled in
our binomial test; a small portion of STs might be included in the RT cluster. (b) The empirical PDF P(L∗) of the decay length L∗ in our data
set, by assuming the exponential metaorder-length CCDF P>(L) ≈ (L∗)1−L for the RTs for each data point. The decay length L∗ is measured
by the maximum likelihood estimation (i.e., L∗ = 〈LRT〉). The PDF has a sharp peak around L∗ ≈ 1.8, consistent with the theoretical prediction
(D1). (c) The aggregated metaorder CCDF only for the active RTs (submitting more than 1000 orders annually), showing the exponential law
without fat tails for Toyota 2020. This is an empirically successful symptom of reducing the second kind’s error.

whether the set of RTs satisfies our theoretical expectation for
reference. If the assumption of the null hypothesis (i.e., the
symmetric Bernoulli process) is exactly correct, the CCDF of
the run lengths for RTs should be given by the exponential
distribution

P>(L) = 21−L (D1)

for any positive integer L. We check this character regarding
the RT clusters.

We studied the metaorder-length distribution for the RTs:
we consider the joint run-length sequences for RTs and the
corresponding empirical metaorder-length CCDF:{

LRT
k

}
k :=

⋃
i∈�RT

{
L(i)

k

}
k,

P>(LRT) := N>(LRT)∣∣{LRT
k }k

∣∣ ,

N>(LRT) :=
∫ ∞

LRT
dy

∑
k

δ
(
y − LRT

k

)
. (D2)

The empirical metaorder CCDF for the RTs is plotted in
Fig. 14(a) for Toyota Motor Corporation in 2020. This plot
shows that the metaorder CCDF exhibits the exponential law
P>(L) ≈ 21−L for the body part L � 10. In addition, the esti-
mated decay length L∗ shows a sharp peak around L∗ ≈ 1.8
based on the maximum-likelihood estimation L∗ = 〈LRT〉 for
the exponential law P>(LRT) ≈ (L∗)1−LRT

[see Fig. 14(b)].
This result shows a minimum self-consistency of our cluster-
ing algorithm with L∗ ≈ 2.0. At the same time, we observe the
discrepancy from the exponential law for the tail part L � 10.
This discrepancy is reasonable because we did not control the
statistical error of the second kind, and a small portion of STs
might be included in the RT cluster.

Improvement of our clustering algorithm is a future open
issue regarding the RTs, and applying some filters would

be desirable to control the second kind’s error. As an initial
attempt, we applied a simple filter by focusing only on active
RTs submitting more than 1000 market orders a year (i.e., a
few submissions everyday on average). We considered this fil-
ter a reasonable candidate, because a small portion of inactive
RTs seemingly submitted large metaorders only a few times
during the year while they behaved as RTs during most of the
time. The aggregated metaorder CCDF only for the active RTs
is plotted in Fig. 14(c) for Toyota 2020, where the discrepancy
at the tail disappears. We checked all the stocks in 2012 and
2020 by eye and found similar observations.

APPENDIX E: DETAILED IMPLEMENTATION
OF THE NONLINEAR LEAST SQUARES

In this Appendix, we describe the measurement of the
power-law exponent γ and the prefactor c0 in the sign ACF
C(τ ) � c0τ

−γ for large τ . Our methods are based on the
nonlinear least squares (NLLS) for the ACF and PSD.

1. NLLS estimators based on the sample ACF

We first describe the NLLS estimation for the empirical
ACFs. The basic idea is to systematically fix the fitting range
[τ−

th , τ+
th ], and then apply the power-law fitting C(τ ) ∝ τ−γ

(a)
NLLS

to the sample ACF for the range [τ−
th , τ+

th ] (see Fig. 15 for the
scheme). The detailed process is given as follows:

a. Step 1: The sample ACF

The sample ACF is defined by

Csample(τ ) := 1

Nε − τ

Nε−τ∑
t=1

ε(t )ε(t + τ ) (E1)

for positive τ > 0 by assuming the symmetry 〈ε(t )〉 = 0
for the range τ ∈ [1, 104]. This symmetric assumption is

043131-18



QUANTITATIVE STATISTICAL ANALYSIS OF … PHYSICAL REVIEW RESEARCH 5, 043131 (2023)

