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Orbital Fulde-Ferrell-Larkin-Ovchinnikov state in an Ising superconductor
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The critical field behavior of a layered Ising superconductor with finite number of layers is studied. Under
in-plane magnetic fields, the finite-momentum superconductivity dubbed as the orbital Fulde-Ferrell-Larkin-
Ovchinnikov state is found in the regime of low field and high temperature. Our theory agrees well with the
experimental results in Nature 619, 46 (2023).
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Introduction. The dimensionality of a superconductor is
usually derived from its critical field behavior, which reflects
the spatial profile of the order parameter under external mag-
netic fields. When the superconductor is three-dimensional
(3D), Abrikosov vortices [1] will be formed under fields above
the lower critical field, where the magnitude of the order
parameter is highly nonuniform and the phase has an integer
winding around a vortex core. As a result, the upper critical
field of a 3D superconductor is linear in temperature, and the
critical exponent is independent of the field direction.

On the contrary, in a two-dimensional (2D) superconduc-
tor the order parameter is mostly uniform in magnitude and
Abrikosov vortices cannot be formed under in-plane fields.
Since the characteristic size of the Abrikosov vortex core
is the coherence length ξ , the criterion of 2D superconduc-
tivity is roughly d < ξ , where d is the thickness. Detailed
calculations further reveal the critical thickness for 2D su-
perconductivity d < dc ≈ 1.8ξ [2]. In a 2D superconductor,
near the zero-field critical temperature, the out-of-plane up-
per critical field is still linear in temperature, while the
in-plane one is squareroot in temperature [2,3], as verified in
experiments [4–7].

The above arguments on dimensionality are based on con-
tinuum models of superconductors. Over the past several
decades, the layered superconductors have been discovered
[2,7–9], where each layer is an atomically thin 2D supercon-
ductor, and different layers are weakly coupled by Josephson
coupling [10–14]. For a layered superconductor with an infi-
nite number of layers, a dimensional crossover can be realized
by an in-plane magnetic field [2,9,15–17]. When the in-plane
field is weak compared with the interlayer Josephson cou-
pling, the layered superconductor can be treated as 3D with
an upper critical field linear in temperature. As the field in-
creases so that the interlayer coupling is relatively negligible,
the layered superconductor behaves as a 2D superconductor
with an upturn in the upper critical field. Such a dimensional
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crossover has been experimentally observed in several layered
superconductors [16–19].

Recently, it was experimentally found [20] that a layered
Ising superconductor NbSe2 with intermediate thickness can
have unconventional critical field behavior. The upper critical
field is squareroot in temperature and hence, 2D at low fields.
As the field increases, an additional phase transition associ-
ated with a tricritical point is found instead of a dimensional
crossover from 3D to 2D. These results are inconsistent with
the critical field behavior of the layered superconductor with
infinite layers [2,15–17], but show similarities to bilayer su-
perconductors [21,22] instead. In Refs. [21,22], it is found
that in a bilayer superconductor linked by Josephson cou-
pling, unconventional superconducting states similar to the
Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states [23,24] can
be realized under in-plane magnetic fields mainly through the
orbital effect.

In this manuscript, we would like to study the layered
superconductors with intermediate number of layers under
in-plane fields, and try to generalize the FFLO-like states in
Refs. [21,22] to multilayer cases.

It is well known that two depairing mechanisms are intro-
duced by an external magnetic field, namely the orbital effect
and the Zeeman effect. In a conventional superconductor, the
Zeeman effect can be neglected at weak fields far below the
Pauli limit BP ≡ �0/

√
2μ [16,17,25], where �0 is the pairing

gap at zero temperature and μ is the magnetic moment. In an
Ising superconductor, the Zeeman effect is screened [5–7] for
in-plane fields far below the Ising limit Bso ≡ �so/μ, where
�so is the Ising spin-orbit coupling (SOC) energy. As the
materials we are interested in (e.g., Ising superconductors of
transition metal dichalcogendies) are composed of bilayer unit
cells, in the following we consider only even number of layers
if not specified otherwise.

