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Quantum-classical hybrid information processing via a single quantum system
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Current quantum technologies bring a new integration of quantum data with classical data for hybrid pro-
cessing. However, the frameworks of these technologies are restricted to a single classical or quantum task,
which limits their flexibility in near-term applications. We propose a quantum reservoir processor to harness
quantum dynamics in computational tasks requiring both classical and quantum inputs. This analog processor
comprises a quantum network in which quantum data are incident to the network and classical data are encoded
via a coherent field exciting the network. We perform a multitasking application of quantum tomography and
nonlinear equalization of classical channels. Interestingly, the tomography can be performed in a closed-loop
manner via the feedback control of classical data. Therefore, if the classical input comes from a dynamical
system, embedding this system in a closed loop enables hybrid processing even if access to the external classical
input is interrupted. Finally, we demonstrate preparing quantum depolarizing channels as a quantum machine
learning technique for quantum data processing.
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I. INTRODUCTION

Recent advances in machine learning (ML) and quantum
computing have revolutionized the methodology of process-
ing complex and large-scale data. While merging these fields,
classical or quantum systems can generate a massive amount
of time series data, such as sensing data or quantum states that
flow through multiple quantum channels in a network of quan-
tum devices [1–3]. This context leads to the requirement of a
novel learning paradigm to process these data efficiently, such
as the easy manipulation used in training and deployment,
while maintaining rich representation capability. Currently,
algorithms are being designed on specific homogeneous data,
such as quantum-native or classical-native data. However,
most quantum devices rely on classical controls [4,5], such
as temperature or signals from electronic controllers [6,7].
The outputs of these devices are not simply derived from
quantum channels and are also considered a function of clas-
sical controls and quantum input. A representative example
is a quantum switch with classical control, which simulates
the indefinite causal order between two operations [8–12]
[Fig. 1(a)]. Therefore, the research on hybrid quantum and
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classical data processing can lead to broader and near-term ap-
plicability for quantum devices. For example, we can use the
same resource to learn the tomography of devices receiving
both classical and quantum data without doing it separately
for each control setting. Naturally, if the quantum or classical
data are fixed, one could opt for either a fully classical or fully
quantum approach when resources allow. However, when
faced with limitations in computational resources, time con-
straints, or physical components, employing a single system
for hybrid data becomes a more resource-efficient alterna-
tive compared to maintaining separate systems for classical
and quantum tasks. Moreover, the key advantage lies in its
capability to capture shared patterns with diverse types of
inputs, proving to be a more suitable candidate than either a
fully classical or a fully quantum approach for representing a
function of hybrid quantum-classical data.

We propose the concept of quantum-classical hybrid
information processing via the reservoir computing (RC)
framework. RC is based on modeling the transformation of
input sequences that employs nonlinear transformations to
emulate nonlinear functions [13–16]. RC consists of three
main parts: the input part to store the input, the reservoir,
and the readout part. The reservoir is a dynamical system
driven by input to encode recurrent relations and nonlinear
dynamics of the input history via sufficiently complex and
high-dimensional trajectories. The readout can extract acces-
sible observables in the reservoir, which are useful features
retained for emulating the target sequence. In general, the
connections between the input and the reservoir, and between
the reservoir and the output, are linear mappings. While the
reservoir can be viewed as a black box, these mappings are
controllable so that we can train them without interfering
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FIG. 1. A quantum reservoir (QR) processor for quantum-classical hybrid data processing. (a) An example of a quantum device with hybrid
inputs. We consider a quantum switch that includes two quantum channels NA and NB and an independent switch state ρ(s) controlled by a
classical signal s. This quantum switch can be considered a function of the hybrid input (s, β ) as S(NA,NB )(s, β ). Given a quantum state β,
S(NA,NB ) returns the state [NA ◦ NB(β )] ⊗ |0〉 〈0| if s = 0 and ρ(0) = |0〉 〈0| and [NB ◦ NA(β )] ⊗ |1〉 〈1| if s = 1 and ρ(1) = |1〉 〈1|. When
ρ(s) is in a superposition of |0〉 and |1〉, such as ρ(s) = |ψ (s)〉 〈ψ (s)| with |ψ (s)〉 = √

s |0〉 + √
1 − s |1〉 (0 < s < 1), the output becomes a

correlated state as a result of NA and NB acting on β in a superposition of two alternative orders. (b) Our QR is a network of quantum dots
that can receive both quantum and classical data as input. Quantum inputs are incident via optical fields, and classical inputs are encoded
in experimental control fields. The appropriate readout after a time evolution on QR can provide a high-dimensional transformation for both
classical and quantum inputs, which can be used in learning tasks.

with the reservoir’s internal parameters. This property makes
RC particularly suitable for physical implementations where
a physical system with rich dynamics can be a good candidate
for a learning system, which defines the framework of physi-
cal reservoir computing (PRC) [17,18].

The success and efficiency of PRC rely on good physical
realizations of the reservoir, which has attracted consider-
able interest from diverse research fields. The seminal work
Ref. [19] uses a disordered ensemble quantum dynamics sys-
tem as a quantum reservoir (QR) to process classical data,
with the possibility of having a large number of degrees of
freedom. QRs have been developed in various platforms, such
as nuclear magnetic resonance systems [19–21], supercon-
ducting quantum processors [22,23], fermions and bosonic
models [24–27], quantum oscillators [28–30], arrays of Ry-
dberg atoms [31], and photonic quantum memristors [32].
Several studies have focused on the processing of data in the
form of quantum states [24–26,33–35], which provide certain
advantages over classical ML methods. However, a QR is yet
to be treated as a homogeneous data-driven model because
it lacks the ability to deal with hybrid forms of quantum-
classical data. Therefore, a unified architecture for hybrid
quantum-classical processing is required from theoretical and
applied perspectives.

In this paper, we establish a framework that considers a QR
as an analog processor to process hybrid quantum-classical
data. Inspired by Refs. [24,25], our QR is a network of quan-
tum dots with random intersite couplings. While classical and
quantum inputs can be combined into a single quantum state

to be processed by a QR, this encoding method is generally
costly and can limit the flexibility of the QR due to the
constraints of the combination scheme. Our method aims to
provide a more flexible hybrid QR, where the pipelines for
quantum input and classical input can be separated. Specifi-
cally, the classical input is encoded into the uniform excitation
coherent field strength, which can be generated from a single
laser source to excite each site in the QR [36]. The input
quantum state is represented by the optical modes incident on
the QR, which couple for a short time with all sites. There-
fore, the incident state merges with the QR and influences its
dynamics. For temporal processing, each quantum input inter-
acts with the QR for a short duration before being replaced by
another input. The time evolution of the interactions provides
a high-dimensional nonlinear mapping of the input via the
correlations in the QR, which can be extracted by classical
or quantum readouts on accessible nodes. This enables us to
learn the function of the input sequence, leading to diverse
applications in classical and quantum data processing.

II. RESULTS

In this section, we describe our proposed QR for quantum-
classical hybrid information processing (Sec. II A). We then
present three main applications for reconstructing the function
of hybrid quantum-classical inputs. First, we demonstrate
that our framework can be used as a single computational
resource for multitasking by performing both the tomography
of a quantum channel and the equalization of a classical
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nonlinear channel (Sec. II A). While both equalization and
tomography tasks have been studied in classical [37] and
quantum RC approaches [25,34], this paper examines the
combination of classical and quantum input sequences,
leading to a solution via our framework. Second, we show
that quantum tomography can be performed in a closed loop
of classical control, enabling us to embed classical dynamics
via quantum dynamics and utilize it in hybrid processing
(Sec. II C). While closed-loop control is a common task
in classical RC approaches with classical data, our paper
defines it with the combination of the quantum task, paving
the way for using classical dynamics to generate interesting
patterns of quantum data. Finally, we demonstrate that the
QR can be used to prepare quantum channels with classical
control (Sec. II D). This final application is inspired by
the concept of using quantum reservoir computing (QRC)
to realize and compress quantum circuits in Ref. [38].
However, the key factor in our paper is the consideration of
hybrid quantum-classical input information, which was not
previously explored.

A. Quantum-classical hybrid information processing

When we describe a quantum device processing quantum
data in a realistic scenario, we must incorporate classical
control into the model. In this case, a quantum device is in
fact a function of quantum input β and classical control u as
F (u, β ), where we consider the scalar u for ease of explana-
tion. The QR can be used for both temporal and nontemporal
processing tasks of hybrid inputs. In temporal tasks, we are
given an input sequence (u1, β1), (u2, β2), . . . , (uL, βL ) to
predict the target sequence ŷ1, . . . , ŷL. Here, the target ŷl is
described via the temporal map F ({(ul , βl )}), which is a func-
tion of input history [34] and reflects the temporal dependency
between the output and input sequences. To solve this task,
the QR system needs an input-driven map that retains the
information of the input history. To reconstruct the target ŷl ,
the system includes a readout map h, where the output signal
yl is obtained from

yl = h(ul , βl ,μl−1), (1)

such that yl ≈ ŷl (l = 1, . . . , L). Here, μl−1 denotes the QR’s
internal quantum state before injecting the input (ul , βl ). We
note that μl−1 also depends on the input (ul−1, βl−1), forming
the recurrent relation from Eq. (1) and reflecting the depen-
dency between yl and the input history. In nontemporal tasks,
we only consider a specific input (ul , βl ), and the target is
not a sequence but a specific value corresponding to the given
input data.