FIG. 15. Schematic figure of the ACF fitting based on the NLLS estimation for Toyota 2020. We used the orange area τ ∈ [τ−
th , τ+

th ] for the
fitting to obtain the power-law guideline with exponent γNLLS (solid black).

commonly used in other literature [18] and its validity is
also checked in our data set. For nonpositive τ , we define
C(τ ) = 0.

b. Step 2: The lower threshold

As reported in various data sets [3], the sample ACF ini-
tially exhibits a relatively rapid decay for small τ and the
power-law decay follows for large τ in our data sets. To
estimate the power-law exponent, it will be useful to estimate
the lower bound τ−

th for the final fitting regime. This threshold
is estimated as follows: let us first estimate the initial decay
timescale τtemp by using the NLLS fitting of the sample ACF
with tentative fitting function

Cmodel(τ ) = C(0)
tempe−τ/τtemp + C(1)

tempτ
−γ

(1)
temp (E2)

with the temporary fitting parameters C(0)
temp, C(1)

temp, τtemp, and

γ
(1)

temp for the range τ ∈ [1, 103]. These parameters are esti-
mated by the relative least-squares error (RLS) method (see
Appendix I).

Based of the tentative fitting formula (E2), we next
fix the lower threshold τ−

th between the exponential and

power-law decays as follows: since we would like to esti-
mate the lower threshold τ−

th that satisfies |C(0)
tempe−τ−

th /τtemp | 

|C(1)

temp(τ−
th )−γ

(1)
temp |, let us consider the area where the power-law

part is dominant:

Apow :=
⎧⎨
⎩τ

∣∣∣∣∣
∣∣∣∣C

(0)
tempe−τ/τtemp

C(1)
tempτ

−γ
(1)
temp

∣∣∣∣ < εth, 10 � τ � 102

⎫⎬
⎭ (E3)

with a small parameter εth := 0.1. The lower threshold τ−
th is

defined by

τ−
th :=

{
minApow τ if Apow is not empty,
102 if Apow is empty.

(E4)

c. Step 3: Logarithmic smoothing

The sample ACF exhibits fluctuations, particularly for
large τ , due to the finite sample size. To remove such statisti-
cal fluctuations, we define the smoothed sample ACF:

Csmooth(τ ) :=
∞∑

t=−∞
wδ (τ ; t )Csample(t ), wδ (τ ; t ) :=

⎧⎨
⎩

1

τ+
smooth(t ) − τ−

smooth(t )
[t ∈ (

τ−
smooth(τ ), τ+

smooth(τ )
)
],

0 [t 
∈ (
τ−

smooth(τ ), τ+
smooth(τ )

)
].

(E5a)

Since we are interested in the estimation of the power-law
exponent, we use the logarithmic smoothing based on

τ+
smooth(τ ) = �τ 10+δ/2�, τ−

smooth(τ ) = �τ 10−δ/2� (E5b)

with the smoothing window size δ = 0.05. This smoothing
method is a discrete-time version of logarithmic smoothing
for continuous time (see Appendix J).

d. Step 4: The upper threshold

It would be desirable to observe the power-law de-
cay in the region of about two digits on the log-log
ACF plot, such as by setting τ+

th = 102τ−
th . However, the

sample ACF will be statistically insignificant for very large
τ and such a naive setting of τ+

th might be inappropriate in
general.

Indeed, even if the order-sign sequence were generated in a
completely random manner (i.e., the white noise), the sample
ACF could take nonzero values, such that |C(τ )| � N−1/2

ε ,
due to statistical errors. In this sense, if the absolute values
of the sample ACF are smaller than N−1/2

ε , it is reasonable
that the values of the sample ACF are regarded as statistically
insignificant.