Model. We consider the N-layer Lawrence-Doniach (LD)
model with the following free energy density per area
[15,21,22]:

f =
N∑

l=1

{
α|ψl |2 + β

2
|ψl |4 + |(∇‖ − 2ieAl )ψl |2

2m

}

−J
N−1∑
l=1

(ψ∗
l ψl+1+ψ∗

l+1ψl ) exp

(
2ie

∫ (l+1)d

ld
Azdz

)
, (1)
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FIG. 1. Orbital FFLO phases in N-layer superconductors. (a) Up-
per critical field as a function of temperature. With the increasing
zero-field critical temperature, even number N changes from 2 to 20,
labeled by different colors. Solid lines are numerical results, dashed
lines denote the analytical formula Eq. (B8). (b) Upper critical field
versus Cooper pair momentum. Colors denote N , the same as (a).
Dashed lines denote the analytical formula Eq. (C7). As N increases,
upper critical field approaches the envelope B = B0(Tc − T )/T0 in
(a) and optimal Cooper pair momentum approaches the envelope
q/q0 = − 1

2 B/B0 in (b). Here B0, T0, q0 are defined in Eq. (A2).

where m > 0 is the electron mass, e the electron charge, and
J > 0 is the Josephson coupling between nearest neighbor
layers. In the gradient terms, ∇‖ = (∂x, ∂y) is the in-plane
gradient operator, Al is the in-plane vector potential on layer
l , and Az is the out-of-plane component of vector potential.
The second order coefficient can be worked out as a function
of temperature T and field B

α = N0

{
ln

(
T

Tc1

)
− B2

B2 + B2
so

F

(
μ

√
B2 + B2

so

πT

)}
, (2)

where N0 is the density of states of each layer, the special func-
tion F (x) = Re{	( 1

2 ) − 	[ 1
2 (1 + ix)]} is defined in terms of

the digamma function 	(x), and Tc1 is the critical temperature
of the monolayer. The fourth order coefficient β > 0 can be
treated as a positive constant independent of temperature and
field. When B � Bso, the field-dependent term in Eq. (2) can
be neglected, and we can write α = α0(T − Tc1) when T �
Tc1, where α0 = N0/Tc1. In other words, the Zeeman effect of
in-plane fields far below the Ising limit can be neglected in a
layered Ising superconductor.

Now we consider a finite number of layers. We employ the
2D ansatz ψl = �l eiq·r, whose magnitude is in-plane uniform
|ψl (r)| ≡ �l , and the phase is characterized by Cooper pair
momentum q. Correspondingly we choose the gauge Az = 0,
Al = [l − 1

2 (N + 1)]dB × ẑ. Hence, the free energy is f =
f ({�l}, q, B). Then the upper critical field of the second order
superconducting phase transition is given by the highest criti-
cal field among all q and order parameter profile {�l}, and the
corresponding q is the optimal Cooper pair momentum.

In the following, we mainly focus on the upper critical field
regime, hence B usually denotes the in-plane upper critical
field if not specified otherwise.

Results. The upper critical field and optimal Cooper
pair momentum are numerically calculated and plotted in
Figs. 1(a) and 1(b), respectively, normalized by the three units

FIG. 2. (a) Zero-field critical temperature TcN as a function
of layer number N . Dots are from numerical simulations as in
Fig. 1(a) and the black line is Eq. (B5). Inset: Fittings (lines) of
experimental data (markers) in Ref. [6] by Eq. (B5). Different colors
denote Tc values according to different criteria, and Rn is the normal
resistance. (b) Tricritical field B∗

N as a function of layer number N .
Dots are from numerical simulations as in Fig. 1(b) and the black line
is Eq. (9).

of temperature, field, and momentum, respectively,

T0 = J

α0
, B0 = 
0q0

2πd
, q0 =

√
2mJ, (3)

where 
0 = h/(2e) is the flux quantum.
At zero field, superconductivity occurs at temperatures be-

low the layer-dependent critical temperature TcN as plotted
in Fig. 2(a). Similar results can be found in Ref. [26], while
the mechanism is interlayer Cooper pairs instead of interlayer
Josephson coupling. The zero-field critical temperature data
of few-layer NbSe2 can be found in Ref. [6], which agree well
with Eq. (B5) as shown in the inset of Fig. 2(a). This result
can be analytically obtained as shown in the next section.