The proposed framework contains three main parts: an
input part containing input modes to receive the data, a QR
processor to interact with inputs in a quantum evolution, and
a readout for further processing [Fig. 1(b)]. We consider the
QR processor as a two-dimensional lattice of N quantum dots,
represented by the Hamiltonian

Ĥ =
∑

i

Eiĉ
†
i ĉi +

∑
〈i, j〉

hi j (ĉ
†
i ĉ j + ĉ†

j ĉi )

+
∑

i

Qiĉ
†
i ĉ†

i ĉiĉi + P(t )
∑

i

(ĉ†
i + ĉi ), (2)

where ĉi, Ei, hi j , Qi, and P(t ) are the field operators, onsite en-
ergies, hopping amplitudes between the nearest neighbor sites,
nonlinearity strengths, and uniform time-dependent coherent
field strengths, respectively. P(t ) can be used to encode the
classical input u(t ) as P(t ) = P + Wu(t ), where P and W are
the constant coefficient and input scaling, respectively.

The dynamics of the combined quantum state ρ of the QR
as well as the input modes can be described by the quantum
master equation (we use the unit where Plank constant h̄ = 1):

ρ̇ = −i[Ĥ , ρ] + γ
∑

j

L(ĉ j )ρ + �(t − tinit )Âρ, (3)

where �(t ) = 1 for t � 0 and 0 otherwise. Here, Âρ =∑
k

γk

γ
L(âk )ρ + ∑

k, j W in
jk ([âkρ, ĉ†

j ] + [ĉ j, ρâ†
k]) represents

the cascade coupling between the input modes âk and the
QR [39]. The Lindblad superoperator L(x̂) is defined for any
arbitrary operator x̂ by L(x̂)ρ = x̂ρx̂† − 1

2 (x̂†x̂ρ + ρx̂†x̂).
In our numerical simulation, we evaluate ρ by numerically
solving Eq. (3). The density matrix ρ at each time t is
obtained by numerically integrating Eq. (3) starting from a
vacuum state. To represent the particle creation operator ĉ j ,
we use a finite cutoff in the particle number, which yields
a finite-dimensional Hilbert space. In the Fock space, the
density matrix can be represented in matrix form, and Eq. (3)
becomes a first-order differential equation. We solve this
equation using the JULIA package “DifferentialEquations”
[40].

We explain quantum-classical hybrid processing using the
proposed platform. First, the QR is excited only with the
uniform P for 0 � t < tinit and no incident quantum inputs.
We choose tinit such that the QR at time tinit reaches a steady
state. This setting ensures the echo state property [13] for the
reproducible computation, where the response to the same in-
put sequence is independent of the QR’s initial state. Then, the
quantum input β (described by the input modes âk) is incident
to the reservoir, and the classical input u(t ) = u is activated
at the same time. At time t1 = tinit + τ for time interval τ , an
appropriate and practical readout from the QR is performed
for nontrivial transformations of input data. We consider two
readout schemes: a linear combination of measurement results
on the accessible observables (classical readout) and the other
with a linear combination of quantum modes (quantum read-
out). The former is associated with a measurement process,
while the latter has been considered in a quantum neuromor-
phic platform for quantum state preparation [26].

For a nontemporal processing task, we repeat the above
procedure for every hybrid data instance (u, β ). For a tempo-
ral processing task, at tl = tinit + (l − 1)τ (l = 1, 2, . . .), the
classical input is switched to u(t ) = ul , and the quantum state
βl replaces the partial state in the input modes. Since the input
information is transferred into the QR during the interaction,
this scheme enables the memory ability, which is required in
temporal processing tasks.

In the classical readout, measuring the expectation val-
ues of the occupation numbers n j = 〈ĉ†

j ĉ j〉 can extract the
information from the QR to reconstruct F . A representative
application is quantum tomography, which reconstructs the
density matrix output of F via the linear regression model:
W outn + b ≈ YF [25,34]. Here, n = (n1, . . . , nK )� is the
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K-dimensional reservoir state for readout, YF is the real vec-
tor form to stack the real and imaginary elements of F , and
W out and b are the weight and bias parameters to be optimized
via the training (see Appendix A). In the classical readout,
multitasking is possible since the training cost is minimal for
independent training with different W out for different tasks.
If the measurement is performed after an interaction time
τ for the current input and right before the next input, the
dimensionality K is equal to the number of quantum dots N .
One can increase this dimensionality by performing measure-
ments at different timings in the interval τ , which is known
as the temporal multiplexing technique. Between two inputs,
we perform measurements at equal interval τ/V , forming the
dimensionality K = NV . Here, V is called the measurement
multiplexity. Another technique to increase the dimensionality
K is spatial multiplexing [20], where readout reservoir states
in different QRs are combined to learn the target.

In the quantum readout, the standard toolbox of linear op-
tical elements [41] enables us to generate M quantum output
modes Ĉm = ∑

j om j ĉ j via the unitary transformation with
complex coefficients om j . The output modes must satisfy the
commutation relations [Ĉm, Ĉ†

n ] = δmn, which impose the con-
dition

∑
j om jo∗

n j = δmn. Since the target is the quantum state,
the training process is not as simple as the one used for linear
regression on the accessible observables in the classical read-
out. Consider the separation of nonadjustable and adjustable
parameters in PRC, we assume that the parameters of Hamil-
tonian in Eq. (2) are random and not trainable. Instead, we
train interaction (W in

jk ) and readout ({om j}) coefficients such

that the quantum state described via {Ĉm} becomes the same
as the output of F (see Appendix I).

In the following numerical simulations, we consider
Ei/γ = 0, γk/γ = ∑

j (W
in
jk )2, with W in

jk being the input
weights randomly chosen from the interval [0.0, γ ]. The
hopping amplitudes hi j are randomly taken from a uniform
distribution in the interval [−γ , γ ] and are then normalized
such that the spectral radius, which is the largest modulus
of the eigenvalues of the matrix (hi j ), is equal to 1.0. If
we consider a large τ , the occupation numbers come back
to the steady state before the next input. If we perform the
readout measurements at this timing, we cannot obtain suf-
ficient information from the input. Therefore, we choose τ

such that n j (t ) are largely away from the steady values at
the timing before the next input is incident on the system.
In our experiments, we consider tinit = 5.0/γ and τ = 1.0/γ

(see Appendix B). For the tomography tasks via the training
of the classical readout (Secs. II B and II C), we assume that
there is no interaction between reservoir sites, i.e., Qi = 0.
For instance, in the case where ĉ j are fermionic fields, such a
nonlinear effect can occur. However, even without this effect,
the fermionic nature of the QR causes the occupation numbers
n j to be nonlinear functions of the input state. It is important to
note that the physical measurement process that produces the
nonlinear effect is already included in the classical readout
transformation in the QR. Hence, we can obtain a nonlinear
function of the input by processing the readout values nj in a
linear manner. This approach still achieves the main goal of
using a reservoir. We allow for the interactions (Qi/γ = 1.0)
in training the quantum readout, to enable the nonlinearity in

the QR without relying solely on the measurement process.
Here, the QR can be considered as a nonlinear bosonic lattice
with an interacting scheme. (Sec. II D).

B. Quantum tomography and the channel equalizer

We present an application of QR to hybrid tasks in which
quantum tomography and noise-free reconstruction of classi-
cal data are performed simultaneously. Consider a temporal
map F{(sl , βl )} where {sl} and {βl} are the sequences of
classical controls and quantum inputs, respectively. The to-
mography task learns the relation between Fl and {(sl , βl )}
for l � L and reconstructs Fl with l > L.

We assume that the density matrix of each Fl is a D × D-
dimensional matrix. In standard quantum tomography, a naive
approach would be to perform state tomography of Fl for
every l . However, this would require many repetition exper-
iments on copies of Fl , resulting in an O(D4) number of
measurements and the inversion of a huge (D4 × D4) linear
system for every l . By leveraging the temporal dependency
in F with the hybrid input {(sl , βl )}, our approach aims to
streamline the experimental protocol and minimize the im-
plementation cost of this task. Specifically, we assume that
the target state Fl = F{(sl , βl )} is accessible at l = 1, . . . , L
for training. It is worth noting that accessible full tomography
of the target is a common and necessary condition in imple-
menting supervised learning methods in quantum tomography
during the training phase. However, after the training process
is completed, we can reconstruct the target quantum state
using a single process of measurement in the QR, without
the need for full tomography with multiple identical copies
of the quantum state. Moreover, the QR can be applied to
different types of hybrid quantum maps F without the need to
reconfigure the measurement bases. Obviously, the QR cannot
learn this hybrid task without the information contained in
{sl}. Therefore, we further assume that the classical control
data are also accessible, although only in a distorted form
of a nonlinear transformation sl → ul . Since multitasking is
feasible in the classical readout, we can also reconstruct {sl}
from {ul}.

In the following example, we consider F as a quan-
tum switch with classical control [Fig. 1(a)]. Technically, a
quantum switch includes two quantum channels NA and NB

representing the operations by Alice and Bob, respectively,
and an independent switch state ρ(s) = |ψ (s)〉 〈ψ (s)| with
|ψ (s)〉 = √

s |0〉 + √
1 − s |1〉 (0 � s � 1). Signal communi-

cation between Alice and Bob is only restricted to a partial
order. However, the quantum switch can send the information
under the indefinite causal order of quantum channels [8–12].
Given a state β on which these channels act, the quantum
switch S (NA,NB) can be considered a function of hybrid
input (s, β ). Here, the quantum switch produces an output
[NA ◦ NB(β )] ⊗ |0〉 〈0| if s = 0 and [NA ◦ NB(β )] ⊗ |1〉 〈1| if
s = 1. When the switch state ρ(s) is in a superposition of |0〉
and |1〉 (0 < s < 1), the output becomes a quantum superpo-
sition of two alternative orders NA ◦ NB(β ) and NB ◦ NA(β ).