Based on this idea, we estimate an upper cutoff τ+
stat

in terms of the statistical significance. The area where the
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FIG. 16. Schematic figure of the PSD fitting based on the NLLS estimation for Toyota 2020. We used the orange area τ ∈ [ω−
th, ω

+
th] for the

fitting to obtain the power-law guideline with exponent HNLLS (solid black).

smoothed ACF is statistically significant is estimated by

Astat :=
{
τ

∣∣∣∣ Csmooth(τ ) <
1√
Nε

, 103 � τ

}
. (E6)

The upper cutoff τ+
stat for statistical significance is estimated

as

τ+
stat :=

{
minAstat τ if Astat is not empty,

104 if Astat is empty.
(E7)

Finally, the upper threshold for our final fitting τ+
th is given by

τ+
th := min{τ+

stat, 102τ−
th }. (E8)

e. Step 5: The determination of γ
(a)
NLLS

The power-law exponent γ
(a)

NLLS is finally estimated by the
RLS fitting of the smoothed ACF Csmooth(τ ) for the range
[τ−

th , τ+
th ] by the power-law fitting function

C(τ ) ∝ τ−γ
(a)
NLLS (E9)

with fitting parameters γ
(a)

NLLS.

f. Step 6: The determination of c(a)
0,NLLS

Finally, we determine c(a)
0,NLLS by integration5 of the

smoothed ACF Csmooth(τ ) as

c(a)
0,NLLS := (1 − γ

(a)
NLLS)(

τ+
th

)1−γ
(a)
NLLS − (

τ−
th

)1−γ
(a)
NLLS

∫ τ+
th

τ−
th

Csmooth(τ ′)dτ ′.

(E10)

2. NLLS estimation based on the sample PSD

We next describe the measurements based on the sample
PSD (see Fig. 16). According to [30], for γ ∈ (0, 1) [or equiv-

5The dimension of c(a)
0,NLLS is given by [time−γ ], which is auto-

matically consistent with the dimension analysis in this integration
method. In addition, the integration of the ACF has a global smooth-
ing effect, by which we expect that the estimation is more stable.

alently α ∈ (1, 2)], the theoretical PSD of the LMF model is
given by

S(ω) ≈
∫ ∞

0
dτe2iπωτ

(
Nα−2

ST

α
|τ |−γ

)
= c(s)ωγ−1, (E11)

c(s) = Nα−2
ST

α
2γ πγ−1
(1 − γ ) sin

(πγ

2

)
∼ ω−H , (E12)

H = 1 − γ = 2 − α for small ω, (E13)

where the Wiener-Khinchin theorem (17) is used. Similarly
to the ACF method, we apply the power-law fitting S(ω) ∝
ω−HNLLS to the sample PSD for the range [ω−

th, ω
+
th]. The fitting

range is automatically fixed as follows.

a. Step 1: The sample PSD

The sample PSD Ssample(ω) was estimated by the peri-
odogram method using scipy [35].

b. Step 2: Linear smoothing of the PSD

The sample PSD fluctuates due to the finite sample size.
We apply normal smoothing of the empirical PSD:6

Ssmooth(ω) :=
∞∑

ω=−∞
wδ (ω)Csample(ω),

wδ (ω) :=
⎧⎨
⎩

1

2δ + 1
(ω ∈ [ω − δ�ω, ω + δ�ω],

0 (ω 
∈ [ω − δ�ω, ω + δ�ω],

�ω = 1

Nε

(E14a)

with the smoothing window size δ = 5.

c. Step 3: The lower and upper thresholds

Let us determine the lower and upper thresholds ω−
th and

ω+
th. First, we describe the method to fix the lower thresh-

old ω−
th. The smoothed PSD Ssmooth(ω) fluctuates near the

lowest frequency ω ≈ �ω, and we discarded some of the
low-frequency data points. We set ω−

th = 15�ω.

6We used normal smoothing instead of logarithmic smoothing be-
cause we are interested in the low-frequency regime of the PSD.
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FIG. 17. Scatterplot between α and the NLLS estimator γNLLS for our data set based on the ACF method [upper panels, (a), (b)] and the
PSD method [lower panels, (c), (d)]. (a), (c) The full scatterplot between α and γNLLS. This figure illustrates that the NLLS estimator is actually
biased, particularly for α > 2. (b), (d) The boxplot between α − 1 ∈ (0, 1) and γNLLS. This boxplot shows an approximate linear relation but
shows the systematic deviation, as expected by the LMF simulations.

We next fix the upper threshold ω+
th. According to the

original LFM theory [10], the asymptotic relationship (E13)
is valid up to τ 	 |�TR| (or equivalently 2πω 
 |�TR|−1).
In our data set, the typical number of the splitting traders was
102 (see Sec. IV B 2). We therefore assume that ω+

th should be
set smaller than 10−3.