As shown in Fig. 1(b), at low fields, the Cooper pair
momentum remains zero, and the layered superconductor be-
haves as a 2D superconductor with squareroot temperature
dependence of the upper critical field as shown in Fig. 1(a)
(dahsed lines). When the field further increases, the optimal
Cooper pair momentum becomes finite, and along ±B × ẑ
directions, which applies to all even numbers of N � 2. We
define q ≡ q · (B̂ × ẑ), which is plotted in Fig. 1(b) as a
function of field strength B, implying a phase transition with
a tricritical point (T ∗

N , B∗
N ). When B < B∗

N , the Cooper pair
momentum is zero q = 0. When B > B∗

N , q 	= 0, and at the
tricritical point (T ∗, B∗), two types of superconducting phases
q = 0 and q 	= 0 coexist with the normal phase. The numerical
tricritical field B∗

N is plotted for different N in Fig. 2(b). In our
finite-layer model, inversion symmetry is found to hold for
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the free energy, under which layer l with momentum q maps
to layer N + 1 − l with momentum −q. Thus, states with ±q
are degenerate in calculating the upper critical field, and in
Fig. 1(b) we only plot the nonpositive branch of q.

The superconducting phase with finite-momentum Cooper
pairs is not rare, at least in theoretical studies. In 1964, Fulde
and Ferrell [23], and Larkin and Ovchinnikov [24] proposed
that due to Zeeman effect, magnetic field can drive Cooper
pairs into finite-momentum states. Since the energy saved by
finite-momentum Cooper pairs per unit field is small, conven-
tional FFLO states are expected at low temperatures and high
fields, which turn out to be not easily detected experimentally.
However, in our theory, the finite-momentum Cooper pairs are
boosted by magnetic field via orbital effect, which can survive
at relatively low field and high temperatures. We may dub
such states as the orbital FFLO states.

Analysis. To figure out the origin and mechanism of the
orbital FFLO states, we analyze the order parameter profiles
near superconducting phase transitions.

We first review the inifinite layer limit N → ∞. In this
limit, due to the translation symmetry l → l + 1, the order
parameter at zero field is uniform, and the bulk critical tem-
perature is TcN → Tc ≡ Tc1 + 2T0. At finite in-plane fields,
Abrikosov vortices can be formed, and the bulk in-plane upper
critical field is Bc2 = B0(Tc − T )/T0.

When N is finite, the translation symmetry is lost, and
the middle layers become more favorable than other layers
because of the finite size effect. Under an in-plane field,
Abrikosov vortices become metastable, and Josephson vor-
tices formed by middle layers are the stable state, which are
the orbital FFLO states we found previously.

To be concrete, the order parameter at zero field reads

ψl ∝ sin

(
π l

N + 1

)
, (B = 0), (4)

which is nonuniform, and the middle two layers l = 1
2 N and

l = 1
2 N + 1 have the highest weightings. From Eq. (B2), the

critical temperatures at zero and weak fields are

TcN = Tc1 + 2T0 cos

(
π

N + 1

)
, (B = 0), (5)

TcN (B) = TcN − cN T0

(
B

B0

)2

, (B � B0). (6)

Detailed derivations of the order parameter, Eq. (B2), the criti-
cal temperatures, Eqs. (B5) and (B8), and the expression of the
dimensionless coefficient cN can be found in the Appendix.
Importantly, the quadratic dependence of the field in Eq. (B8)
implies the 2D characteristic of the in-plane upper critical
field in the weak field regime, as shown in the dashed lines
of Fig. 1(a) and found experimentally in Ref. [20].

As shown in Fig. 3(a), at zero field, the order parameter
profile Eq. (B2) is peaked in the middle between layer l = 1

2 N
and l = 1

2 N + 1, with a broad width. At weak field, the order
parameter is still peaked in the middle between layer l = 1

2 N
and l = 1

2 N + 1, but with a smaller width. As field increases,
the width of order parameter keeps shrinking. When the field
is strong enough, the width of order parameter becomes small
enough, Cooper pairs tend to accumulate on layer l = 1

2 N or

FIG. 3. (a) Order parameters at different in-plane fields with
layer number N = 20. Open circles are numerical results of Eq. (A1)
and solid lines are analytical formulas Eqs. (B2) and (7). (b) Phase
diagram of the effective model Eq. (10). Black dots are experimental
data of upper critical field in Ref. [20], while orange and blue lines
are analytical results. BCS state q = 0, orbital FFLO state q 	= 0 and
normal phase coexist at the tricritical point (T ∗, B∗).