We use our QR to mimic the behavior of the quan-
tum switch applied to the input sequence. Given a delay
d , we demonstrate that the QR with current inputs βl
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and ul can utilize memory effects to reconstruct σl =
S (NA,NB)(sl−d , βl−d ) and sl−d . We consider NA and NB as
two depolarizing quantum channels (see Appendix C) and the
reconstruction of {sl−d} from {ul} as the nonlinear channel
equalization task. In wireless communication, signals sent
from the antenna of a transmitter are transmitted to a receiver
by following various paths while being reflected by structures
such as buildings. Consequently, the transmitted signal is
received with distortion due to the influence of noise added
during transmission and the difference in transmission time
depending on the path. Since this distortion depends on the
frequency (channel), it is necessary to remove the distortion
using an equalizer to demodulate the signal at the receiver.
This process is called channel equalization.

The idea of using RC to learn the channel equalization task
is presented in Ref. [37]. We further explain the essentials of
channel equalization in this paper, which is also used in our
paper. A sender wants to transmit a symbol sequence sl , which
is first converted into an analog envelope signal ql . Afterward,
the signal is modulated onto a high-frequency carrier signal
and transmitted. Once received, the signal is demodulated into
an analog signal ul , which is often corrupted by various factors
such as thermal noise, interfering signals, multipath propaga-
tion, and nonlinear distortion. Nonlinear distortion arises from
operating the sender’s power amplifier in the high-gain region
and is mitigated by running the power amplification below
the maximum level, resulting in significant energy loss. To
overcome signal corruption, the equalizing filter is applied to
the corrupted signal ul , generating an output yl that restores
sl as closely as possible. Finally, the equalized signal yl is
converted back into a symbol sequence ŝl . The quality of the
entire process is measured by the symbol error rate (SER),
which is the fraction of incorrect symbols. We further intro-
duce a delay d to demonstrate that our task requires nonlinear
effects and a memory to reconstruct sl−d .

In our numerical experiments, {βl} is an independent and
identically distributed (i.i.d.) sequence of one-qubit density
matrices, and {sl} is an i.i.d. discrete sequence of symbols,
where sl are symbols selected from {0, 1

3 , 2
3 , 1} with equal

probability. We assume that the QR can only access {βl} and
the distorted input {ul}, which is transformed from {sl}. We
use the linear and nonlinear channels from Refs. [37,42] for
the distortion:

el = 6sl − 3, (4)

ql = 0.08el+2 − 0.12el+1 + el + 0.18el−1 − 0.1el−2

+ 0.09el−3 − 0.05el−4 + 0.04el−5

+ 0.03el−6 + 0.01el−7, (5)

ul = ql + 0.036q2
l − 0.011q3

l + νl . (6)

Here, νl is an i.i.d. Gaussian noise with zero mean adjusted in
power to yield a signal-to-noise ratio as 24 dB.

In the training stage, we are given an input se-
quence {(u1, β1), . . . , (uL, βL )} and the target sequence
{(ŷ1, Ŷ 1), . . . , (ŷL, Ŷ L )} where ŷl = sl−d and Ŷ l is the real
vector form to stack the real and imaginary elements of σl .
Here, we consider the size of the training data set as T = 800.
The QR’s output is divided into two parts: the tomography

result Y l in the real vector form and the equalized result yl .
The training is performed to minimize the mean-square error
(MSE) between yl and ŷl , and Y l and Ŷ l over l = 1, . . . , L:

MSE = 1

L

L∑
l=1

(|yl − ŷl |2 + ‖Y l − Ŷ l‖2
2

)
. (7)

Here, we assume the access of some data at nonpositive
index s0, s−1, . . . and β0, β−1, . . . for meaningful expression
in Eq. (7). Since the QR’s output is constructed from the
linear combination of the occupation numbers n1, . . . , nK ob-
tained from the QR’s dynamics, the minimization of Eq. (7)
can reduce to the minimization of 1

L

∑L
l=1 |yl − ŷl |2 and

1
L

∑L
l=1 ‖Y l − Ŷ l‖2

2, independently. This multitasking prop-
erty is one of the advantages of the RC framework as we can
use the same reservoir resource to solve multitasks simultane-
ously.

In the testing stage, we are given an input sequence
{(uL+1, βL+1), . . . , (uL+T , βL+T )} to produce the output se-
quence {(yL+1,Y L+1), . . . , (yL+T ,Y L+T )}, where T = 200 is
the size of the testing data set. Each yl is converted back into a
nearest symbol ŝl ∈ {0, 1

3 , 2
3 , 1}, and Y l is transformed in the

density matrix form σ̂l with the consideration of a projection
to obtain a positive semidefinite matrix (see Appendix D).

The tomography testing performance is evaluated via the
root mean square of fidelities (RMSF):

RMSF =
√√√√(1/T )

l=L+T∑
l=L+1

F 2(σl , σ̂l ), (8)

where F (ρ, σ ) = Tr[
√√

σρ
√

σ ]. To evaluate RMSF, we
assume that we have access to full tomography for the cor-
responding target states σl . Here, RMSF is only calculated
to determine the appropriate values of model parameters and
is not necessary once the model parameters are fixed. The
equalization testing performance is evaluated via the SER:

SER = card({l | ŝl 
= sl−d})/T . (9)

Figure 2(a) illustrates a sequence of one-qubit quantum
inputs in the evaluation phase (upper panel) and a result for the
channel equalizer (bottom panel) with delay d = 1. Here, the
prediction and target sequences for the reconstruction of clas-
sical symbols {sl} are overlapped at almost all time steps. The
density matrix at each time step is represented as a real vector
by stacking the real and imaginary parts. Figure 2(b) depicts
that the quantum target sequence can be reconstructed well.
Here, in Fig. 2, we use N = 3 reservoir sites with P/γ = 0.1,
W/γ = 1.0, and the measurement multiplexity V = 8.

Figure 3 displays the RMSF of the tomography task and
the SER of the channel equalization task when we increase
the value of the delay d with different number of sites in
the QR. The performances drop significantly when d � 3,
implying the short-term memory (STM) property in the QR.
We further systematically evaluate the performance via the
RMSF (left axis) and SER (right axis) in Fig. 4(a) for different
N and W . A large value of W compared with hi j and W in

jk
leads to nonergodic behavior in the QR, i.e., a strong and
qualitative dependence on the initial state at tinit . In addi-
tion, in Appendix H, we further investigate the effects of the
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FIG. 2. Demonstration of the quantum tomography and the classical channel equalizer. (a) The upper panel shows a sequence of one-qubit
quantum inputs, and the bottom panel displays the result for the channel equalizer in the evaluation phase. The horizontal axes represent time
indices. In the upper panel, each quantum state at each time point is represented as a real vector, with the real and imaginary parts of the
density matrix stacked together. The range of values is indicated by the color bar. (b) The target and reconstructed tomography with N = 3
reservoir sites, P/γ = 0.1, W/γ = 1.0, and the measurement multiplexity V = 8. The vectorization of the quantum state at each time point
and the color bar are the same as in (a).

classical input in the reconstruction of the quantum input.
With a large W , the input state is incident with weak coupling
[|W in

jk | � |P(t ) = P + Wu(t )|] under a strong effect of the
classical input to the QR’s dynamics, which means that not
much information regarding quantum inputs can be retained
in the QR. In contrast, a small W reduces the memory effect
in reconstructing the previous classical input. This explains
the existence of a region of W for an optimal performance
(W/γ ≈ 1.0).

The left panel of Fig. 4(b) displays the RMSF of the to-
mography task when we increase the number N of reservoir
sites. In the right panel of Fig. 4(b), we further compare the
performance in the channel equalization task with the echo
state network (ESN) in classical reservoir computing under
the condition of the same number of computational nodes (see
Appendix A). Here, we set the input scaling as W/γ = 1.0
and use the QR with the measurement multiplexity V = 8;
therefore, the QR containing 16, 24, 32, 40, and 48 compu-
tational nodes corresponds to N = 2, 3, 4, 5, and 6 sites in
the reservoir. We confirm that with an appropriate setting of
the constant coherent field P, we can obtain almost the same
performance with the ESN in the channel equalization task.
The crucial factor here is that, using the same computational
resources, we can simultaneously perform both quantum and
classical tasks without having to carry them out separately
for each experimental setting. Our approach sheds light on

the design of unconventional computing frameworks that can
leverage a single resource to multitask with various types of
input data.