In addition, the PSD fluctuates for large frequency ω due to
the finite sample size. Let us define the half-bandwidth ωhalf

as the characteristic decay frequency of the PSD as

ωhalf := min
B

ω,

B := {ω∣∣Ssmooth(ω) < Smedian, 102�ω � ω � 103�ω}
(E15)

if B is not empty, where Smedian is the median of
{Ssmooth(ω)}ω∈[ω−

th,10−3]. Considering the possibility that B
might be empty in general, we set the upper threshold as

ω+
th :=

{
ωhalf if B is not empty,

103�ω if B is empty.
(E16)

d. Step 4: The determination of γ
(s)
NLLS

The Hurst exponent was estimated by the RLS fitting (see
Appendix I) to the smoothed PSD Ssmooth(ω) for the range
[ω−

th, ω
+
th], such that

S(ω) ∝ ω−HNLLS (E17)

with fitting parameter HNLLS. The NLLS power-law exponent
γ

(s)
NLLS is measured by the PSD method using the asymptotic

relationship (E13):

γ
(s)

NLLS := 1 − HNLLS (E18)

if HNLLS < 1.

Due to methodological artifacts, we sometimes obtain
HNLLS > 1, implying negative γ (i.e., a monotonically in-
creasing ACF, which does not make sense). Since this is an
obvious symptom of estimation failure, we excluded such data
points as exceptional handling.

e. Step 5: The determination of C(s)
NLLS

Finally, the ACF prefactor c(s)
0,NLLS is determined by the

integration of the PSD, such that

c(s)
0,NLLS := 2

(2π )γ
(s)
NLLS−1
(1 − γ

(s)
NLLS) sin

(
πγ

(s)
NLLS
2

)

× γ
(s)

NLLS

(ω+
th )γ

(s)
NLLS − (ω−

th )γ
(s)
NLLS

∫ ω+
th

ω−
th

duS(u). (E19)

APPENDIX F: THE SCATTERPLOT BASED
ON THE NLLS ESTIMATOR

For our data analysis in the main text, we focused on the
scatterplot between α and the naive estimator γunbiased. This is
because the NLLS estimator γNLLS has a statistical bias, and
the unbiased estimator γunbiased is a better basis for our study.
For reference, we show the scatterplot between α and γNLLS

for our data set as Figs. 17(a) and 17(c) for the ACF and PSD
methods, respectively. These figures illustrate that the naive
estimator γunbiased is actually biased due to the finite sample
size. For reference, we also show the boxplot in Figs. 17(b)
and 17(d) for the ACF and PSD methods, respectively. As
expected, the bias is much more serious for α > 2.
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FIG. 18. Robustness check of our statistical analysis. Our nine-year data set was split into three data sets from 2012 to 2014, from 2015 to
2017, and from 2018 to 2020. The unbiased estimator γunbiased agrees with the theoretical line γ = α − 1 for the three periods. The left (right)
panels are based on the ACF (PSD) methods.

APPENDIX G: ROBUSTNESS CHECK
OF OUR STATISTICAL ANALYSIS

In the main text, we tested the validity of the LMF pre-
diction γ = α − 1 by using the nine-year data. On the other
hand, it would be more scientifically sound to check its statis-
tical robustness. In this Appendix, we examined the temporal
robustness of the LMF prediction.

For the robustness check, the nine-year data set was split
into three data sets: (i) from 2012 to 2014, (ii) from 2015
to 2017, and (iii) from 2018 to 2020. We apply the same
method as in Sec. V to these three independent data sets to
test whether the LMF prediction holds for these three periods.
The results are summarized in Fig. 18 [see the left (right)
panels for the results based on the ACF (PSD) methods]. The
LMF prediction γ = α − 1 consistently holds for the three
independent periods, suggesting the statistical robustness of
our results. We have an impression that the goodness of fit
improved for the most recent data set (2018–2020), which

might be related to the increasing numbers of transactions,
particularly by the STs.

