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Machine learning models capable of handling the large data sets collected in the financial world can often
become black boxes expensive to run. The quantum computing paradigm suggests new optimization techniques
that, combined with classical algorithms, may deliver competitive, faster, and more interpretable models. In this
paper we propose a quantum-enhanced machine learning solution for the prediction of credit rating downgrades,
also known as fallen-angels forecasting in the financial risk management field. We implement this solution on a
neutral atom quantum processing unit with up to 60 qubits on a real-life data set. We report performance that is
competitive with the state-of-the-art random forest benchmark, whereas our model achieves better interpretability
and comparable training times. We examine how to improve performance in the near term, validating our ideas
with tensor-networks-based numerical simulations.
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I. INTRODUCTION

In finance, an interesting and relevant problem consists in
estimating the probability of debtors reimbursing their loans,
which represents an essential quantitative problem for banks.
Financial institutions generally attempt to estimate credit wor-
thiness of debtors by sorting them into classes called credit
ratings. These institutions not only can build their own credit
rating model but also can rely on credit ratings provided
by one or more of the three main rating agencies: Fitch,
Moody’s, and Standard & Poor’s (S&P). Borrowers are gen-
erally grouped into two main categories according to their
credit worthiness: investment-grade borrowers with low credit
risk and sub-investment-grade borrowers with higher credit
risk. Should a borrower’s rating be downgraded from the
investment-grade category to the sub-investment-grade cate-
gory, the borrower is referred to as a fallen angel.

*These authors contributed equally to this work.
†loic@pasqal.com

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

The early anticipation of these fallen angels is a problem
of utmost importance for financial institutions and one that
has gathered significant attention from the machine learning
(ML) community in the past years. Indeed, these institutions
usually have access to large amounts of data accumulated over
several decades. The wide variety of features gathered can be
fed to advanced ML models tasked with solving the following
classification task: Will a debtor have a high or low risk of
becoming a fallen angel in the foreseeable future? Propos-
als of binary classification methods, or classifiers, targeting
such tasks have been investigated, and promising results were
obtained using the random forest model and XGBOOST [1,2].
Due to their feature extraction flexibility, those tree-based
ensemble methods turned out to be more suitable for similar
credit risk modeling tasks [3,4], compared with deep learning
approaches [5,6]. However, these methods quickly become
computationally demanding as the numbers of decision trees
grow. Furthermore, denser and denser forests usually become
black boxes in terms of interpretability, i.e., hard to understand
by their users.

Quantum computing offers a new computational paradigm
promising advances in computational efficiency for particu-
lar types of tasks. One of the most promising fields where
quantum computing could be useful in practical industrial
applications is the financial sector, with its wide range of
hard computational problems [7]. Quantum and quantum-
inspired approaches have already shown many promising
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applications in financial problems [8–15]. In particular, the
nascent subfield of quantum machine learning harnesses well-
known quantum mechanics phenomena such as superposition
and entanglement to enhance machine learning routines. This
technology has drawn much attention in the past years with
numerous proposed algorithms and a broad array of appli-
cations [16–18]. Indeed, many classification, clustering, or
regression tasks can be tackled by quantum neural networks
[12,19] or quantum kernel models [18,20–22]. Much focus
has also been placed on hybrid perspectives that combine clas-
sical components and current quantum hardware capabilities,
such as variational approaches [23] or hybrid ensemble-type
methods [24–29].

This paper investigates the capabilities of today’s noisy
intermediate-scale quantum hardware in conjunction with
quantum-enhanced machine learning approaches for the
detection of fallen angels. In this paper, we propose a
quantum-enhanced classifier inspired by the quantile boost
(QBoost) algorithm [24,25] with hardware implementation on
a neutral atom quantum processing unit (QPU). We bench-
mark the proposed solution against a highly optimized random
forest classifier. As we shall see, using the proposed quan-
tum solution, we achieve a performance very similar to the
benchmark with comparable training times and better in-
terpretability, i.e., a simpler and smaller predictive model.
Furthermore, we provide a clear path on how we expect to
beat the threshold set by the benchmarked random forest,
providing evidence based on tensor networks simulations.