At the end of this section, we should note that there is no
direct classical access to the input quantum and output states
of the QR. Only the classical readout relies on the measure-
ments of the occupation numbers in the QR, which are then
used to construct the tomography of the target quantum state.
Therefore, we cannot compare our framework with other clas-
sical RC approaches in the context of quantum tomography.
However, assuming classical access to the quantum input, we
can perform a comparison with a classical baseline method.
We implemented a linear regression approach that directly
processes the input sequence of density matrices without us-
ing the reservoir dynamics. In this approach, we assume that
we have access to full tomography of the input states, which
is very costly and not required in our method. The reservoir
state is constructed directly from the vector form of the hybrid
input by stacking the real and imaginary parts of the density
matrix of the quantum input and the value of the classical
input. The training process is the same as our method. Under
the same setting of input sequences in Fig. 4(b), we obtained
an average RMSF over ten trials of 0.692 for the classical
baseline method. This is significantly lower than the RMSF
achieved by our method in Fig. 4(b). This result demonstrates
that our QR represents a high-dimensional and nonlinear

FIG. 3. The average RMSF of the tomography task (a) and the average SER of the channel equalization task (b) over ten trials when we
increase the value of the delay d . Here, we consider the QR with N = 2, 3, 4 sites in the reservoir.
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FIG. 4. Performance in the quantum tomography and classical channel equalizer. (a) The average RMSF and the average SER with shaded
error bars over ten trials. (b) Left: The average RMSF in the tomography task when we increase the number N of reservoir sites in the QR.
Right: Comparison between the average SER in the ESN and in our QR for the same number of computational nodes. In (b), we set the input
scaling as W/γ = 1.0 and the measurement multiplexity as V = 8 for numerical experiments; therefore, the QR with number of computational
nodes 16, 24, 32, 40, 48 corresponds to N = 2, 3, 4, 5, 6 sites in the reservoir.

transformation for hybrid input and outperforms the classical
baseline approach based on the linear transformation of the
input data.

C. Continuous variable quantum tomography
and the closed loop

We modify the situation in the tomography task where,
after the training phase, we were unable to access the in-
formation from the classical control sl . Surprisingly, owing
to the advantages of multitasking, our QR can autonomously
generate sl in a closed-loop manner while performing the to-
mography task with the hybrid input. In the training phase, sl

is learned in an open loop where we predict the next step sl+1

given the input ul = sl . After training, the prediction is used
as the classical input for the next step, forming a closed-loop
control without any external interventions. This model-free
prediction is well established in classical reservoir computing,
for example, to predict low-dimensional chaotic systems [37]
or large spatiotemporally chaotic systems [43]. Our demon-
stration combines the closed-loop setting with the quantum
tomography task, which is only effective in the QR setting.

We consider the quantum tomography of continuous vari-
able states. The target is to reconstruct the output Fl =
F{(sl , βl )} in the Wigner function form W (Fl ; xi, p j ) defined
on a grid of continuous variables xi and p j (Appendix D).
We use 300 randomly generated one-mode thermal states βl

and the periodic signals sl = 0.5 + 0.5 sin( lπ f
510 ) in the training

phase. The target Fl is created by applying the one-mode
squeezing operator to βl as

Ŝ(ξl ) = exp(ξl â
†â† − ξ ∗

l ââ), (10)

where ξl = sleiπ/4. Here, we consider that the cutoff Fock
space dimension (the effective dimension) of these continuous
variables states is Deff = 9.

Figure 5(a) shows examples of the control signals in the
training and closed-loop phase for f = 60. With W/γ = 0.8
and N = 3 sites, the control signal is almost reconstructed
perfectly for all time steps in the closed-loop phase. This QR
can efficiently reconstruct the Wigner function even without

accessing the control signal [Fig. 5(b)]. We further investi-
gate the stability of the closed-loop trajectories plotted in the
(sl , sl+10) plane [Fig. 5(c)]. The QR presents a stable embed-
ding of sinusoidal classical inputs if the trajectory can return
to the target after adding a small perturbation (green line)
into a predicted value, suggesting that our system successfully
learned the target attractor. We observe an appropriate setting
of input scaling W to obtain stable closed loops (W/γ ≈ 0.8).
Intriguingly, if we increase W/γ , for example to W/γ = 1.8,
the closed loop fails to reconstruct the trajectory of the sinu-
soidal input in the evaluation stage but can produce chaoticlike
behavior in the embedding space. In this case, the generated
trajectory is not elliptical as the trajectory of sinusoidal inputs
but still robust with respect to a small perturbation. We also
observe the dependency of the performance of closed-loop
control and the production of chaoticlike behavior on time
scales f of the control signals, which are investigated in
Appendix F.

D. Quantum readout and the depolarizing channel

We present an application using the quantum readout
scheme to output quantum states. We use the QR to prepare
a depolarizing quantum channel F{(sl , βl )} = sl I/D + (1 −
sl )βl , where {βl} are randomly generated in a D-dimensional
Hilbert space and {sl} is a random sequence in [0, 1].

First, we consider a sequence of 200 one-qubit quantum
states for the training and 100 states for the evaluation. The
baseline is computed when we set the output as the same as
the input. We use the Nelder-Mead simplex algorithm [44] to
minimize the fidelity error (see Appendix I for more details):

EF =
√√√√ 1

L

L∑
l=1

[1 − F (σl , σ̂l )]2, (11)

where σl and σ̂l are the target and preparing quantum states,
respectively. In Fig. 6(a), the evaluated fidelity errors with
different readout and training configurations are presented
for the QR with N = 2 sites, P = 1.0, and W = 2.0. The
interquartile range is contained within the box, and the 5th
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FIG. 5. Continuous variable tomography and closed-loop control of periodic classical signals. (a) Closed-loop control of classical signals
with N = 3, V = 10, P/γ = 1.0, and W/γ = 0.6, 0.8, and 1.0. (b) Continuous variable tomography at typical time steps in the closed loop
with W/γ = 0.8. The last panel displays the absolute difference between the target and reconstructed Wigner functions. (c) Stability after
adding a small perturbation to the trajectory for different input scaling W/γ .

and 95th percentiles are marked by whiskers. The median is
the line across the box, and the outliers are located outside the
whiskers of each box plot. Here, IN, RV, and ALL correspond
to the setting where only input modes âk , only reservoir modes
ĉ j , or both of them are considered as the readout nodes,
respectively. Wo and Wio correspond to the situation where
only readout weights or both readout weights and interaction
coefficients W in

jk are considered as the training parameters,
respectively. The result implies that the consideration of both
input and reservoir modes as NR readout modes and both
interaction coefficients and readout weights for training leads

to the best performance. Under this setting, we display the
variation in fidelity errors EF with the input scaling W/γ

and NR in Fig. 6(b). Even with a small QR (NR = 3, 4) we
can prepare the target channel with a relatively low error
(<2%), which is significantly better compared with the base-
line (≈8%). Furthermore, increasing W/γ basically leads to
a better performance where more information regarding the
classical input is integrated.

Finally, we prepare the depolarizing channel using the
input quantum states as random squeezed thermal states in
the continuous variable form. We minimize the cost function

FIG. 6. The error in training and evaluating the quantum readout to prepare the depolarizing quantum channel. (a) Combinations of readout
nodes and training parameters, where only input modes (IN), only reservoir modes (RV), or both of them (ALL) are considered as NR readout
nodes. The training parameters are readout weights (Wo) or both readout weights and interaction coefficients (Wio). (b), (c) Fidelity error with
one-qubit input states (b) and error taken in the Wigner representation with continuous variable states (c) varying with input scaling W/γ .
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taken in the Wigner representation as follows:

EW =
√√√√ 1

L

L∑
l=1

∑
i, j[W (σl ; xi, p j ) − W (σ̂l ; xi, p j )]2∑
i, j[W (σl ; xi, p j ) + W (σ̂l ; xi, p j )]2

. (12)

Owing to the scale limitation, we only simulate the continuous
variable states of the effective dimension Deff = 3, where
D = D2

eff = 9. Figure 6(c) presents the errors in 50 training
and 50 evaluating data varying with W . We can observe a
similar trend in Fig. 6(b); that is, with sufficient classical
information (W/γ � 1.0), the error EW (≈0.16) with NR = 3
readout nodes is significantly lower than the baseline’s error
(≈0.29). This result is still below a considerably good prepa-
ration (EW < 0.1), but it demonstrates that hybrid inputs can
be effectively considered for training the quantum readout.

III. DISCUSSION

We proposed a framework for an analog QR processor with
hybrid inputs and classical and quantum readouts for learning
heterogeneous quantum-classical data. This aligns well with
scenarios where one wishes to model a quantum device to pro-
cess quantum input but must rely on classical control signals
in physical experiments. Our framework, therefore, has the
potential to be physically implemented in quantum network
systems where classical control and quantum sources can
interact with nonlinear quantum systems to form a quantum
channel. It can help realize quantum adaptive systems capable
of quantum information processing. These agents can be used
to interpret and memorize both classical and quantum signals
from their environment and to respond accordingly to the
actions of their surroundings [45].

Processing hybrid quantum and classical data is a promis-
ing idea to facilitate future innovative use cases for quantum
computers. This concept aims to leverage the advantages of
quantum mechanics in ML with an unconventional comput-
ing framework and intriguing applications. It is not limited
to the conventional discussion on practical quantum advan-
tages, such as the “beating speedup” of quantum to classical
ML methods [46]. For example, classical readouts lead to
interesting applications of multitasking where quantum data
can be processed in a closed loop of the classical control.
Furthermore, adding this closed-loop mechanism allows us to
utilize the unique coherence properties of quantum systems to
generate unique classical dynamics. We consider the quantum
readout to avoid the measurement process of preparing the
quantum output. However, optimization is challenging and
requires improvement, since we need to simulate or drive the
quantum system and evaluate the cost function for a wide
range of parameters.