APPENDIX H: THE LMF UNBIASED ESTIMATOR
FOR THE TOTAL NUMBER OF SPLITTING TRADERS

This Appendix describes the detailed construction method
of an LMF unbiased estimator for the total number of STs,
NST. Based on either the ACF or PSD method, let γNLLS and
c0,NLLS be the NLLS estimators for the ACF power-law expo-
nent and the ACF prefactor as available quantities even from
public data. The LMF theory predicts that the total number
of traders NST is equal to the LMF estimator NLMF

ST (c0, γ ) :=
[(γ + 1)c0]1/(γ−1). We therefore study the relationship be-
tween the true value of log10(NST)1−γ and log10(NLMF

ST )1−γ .
The NLLS estimator is constructed as[

log10

(
NLMF

ST

)1−γ
]

NLLS
:= log10

[
1

(γNLLS + 1)c0,NLLS

]
.

(H1)
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1. Consistency for the infinite sample size

Let us check the consistency of the NLLS estimator by
assuming the LMF model with realistic parameters regarding
(NST, α). We performed the numerical simulations of the LMF
model for a sufficiently large sample size Nε = 108. We plot-
ted the true values of log10(NST)1−γNLLS for the vertical axis
and those of [log10(NLMF

ST )1−γ ]NLLS for the horizontal axis in
Fig. 19(a) [Fig. 19(f)] for the ACF method (the PSD method).
The figure shows the agreement between our numerical result
and the theory, supporting consistency of the NLLS estimator
[log10(NLMF

ST )1−γ ]NLLS.

2. Bias for the finite sample size

On the other hand, if we set realistic parameters regarding
(NST, α, Nε ) with Nε � 107, the numerical result in Fig. 19(b)
[Fig. 19(g)] shows systematic deviations from the theoretical
line. Indeed, let us apply the regression

log10 (NST)1−γNLLS = β3
[

log10

(
NLMF

ST

)1−γ ]
NLLS + β4. (H2)

We measured the values of (β3, β4) 100 times and took
their ensemble average as (〈β3〉, 〈β4〉) = (0.847, 0.058) for
the ACF method [(〈β3〉, 〈β4〉) = (1.117,−0.188) for the PSD
method]. See also Figs. 19(d) and 19(e) [Figs. 19(i) and
19(j)] for the histogram of (β3, β4) regarding the ACF
(PSD) method. This result implies that the NLLS estimator
[log10(NLMF

ST )1−γ ]NLLS is biased due to the finite sample size
effect.

3. Construction of unbiased estimators

We next construct the unbiased estimators
for log10(NST)1−γNLLS . The unbiased estimator
[log10(NLMF

ST )1−γ ]unbiased is constructed as[
log10

(
NLMF

ST

)1−γ
]

unbiased
:=β3

[
log10

(
NLMF

ST

)1−γ
]

NLLS
+ β4,

(H3)
which shows an approximate unbiasedness by definition,〈[

log10

(
NLMF

ST

)1−γ
]

unbiased

〉
≈ log10 (NST)1−γNLLS . (H4)

See Figs. 19(c) and 19(h) for the numerical check of the
unbiasedness for the LMF simulations. Figure 12 is based on
this approximate unbiased estimator [log10(NLMF

ST )1−γ ]unbiased.

APPENDIX I: NONLINEAR RELATIVE
LEAST-SQUARES METHOD

In our fitting, we use the nonlinear relative least-squares
(RLS) method, which is formulated as follows: let us consider
the data points {(τi, yi )}i=1,...,Ndat and consider the fitting func-
tion f (τ |p) with the parameters p := (p1, . . . , pK ). We fix the
optimal parameter p∗ as

p∗ = arg minpJRLS(p), JRLS(p) :=
Ndat∑
i=1

(
yi − f (τi|p)

f (τi|p)

)2

,

(I1)

where JRLS(p) is the cost function for the RLS method. Note
that the ordinary least-squares (OLS) method is formulated by

p∗ = arg minpJOLS(p), JOLS(p) :=
Ndat∑
i=1

[yi − f (τi|p)]2.

(I2)

Their difference comes from the cost functions between
JRLS(p) and JOLS(p).

