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Compact inductor-capacitor resonators at sub-gigahertz frequencies
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Compact inductor-capacitor (LC) resonators, in contrast to coplanar waveguide (CPW) resonators, have a
simple lumped-element circuit representation but usually call for sophisticated finite-element method (FEM)
simulations for an accurate modeling. Here we present a simple analytical model for a family of coplanar LC
resonators where the electrical properties are directly obtained from the circuit geometry with a satisfying ac-
curacy. Our experimental results on ten high-internal-quality-factor resonators (Qi � 2 × 105), with frequencies
ranging from 300 MHz to 1 GHz, show an excellent consistency with both the derived analytical model and
detailed FEM simulations. These results showcase the ability to design sub-gigahertz resonators with less than
2% deviation in the resonance frequency, which has immediate applications, for example, in the implementation
of ultrasensitive cryogenic detectors. The achieved compact resonator size of the order of a square millimeter
indicates a feasible way to integrate hundreds of microwave resonators on a single chip for realizing photonic
lattices.
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I. INTRODUCTION

Superconducting quantum circuits (SQC) provide a ver-
satile platform of quantum engineering that has led to
groundbreaking results in quantum-microwave communi-
cation [1–4], computation [5–9], simulation [10–18], and
sensing [19–26]. Besides the celebrated Josephson effects, the
rapid development of this field may be largely attributed to
the wide application of coplanar waveguides (CPWs) [27–29],
especially CPW resonators, which are ubiquitous throughout
the SQC technology.

A CPW resonator is essentially a transmission line with
short- or open-circuit boundary conditions. They can be mod-
elled analytically, and are flexible in design and relatively
simple to fabricate [29–31]. In SQC, the CPW resonators have
a physical size comparable to or larger than the wavelength
of the microwave field, λ ≈ 20 mm at 5 GHz, making them
particularly useful for circuits resonating in the microwave
(1–100 GHz) regime. However, at sub-gigahertz frequencies,
the relative permittivity of typical low-loss substrate materials,
such as Si with εr ≈ 11.9, implies a CPW resonator to have
a length of roughly 100 mm. Such a large structure shown
in Fig. 1 (top) leads to severe limitations on the number
of resonators that can be fit on a single chip. Winding the
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waveguide into a spiral shape may be a convenient solution in
certain cases [32–37], but it also raises new challenges such as
impedance matching and grounding over such a long distance
[38–41]. Other issues, such as coupling to the parasitic modes
of the sample holder [42], should also be treated with extra
care to design a huge structure.

An alternative, but less explored way for making supercon-
ducting resonators, is to use the lumped-element circuits such
as the interdigital capacitors (IDCs) and meander-line induc-
tors (MLIs). These circuits have a compact physical size being
much smaller than the wavelength of the microwave field
[43–50], as shown in Fig. 1 (bottom). The lumped-element
inductor-capacitor (LC) resonators can be well described by a
simple lumped-element parallel or series circuit consisting of
an inductor L and a capacitor C. The mode volume is compact
but the measured internal quality factor is still comparable
to that of an CPW resonator [43]. Besides, the impedance is
also easy to adjust in a large range, whereas that of a CPW
resonator is normally upper bounded by approximately 377 �

[50]. However, estimating the precise values of L and C in
a lumped-element resonator is generally challenging without
using the finite-element method (FEM), which hinders their
applications in SQC. The FEM simulations are especially
resource-intensive for the lumped-element circuits, where the
fine structures should be taken good care of with fine-enough
mesh size. Furthermore, numerical results provide little in-
tuition on how to adjust the geometry to obtain the desired
values of L and C, respectively. Thus there is a great need
in lumped-element-resonator design to estimate the electrical
properties from the circuit geometry using convenient analyt-
ical equations, as explicitly called for in the recent studies of
SQC [48,49].
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FIG. 1. Example of a CPW resonator (top) and a compact
inductor-capacitor (LC) resonator (bottom) with an lowest resonance
frequency of 1 GHz. Blue color indicates superconducting thin-film
metal viewed from the top and white color denotes regions where the
metal is etched away, exposing the substrate below the metal. Both
resonators are coupled to a transmission line on the left of the struc-
ture. The width and gap (gap and width) of the capacitor (inductor)
element in the LC resonator are chosen as 22 and 3 µm, respectively,
for the ease of fabrication. The center-conductor width and gap of
the CPW resonator are 10 and 6 µm, respectively, for achieving a
50-� characteristic impedance, yielding the total electrical length of
59 mm.

Although the values of L and C should be fully deter-
mined from the circuit layout, an accurate estimation of them
is available only in simple cases. Fortunately, practical ap-
proximations for certain structures can already be found in
the existing literature on microwave engineering [51–57].
It is therefore possible to model a compact LC resonator
by synthesizing these early works in the specific context
of SQC. In this study, we are particularly interested in the
coplanar structures, such as MLIs and IDCs, as they are
straightforwardly compatible with the thin-film technology
used in SQC [51–57]. We first scrutinize the most use-
ful design rules of MLIs and IDCs into compact analytical
equations, and verify them in the typical parameter range
of SQC via FEM. We then apply this knowledge to design
sub-gigahertz LC resonators without FEM, with resonance
frequencies ranging from 300 MHz to 1 GHz and impedances
from 30 to 60 �. Subsequently, we implement the designs
with one-step laser lithography and measure two samples at
the cryogenic temperature of roughly 30 mK. Our experi-
mental results show an excellent agreement with both the
analytical model and the FEM simulations. These results pro-
vide a systematic study of compact LC resonators in SQC,
and hence fill the sub-gigahertz frequency gap in the de-
sign of superconducting microwave resonators. The compact
size and the high internal quality factor of the realized LC
resonators is expected to advance the development of ultrasen-
sitive microwave bolometers and calorimeters [22–26]. The
achieved square-millimeter footprint also indicates a feasible
way to build a large microwave resonator array on a sin-
gle chip for quantum information processing and quantum
simulations [58].