l = 1
2 N + 1. To be more precise, the order parameter profile

at intermediate in-plane fields is a Gaussian profile [2]

ψl ∝ exp

(
−1

2

|l − l0|2
l2
B

)
, (7)

with field-dependent width lB = √
B0/B and center

l0 =
{

1
2 (N + 1) (B � B∗

N )

1
2 N or 1

2 N + 1 (B > B∗
N )

. (8)

At zero field, the order parameter can be characterized
by the typical width δlN ∼ √

N + 1/π (see the Appendix).
The order parameter becomes sufficiently localized when lB �
δlN , or equivalently when B � B∗

N , with the tricritical field

B∗
N ≈ 1.6πB0

N + 1
, (9)

and tricritical temperature T ∗
N ≈ Tc − 1.6πT0/(N + 1).

The critical behavior near the tricritical point (T ∗, B∗) is
governed by an effective bilayer model of two localized modes
ψ± on layer 1

2 N and 1
2 N + 1, respectively. One then expands
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the free energy density as f = 	†H	 + . . . on the basis 	 =
(ψ+, ψ−)T, and up to q2 and B2:

H0(q, B) = a + b(ẑ × B) · qτz + cq2 − J τx, (10)

where τ denote Pauli matrices acting on the 	 basis, a =
r(T − Ta) + χB2, and r, χ, b, c,J , Ta are phenomenonlogi-
cal parameters. For the stability of the free energy, we require
r, χ, c to be positive. The q, B coupling term is due to the
orbital effect, while the magnetic energy term χB2 can be
induced by both orbital and Zeeman effects of the in-plane
magnetic field.

At zero field, the critical temperature of the effective bi-
layer model Eq. (10) is Tc = Ta + J /r. Under an in-plane
field, the optimal Cooper pair momentum is

q = b

2c
(B × ẑ)Re

√
1 −

(
B∗

B

)4

(11)

with the tricritical field B∗ = √
2c|J |/b.

The field-dependence of optimal Cooper pair momentum
is plotted in Fig. 1(b) (dashed lines), which agrees well with
numerical simulations (dots). Correspondingly, the upper crit-
ical field as a function of temperature is plotted in Fig. 3(b)
(orange and blue lines), which shows a kink at the tricritical
point, and agrees well with experimental data from Ref. [20]
(black dots). Details of the fitting parameters can be found in
the Appendix.

Symmetry principles also allow us to write down
higher order terms. In transition metal dichalcogenide
such as NbSe2, the point group is D3d , and the sixth
order terms are H1(q, B) = λ1Re(q2

+B4
+) + λ2Re(q4

+B2
+) +

λ3Im(q+B2
+)τy, where q± = qx ± iqy, B± = Bx ± iBy, and the

total Hessian matrix is H = H0 + H1. These higher order
terms lead to the anisotropy of the field-dependent critical
temperature in the orbital FFLO phase with q 	= 0, while the
field-dependent critical temperature in the conventional super-
conducting phase is isotropic since q = 0. To be concrete, by
plugging Eq. (C7) into H1 we can calculate the anisotropic
part of the field-dependent critical temperature �Tc(B, ϕ) =
λ(B)θ (B − B∗) cos(6ϕ), where B = B(cos ϕ, sin ϕ), θ is the
Heaviside theta function, and λ(B) is given in the Appendix.

The leading anisotropy is sixfold due to the following
symmetry reasons. Since there is no intrinsic time-reversal
symmetry breaking in our model, Tc(−B) = Tc(B). The
threefold in-plane rotation symmetry C3z of TMD implies
Tc(C3zB) = Tc(B); we derive that the leading anisotropy of the
orbital FFLO states in TMD is sixfold Tc(C6zB) = Tc(B) as
shown in experiments [20].