We did not employ the OLS method because the tail of the
fitting function [i.e., f (τ |p) for large τ ] contributes much less
to the cost function than the head of the fitting function [i.e.,
f (τ |p) for small τ ]. Since we are interested in the power-law
exponent of the tail with f (τ |p) ≈ τ−γ for large τ , the contri-
bution from the tail should not be underestimated. To clarify
this point mathematically, let us rewrite the cost function of
the OLS as

JOLS(p) :=
Ndat∑
i=1

f 2(τi|p)

(
yi − f (τi|p)

f (τi|p)

)2

= Jweighted(p |{ f 2(τ |p)}τ ), (I3)

where we define the weighted cost function

Jweighted(p |{w(τ )}τ ) :=
Ndat∑
i=1

w(τi )

(
yi − f (τi|p)

f (τi|p)

)2

. (I4)

This representation highlights that the tail of the fitting func-
tion contributes much less to the cost function in the OLS
method since w(τ ) 
 w(0) for large τ . In contrast, the RLS
has a better character than the OLS because the contributions
to the cost function are theoretically expected to be the same
between the head and the tail. We note that the cost function
of the RLS method can be rewritten as

JRLS(p) = Jweighted(p |{1}τ ). (I5)

APPENDIX J: SMOOTHING ON THE LOGARITHMIC
TIME AXIS

Let us consider a smoothing method based on the logarith-
mic time. For simplicity, let us consider the AFC C(τ ) for the
continuous time τ ∈ (0,∞). If the ACF asymptotically obeys
the power-law decay C(τ ) ≈ C0τ

−γ , its log-log plot should be
linear as

ln C(τ ) ≈ ln C0 − γ ln τ. (J1)

Therefore, it is customary to plot the log-log plot of the ACF
to confirm the power-law decay. Based on this mathematical
fact, we consider a smoothing of the ACF in the logarithmic
time: by defining the logarithmic time x := ln τ , we introduce
a smoothed ACF for a given τ as

Csmooth(τ ) :=
∫ ∞

0
w̃δ (x(τ ); x′)C(τ (x′))dx′,

τ (x) := ex, τ (x′) := ex′
(J2)

with the weight function w̃δ (x; x′) and the smoothing window
size δ > 0. By assuming that w̃δ (x; x′) is uniform on the
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FIG. 19. Numerical study of the NLLS estimator [log10(NLMF
ST )1−γ ]NLLS based on the ACF (a)–(e) and PSD (f)–(j) methods for the LMF

simulations. The superscript X (a) (X (s)) signifies that the estimator is based on the ACF (PSD) method. (a) Consistency check of the ACF-NLLS
estimator for Nε = 108. The parameters (NST, α) are the same as in our data set. (b) The ACF-NLLS estimator is biased for Nε � 107. The
parameters (NST, α, Nε ) are the same as in our data set. (c) ACF-based unbiased estimator [log10(NLMF

ST )1−γ ]unbiased approximately shows the
unbiasedness as expected. (d), (e) Histogram of the regression coefficients (β3, β4) in Eq. (H2) for the ACF method. (f)–(j) Corresponding
figures for the PSD method.
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logarithmic time x as

w̃δ (x; x′) =
{

1
δ

(x′ ∈ [x − δ/2, x + δ/2)),
0 (x′ 
∈ [x − δ/2, x + δ/2)),

(J3)

we obtain the ACF formula of the logarithmic smoothing:

Csmooth(τ ) =
∫ x(τ )+δ/2

x(τ )−δ/2

dx′

δ
C(τ (x′)) =

∫ τe+δ/2

τe−δ/2

dτ ′

δτ ′ C(τ ′)

(J4)

with the variable transformation τ ′ := ex′
. This is equivalent

to

Csmooth(τ ) =
∫ ∞

0
wδ (τ ; τ ′)C(τ ′)dτ ′,

wδ (τ ; τ ′) :=
⎧⎨
⎩

1

δτ ′ (τ ′ ∈ [τ−
smooth(τ ), τ+

smooth(τ ))),

0 (τ ′ 
∈ [τ−
smooth(τ ), τ+

smooth(τ )))
(J5a)

with

τ−
smooth(τ ) := τe−δ/2, τ+

smooth(τ ) := τe+δ/2. (J5b)

Thus, Eq. (E5) is the natural extension of the smoothed ACF
formula for the discrete time τ .
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