II. MEANDER-LINE INDUCTOR (MLI)

We consider a MLI which is made of a superconducting
meandering wire. The current going through the wire creates
a magnetic field that inhibits the change of the current itself,

FIG. 2. Illustration of self and mutual inductances for a MLI.
(a) The self-inductance of a single metal strip with width s, length
l , and thickness t . (b) The mutual inductance between two parallel
strips with a gap of w. Here, the circuit can be visualized as a
solenoid which is formed by the parallel wires and the ground at
an infinitely far distance. Depending on the direction of the currents
flowing through the two wires, I1 = ±I2, the mutual inductance can
be either positive or negative.

corresponding to a self-inductance, Ls [Fig. 2(a)]. Because of
the meander-line geometry, the magnetic fields generated by
local parallel lines may also contribute to each other and lead
to a mutual inductance, Lm [Fig. 2(b)]. We therefore describe
the total inductance of the MLI element as

L = Ls + Lm. (1)

The mutual inductance can be either positive or negative de-
pending on the direction of current in the two parallel lines.
The sign of Lm is determined by the so-called flux linkage,
which is formally defined by an integral of the magnetic
field over a Riemann surface bounded by the entire circuit.
A simple visualization of the flux linkage is to imagine a
returning current at an infinitely far distance, such that the
two wires and the returning current forms a solenoid, as
schematically shown in Fig. 2(b). The rule of thumb is to take
the positive (negative) sign when the current in two parallel
lines under consideration are pointing in the same (opposite)
direction [52].

A. Self-inductance

In this section, we illustrate the self-inductance calcula-
tion with a simple geometry which leads to exact analytical
solutions [51]. Here, a current I is flowing along the z axis
in a cylindrical conductor of radius R and length l . The
magnetic field at an arbitrary position r in the xz plane out-
side the conductor can be calculated with the Biot-Savart
law

B(r) = μ0I

4π

∫ l

0

d ẑ × (r − z)

|r − z|3

= μ0I

4π

(
l − z

x
√

x2 + (l − z)2
+ z

x
√

x2 + z2

)
ŷ, (2)

where x̂, ŷ, and ẑ are the orthonormal Cartesian unit vectors,
and μ0 = 4π × 10−7 H/m is the permeability of free space.
The magnetic flux penetrating the xz plane along the length of
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the conductor is thus

�ext =
∫ ∞

R
dx

∫ l

0
dzB(r)

= μ0I

2π

[
l ln

(
l + √

l2 + R2

R

)
+ R −

√
l2 + R2

]

≈ μ0Il

2π

[
ln

(
2l

R

)
− 1

]
, (3)

where we have assumed l � R in the last row for sim-
plification. This flux gives rise to the external part of the
self-inductance

Lext ≈ μ0l

2π

[
ln

(
2l

R

)
− 1

]
. (4)

Inside the wire and under the low-frequency condition,
we assume that the current is uniformly distributed over the
cross section. This is valid for thin films where either the
thickness t or the width s of the thin film is comparable to the
London penetration depth, λ. The current that flows within a
round-shaped cross section of radius x is thus Ix2/R2. The fact
that I flows in the z direction indicates that the magnetic field
must be parallel to the xy plane, while the symmetry argument
indicates that the field lines form circles centered at thez axis.
In this regard, we simply apply Ampère’s law and obtain

B(x) = μ0Ix

2πR2
ŷ. (5)

We can therefore calculate the so-called flux linkage as

�int =
∫ R

0
dx

∫ l

0
dz

x2

R2
B(x) = μ0Il

8π
, (6)

and therefore the internal part of the self-inductance

Lint = μ0l

8π
. (7)

Here, the factor x2/R2 is introduced in the integral because
the magnetic field created by the enclosed current, Ix2/R2,
does not occupy the entire cross section of the wire [51]. It is
this factor that distinguishes the concept of flux linkage from
the physical magnetic flux through a simple surface. These
two concepts are equivalent to each other by introducing an
appropriately chosen Riemann surface. In a N-turn solenoid,
for example, such a Riemann surface is bounded by the wind-
ing wire, leading to the flux generated by a single turn to
thread the circular cross section N times, thus enhancing the
flux linkage. Here, we may visualize the factor, x2/R2, as a
fractional number of turns that the magnetic field penetrates
the surface.

In total, we have the self-inductance of the wire as

Ls = Lint + Lext ≈ μ0l

2π

[
ln

(
2l

R

)
− 3

4

]
. (8)

We note that the above equation does not take the Meißner
effect into consideration. A more detailed calculation of the
internal part of the self-inductance and the kinetic inductance
can be found in Appendix B.