The paper is organized as follows: Sec. I presents the
application of the classical solution, random forest, to the
classification task. Section II presents the proposed quantum-
enhanced solution and methodology. Section III comments
on the results and scaling of the devised quantum-enhanced
classifier implemented on the proposed QPU, followed by
conclusions and an outlook.

II. CLASSICAL METHOD FOR
FALLEN-ANGELS DETECTION

This section delves into the random forest model classi-
cally used in risk management to assess the creditworthiness
of counterparts and predict future fallen angels. Random for-
est is a well-known ensemble method based on bootstrap
aggregation, also called bagging, applicable for regression
and classification alike [30]. Training a random forest of m
trees on an n-size training set entails sampling with replace-
ment of the latter to generate m new data sets with n elements
each. To ensure low correlation between the trees, each tree
is trained on a different subset of randomly selected features.
The trained classifiers are then collectively used to predict the
class of unseen data through majority vote over m decisions.

A. Data set

The data set used in this paper originates from public
data over a period of 20 yr (2001–2020). It comprises more
than 90 000 instances characterized by around 150 features,
representing the historical evolution of credit ratings as well as
numerous financial variables. Predictors include rating, finan-
cial, and equity market variables and their trends calculated on

a biannual, quarterly, and 5-yr basis. The examples considered
are based on over 2000 companies from ten different industrial
fields (e.g., energy, healthcare, utility) and 100 subsectors
(e.g., infrastructure, oil and gas exploration, mining), located
in 70 different countries. Each of the records is labeled as ei-
ther a fallen angel (i.e., critical downgrade; class 1 or positive)
or a non-fallen-angel (i.e., stable or upgraded credit score;
class 0 or negative) based on standard credit rating scales.

The training set consists of around 65 000 examples from
the 2001–2016 period. The testing set comprises around
26 000 examples from the 2016–2020 period. The class dis-
tribution is highly unbalanced with only 9% of fallen angels
in the training set and 12% in the test set.

Since our goal is to benchmark the performance of the
proposed quantum framework against the classical random
forest’s solution over the same data set, no further data pro-
cessing or feature engineering was performed. To deal with
the highly skewed distribution of classes as mentioned above,
both random undersampling of the majority class and random
oversampling of the minority class were tested to balance the
training set.

B. Metrics

In order to assess the quality of the studied classification
models, we settle on two metrics, i.e., precision and recall,
defined as

P = Tp

Tp + Fp
and R = Tp

Tp + Fn
, (1)

where Tp and Tn represent the number of true positives and the
number of true negatives, respectively (i.e., accurate predic-
tion of the model), and Fp and Fn represent the number of false
positives and the number of false negatives, respectively (i.e.,
inaccurate prediction of the model), as illustrated in Fig. 1(a).
The precision P is the ability of a classifier to not mistake
a negative sample for a positive one; it thus represents the
quality of a positive prediction made by the model. Similarly,
the recall R can be understood as the ability of the model to
find all the positive samples.

Our primary goal consists in increasing the precision of
predicting fallen angels while keeping the recall over R =
80%. Accommodating this criterion requires tuning the de-
cision threshold, a parameter that governs conversion of class
membership probabilities to the corresponding hard predic-
tions (e.g., 0 or 1). This threshold is usually set at 0.5 for
normalized predicted probabilities.

Here, the optimal probability threshold value is determined
using a precision-recall curve (PR curve), shown in Fig. 2(a).
Specifically, P and R are computed at several decision thresh-
olds. A linear interpolation between neighboring points of the
PR curve [see Fig. 2(b)] enables us to determine the precision
value corresponding to R = 83%.

C. Benchmark baseline

Training the random forest model and optimizing its hy-
perparameters through random search lasts more than 3 h on
a classical computer. The 1200 decision trees of the obtained
model enable us to achieve R = 83% and P = 28%, as show-
cased in Fig. 1(b).
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(a)

(b)

FIG. 1. (a) A binary classification problem deals with two classes
(e.g., squares and triangles). The classifier is trained on the labeled
training data and tasked to classify the instances, i.e., to find a
decision boundary (black line) separating the test data. Considering
test data comprising two features k and l , the model either predicts
correctly the class of an instance, thus increasing Tp and Tn (green
squares and blue triangles), or predicts incorrectly, thus increas-
ing Fp and Fn (green triangles and blue squares). (b) Classification
performance of the classical solution on the test set shown as a
confusion matrix. From the proportions of Tp, Fp, and Fn obtained
by the random forest model described in Sec. I C, both recall R and
precision P scores can be derived.