A further enticing discussion would be the case of the cor-
relation between the processing of quantum data and classical
data in a hybrid setting of the QR. We can consider a QR
to simultaneously process quantum data and classical data as
separate tasks. An intriguing research question arises: Can this
multitasking mechanism induce positive or negative effects on
information processing? For example, if we repeatedly mod-
ify the coherent field strengths of the QR via a classical input
with a large magnitude, it can limit the short-term memory
properties of quantum data processing (see Appendices G

and H). However, one can also expect positive effects and
not only negative ones. There may exist a situation where si-
multaneously processing different models of data can actually
create an optimal regime rather than solely solving a single
task. We can start by investigating relations between hybrid
input protocols with the dynamics of the QR, such as the
fact that the classical input may induce the dynamical phase
transition in the QR [47]. We can also study how classical
and quantum data are processed via the QR’s dynamics, such
as by decomposing the readout reservoir states in terms of
basis polynomials for input history [48,49]. Along this re-
search line, one can refer to a recent study demonstrating
that quantum noise in real quantum processors can induce the
information processing capability when using classical data
[50].

Finally, while our framework is general and applicable to
different types of quantum maps, its performance is only eval-
uated numerically. An intriguing theoretical research direction
pertains to a quantum version of the universal approximation
property (UAP) in RC [51]. The UAP refers to the ability to
find elements within the RC class (such as the ESN class) that
can closely approximate any fading memory map with arbi-
trary precision. Here, a fading memory map is a continuous
function that depends on a finite number of past inputs. In
the context of QRC with quantum or hybrid inputs, a similar
and intriguing question arises: Can we find elements within a
QRC class that can reconstruct arbitrary quantum channels?
We consider this to be an interesting and open question for
future research.

ACKNOWLEDGMENTS

The authors acknowledge Shumpei Kobayashi for fruitful
discussions. This work is supported by the Ministry of Ed-
ucation, Culture, Sports, Science, and Technology Quantum
Leap Flagship Program (Grants No. JPMXS0118067394 and
No. JPMXS0120319794).

APPENDIX A: RESERVOIR COMPUTING

Mathematically, RC is described by the input-driven map
g : U × X → X ⊂ RK , where U and X are the input and
the reservoir’s state space, respectively. Here, K is considered
the dimension of the reservoir’s state. If we feed a discrete-
time input sequence {. . . , u−1, u0, u1, . . .} into the reservoir,
the readout reservoir state xl is represented by the following
recurrent relation:

xl = g(ul , xl−1). (A1)

In temporal supervised learning tasks, we are given an
input sequence {u1, . . . , uL} and the corresponding target se-
quence ŷ = {ŷ1, . . . , ŷL}, where ŷk ∈ Rd with d the output
dimension. We consider a parametrized readout map hw :
X → Rd , where the output signal is yl = hw(xl ). The readout
map is often taken as a linear combination of the readout reser-
voir states as yl = hw(xl ) = w�xl . Here, w is the trainable
parameter obtained by minimizing the mean squared error

MSE = 1

L

L∑
l=1

‖yl − ŷl‖2
2, (A2)
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FIG. 7. The typical dynamics of the occupation numbers nj (t ) in the QR, represented by the amount of the input photons nj (t ) − nj (tinit )
entering the QR. The dynamics starts from t = 0 to tinit = 5.0/γ , where one-qubit quantum inputs are incident at tl = tinit + (l − 1)τ .

where ‖ · ‖2 denotes the Euclidean norm between two vectors
in Rd . For training, we add a constant bias term xl,K+1 = 1
to the readout reservoir state xl and optimize w via the linear
regression Ŷ = Xw. Here, Ŷ = [ŷ1 . . . ŷL]� is the L × d
target matrix and X is the L × (K + 1) matrix that combines
the readout reservoir states x1, x2, . . . , xL of the training data.
The optimal value of w is obtained via the Ridge regression
in the matrix form ŵ� = (X�X + ηI)−1X�Ŷ , where η is a
positive constant for the regularization.

An ESN is a realization of the input-driven map in RC.
It belongs to the concept of an artificial recurrent neural
network, as we have a large network with randomly fixed
inner and recurrent connections. Considering an ESN with N
computational nodes and a discrete-time input sequence {ul},
the reservoir state xl at time step l is described by

xl+1 = tanh(W inul+1 + W xl ),

where tanh(·) is the activation function applied on vector
x=(x1, x2, . . . , xK )� as tanh(x)=(tanh(x1), . . . , tanh(xK ))�.
Here, W in and W are the input weight matrix and recur-
rent weight matrix, respectively. In the channel equalization
task, the input weight matrix W in is generated from random

uniform distribution in [−1, 1]. We also set the connection
probability and the spectral radius of the recurrent weight
matrix W to 0.1 and 0.9, respectively.

APPENDIX B: DYNAMICS OF THE RESERVOIR’S
RESPONSE

The assumption that the QR reaches a steady state before
processing the input sequence is based on the assumption
of ergodicity, which means that the reservoir dynamics will
eventually relax to a unique steady state regardless of its initial
conditions. This assumption is difficult to validate theoreti-
cally, especially if the specifics of the reservoir dynamics are
unknown. In our paper, we validate the ergodicity assumption
by measuring the reservoir’s response and selecting a large
enough initial time tinit such that the QR at time tinit reaches a
steady state. For example, in Fig. 7(a), we show the dynamics
of the occupation numbers n1(t ), n2(t ), and n3(t ) compared
to the corresponding numbers at time tinit for N = 3 reservoir
sites with a constant classical input (W/γ = 0) and random-
ized quantum inputs of one-qubit quantum states. Here, we
see that at tinit = 5.0/γ the QR relaxes to the steady state
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for a wide range of P values. The dynamics from t = 0 to
t1 = 5.0/γ are solely driven by P, and the system reaches
an initial state before tinit . The first quantum input is incident
at t1 = tinit , where we can see that the occupation numbers
deviate from the steady states.

Furthermore, it is further important to set the interval τ . We
fix t1 = 5.0/γ and investigate the reservoir’s response with
different input intervals τ and different incoherent excitation
P. For large values of τ [Figs. 7(b) and 7(c)], the occupation
numbers return to their steady-state values before the next
input is incident on the system. If we perform the readout
measurements at this timing, we cannot obtain sufficient infor-
mation from the input. Therefore, we choose τ such that nj (t )
deviates significantly from their steady values at the timing
before the next input is incident on the system [Fig. 7(a)]. In
our experiments, we consider γ τ = 1.0.

APPENDIX C: QUANTUM SWITCH

In the classical counterpart, a switch is an operation of
control that can route a target system through two classical
channels CA and CB in series following one causal order (CA

then CB) or the other (CB then CA). The quantum switch is
different in that it induces entirely new quantum trajectories
where the order of the two operators is indefinite. Technically,
a quantum switch includes two quantum channels NA and NB

to create a new channel S (NA,NB), which uses the channels
NA and NB in an order that is entangled with an independent
switch quantum state ρ(s). Given a quantum input β, the
channel S (NA,NB) returns the state [NA ◦ NB(β )] ⊗ |0〉 〈0| if
s = 0 and ρ(0) = |0〉 〈0| and [NB ◦ NA(β )] ⊗ |1〉 〈1| if s = 1
and ρ(1) = |1〉 〈1|. When ρ(s) is in a superposition of |0〉 and
|1〉, the channel returns a correlated state as a result of NA and
NB acting on β in a superposition of two alternative orders.

To describe S (NA,NB), we denote the Kraus operators of
channels NA and NB as {K (A)

i } and {K (B)
j }, respectively, where

NA(β ) = ∑
i K (A)

i βK (1)†
i and NB(β ) = ∑

j K (B)
j βK (2)†

j . The
Kraus operators of S (NA,NB) are defined as

Wi j = K (A)
i K (B)

j ⊗ |0〉 〈0| + K (B)
j K (A)

i ⊗ |1〉 〈1| . (C1)

The action of the quantum switch is given by

S (NA,NB)[β ⊗ ρ(s)] =
∑
i, j

Wi j[β ⊗ ρ(s)]W †
i j . (C2)

In our paper, we consider NA and NB as two depolarizing
channels with parameters qA and qB, which are given by

NA(β ) = (1 − qA)β + qA
I

D
= qA

D2

D2∑
i=0

UiβU †
i , (C3)

NB(β ) = (1 − qB)β + qB
I

D
= qB

D2

D2∑
j=0

VjβV †
j , (C4)

where D × D is the dimension of β and {Ui}D2

i=1 and {Vj}D2

j=1
are orthonormal bases of the space of D × D matrices. Here,
we introduce the notation U0 = D

√
1−qA√
qA

I and V0 = D
√

1−qB√
qB

I .
We define the extension Kraus operators for NA and NB as
K (A)

i =
√

qA

D Ui for i = 0, 1, . . . , D2 and K (B)
j =

√
qB

D Vj for j =
0, 1, . . . , D2, respectively. We can express the Kraus operators
of S (NA,NB) as

Wi j =
√

qAqB

D2
(UiVj ⊗ |0〉 〈0| + VjUi ⊗ |1〉 〈1|). (C5)

We consider the control state ρ(s) = |ψ (s)〉 〈ψ (s)|, where
ψ (s) = √

s |0〉 + √
1 − s |1〉 (0 � s � 1). The output of the

quantum switch is given by

S (NA,NB)[β ⊗ ρ(s)] = A00 ⊗ |0〉 〈0| + A01 ⊗ |0〉 〈1| + A10 ⊗ |1〉 〈0| + A11 ⊗ |1〉 〈1| , (C6)

where

A00 = s
qAqB

D4

D2∑
i=0

D2∑
j=0

UiVjβV †
j U †

i = sNANB(β ), (C7)

A01 = A10 =
√

s(1 − s)
qAqB

D4

D2∑
i=0

D2∑
j=0

UiVjβU †
i V †

j (C8)

=
√

s(1 − s)

(
qAqB

D2
β + qA(1 − qB)

I

D
+ qB(1 − qA)