We express the total self-inductance, Ls, in a slightly dif-
ferent form as

Ls = μ0l

2π

[
ln

(
2l

rGMD

)
− 1 + rAMD

l

]
, (9)

where rGMD = e−1/4R and rAMD = R are the geometric and
algebraic mean distances between all the points inside the
cylinder wire, respectively [51,52]. We note that Eq. (8) can
be recovered in the limit R � l . Conveniently, Eq. (10) may
be generalized to conductors with an arbitrary cross section.
In SQC, we are particularly interested in coplanar circuits
compatible with thin-film technology. For a single metal strip
of width s, length l , and thickness t , as shown in Fig. 2(a),
we have rGMD ≈ e−3/2(s + t ) and rAMD = (s + t )/3 [51,52].
Thus we express the self-inductance as [52,53]

Ls ≈ μ0l

2π

[
ln

(
2l

s + t

)
+ 1

2
+ s + t

3l

]
. (10)

For zero-thickness thin film (t → 0), we have

Ls ≈ μ0l

2π

[
ln

(
2l

s

)
+ 1

2
+ s

3l

]
. (11)

Assuming that l/s > 2.23, the reciprocal term in the above
equation is 10 times smaller than the logarithmic term, and
can be fairly neglected. Taking the partial derivative of L with
respect to l and s, respectively,

∂Ls

∂l
≈ μ0

2π

[
ln

(
2l

s

)
+ 3

2

]
, (12)

∂Ls

∂s
≈ − μ0

2π

l

s
, (13)

we find that Ls is more sensitive to the changes in l than in s
for l/s < 3.42.

B. Mutual inductance

In addition to self-inductance, currents flowing in parallel
lines lead to mutual inductance. Here, we consider two paral-
lel wires of equal length, l , which are separated by a gap of w.
We define the pitch distance wp as the distance between the
centres of the two wires. The mutual inductance is given by
[52,53]

Lm(l,wp) = ±μ0l

2π
Q(l,wp), (14)

where

Q(l,wp) = ln

[
1 +

√
1 +

(wGMD

l

)2
]

− ln
(wGMD

l

)

+
[

wGMD

l
−

√
1 +

(wGMD

l

)2
]
. (15)

Besides, wGMD is the geometric mean distance of the two con-
ductors, which can be well approximated as the pitch distance,
wGMD ≈ wp, in normal cases [53]. The positive (negative)
sign is chosen if the current in the two lines are pointing in the
same (opposite) direction [52]. We observe from the above
equation that the absolute value of the mutual inductance,
|Lm|, increases when decreasing wGMD owing to the increase
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of the flux linkage. Surprisingly, as pointed out by Ref. [53],
the mutual inductance Lm does not depend on the conductor
width s.

We note that the above results are valid for two identical
parallel conductors with the same width s and length l , where
wp = s + w. For a more general case, where the two conduc-
tors have the same width, s, but different lengths, l1 and l2, we
have

2Lm(l1, l2,wp) = Lm(l2 + l3,wp) + Lm(l1 − l3,wp)

− Lm(l3,wp) − Lm(l1 − l2 − l3,wp).
(16)

Here, we have assumed that l1 � l2 and the end of the second
conductor is shifted by l3 compared with the first one. Another
situation is that the two conductors have the same length l
but different widths, s1 and s2. A careful calculation of the
geometric mean distance, wGMD, indicates that [54]

ln (wGMD) = ln(wp) − 3

2

+ w2
p

2s1s2

[(
1 + s1 + s2

2wp

)2

ln

(
1 + s1 + s2

2wp

)

+
(

1 − s1 + s2

2wp

)2

ln

(
1 − s1 + s2

2wp

)

−
(

1 + s1 − s2

2wp

)2

ln

(
1 + s1 − s2

2wp

)

−
(

1 − s1 − s2

2wp

)2

ln

(
1 − s1 − s2

2wp

)]
. (17)

When s1, s2 � wp, the value of wGMD depends only weakly
on the widths of the two strips. It is thus convenient to replace
wGMD by wp and neglect s in general when calculating mutual
inductance.

C. Numerical results

To verify the applicability of the above equations in the
typical parameter range of SQC, we numerically compare
the analytical results with the FEM simulation for different
control parameters. Here, we visualize a MLI as interdigital
fingers made of the dielectrics, as indicated in Fig. 3, in order
to keep the names of the variables consistent with the IDC
that will be introduced in Sec. III. The definition of conductor
width s, gap width w, and length l are consistent with those
in Fig. 2. In addition, N denotes the number of the dielectric
fingers. The self-and mutual inductances of the MLI can be
estimated by combining Eqs. (11), (14), and (15). That is

Ls = NLs(w + s) + (N + 1)Ls(l ), (18)

Lm = 2
N∑

n=1

(N + 1 − n)Lm[l, n(w + s)]. (19)

The factor of two in the mutual inductance originates from the
summation over the distance between two arbitrary parallel
lines. The total mutual inductance has a component caused
by the current flowing in each of the two lines. Note that

FIG. 3. Inductance L of a meander-line inductor (MLI) as a func-
tion of the (a) dielectric finger gap s (metallic wire width), (b) finger
width w (wire gap), (c) length l , and (d) number N for the derived
analytical equations (blue curves) and the FEM simulations (red
dots). The insets show the relative difference between the analytical
and FEM results. The parameter values of the MLI are s = 2 µm,
w = 25 µm, l = 250 µm, and N = 10 unless given in the panel. The
definitions of these parameters are illustrated in the top panel, with
white color denoting the dielectrics and blue the conductor.

the sign of Lm[l, n(w + s)] changes according to the relative
orientations of the current, as indicated in Eq. (14). The total
inductance is therefore readily obtained by adding the self-and
mutual inductances according to Eq. (1).