This result, far from being optimal, especially in terms
of precision, is due to several factors, representative of the
complexity of the problem.

(1) The data set is highly unbalanced, which is a notori-
ously hard problem for classical machine learning models.

(2) Processing a significant number of features can be re-
source consuming, and it remains impossible to exhaustively
search the space of solutions at too large sizes. Therefore the
classical method uses a suboptimal shortcut to select relevant
features.

(3) Finding the optimal weight for each predictor is an
exponentially complex optimization problem as the number
of predictors increases. Hence the random forest model uses
majority voting for classification, which is quite restrictive in
terms of performance.

(a)

(b)

FIG. 2. (a) Precision-recall curve (blue curve) calculated using
different decision thresholds for the predictions. A close-up of the
region of interest is shown in (b) (dashed red lines). (b) Precision
value corresponding to the recall of 83% obtained through linear
interpolation (dashed green lines) between the neighboring points
R = 82 and 85% on the PR curve.

We address the above-mentioned points with a proposed
quantum-enhanced machine learning approach, taking ad-
vantage of quantum combinatorial optimization to efficiently
explore the space of solutions.

III. QUANTUM-ENHANCED CLASSIFIER

A. QBoost

First proposed by Neven et al. [24], the QBoost algorithm
is an ensemble model comprising a set of weak, i.e., simple
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low-depth, decision tree (DT) classifiers, also called learners,
optimally combined to build a strong classifier.

The workflow of the algorithm starts from a boosting pro-
cedure, based on the standard adaptive boosting (AdaBoost)
algorithm [31,32]. A set of N weak learners hi=1···N is clas-
sically trained in a sequential fashion on the training set.
Initially, the first weak learner is trained such that all the data
points are weighted uniformly, using the constant distribution
Di=1(s) = 1

S , with S being the size of the data set. Each weak
learner hi is then iteratively trained on the same training set,
where the data points are, however, weighted differently based
on an updated distribution Di(s). This latter distribution is
recomputed after the training of each weak learner. More
precisely, it depends on the quantity εi that considers the
misclassified points by the previous weak learner:

εi =
∑

s

1[hi(�xs) �= ys]Di(s). (2)

From εi, one computes the quantity

αi = 1

2
ln

(
1 − εi

εi

)
, (3)

which enters the exponential coefficient to update the data
distribution as

Di+1(s) = 1

Zi
Di(s) · e−αiyshi (�xs ). (4)

Here, we introduce the normalization factor Zi such that Di+1

is a probability distribution.
After the entire ensemble of weak learners hi=1···N has

been trained, a strong classifier C is built by combining the
weak learners. The optimal combination is obtained through
the optimization of binary weights w ∈ BN that minimize the
following cost function:

H(w) =
∑

s

(
1

N

N∑
i

wihi(�xs) − ys

)2

+ λ‖w‖0, (5)

where wi is the ith binary weight, hi( �xs) ∈ [−1, 1] is the
prediction of the ith weak learner for the data point �xs, and
ys ∈ [−1, 1] are the classification labels. A regularization term
parametrized by λ helps to favor better generalization of the
model on new data by penalizing too-complex ensembles with
many weak learners. As the number of learners increases,
the space of possible binary weights expands exponentially.
Minimizing H is in fact an NP-hard problem.

Expanding the squared term in the above equation and
dropping the constant terms, which are irrelevant to the mini-
mization problem, we can reformulate the cost function as

H(w) =
N∑
i, j

wiw jCorr(hi, h j ) +
N∑
i

wi(λ − 2Corr(hi, y)),

(6)

with Corr(hi, h j ) = ∑
s hi(�xs)h j (�xs) and Corr(hi, y) =∑

s hi(�xs)ys. On the one hand, the weak classifiers whose
outputs correlate well with the labels cause the second
term to be lowered via Corr(hi, y). On the other hand, via
the quadratic part Corr(hi, h j ) describing the correlations
between the weak classifiers, pairs of strongly correlated

classifiers increase the value of the cost function, thereby
increasing the chance for one of them to be switched off. This
is in line with the general paradigm of ensemble methods
for promoting a diversification of the ensemble in order to
improve the model generalization on unseen data.