The stable combination of two localized modes ψ± will be
determined by the quartic order free energy

f4 = β1(|ψ+|4 + |ψ−|4) + β2|ψ+|2|ψ−|2 (12)

with coefficients β1,2, and β1 > 0, β2 > −2β1 for the stability
of the free energy (see the Appendix). When β2 > 2β1, the
stable state will break the inversion symmetry and choose one
of the localized modes of ψ±. When β2 < 2β1, the stable state
will preserve the inversion symmetry to form a symmetric
combination of ψ±, while the in-plane translation symme-
try along the q ∝ B × ẑ direction is spontaneously broken.
In the decoupling limit J → 0, the equilibrium state will
preserve the inversion symmetry to compensate the orbital
effect, hence, we expect β2 < 2β1 generally holds when the
Josephson coupling is not too strong. The orbital FFLO state
would be a Josephson vortex formed by localized modes on
middle layers.

Conclusion. In this work, we generalize the orbital FFLO
states theoretically derived in the bilayer superconductors
[21,22] to multilayers. We find that due to the finite size effect,
the middle layers become more favorable than other layers.
Under an in-plane field, the multilayer Ising superconductor
can be described by an effective bilayer model, with a field-
driven phase transition from the conventional pairing state to
the orbital FFLO state. Our theory can be applied in transition
metal dichalcogenide layers such as NbSe2 [6,20,27].

Acknowledgments. The author thanks P. Wan, J. Ye, and
C.-X. Liu for inspiring discussions. The author thanks Puhua
Wan and Jianting Ye for sharing the experimental data. The
author acknowledges the National Natural Science Founda-
tion of China (Grant. No. 12174021) for the financial support.

APPENDIX A: MODEL

We consider the N-layer Lawrence-Doniach (LD) model
with the following free energy density per area

f =
N∑

l=1

{
α|ψl |2 + β

2
|ψl |4 + |(∇‖ − 2ieAl )ψl |2

2m

}

− J
N−1∑
l=1

(ψ∗
l ψl+1 + ψ∗

l+1ψl ) exp

(
2ie

∫ (l+1)d

ld
Azdz

)

(A1)

and introduce the following three quantities [α = α0

(T − Tc1)]:

T0 = J

α0
, B0 = 
0q0

2πd
, q0 =

√
2mJ. (A2)

The Bogouliubov de Gennes Hamiltonian of a monolayer
Ising superconductor is

H = ξτz + ε�soσz + μBσxτz + �σyτy, (A3)

where ξ is the kinetic energy, ε = ± is the valley index, � is
the pairing amplitude, and σ and τ are Pauli matrices in spin
and particle-hole spaces, respectively. This Hamiltonian can
have four eigenvalues {±E+,±E−} for each momentum, and
the Bogouliubov spectrum is always fully gapped

E± =
√

ξ 2 + �2
so + (μB)2 + �2 ± 2

√
(ξ�so)2 + (ξμB)2 + (μB�)2. (A4)

043122-4



ORBITAL FULDE-FERRELL-LARKIN-OVCHINNIKOV … PHYSICAL REVIEW RESEARCH 5, 043122 (2023)

TABLE I. Fitting parameters of Eqs. (B7) and (C12) for numerical data in Fig. 1 of the main text.

N 2 4 6 8 10 12 14 16 18 20

cN 1/4 0.8028 1.5940 2.6424 3.9507 5.5197 7.3499 9.4413 11.7939 14.4079
ρ 1/2 0.5640 0.6280 0.7020 0.7020 0.8000 0.8000 0.8500 0.8500 0.8500
B∗

N/B0

√
2 1.0350 0.7839 0.6231 0.5126 0.4422 0.3819 0.3417 0.3015 0.2714

Thus, the free energy per area reads f1 = �2/g − T
∑

E ln(1 + e−E/T ) with interaction parameter g, and

α = ∂2 f1

∂�2

∣∣∣∣
�=0

= N0

{
ln

(
T

Tc1

)
− B2

B2 + B2
so

F

(
μ

√
B2 + B2

so

πT

)}
. (A5)

Here Tc1 = ωD exp(−1/N0g) is the monolayer critical temper-
ature at zero field, with Debye frequency ωD and monolayer
density of states N0. Bso ≡ �so/μ is the Ising limit. The
special function is defined in terms of the digamma function
	(x) as

F (x) = Re

{
	

(
1

2

)
− 	

[
1

2
(1 + ix)

]}
. (A6)

APPENDIX B: ORDER PARAMETER PROFILES

At zero field, the linearized Ginzburg-Landau equation is
the following eigenvalue problem:

Jψ2 = αψ1, JψN−1 = αψN ,

J (ψl−1 + ψl+1) = αψl . (l = 2, . . . , N − 1). (B1)

The order parameter can be worked out

ψl = � sin

(
π l

N + 1

)
. (B2)

In order to see this, we notice the following trigonometric
identities:

ψ2 = 2 cos

(
π

N + 1

)
ψ1, ψN−1 = 2 cos

(
π

N + 1

)
ψN ,

(B3)

ψl−1 + ψl+1 = 2 cos

(
π

N + 1

)
ψl . (l = 2, . . . , N − 1).