The FEM simulations are carried out in Keysight advanced
design system (ADS). Our tests on other software such as
Sonnet and Ansys HFSS also provide similar results. Here,
the Si substrate has a thickness of 675 µm and a relative per-
mittivity of εr = 11.9. The superconducting layer is assumed
to be a perfect conductor with vanishing thickness. The mesh
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TABLE I. Comparison of the computational time resources for FEM and the analytical results for the simulations in Figs. 3(a)–3(d).

s (µm) 1 2 3 4 5 6 7 8 9 10

FEM (s) 12 11 11 11 11 11 11 12 9 8
Anal. (µs) 31 24 23 23 23 24 23 23 24 23
w (µm) 5 10 15 20 25 30 35 40 45 50
FEM (s) 7 9 9 9 8 9 9 9 8 10
Anal. (µs) 36 27 26 26 30 27 25 25 25 25
l (µm) 50 100 150 200 250 300 350 400 450 500
FEM (s) 10 10 10 10 10 11 12 12 12 10
Anal. (µs) 34 25 25 25 25 25 24 25 25 25
N 1 2 3 4 5 6 7 8 9 10
FEM (s) 10 10 11 9 10 11 11 10 12 12
Anal. (µs) 15 8 10 15 14 23 19 20 23 24

is generated for 1 GHz frequency with 104 cells per wave-
length. The mesh density at the edges are auto-determined by
the Momentum engine of ADS. The inductance is evaluated
at 100 MHz. We note that to define the ports for the FEM
simulation, we have an extra 1 µm extension of the wire at the
ends of the MLI.

Our numerical results are summarized in Fig. 3. We
observe an excellent agreement between the analytical equa-
tions and the FEM results for all the chosen 40 sets of
parameters. The average relative difference is at the level of
1%. The observed consistency thus demonstrates the correct-
ness of the modeling of the MLI, where the electromagnetic
parameters are directly obtained from the layout. In addition
to the numerical consistency, we observe that the analyti-
cal approach shortens the simulation time by approximately
six orders of magnitude, as shown in Table I. It indicates
a dramatic improvement of the simulation efficiency that is
important for the design of lumped-element circuits which
involves optimization of their characteristic properties in a
multidimensional parameter space, and hence a large number
of solutions of the properties of the circuit.

We observe that the absolute value of the mutual in-
ductance, Lm, is generally two times smaller than the
self-inductance, Ls, in all the above simulations. It therefore
indicates that a spiral layout of the superconducting wire may
enhance the total inductance, L, by a factor of around 0.5,
while a coplanar meandering-line layout suppresses L by 0.5
compared with the pure self-inductance. However, the major
benefit of the meander-geometry is that it is easy to fabricate
with the standard laser lithography tools in ordinary labora-
tory. Increasing the wire length may be the most effective way
to improve the total inductance of the MLI.

III. INTERDIGITAL CAPACITOR (IDC)

The IDC is made of multiple superconducting thin films
which interdigitate with each other like interleaved fingers
[Fig. 4(a)]. The layout is dual to MLI if one swaps the con-
ductor and the dielectric material. Here, we define two types
of interior fingers with different widths, w1 and w2, which are
separated by a gap s. The width and the gap of the two exterior
fingers are defined as wE and sE, respectively, as shown in
Fig. 4(b). They may be different from those of the interior
fingers. All fingers have the same length l and thickness t .

We neglect the two pads that connect the fingers with the
feedlines, since they are spatially far away from each other
and play a negligible role in general [57].

To derive analytical relations between the circuit geometry
and the capacitance, C, we assume that (N − 3) electrical
walls with zero potential are located in the middle of each slot
which are orthogonal to the sample plane [55]. Although this
assumption can hardly be fulfilled in practical devices with a
finite N , it is often valid when the slots are relatively narrow
compared to the finger widths [56]. In this regard, we write
the total capacitance of the IDC as

C = (N − 3)
C1C2

C1 + C2
+ 2CE. (20)

Here, C1 and C2 are the capacitances between interior fingers,
i.e., type 1 and type 2 width different widths, and the electrical
wall. We define CE as the capacitance between the interior fin-
ger (Type 1) and the exterior finger in each unit cell [Fig. 4(b)].

Below, we assume zero-thickness metal strips (t = 0) to
simplify the discussion. The finite-thickness case may be con-
veniently handled by resorting to Ref. [59], where we apply
the so-called Wheeler’s first order approximation and redefine

FIG. 4. Illustration of capacitance for an interdigital capacitor
(IDC). (a) The capacitance between two adjacent interior fingers with
length l , thickness t , and widths w1 and w2, is calculated by summing
over the capacitances, C1 and C2, with respect to the electrical wall
with zero potential in the center of the gap (gap size s). (b) The
capacitance between the last interior finger and the exterior finger
with width wE is calculated directly without assuming an electrical
wall in the middle of the gap (gap size sE).
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the finger width as

w′ = w + t

π

[
1 + ln

(
4πw

t

)]
. (21)

A. Interior fingers

To calculate the capacitance, e.g., C1 and C2, our major goal
is to transform the coplanar geometry to an equivalent parallel
plate geometry. The procedure is called conformal mapping,
as detailed in Appendix A. We start from the Z domain where
z1 = 0, z2 = w1/2, z3 = w1/2 + s/2, and z4 = ∞, rescale the
first quadrant in the Z domain, apply the so-called Möbius and
Schwarz–Christoffel transformations in sequence. This proce-
dure transforms the original coplanar capacitor into a parallel
plate capacitor with width K (1/t3), length l , and distance
K (