Once the optimization of Eq. (6) is performed (see
Sec. II C), the strong classifier C can be built using wopt, the
weights minimizing H. Given a new data point �x, we infer a
classification prediction by

C(�x) = sgn

(
1

N

N∑
i

w
opt
i hi(�x) − T

)
, (7)

where T is an optimal threshold that enhances results as pro-
posed in Refs. [24,25] and is computed as a postprocessing
step

T =
(

1

S

S∑
s

1

N

N∑
i

w
opt
i hi(�xs)

)
. (8)

B. QBoost-inspired quantum classifier

An important challenge in designing a successful ensemble
is to ensure that the base learners are highly diverse, i.e., that
their predictions do not correlate too much with each other.
The initial idea of QBoost [24] was to accomplish this by
using weak learners of the same type, specifically decision
tree (DT) classifiers, and train them sequentially using the
boosting procedure. Another way is to use different types of
base learners [33], creating a heterogeneous ensemble with a
mix of different learners including, e.g., DTs, logistic regres-
sion (LR), k-nearest neighbors (kNNs), and Gaussian naive
Bayes (GNB) [34]. Having inherently different mathematical
foundations, these learners can exhibit significantly different
views of the data landscape.

For this specific problem, we find that a classifier based
on a heterogeneous ensemble comprising different types of
learners can lead to better generalization performance than
the plain-vanilla model with DT only. The choice of type and
mixing of such a heterogeneous ensemble is motivated by
comparing results from extensive simulations, both with one
type of learner and with combinations thereof. Each of these
models is trained on the undersampled version of the training
set, and the corresponding prediction performance is obtained
on a separate cross-validation set, using precision and recall.
As displayed in Fig. 3, DTs perform better in recall, while
kNNs perform better in precision. Heuristically, combining
these two types of base learners results in the actual best-
performing model over any other tested combinations.

Furthermore, in order to take advantage of the historical
structure of the data, where multiple historical data points
for the same companies are available, we propose to train
each of the learners of the heterogeneous ensemble on dif-
ferent historical periods of the data set. Specifically, using
date features in the data set, the raw training set is split into
subsets, and then subgroups of learners are trained on them.
This ensemble-training procedure based on subsampling is
expected to further diversify the ensemble, where the weak
learners are trained independently on the different economic
recession and expansion periods underlying the training data
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FIG. 3. Comparison of QBoost performances, i.e., recall (blue)
and precision (orange), with different base learners including deci-
sion trees, k-nearest neighbors, Gaussian naive Bayes, and logistic
regression.

set. Additionally, it reduces the training time significantly as
each subgroup of learners is trained on a subset of data. The
learners trained in this way can potentially capture different
views of the data, resulting in a better diversification of the
ensemble.

Here we propose this approach with two variations:
(1) Boosting. Following Ref. [24], we train each of the

ensembles on the different subsamples of data with the se-
quential boosting procedure described in Sec. II A. Generally,
the learners can exhibit negative correlations between each
other.

(2) Subsampling. We train each of the ensembles with-
out sequential boosting, relying only on subsampling for
diversification. Generally, the learners exhibit only positive
correlations between each other.

C. Optimization of the ensemble via quadratic unconstrained
binary optimization solving

As explained in Sec. II A, the weak learners obtained dur-
ing the ensemble training are then optimally combined to form
a stronger classifier. Finding the best binary weights w for this
combination amounts to the minimization of the cost function
given in Eq. (6). Since the weights wi are binary variables,
that is, w2

i = wi, we reformulate H as HQ:

HQ(w) = wT Qw =
N∑
i, j

Qi jwiw j, (9)

where

Qi j =
{

Corr(hi, h j ) if i �= j
S

N2 + λ − 2Corr(hi, y) otherwise.
(10)

This second formulation is written in the form of a quadratic
unconstrained binary optimization (QUBO) problem [35].
Solving a QUBO problem amounts to finding the minimum
of a quadratic polynomial of bit variables, i.e., the optimal bit

string minimizing the cost function HQ, with Q ∈ MN (R), the
symmetric matrix encompassing the correlations between the
weights to optimize.