(B4)

Since α = α0(T − Tc1), then at zero field, superconductivity
occurs at temperatures below the critical temperature

TcN = Tc1 + 2T0 cos

(
π

N + 1

)
. (B5)

At weak in-plane fields, we treat B as a perturbation and
calculate the free energy up to �2 as

f = �2

2

{
α − 2J cos

(
π

N + 1

)
+ J

B2

B2
0

cN

}
, (B6)

where the dimensionless coefficient is

cN = − 1

24

[
(N2 + 2N + 3) cos

(
2π

N + 1

)
− N2 − 2N + 9

]

× csc2

(
π

N + 1

)
. (B7)

Hence, the critical temperature at weak in-plane fields reads

TcN (B) = TcN − cN T0(B/B0)2. (B8)

Values of cN are calculated and listed in Table I, and have been
used in the fitting of Fig. 1(a) of the main text.

Under in-plane fields, the linearized Ginzburg-Landau
equation is the eigenvalue problem of difference equation

−|q − 2eAl |2
2m

ψl + J (ψl−1 + ψl+1) = αψl ,

Al =
[

l − 1

2
(N + 1)

]
dB × ẑ.(l = 2, . . . , N − 1). (B9)

When the field is strong enough (intermediate), we can use
continuum approximation

ψl−1 + ψl+1 − 2ψl ≈ d2

dl2
ψl , (B10)

and the difference equation becomes a differential equation:

−|l − l0|2
2m

(
2πBd


0

)2

ψl + J
d2

dl2
ψl = (α − 2J )ψl ,

l0 = 1

2
(N + 1) + 
0q

2πBd
. (B11)

The solution will be Gaussian

ψl = � exp

(
−1

2

B

B0
|l − l0|2

)
. (B12)

When q = −πBd/
, the order parameter localizes on layer
l0 = 1

2 N , and when q = +πBd/
, the order parameter local-
izes on layer l0 = 1

2 N + 1. The width of the order parameter
profile is lB = √

B0/B.
For comparison, we can also estimate the width of the order

parameter profile Eq. (B2) at zero field. To do this, we notice
that the peak of Eq. (B2) is at lc = 1

2 (N + 1), which is a half
integer if N is even and an integer if N is odd. We thus expand
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Eq. (B2) around l = lc as

ψδl+lc

�
= cos

(
πδl

N + 1

)
= 1 − 1

2

(
πδl

N + 1

)2

+ O(δl4). (B13)

Hence, the peak width can be argued as (
πδl

N + 1

)2

∼ 1

N + 1
⇒ δl ∼

√
N + 1

π
. (B14)

APPENDIX C: EFFECTIVE BILAYER MODEL

The point group of the bilayer and bulk transition metal dichalcogenide is D3d with symmetry generators: Threefold in-plane
rotation C3z, vertical mirror Mx, and twofold out-of-plane rotation C2x. Symmetry operations on the two localized modes ψ±,
Cooper pair momentum q = (qx, qy), and in-plane magnetic field B = (Bx, By) are

C3z: ψ± → ψ±, (qx, qy) →
(

−1

2
qx −

√
3

2
qy,

√
3

2
qx − 1

2
qy

)
,

(Bx, By) →
(

−1

2
Bx −

√
3

2
By,

√
3

2
Bx − 1

2
By

)
,

Mx: ψ± → ψ±, (qx, qy) → (−qx, qy), (Bx, By) → (Bx,−By ),

C2x: ψ± → ψ∓, (qx, qy) → (qx,−qy), (Bx, By) → (Bx,−By ),

T : ψ± → ψ∗
±, (qx, qy) → −(qx, qy), (Bx, By) → −(Bx, By). (C1)