√
1 − 1/t2

3 ). Here, K (·) is the complete elliptic integral of
the first kind and

t3 = 1

sn[η1K (k1), k1]

√
1 − k2

1sn2[η1K (k1), k1]

1 − k2
1

. (22)

with η1 = w/(w + s) being metallization ratio of the struc-
ture, and sn(·, k) the Jacobi elliptic function of modulus k.
This result can be greatly simplified when assuming that the
thickness of the substrate, h, is much larger than the width of
the conductor, w1. That is

1/t3 ≈ sin
(πη1

2

)
, (23)

The capacitance between the metal strip and the electrical
wall through the upper half-plane in free space is thus

C1,0 = ε0l
K (1/t3)

K
(√

1 − 1/t2
3

) , (24)

with ε0 ≈ 8.85 × 10−12 F/m being the permittivity of free
space. Similarly, the capacitance through the lower half-plane,
which is filled with the substrate with dielectric constant εr,
can be calculated as C1,r = εrC1,0 [Fig. 7(f)]. In summary, the
total capacitance of the unit cell (type 1) is

C1 = 2εeffC1,0, (25)

where εeff = (1 + εr )/2.
In the same way, one can calculate the total capacitance of

the unit cell (type 2) as C2 = 2εeffC2,0. Here, we have

1/t3 ≈ sin
(πη2

2

)
, (26)

where η2 = w2/(w2 + s) and h � w2. We note that we have
neglected the edge effect when calculating the capacitance
between two parallel plates. A more careful treatment requires
the solution of the so-called Love equation, of which the
analytical result with enough symmetry has been found only
very recently [60,61].

B. Exterior fingers

One may follow the above procedure to derive CE for
the two cells with exterior fingers. Here, CE = C1C′

E/(C1 +
C′

E) with C′
E = 2εeffC′

E,0, C′
E = ε0lK (1/t3)/K (

√
1 − 1/t2

3 ), and
1/t3 ≈ sin(πηE/2). The metallization ratio is defined as ηE =
2wE/(2wE + s). Strictly speaking, this formula is valid only
for wE 	 w1,w2 [56]. However, it is found to be rather precise
in the practice of microwave engineering [57].

For a more accurate result, we keep the last cell as a whole
and define z1 = 0, z2 = w1/2, z3 = w1/2 + sE, z4 = w1/2 +
(sE + wE), and z5 = ih in the Z domain. The transformation

r = sinh
(πz

2h

)
(27)

maps the points to the R domain and results in r5 = i and
r1 = 0 [57]. Following the transformations described above,
we have

1/t3 = sinh[πw1/(4h)]

sinh[π (w1 + 2sE)/(4h)]

√
sinh2[π (w1 + 2sE + 2wE)/(4h)] − sinh2[π (w1 + 2sE)/(4h)]

sinh2[π (w1 + 2sE + 2wE)/(4h)] − sinh2[πw1/(4h)]
. (28)

Finally, for h � w1,wE we have

1/t3 = w1/2

w1/2 + sE

√
(w1/2 + sE + wE)2 − (w1/2 + sE)2

(w1/2 + sE + wE)2 − (w1/2)2
.

(29)

Correspondingly, we obtain CE = 2εeffCE,0 and CE,0 =
ε0lK (1/t3)/K (

√
1 − 1/t2

3 ).

C. Numerical results

Similar to the study in MLI, we compare the analytical
equations derived above with the numerical FEM results with
different characteristic parameters, i.e., the finger number N ,
gap width s, and finger length l , and finger width w. The
total capacitance can be estimated by combining Eqs. (20),

(A8), (A9), and (A10), where the metallization ratios for the
three different unit cells are specified individually. The pa-
rameters s, w, l , and N are varied in ranges [1 µm, 10 µm],
[5 µm, 50 µm], [50 µm, 500 µm], and [10,100]. To define the
ports for the FEM simulation, we connect the fingers on each
side by a 1 µm metal strip, which is 10 µm away from the
end of the fingers on the other side. The comparison results
are summarized in Fig. 5. The other parameters of the FEM
solver are set as for the MLI in Sec. II C. Similar to the
comparison of inductance simulations, the average relative
difference is at the level of 1%. The excellent agreement
between the analytical and the FEM results for all the chosen
40 geometries indicates the correctness of our modeling in this
parameter range relevant for SQC. Moreover, the analytical
approach shortens the simulation time by approximately six
orders of magnitude, as shown in Table II. We note that the
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TABLE II. Comparison of the computational time resources for FEM and the analytical results for the simulations in Figs. 5(a)–5(d).

s (µm) 1 2 3 4 5 6 7 8 9 10

FEM (s) 18 17 18 17 17 16 20 16 16 16
Anal. (µs) 127 51 53 50 49 49 50 53 53 50
w (µm) 5 10 15 20 25 30 35 40 45 50
FEM (s) 16 17 18 17 19 21 23 26 26 29
Anal. (µs) 119 52 52 53 50 50 50 51 50 55
l (µm) 50 100 150 200 250 300 350 400 450 500
FEM (s) 14 20 24 27 29 33 39 43 48 47
Anal. (µs) 149 59 59 59 59 58 59 58 58 58
N 10 20 30 40 50 60 70 80 90 100
FEM (s) 10 17 18 24 23 28 27 30 34 38
Anal. (µs) 121 56 52 51 50 50 50 49 49 49

efficiency of the FEM simulation depends highly on the size
of the structures, whereas the efforts of the analytical approach
remains unchanged. This favorable time scaling is particularly
important to the design of sub-gigahertz lumped-element res-
onators, as we discuss in Sec. IV.