I

D
+ (1 − qA)(1 − qB)β

)
, (C9)

A11 = (1 − s)
qAqB

D4

D2∑
i=0

D2∑
j=0

VjUiβU †
i V †

j = (1 − s)NBNA(β ). (C10)

APPENDIX D: LEARNING QUANTUM TOMOGRAPHY

A quantum device can be described by a function of
quantum input β and classical control u as F (u, β ), where
we consider the scalar u for ease of notation. Given a
sequence of hybrid inputs (u1, β1), (u2, β2), . . ., and a quan-
tum device with a time-dependent behavior, we can describe it

using the temporal map Fl = F ({(ui, βi )}i=1:l ) of the current
and past inputs [34]. We assume that we have full tomography
for the corresponding output states of F in the training, where
we are given a hybrid input sequence {(u1, β1), . . . , (uL, βL )}
and the corresponding target sequence ŷ = {ŷ1, . . . , ŷL}. Here,
ŷl is the real vector form of Fl . If Fl is described by the
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density matrix, ŷl is formed by stacking the real and imagi-
nary elements of F (βl ). In the evaluation stage, we are given
an input sequence {(uL+1, βL+1), . . . , (uL+T , βL+T )} with the
corresponding target {σ̂L+1, . . . , σ̂L+T }, where σ̂i = F (ui, βi ).
The output sequence is {yL+1, . . . , yL+T }, which is rearranged
in the matrix form {σ ′

L+1, . . . , σ
′
L+T }. To obtain the final

positive semidefinite matrix σi, we project σ ′
i onto the spectra-

hedron such that the trace of σi is equal to 1 and the Frobenius
norm of σi − σ ′

i is minimized [52,53].
Tomography learning can be performed with other forms

of Fl , for example, in the Wigner function representation
of continuous variable states. Given a density matrix σ , the
continuous variable states associated with σ can be described
by the Wigner function

W (σ ; xi, p j ) =
∫

dy

2π

〈
xi + y

2

∣∣∣∣σ
∣∣∣∣xi − y

2

〉
e−iyp j , (D1)

where the integral is evaluated in the whole space and the
states |xi ± y

2 〉 represent continuous position bases. We evalu-
ate Wigner functions on a 61×61 grid of xi and p j , where we
divide the interval [−3, 3] into 60 equal intervals for the range
of xi and p j . The target of continuous variable tomography
is to reconstruct these Wigner functions, i.e., the real 61×61
dimensional matrices.

APPENDIX E: NONTEMPORAL CONTINUOUS
VARIABLE QUANTUM TOMOGRAPHY

In this demonstration, we consider the quantum tomogra-
phy of continuous variable states in a nontemporal setting. We
evaluate the tomography for three settings Fcv-amp,Fcv-phase,
and Fcv-sw, of the quantum map F (s, β ), given a one-mode
quantum input β and a classical input s.

For Fcv-amp and Fcv-phase, we consider a random sequence in
[0, 1] of {sl}l=1:200 and a random sequence of one-mode ther-
mal states {βl}l=1:200 and take the index of l = 1, . . . , 100 for
the training and l = 101, . . . , 200 for the evaluation. Here, we
consider one-mode thermal states βl as Gaussian continuous
variable states with the density matrices

βl = σl for σl = 1

1 + vl

∞∑
n=0

(
vl

1 + vl

)n

|n〉 〈n| , (E1)

where |n〉 represents the state corresponding to n photon num-
bers, and vl is the expectation value of the photon number in
the state. We consider vl = [rl cos(φl )]2, where rl and φl are
taken randomly in [0.0, 0.3] and [0.0, π ], respectively. The
quantum maps Fcv-amp and Fcv-phase are defined as

Fcv-amp(s, β ) = Ŝ[ξamp(s)]βŜ[ξamp(s)]†, (E2)

Fcv-phase(s, β ) = Ŝ[ξphase(s)]βŜ[ξphase(s)]†, (E3)

where S (ξ ) is the one-mode squeezing operator, defined as
S (ξ ) = exp(ξ â†â† − ξ ∗ââ). Here, we consider ξ as functions
of classical data s defined as

ξamp(s) = s exp(iπ/4), ξphase(s) = 0.3 exp(i2πs). (E4)

For the quantum map Fcv-sw, we consider the same {sl} but
random one-mode squeezed-thermal states

βl = Ŝ (ξl )σl Ŝ (ξl )
†, (E5)

where σl is defined as in Eq. (E1) and ξl = rl sin(φl ). The
quantum map Fcv-sw is defined as the quantum switch with
the input βl and the switch state

|ψ (sl )〉 = √
sl |α〉 +

√
1 − sl |−α〉 , (E6)

where α = 2.5 with the following coherent states:

|±α〉 = exp

(
−|α|2

2

) ∞∑
n=0

(±α)n

√
n!

|n〉 . (E7)

Figure 8(a) shows several examples of input, target, and re-
construct Wigner functions for Fcv-phase (upper panel), Fcv-amp

(middle panel), and Fcv-sw (lower panel). Here, we use N =
4-site QR with a measurement multiplexity V = 10 and a
constant coherent field strength P/γ = 1.0. The columns la-
beled “(Hybrid)” and “(Quantum only)” describe the results
when we consider the input scaling W/γ = 1.0 (both classi-
cal and quantum inputs) and W/γ = 0.0 (no classical input),
respectively. We observe that if both of quantum and classical
inputs are included in the QR, the reconstructed states are very
similar to the target states of the quantum maps with hybrid
quantum-classical input.

To further evaluate the performance systematically, we cal-
culate the error based on the Wigner representation

EW =
√√√√ 1

T

L+T∑
l=L+1

∑
i, j[W (Fl ; xi, p j ) − Ŵ (Fl ; xi, p j )]2

∑
i, j[W (Fl ; xi, p j ) + Ŵ (Fl ; xi, p j )]2

,

(E8)

where W (Fl ; xi, p j ) and Ŵ (Fl ; xi, p j ) are the target and
reconstructed Wigner functions of the state Fl = F (sl , βl ),
respectively. The error metric is evaluated in the evaluation
phase with L = 100 and T = 100.

Figure 8(b) depicts the errors to reconstruct the quantum
maps Fcv-phase (orange lines) and Fcv-amp (blue lines) at dif-
ferent input scaling W with N = 2 (upper plot) and N = 3
(lower plot). The errors are calculated over ten trials of data
and QR configurations, with the solid lines depicting the aver-
age values associated with error bars. We observe an optimal
range of input scaling W for optimal performance in each task.
We note that setting a too small value of W limits the effect
of the classical input into the QR. In contrast, setting a too
large value of W will impose the localization in the quantum
dots and may lead to nonergodic behavior in the QR. In this
case, when the input state βl is incident on the QR with weak
coupling (|W in

jk | � |P + W sl |), sufficient information regard-
ing βl cannot be extracted from the QR.

Figure 8(c) depicts the errors EW (blue lines labeled “Full-
train”) to reconstruct the quantum map Fcv-sw. We can observe
that the effect of input scaling W is not significant as in other
tasks. We further present an intriguing setting by limiting
the variety of the classical input in the training phase while
keeping the same data in the evaluating phase. In the results
labeled “Bin-train,” we only consider binary classical data in
the training phase, i.e., sl ∈ {0.0, 1.0} for l = 1, . . . , 100. The
performance is worse since there is no superposition of the
switch state in the training phase to help the learning of the
quantum switch. However, for trivalues of sl ∈ {0.0, 0.5, 1.0}
(labeled “Tri-train”) in the training phase, only one pattern of

043127-12



QUANTUM-CLASSICAL HYBRID INFORMATION … PHYSICAL REVIEW RESEARCH 5, 043127 (2023)

FIG. 8. (a) Examples of input, target, and reconstruct Wigner functions in the nontemporal continuous variable tomography for Fcv-phase

(upper panel), Fcv-amp (middle panel), and Fcv-sw (lower panel) by N = 4-site QR with a measurement multiplexity V = 10 and a constant
coherent field strength P/γ = 1.0. The columns labeled “(Hybrid)” and “(Quantum only)” describe the results with the input scaling W/γ =
1.0 (both classical and quantum inputs) and W/γ = 0.0 (no classical input), respectively. (b) Variation in the tomography error EW for
Fcv-phase (orange line) and Fcv-amp (blue line) with the input scaling W and N = 2, 3-site QR. (c) Variation in the tomography error EW
for Fcv-sw and N = 2, 3-site QR. In the results labeled as “Full-train,” we consider a random sequence in [0, 1] of {sl}l=1:200 and a random
sequence of one-mode thermal states {βl}l=1:200 with the index of l = 1, . . . , 100 for the training and l = 101, . . . , 200 for the evaluation. In
the results labeled “Bin-train” and “Tri-train,” only binary or trivalues classical data in the training phase are considered, i.e., sl ∈ {0.0, 1.0}
(for “Bin-train”) and sl ∈ {0.0, 0.5, 1.0} (for “Tri-train”) for l = 1, . . . , 100.

the superposition switch state is considered in the training;
we can obtain a relatively low error with a suitable range of
input scaling W . For example, the performance at W = 0.2 is
comparable with the performance of “Full-train” at W = 0.02.
These results demonstrate that tomography for the quantum
switch can be performed with limited patterns of training data.

APPENDIX F: TIME SCALES OF THE CLASSICAL INPUT

In Sec. II C, we demonstrated an intriguing problem in
predicting the future evolution of the continuous variable
quantum tomography of hybrid inputs The performance de-
pends on the prediction of the next step of the classical control
signals, forming a closed-loop control without any external
interventions.