The inversion can be obtained by group multiplication I = MxC2x : ψ+ ↔ ψ−, q → −q, B → B.
The free energy is invariant under the point group D3d , so is the Hessian matrix, namely U (g)H(gq, gB)U −1(g) = H(q, B)

with g = det(g)g and U (C2x ) = τx,U (C3z ) = U (Mx ) = τ0. In order to calculate the invariants, we introduce q± = qx ± iqy,
B± = Bx ± iBy, and ω = exp(2π i/3), then

C3z: ψ± → ψ±, q± → ω±q±, B± → ω±B±,

Mx: ψ± → ψ±, q± → −q∓, B± → B∓,

C2x: ψ± → ψ∓, q± → q∓, B± → B∓,

T : ψ± → ψ∗
±, q → −q, B → −B. (C2)

We thus obtain the following invariants, for example

τ0, q2, B2, Re(q2
+B4

+), Re(q4
+B2

+), τx, Im(q+B2
+)τy, Im(q+B−)τz, Im(q3

+B3
+)τz, . . . . (C3)

In general, the invariants would have the following forms (n, k = 0, 1, 2, . . . ):

q2nB2k, Re(q2n
+ B6k−2n

+ ), q2nB2kτx, Im(q2n−1
+ B6k−2n−2

+ )τy, Im(q2n−1
+ B2n−1−6k

− )τz, Im(q2n−1
+ B6k+1−2n

+ )τz, . . . . (C4)

Hence, we arrive at the Hessian matrix H = H0 + H1 as shown in the main text:

H0 = a + b(ẑ × B) · qτz + cq2 − J τx, a = r(T − Ta) + χB2, (C5)

H1 = λ1Re(q2
+B4

+) + λ2Re(q4
+B2

+) + λ3Im(q+B2
+)τy. (C6)

Hence, we can derive the field-dependent optimal Cooper pair momentum and critical temperature

q = b

2c
(B × ẑ)Re

√
1 −

(
B∗

B

)4

, (C7)

Tc(B, ϕ) = Tc(B) + �Tc(B, ϕ), (C8)

with B∗ = √
2c|J |/b, B = B(cos ϕ, sin ϕ). The isotropic part of the critical temperature is

Tc(B) = Ta − χ

r
B2 + b2

4cr
×

{
2|B∗|2 B < B∗

(B2 + |B∗|4/B2) B > B∗ . (C9)

The anisotropic part is sixfold

�Tc(B, ϕ) = λ(B)θ (B − B∗) cos(6ϕ), (C10)
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with

λ(B) = 1

r
(λ1τ

2 − λ2τ
4)B6 + 1

r

λ2
3B4√

b4/c2 + 2λ2
3τ

2B2
, τ = b

2c

√
1 −

(
B∗

B

)4

. (C11)

To fit the numerical data in Fig. 1 of the maintext, we rewrite Eq. (C7) as the dimensionless form

q
q0

= ρ
B × ẑ

B0
Re

√
1 −

(
B∗

B

)4

(C12)

with the dimensionless parameters ρ = B0b/(2cq0) and B∗/B0 listed in Table I for different N .
To fit the experimental data in Fig. 3 of the maintext, we rewrite Eq. (C9) as the dimensionless form

Tc(B)

Tc
= 1 − γ1

(
B

B∗

)2

+ γ2

[(
B

B∗

)2

+
(

B∗

B

)2

− 2

]
θ (B − B∗), Tc = Ta + J /r, (C13)

with two dimensionless parameters γ1 = χ |B∗|2/r, γ2 = J /(2r) and one parameter B∗ of the field dimension. The optimal
fitting gives rise to

γ1 = 0.1235, γ2 = 0.0882, B∗ = 4.0911T. (C14)

Next we consider the quartic free energy of the effective bilayer model

f4 = β1(|ψ+|4 + |ψ−|4) + β2|ψ+|2|ψ−|2. (C15)

We introduce the polar coordinate ψ+ = ψ cos θ and ψ− = ψ sin θ to rewrite the free energy above

f4 = β1|ψ |4 + 1
4 (β2 − 2β1)|ψ |4 sin2(2θ ). (C16)

For stability, we require the coefficient of |ψ |4 term to stay positive for various θ . When θ = 0, we find β1 > 0. When sin2(2θ ) =
1, we find

β1 + 1
4 (β2 − 2β1) > 0 ⇒ β2 > −2β1. (C17)
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