IV. COMPACT LC RESONATORS

With the above-derived knowledge of the MLI and the
IDC, we connect them in parallel to design compact LC res-
onators without FEM. Here, we are particularly interested in
the sub-gigahertz regime since it is not conveniently reachable
by compact CPW resonators. The sub-gigahertz resonators
also have an immediate application in superconducting ther-
mal detectors, such as bolometers and calorimeters [22–26].

A. Experimental methods

We fabricate 10 compact LC resonators on two pure Si
chips with an area of 10 × 10 mm2, denoted as sample A
and B as showcased in Fig. 6(a). The sample substrate has
a thickness of 675 µm. A 200-nm-thick Nb layer is applied by
sputtering, and then patterned by maskless laser lithography
and reactive ion etching (RIE). The building block for the
resonators in sample A are the MLI and IDC with the same
parameter s = 3 µm, w = 22 µm, and l = 1300 µm. For sam-
ple B, we have s = 2 µm, w = 18 µm, and l = 1200 µm. In
both cases, we adjust the number of these modules to reach
the desired resonance frequency and impedance as close as
possible. The relative permittivity of the substrate is chosen as
εr = 11.9 for design. The resonators are coupled to a common
transmission line for multiplexed readout, such that each res-
onator forms a hanger-type geometry [62,63]. On each chip,
the designed resonance frequencies increase from 300 MHz to
1 GHz separated by approximately 100 MHz. The designed
impedances of the four low-frequency resonators decreases
from 60 � to 30 � with the frequency, while they are kept
below 30 � for the four high-frequency resonators. However,
we observe only five resonance peaks in each sample which
we attribute to the possibly uneven RIE in the fabrication
process.

We thermalize the samples at approximately 30 mK for
characterization. The input line has approximately 60 dB of
attenuation from room to cryogenic temperatures. We extract

the resonance frequency and the quality factors of each in-
dividual resonator from the transmission coefficients. In the
vicinity of a single resonance frequency, we describe the mea-
sured transmission coefficient as [62,63]

S21(ω) = Ae−i(ωτ+ϕ)

(
1 − eiφQl/Qe

1 − i2Qlδ

)
, (30)

where δ = (ω − ωr )/ωr , and ωr is the resonance frequency
that may be slightly different from the designed bare resonator
frequency ω0 = 1/

√
LC because of the coupling. The loaded,

internal, and external quality factors are defined as Ql, Qe,
and Qi, respectively, which satisfy 1/Ql = 1/Qi + 1/Qe. The
constant parameters A, τ , ϕ, and φ are related to the practical
distortions to the measured spectrum. After correcting these
distortions, the retrieved complex-valued spectrum forms a
circle which is centered on the real axis and passes through
a fixed point (1 + i0) for ω → ∞. The radius of the circle is
Ql/(2Qe ), while Ql can be conveniently obtained by fitting the
lineshape with a Lorentzian function.

B. Experimental results and analysis

Figures 6(b) and 6(c) summarize the measurement results.
The excellent agreement between the designed and the ex-
tracted resonance frequencies indicates the accurate control
of the resonance frequency [Fig. 6(b)] and therefore demon-
strates the high accuracy of our analytical model consisting
of the lumped-element components. On average over the 10
measured resonators, the experimentally obtained resonance
frequency is 1.83% below the design frequency with a stan-
dard deviation of 1.44%. This small difference may have
several possible origins such as the coupling between the
resonator and the waveguide, which unavoidably shifts the
actual resonance frequency from the designed value, ω0/2π ,
to a lower value. On the other hand, the previously neglected
small contribution of the kinetic inductance also explains the
observed systematic frequency drop. In addition, the small
difference between the design and experiment can also arise
from possible fabrication imperfections such as over etching
of the Nb thin film during RIE.

Let us consider the effect of the coupling capacitance, Cin,
between the transmission line and the lumped-element res-
onators on the resonance frequency. Take the design of sample
B as an example. The 19 µm gap between the waveguide
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FIG. 5. Capacitance C of an interdigital capacitor (IDC) as a
function of the (a) conductor finger gap s, (b) finger width w,
(c) length l , and (d) number N for the analytical equations of the
main text (blue curves) and the FEM simulations (red dots). The
insets show the relative difference between the analytical and FEM
results. The parameter values of the IDC are s = 2 µm, w = 10 µm,
l = 200 µm, and N = 50 unless given in the panel. The definitions
of these parameters are illustrated in the top panel, with white color
denoting the dielectrics and blue the conductor.

and the resonators indicates a coupling capacitance at the
∼100 fF scale, of which the exact value depends on the size
of the IDCs. According to Ref. [62], the frequency shift of a
hanger-type resonator can be approximately written as

δ f = −Z0Cinω
2
0/(π2). (31)

Here, Z0 is the characteristic impedance of the resonator,
which varies from 30 to 60 � in our case. Taking Cin = 150 fF
and Z0 = 50 � for all the resonators as a rough estimation,
the mean deviation of the analytical and experimental results