We notice the dependency of the performance on the time
scales of the classical control signals, where the classical
inputs with higher frequencies f (lower timescales) basically
lead to better performance. We analyze the effect of pertur-
bation to investigate the stability of the embedded classical
trajectories. Figure 9 shows the output dynamics of both the

target and perturbed prediction trajectories in the closed-loop
phase plotted in the (sl , sl+10) plane for different values of f
and W/γ . After the training phase, we add a small perturba-
tion into the predicted value, which results in an extra drift in
the (sl , sl+10) plane (green line). The reservoir presents a sta-
ble embedding of sinusoidal classical inputs if the trajectory
can return to the target one after the addition of the perturba-
tion. We observe appropriate ranges of input scaling W/γ and
f to obtain stable closed loops. Furthermore, if we increase
the input scaling W/γ , the closed loop fails to reconstruct
the trajectory of sinusoidal inputs but can produce chaoticlike
behavior in the embedding space. Intriguingly, the generated
trajectory is not elliptical as the trajectory of sinusoidal inputs
but is still robust with respect to a small perturbation.

To characterize the activity of the QR, we observe the
dynamics of the average occupation numbers n̄(t ) over reser-
voir sites at different f and input scaling W [left panels
in Fig. 10(a)]. In the presence of periodic classical inputs
(W/γ > 0.0), an oscillatory response is superposed on the
intrinsic dynamics of the quantum input without the classical
input (W/γ = 0.0). We further calculate the autocorrelation
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FIG. 9. Stability after adding a small perturbation to the trajectory. The QR presents a stable embedding of sinusoidal classical inputs if
the trajectory can return to the target after adding a small perturbation (green line) into the predicted value. We observe appropriate ranges of
input scaling W and f to obtain stable closed loops. There is an intriguing observation that if we increase the input scaling W/γ the closed
loop fails to reconstruct the trajectory of sinusoidal inputs but can produce chaoticlike behavior in the embedding space.

function of each frequency f averaged across all the reservoir
sites:

C(τc) = 1

N

N∑
j=1

〈(n j (t ) − 〈n j (t )〉)[n j (t + τc) − 〈n j (t )〉]〉,

(F1)

where the angular brackets denote a time average. Here, C(0)
depicts the total variance in the fluctuations of the occupation

numbers in the reservoir sites, whereas C(τc) with τc > 0
provides information about the temporal structure of the reser-
voir activity. In the right panels of Fig. 10(a), we plot the
autocorrelation for one trial of the QR’s configuration and
data at different f and input scaling W . With no classical
input (W/γ = 0.0), the autocorrelation function decays to the
values around zero as τc increases. This implies that temporal
fluctuations are uncorrelated over large time intervals, which
is due to the effect of random quantum inputs and disordered
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FIG. 10. (a) The dynamics of the average occupation numbers n̄(t ) over N = 3 reservoir sites (left panel) and the autocorrelation for
one trial of the QR’s configuration and data (right panel) at different f and input scaling W/γ . (b) The average values of autocorrelation
zero-crossing times over ten trials of the QR’s configurations and input data for each combination of W/γ ∈ {0.0, 0.2, . . . , 1.8, 2.0} and
f ∈ {10, 20, . . . , 90, 100}.
dynamics in the QR. When the QR is driven by sinusoidal
classical inputs, we observe that the periodic activity induced
by these inputs is superposed on the background of the quan-
tum inputs.

We define the timescale of the QR as the first τc such
that C(τc) crosses the zero line, which can be understood as
the first time interval where the temporal temporal fluctua-
tions are uncorrelated. This zero-crossing time depends on
the spontaneous activity of the QR and the timescale of the
external classical input. We plot in Fig. 10(b) the average
values of zero-crossing times over ten trials of the QR’s con-
figurations and input data for each combination of W/γ ∈
{0.0, 0.2, . . . , 1.8, 2.0} and f ∈ {10, 20, . . . , 90, 100}. In the
presence of external classical inputs (W/γ > 0.0), if the zero-
crossing times are larger than those of no classical inputs
(W/γ = 0.0), we observe bad performance in reconstructing
the classical trajectories (Fig. 9). These results imply that
the timescales of the QRs without classical inputs should be
larger than the timescales induced by classical inputs. These

timescales can be modified by adjusting the constant coherent
field P and the input scaling W .

APPENDIX G: QUANTUM MEMORY CAPACITY

In Sec. II B, we present the results of tomography for the
quantum switch, which requires the information of previous
input signals. The performance of this task depends on the
amount of memory from previous inputs that the classical
readout can retrieve from the reservoir.

In the conventional RC, we evaluate the STM property
of the reservoir via the delay-reconstruction task for recon-
structing the previous input. Given a time delay d � 0 and a
uniform random input sequence {un}, the target of this task
is to produce the output sequence {yn} such that {yn} can
approximate the target sequence {ŷn = un−d}. For each delay
time step d , the readout part is trained to remember the input
sequences at delayed d-time steps. The performance is evalu-
ated by the square of the correlation coefficient C(d ) between
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the output and delayed input sequences [14] as follows:

C2(d ) = cov2({yn}, {un−d})

var({yn})var({un})
. (G1)

Here, cov(·) and var(·) denote the covariance and variance
function, respectively. The STM property represents that this
C2(d ) is sufficiently small at large values of the delay d . C2(d )
is defined as the memory function to characterize the memory
profile of the reservoir. Furthermore, the memory capacity
(MC) of the reservoir is given by

MC =
∞∑

d=0

C2(d ). (G2)

In our paper, we consider the concept of quantum mem-
ory capacity (QMC) [34] to measure the ability of the QR
to reconstruct the previous quantum inputs via the classical
readout. We investigate the quantum version of STM in the
QR via the quantum version of the delay-reconstruction task
F (un = 0, βn) = βn−d given the delay d , where classical in-
puts are zero. Since the input and output are quantum states,
the capacity to reconstruct the previous d steps of the input
states is evaluated via the square of the distance correlation
[54] between the output {σn} (obtained via the training of the
classical readout) and the target {σ̂n} = {βn−d}:

R2(d ) = V2({σn}, {βn−d})√
V2({σn}, {σn})V2({βn}, {βn})

. (G3)

Here, V2({ρn}, {σn}) represents the squared distance covari-
ance of random sequences of density matrices {ρn} and {σn}.
The squared distance covariance V2({ρn}, {σn}) is calculated
from all pairwise distances A(ρ j, ρk ) and A(σ j, σk ) for j, k =
1, 2, . . . , n, where the distance A(ρ, σ ) = arccos F (ρ, σ ) for
given density matrices ρ and σ is defined as the angle induced
from the fidelity F (ρ, σ ) = Tr[

√√
σρ

√
σ ]. We construct the

distance matrices for {ρn} and {σn} as (Rjk ) and (S jk ) with
the elements Rjk = A(ρ j, ρk ) and S jk = A(σ j, σk ). We take all
double centered distances

r j,k = Rj,k − R̄ j. − R̄.k + R̄.., (G4)

s j,k = S j,k − S̄ j. − S̄.k + S̄.., (G5)

where R̄ j. and R̄.k are the jth row mean and the kth column
mean, respectively, and R̄.. is the grand mean of the distance
matrix (Rjk ) (the same notations for S). The squared distance
covariance is the arithmetic average

V2({ρn}, {σn}) = 1

n2

n∑
j=1

n∑
k=1

r j,ks j,k . (G6)

R2(d ) gives information about the serial dependence be-
tween {σn} and {σ̂n} = {βn−d}. Here, 0 � R2(d ) � 1 and
R2(d ) = 1 if we can find some linear transformation from the
output sequence {σn} to the target sequence {σ̂n}. In contrast,
R2(d ) = 0 implies that the system cannot reconstruct the
previous d steps of the inputs because the output and the target
sequences are completely independent. We define R2(d ) as
the quantum memory function of the QR via tomography
learning with the classical readout. Consequently, the QMC

is defined as

QMC =
∞∑

d=0

R2(d ). (G7)

Figure 11 presents a demonstration for the quantum
memory function and quantum memory capacity, where we
consider {βn} as a random sequence of one-qubit input states
with 400 time steps for the training and 100 time steps for
the evaluation. Figure 11(a) displays the values of RMSF, and
Fig. 11(b) displays the quantum memory function R2(d ) for
N = 3-site QR at several values of uniform excitation P(t ) =
P. We perform the tomography task with V = 5 measurement
multiplexity, which means that the dimension of the reservoir
state is V N = 15. The STM property depends on the value
of P, where the memories at d < 5 dominate all the regions
and converge to almost the same value at a sufficiently large
d . This value is nonzero owing to the effect of the finite data
length.

We further plot the dependency of QMC on the coher-
ent field strength P in Fig. 11(c) at N = 2, 3-site QR. Here,
Eq. (G7) is calculated until the maximum delay dmax = 40.
We observe an optimal region of P (2 � P < 10), where
the QMC is favorable. To explain this behavior, we further
analyze the dynamics of the occupation numbers n j (t ) in
the reservoir sites. Figure 11(d) plots the absolute differ-
ence |n̄(t ) − n̄(tinit )| between the average element n̄(t ) of the
reservoir states at initial time tinit = 5/γ and an arbitrary
t (0 � γ t � 15). This difference approaches zero as t ap-
proaches tinit . The quantum input is incident to the QR at γ t =
5, 6, 7, . . . , 14, 15, which increases the value |n̄(t ) − n̄(tinit )|
before decreasing it until the next input. We anticipate that
increasing the magnitude of the coherent field strength P
compared with hi j in Eq. (2) may lead to nonergodic behavior
in the QR, i.e., a strong and qualitative dependence of expec-
tation values on the initial state at tinit . Furthermore, the input
state βl is incident to the QR with weak coupling (|W in

jk | �
|P|) in this case. Therefore, sufficient information regarding
βl cannot be extracted from the QR as |n̄(t ) − n̄(tinit )| ≈ 0.
In contrast, a small P(t ) strongly drives the system from
the steady state at the input-injecting timing but reduces the
memory effect of the QR in reconstructing past information
since the old information is replaced very quickly.