As the number of learners grows, the classical optimiza-
tion of the weights becomes exponentially hard, thus opening
the door to potentially more efficient quantum methods. For
instance, what if we encode the binary variables into qubit
states on a quantum computer, traversing the search space
as a Hilbert space? A common misconception is that quan-
tum computers could solve in polynomial time NP-complete
problems; however, this has not been proven, and in fact the
consensus is that it would be extremely unlikely. However,
there is mounting evidence [36] that they could better approx-
imate “sufficiently good” (as defined in Sec. III A) solutions
in a short(er) time compared with classical computers in
some cases. This expectation partly stems from the fact that
quantum computers may offer shortcuts through the optimiza-
tion landscape inaccessible to traditional classical simulated
annealing methods [37]. In our case, if one can produce a
state such that the probability amplitudes peak in low-cost bit
strings, sampling from it becomes an efficient way to optimize
the weights. Such a quantum state may be potentially highly
entangled and cannot be efficiently stored by classical means.
Quantum computers based on neutral atoms offer unprece-
dented scalability, up to hundreds of atoms [38], as well as
a global addressing scheme (analog mode), allowing a large
set of qubits to be easily entangled. In contrast, quantum
circuit-based calculations become quite greedy regarding the
number of gates required to achieve such levels of complexity.
We focus here on solving QUBO problems using an analog
neutral atom setup.

D. Information processing on a neutral atom platform

In analog neutral atom quantum processing devices [39],
each atom is considered with reasonable approximation as a
simpler system described by only two of its electronic states.
Each atom can thus be used as a qubit with basis states |0〉 and
|1〉, these being a low-energy ground state and a highly excited
Rydberg state, respectively [40]. The evolution of the qubit’s
state can be parametrized by time-dependent control fields
�(t ) and δ(t ). These parameters are ultimately related to the
physical properties of lasers acting on the atoms. Moreover,
the quantum state of atom i can significantly alter the state
of atom j, depending on their pair distance ri j . Indeed, the
excitation of i to a Rydberg state |1〉 shifts the energies of
the corresponding Rydberg states of nearby j by an amount
U (ri j ). The latter quantity can be considered impactful com-
pared with the action of the control fields when ri j � rb, with
rb being the blockade radius. This blockade effect [41] con-
stitutes the building block of the entangling process in neutral
atom platforms.

When a laser pulse sequence acts on an entire array of N
atoms, located at positions r, the time evolution of the quan-
tum state |ψ〉 can be expressed by the Schrödinger equation
ih̄ ∂

∂t |ψ〉 = Ĥ (t )|ψ〉, where Ĥ (t ) is the system Hamiltonian.
Neutral atom devices are capable of implementing the so-
called Ising Hamiltonian, consisting of a time-dependent
control part as well as a position-dependent interaction
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FIG. 4. Random graph sampling pipeline for solving a QUBO Q on a neutral-atom-based QPU. First, a QUBO, here with negative weights
on the diagonal (red) and positive weights outside (shades of green), is taken as input. From this QUBO, a trap pattern is devised and sent to
the QPU, as well as the wanted number of repetitions and the pulse sequence used. At the beginning of each cycle, a first fluorescence picture
enables one to identify which traps were filled by an atom (bright spots). The system evolves according to Ĥ (t ), and a final picture is taken to
measure the collapsed state of the system, outputting a bit string w. Using Q, we select wQ among D, the distributions of bit strings obtained
from repeating this process several times.

part:

Ĥ (t ) = Ĥctrl(t ) + Ĥint (r)

= h̄
N∑

i=1

(
�(t )

2
σ̂ x

i − δ(t )n̂i

)
+ 1

2

∑
i �= j

Ui j n̂in̂ j, (11)

where σ̂ α
i are the Pauli matrices applied on the ith qubit [42],

n̂i = (1 + σ̂ z
i )/2 is the number of Rydberg excitations (with

eigenvalues 0 or 1) on site i, and Ui j = U (ri j ) > 0 repre-
sents the distance-dependent interaction between qubit i and
j. The state of the system is initialized to |0 · · · 0〉. Once the
pulse sequence drives the system towards its final state |ψ〉 =∑

w∈BN aw|w〉, a global measurement is performed through
fluorescence imaging: The system is projected to a basis state
|w〉 with probability |aw|2. The obtained picture reveals which
atoms were measured in |0〉 (bright spot) and which were
in |1〉 (dark spot); see Fig. 4. Repeating the cycle (loading
atoms, applying a pulse sequence, and measuring the register)
multiple times constructs a probability distribution that ap-
proximates |aw|2 for w ∈ BN , allowing us to get an estimator
of |ψ〉 and use it as a resource for higher-level algorithms.