FIG. 6. Characterization results of the lumped LC resonators.
(a) Optical photograph of one resonator in sample B with designed
resonance frequency ω0/2π = 600 MHz. The insets show the en-
larged area with higher resolution. The resonators in sample A have
a ∼5 times lower coupling strength to the waveguide by design.
Here, the light color indicates Nb, and the dark color Si. (b) Com-
parison between the designed and measured resonance frequencies,
fd and fm, respectively. The dashed line indicates the bare reso-
nance frequencies without considering the coupling capacitance, Cin,
while the solid line includes the coupling capacitance correction
(Cin = 150 fF). The inset shows the difference between the measured
resonance frequency and the designed frequency with coupling ca-
pacitance correction, � f = fm − ( fd + δ f ). (c) Extracted values of
the internal and external Q factors, Qi and Qe, under different probe
power Pin. Here, the colors denote different resonators.

reduces significantly, to 0.84% with a standard deviation of
1.06%. Thus we may mostly attribute the systematic fre-
quency drop of the real devices to the frequency shift induced
by the coupling capacitor.
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The extracted quality factors indicate a relatively long co-
herence time of the compact LC resonators [Fig. 6(c)]. At
high probe power (Pin = −20 dBm at the room temperature),
the average internal quality factor of all the 10 resonators is
944 × 103 with a standard deviation 405 × 103. These values
decrease with decreasing probe power but saturate at roughly
−60 dBm. At the lowest probe power (Pin = −80 dBm), we
obtain 283 × 103 and 69 × 103 for the mean internal qual-
ity factor and its standard deviation, respectively. We note
that high-quality CPW resonators, in the 4–8 GHz range
with Qi � 1000 × 103 at low probe power, can be routinely
implemented. However, our achieved value of Qi in the sub-
gigahertz range has been seldom reached by CPW resonators.
Moreover, our samples are fabricated in a single step without
sophisticated techniques that are normally required for fab-
ricating a high-Q CPW resonator, such as the wet-chemical
post-processing approach for creating a clean and smooth
interface between the thin film and air [64–68].

V. CONCLUSIONS

We provided a systematic study of meander-line inductors
(MLIs) and interdigital capacitors (IDCs) in the context of
superconducting quantum circuits (SQC), and combined them
to design compact LC resonators at sub-gigahertz frequen-
cies. The experimental results show an excellent agreement
between the FEM simulations and the simple analytical equa-
tions provided in this study, where the resonance frequency
was experimentally demonstrated with only about 2% devia-
tion from the analytically obtained design value. These results
promote the view that lumped-element inductors and capaci-
tors can be accurately designed without resource-demanding
FEM simulations. Consequently, these lumped-element res-
onators can be readily added to the toolkit of the SQC
technology.

The physical size of a compact LC resonator is much
smaller than the wavelength, which is in strong contrast to
the CPW resonators. The usefulness of this compactness is
pronounced at low frequencies where both the longitudinal
and transverse dimensions can be tuned in a relatively large
range below the wavelength. The feasibility of such a compact
design is supported by the concept of photonic crystals, also
referred to as metamaterials, where sub-wavelength structures
are arranged periodically to tailor the behavior of the elec-
tromagnetic waves in a way that is beyond the capabilities
of the uniform base material [69–71]. In our case, the unit
cells are the 1300-µm-high 25-µm-wide patterns in the MLIs
and IDCs.

The achieved compactness has a direct use in the current
SQC technology. On one hand, fitting more circuit compo-
nents on a single chip is a practical requirement when building
large-scale quantum systems such as quantum computers or
microwave photon lattices for quantum simulations [58]. The
shown sub-gigahertz resonators already find important ap-
plications in cryogenic particle detection [22–26]. On the
other hand, the sub-wavelength physical size confines the
microwave photons in a small area which avoids the techni-
cal problem of keeping a precise impedance over an entire
CPW resonator. The small mode volume naturally leads to a
high and readily engineerable coupling strength to a nearby

device, such as a qubit [47,48]. The single-mode nature of
lumped-element circuits also avoids the spurious effects of
higher harmonics to the qubit lifetime and coherence, which is
a known issue in SQC [72]. We may therefore expect a change
of paradigm in circuit design for large-scale quantum infor-
mation processing by combing the capabilities of compact LC
resonators and superconducting qubits.

The PYTHON codes for generating and analyzing the data
of this study are available online [73]
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APPENDIX A: CONFORMAL MAPPING
FOR CAPACITANCE CALCULATION

To calculate the capacitance, e.g., C1 and C2, our major
goal is to transform the coplanar geometry to an equivalent
parallel plate geometry. The procedure is called conformal
mapping, as illustrated in Figs. 7(a)–7(e). We start from the Z
domain where z1 = 0, z2 = w1/2, z3 = w1/2 + s/2, and z4 =
∞ [Fig. 7(a)]. We rescale the first quadrant in the Z domain
by a factor of α = K (k1)/z3, such that z′

1 = 0, z′
2 = η1K (k1),

z′
3 = K (k1), and z′

4 = ∞ [Fig. 7(b)], where we have named
η1 = w/(w + s) as the so-called metallization ratio [56], K (·)
is the complete elliptic integral of the first kind, and k1 is an
arbitrary constant to be determined. It is convenient to define

K (k1)/K (k′
1) = (w + s)/(2h), (A1)

where k′
1 =

√
1 − k2

1 . It allows us to obtain a compact result
when performing the following transformation from the Z
domain to the R domain [Fig. 7(c)]

r = sn(z, k1), (A2)

where sn(·, k) is the Jacobi elliptic function of modulus k.
This transformation gives r1 = 0, r2 = sn[η1K (k1), k1], r3 =
1, and r4 = 1/k1.