APPENDIX H: EFFECTS OF CLASSICAL INPUT ON
THE RECONSTRUCTION OF QUANTUM INPUT

In the main text, we considered the target function, which
is a function F of hybrid inputs (u, β ). In this case, infor-
mation of both the classical input u(t ) and quantum input
β(t ) is retained in the reservoir states. Since the classical
input u(t ) is encoded into the strength of the coherent field
P(t ) = P + Wu(t ), the classical input and input scaling W/γ

have a strong effect on the dynamics of the QR. If the target
function F does not depend on the classical input u(t ), then
the injection of u(t ) into the QR may affect the reconstruction
of F .

In this section, we verify this observation by investigat-
ing the memory capacity. Given a sequence of hybrid inputs
{un, βn}, we use our QR in a multitask setting with the
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FIG. 11. (a) The RMSF of the STM task varying by the delay d and (b) the quantum memory function R2(d ) for N = 3-site QR at several
values of uniform excitation P(t ) = P. The tomography task is performed with V = 5 measurement multiplexity and a random sequence of
one-qubit input states with 400 time steps for the training and 100 time steps for the evaluation. (c) The dependency of QMC on the coherent
field strength P at N = 2, 3-site QR. The QMC is averaged over ten random trials with displayed error bars. (d) The absolute difference
|n̄(t ) − n̄(tinit )| between the average occupation numbers n̄(t ) at initial time tinit = 5/γ and an arbitrary t (0 � γ t � 15) varying by P/γ . The
quantum input is incident on the QR at γ t = 5, 6, 7, . . . , 14, 15, which increases the value |n̄(t ) − n̄(tinit )| before decreasing it until the next
input.

classical and quantum delay-reconstruction tasks mentioned
in the previous section. Given a delay d , we consider the delay
reconstruction of the classical input {un−d} in the classical task
and the delay reconstruction of the quantum input {βn−d} in
the quantum task. We compute the corresponding MC and
QMC for the classical and quantum tasks, respectively.

Figure 12 displays the dependency of MC and QMC on
the input scaling W/γ for N = 3, 4-site QR with a constant
coherent field strength P/γ = 1.0. Here, we consider the ran-
dom uniform {un} for classical inputs and {βn} as a random

FIG. 12. The dependency of MC and QMC on the input scaling
W/γ for N = 3, 4-site QR with a constant coherent field strength
P/γ = 1.0. We consider the random uniform {un} for classical inputs
and {βn} as a random sequence of one-qubit states for quantum inputs
with 800 time steps for the training and 200 time steps for the eval-
uation. The tomography task is performed with V = 8 measurement
multiplexity, and MC and QMC are calculated until the maximum
delay dmax = 20. The solid lines and the shaded areas indicate the
median values and the confidence intervals (one standard deviation)
calculated in the ensemble of ten random trials of the input sequence
and the QR’s configuration, respectively.

sequence of one-qubit states for quantum inputs. To attain the
same setting that was used in the task described in Fig. 2 in the
main text, we perform the tomography with V = 8 measure-
ment multiplexity and use 800 time steps for the training and
200 time steps for the evaluation. We compute the MC and
QMC until the maximum delay dmax = 20. The result demon-
strates that the QMC is reduced when the random classical
input is introduced into the QR with increasing input scaling
W/γ > 0. For a relatively large W/γ > 1.0, both MC and
QMC decrease owing to the localization effect with a large
strength of the coherent field P(t ) = P + Wu(t ). However,
at W/γ � 1.0, we observe a tradeoff relation between MC
and QMC. Here, increasing W/γ from zero can help improve
the MC but reduce the QMC. This observation implies that
this QR may not perform well if the target function does not
depend on the classical input, and the fluctuation of classical
inputs has a strong effect on the QR dynamics. However, if
the target function is the function of the classical and quantum
input, we can use the tradeoff of MC and QMC to adjust W/γ

for an optimal performance.

APPENDIX I: TRAINING THE QUANTUM READOUT

In the classical readout, the training process is simply a
linear regression of measurement results to target data, such
as the tomography of the quantum state. However, it is more
complicated in the quantum readout since the target is the
physical quantum state. We can keep the inner parameter
fixed and train readout parameters and the interaction be-
tween the reservoir and the input. We rely on the fact that
any unitary matrix that describes the mixing between op-
tical modes can be implemented with linear optics devices
such as phase shifters and beam splitters [41]. Therefore, we
can implement the combination of the transmitted fields to
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generate M quantum output modes Ĉm = ∑
j om j ĉ j with com-

plex coefficients om j . The output modes must satisfy the
commutation relations [Ĉm, Ĉ†

n ] = δmn, which impose the con-
dition

∑
j om jo∗

n j = δmn.
Let us consider θ as the vector of transformed real

parameters for the interaction coefficients {W in
jk } and read-

out coefficients {om j}. Given L training data with hybrid
inputs {(ul , βl )} and target quantum states σ̂l , the cost func-
tion Lθ ({(ul , βl ), σ̂l}L

l=1) evaluates the difference between the
quantum states {σl}L

l=1 described via {Ĉm} and the target quan-
tum states {σ̂l}L

l=1. In our numerical simulations, Lθ is defined
via the fidelity error [Eq. (11)] or the error taken in the Wigner
representation [Eq. (12)]. Here, Lθ becomes a nonlinear func-
tion of parameters θ. We find the optimal θ such that Lθ is

minimized. Several methods can be used for this nonlinear
optimization problem, and we use the Nelder-Mead simplex
algorithm [44], which is fast and effective for problems with
a large number of parameters. The algorithm starts from an
initial guess for the parameters and generates a simplex in the
multidimensional parameter space. In each iteration, the cost
function is evaluated at each point in the simplex. Under a
selecting and replacing procedure, the points in the simplex
with the worst value of the cost function are reconstructed
for each step until a convergence condition is satisfied. In our
simulation, we use the JULIA framework [40] for simulating
the quantum master equation and the built-in function with
default parameters in the OPTIM package for the Nelder-Mead
algorithm.

[1] H. J. Kimble, The quantum internet, Nature (London) 453, 1023
(2008).

[2] C. Simon, Towards a global quantum network, Nat. Photon. 11,
678 (2017).

[3] S. Wehner, D. Elkouss, and R. Hanson, Quantum internet: A
vision for the road ahead, Science 362, eaam9288 (2018).

[4] L. Viola, E. Knill, and S. Lloyd, Dynamical decoupling of open
quantum systems, Phys. Rev. Lett. 82, 2417 (1999).

[5] D. Dong and I. R. Petersen, Quantum control theory and appli-
cations: A survey, IET Control Theory Appl. 4, 2651 (2010).

[6] J. P. G. van Dijk, E. Kawakami, R. N. Schouten, M. Veldhorst,
L. M. K. Vandersypen, M. Babaie, E. Charbon, and F.
Sebastiano, Impact of classical control electronics on qubit
fidelity, Phys. Rev. Appl. 12, 044054 (2019).

[7] D. Rist, S. Fallek, B. Donovan, and T. A. Ohki, Microwave
techniques for quantum computers, IEEE Microwave Mag. 21,
60 (2020).

[8] G. Chiribella, Perfect discrimination of no-signalling channels
via quantum superposition of causal structures, Phys. Rev. A
86, 040301(R) (2012).

[9] L. M. Procopio, A. Moqanaki, M. Araújo, F. Costa, I. A.
Calafell, E. G. Dowd, D. R. Hamel, L. A. Rozema, Č. Brukner,
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L. M. Procopio, Č. Brukner, and P. Walther, Experimental ver-
ification of an indefinite causal order, Sci. Adv. 3, e1602589
(2017).

[11] K. Goswami, C. Giarmatzi, M. Kewming, F. Costa, C.
Branciard, J. Romero, and A. G. White, Indefinite causal order
in a quantum switch, Phys. Rev. Lett. 121, 090503 (2018).

[12] K. Wei, N. Tischler, S.-R. Zhao, Y.-H. Li, J. M. Arrazola, Y. Liu,
W. Zhang, H. Li, L. You, Z. Wang, Y.-A. Chen, B. C. Sanders,
Q. Zhang, G. J. Pryde, F. Xu, and J.-W. Pan, Experimental
quantum switching for exponentially superior quantum commu-
nication complexity, Phys. Rev. Lett. 122, 120504 (2019).

[13] H. Jaeger, The “echo state” approach to analysing and train-
ing recurrent neural networks—with an erratum note, Bonn,
Germany: German National Research Center for Information
Technology GMD Technical Report (2001), Vol. 148, p. 13.

[14] H. Jaeger, in Short Term Memory in Echo State Networks (GMD-
Forschungszentrum Informationstechnik, 2001), Vol. 5, p. 60.

[15] W. Maass, T. Natschläger, and H. Markram, Real-time com-
puting without stable states: A new framework for neural
computation based on perturbations, Neural Comput. 14, 2531
(2002).
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