Next, we apply the so-called Möbius transformation

t = r

r2

√
r2

4 − r2
2

r2
4 − r2

, (A3)

which transforms the first quadrant in the R domain to the
first quadrant in the T domain with t1 = 0, t2 = 1, and t4 = ∞
[Fig. 7(d)]. Besides, we have

t3 = 1

sn[η1K (k1), k1]

√
1 − k2

1sn2[η1K (k1), k1]

1 − k2
1

. (A4)
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FIG. 7. [(a)–(e)] Sequence of conformal mappings that transforms the original problem into a problem of calculating the capacitance
between two parallel plates. See text in Sec. A for details. (f) Configuration for partial capacitances for a thin-film conductor sandwiched
between air and the substrate.

Finally, we apply the Schwarz–Christoffel mapping

w =
∫ t

0
dt ′ 1√

(1 − t ′2)[1 − (t ′/t3)2]
, (A5)

which folds the first quadrant of the T domain into a rectangle
in W domain with width, K , and height, K ′ [Fig. 7(e)]. In
particular [74],

K = K (1/t3) =
∫ 1

0
dt

1√
(1 − t2)[1 − (t/t3)2]

, (A6)

K ′ = K
(√

1 − 1/t2
3

) =
∫ t3

1
dt

1√
(t2 − 1)[1 − (t/t3)2]

, (A7)

where t3 is defined in Eq. (A4). For h � w1, we have k1 → 0
and K (0) = π/2 such that

1/t3 = sin
(πη1

2

)
. (A8)

By applying the described sequence of conformal trans-
formations, we transform the original coplanar capacitor into
a parallel plate capacitor with width K (1/t3), length l , and
distance K (

√
1 − 1/t2

3 ). The capacitance between the metal
strip and the electrical wall through the upper half-plane in
free space is thus

C1,0 = ε0l
K (1/t3)

K
(√

1 − 1/t2
3

) , (A9)

with ε0 ≈ 8.85 × 10−12 F/m being the permittivity of free
space. Similarly, the capacitance through the lower half-plane,
which is filled with the substrate with dielectric constant εr,
can be calculated as C1,r = εrC1,0 [Fig. 7(f)]. In summary, the
total capacitance of the unit cell (type 1) is

C1 = 2εeffC1,0, (A10)

where εeff = (1 + εr )/2.

APPENDIX B: KINETIC INDUCTANCE

Besides the geometric inductance discussed in Sec. II, su-
perconducting thin films may carry a finite kinetic inductance.
By definition, the energy stored in the kinetic inductance
equals the kinetic energy of the charge carriers

1

2
LkI2 =

∫
1

2
msnsv

2dV, (B1)

where ms = 2me and ns are the mass and density of Cooper
pairs. Hence, Js = −2ensv is the current density carried by
Cooper pairs. At zero temperature, we may relate ns to one
half of the density of electrons contributing to conduction
in the normal state of the material, i.e., ne/2. With these
definitions, we obtain the kinetic inductance as

Lk = μ0λ
2l

∫
J2

s dS/I2, (B2)

where λ =
√

me/(μ0nee2) is the London penetration depth.
Following Ref. [75], we express the magnetic field inside

the thin film as

B(x) ≈ μ0I

2s

sinh (x/λ)

sinh [t/(2λ)]
ŷ. (B3)

Here, x varies from −t/2 to t/2, and the underlying assump-
tion is that the width of the conductor, s, is much greater than
its thickness, t . The current density is thus

Js(x) = I

2λs

cosh (x/λ)

sinh [t/(2λ)]
ẑ. (B4)

By combining Eqs. (B2) and (B4), we obtain for the kinetic
inductance

Lk = μ0λl

4s

[
coth

(
t

2λ

)
+ (t/2λ)

sinh2 [t/(2λ)]

]
. (B5)

In the thin-film limit (t � λ), we have Lk = μ0λ
2l/(st ). On

the other hand, we have Lk = μ0λl/(4s) in the thick-film limit
(t � λ).

In fact, also the internal part of the self-inductance needs to
be recalculated due to the non-uniform current redistribution
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to be consistent with this level of approximation. Following
the procedure presented in Sec. II A, we obtain [75]

Lint = μ0λl

4s

[
coth

(
t

2λ

)
− (t/2λ)

sinh2 [t/(2λ)]

]
. (B6)

It approaches Lint = μ0t l/(12s) and Lint = μ0λl/(4s) in the
thin- and thick-film limits, respectively. In comparison, a uni-
formly distributed current leads to a internal self-inductance
of Lint ≈ μ0t l/(6s) [76].

For simplicity, we denote the total internal inductance as
the combination of the two parts, i.e.,

L′
int = μ0λl

2s
coth

(
t

2λ

)
. (B7)

In typical superconductors such as Nb and Al, λ is be-
low 50 nm. Assuming that the thickness of the thin film
is t = 200 nm, the ratio between total internal inductance,
L′

int, and the geometric self-inductance, Ls, calculated by
Eq. (10) is approximately 5.1% at the lower limit of the
above equation (s = 200 nm). This ratio decreases with s,
and reaches 1.1% and 0.6% for s = 1 µm and s = 2 µm,
respectively. This result indicates that the internal induc-
tance, L′

int , may likely be neglected in the layout design
if restricting the thin film to be wider than 1 µm. Note
that this result does not apply to conductors where s is
comparable or smaller than t . More detailed discussion of
the kinetic inductance and its applications may be found
elsewhere [77–81].
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