E. Quantum algorithms for QUBO problems

Proposals to solve combinatorial problems, such as QU-
BOs, using neutral atom quantum processors abound [43–45],
for example, using a quantum adiabatic algorithm (QAA)
[46] or quantum approximate optimization algorithm (QAOA)
[36]. One crucial ingredient of these proposals is the ability
to implement a custom cost Hamiltonian ĤQ on the quantum
processor which should be closely related to the cost function
HQ. When this Hamiltonian is generated exactly, the men-
tioned iterative methods can ensure that after k iterations the
evolution of a quantum system subjected to Ĥ (k)

ctrl + ĤQ will
tend to produce low-energy states |w〉, i.e., solutions with
low values HQ(w). There are ways to compute the evolu-
tion over ĤQ using circuit-based quantum computers [36], or

special-purpose superconducting processors such as D-Wave
machines [47].

For analog neutral atom technology, innately replicating
the cost Hamiltonian with Ĥint would require one to satisfy
{Ui j = Qi j‖1 � i �= j � N} and thus to find specific coor-
dinates of the atoms respecting all these constraints (their
number increases quadratically with the number of variables
used to represent N atoms in the plane). As a consequence,
only part of the constraints can be fulfilled by a given embed-
ding, resulting in only an approximation of ĤQ in a general
case. Therefore the quality of the solutions sampled from
the final quantum state will be limited under a straightfor-
ward implementation of a QAA or a QAOA. In addition, the
optimization of variational quantum algorithms [23] usually
requires diagnosing the expressibility and trainability of sev-
eral circuits (or pulse sequences at the hardware level) in
order to trust that low-energy states are being constructed.
Moreover, at each iteration, obtaining a statistical resolution
of the energy of the prepared state with precision ε, one
requires O(1/ε2) samples. Given the currently low repetition
rate of quantum processing units (QPUs) based on neutral
atom technology (of the order of 1–5 Hz), the implementation
of such approaches requires several tens of hours of operation
on robust hardware. With current technology, it is therefore
crucial to employ methods involving only a small budget of
cycles that can quickly provide significant solutions to the
QUBO problem.

F. Random graph sampling

Stepping away from the variational paradigm of the QAOA
and QAA, we devised a sampling algorithm that exploits
the stochastic loading probability of a neutral atom QPU in
order to probe efficiently the solution space of a QUBO. This
algorithm is faster to implement as it does not require iter-
ative processes such as closed-loop communication between
a classical optimizer and the quantum hardware. We propose
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the random graph sampling (RGS) method, which builds upon
the randomness of the atomic loading process. This procedure
allows us to sample solutions of QUBOs of sizes up to 60.

In a neutral atom QPU, atoms are spatially arranged by
combining the trapping capacity of optical tweezers with
the programmability of a spatial light modulator (SLM).
By means of these two devices, atoms can be individually
trapped in arbitrary geometries. Once an atomic cloud has
been loaded, each of the Nt traps is randomly filled with
success probability p according to a binomial law B(Nt , p).
Thus one must set up around Nt = N/p traps to maximize the
probability of trapping N atoms. A rearrangement algorithm
then moves atoms one at a time to the wanted positions using
a moving tweezer. The excess atoms are released midstroke to
end up with a register of N correctly positioned atoms. How-
ever, by skipping the rearrangement step, we obtain samples
from an essentially random subconfiguration of the under-
lying pattern of traps. For Nt = 2N , the number of possible
configurations of size N scales as (2N

N ) ∼ 4N/
√

N , offering a

large variety of Ĥint for a devised pattern. In order to produce
the quantum distributions from which we sample the QUBO
solutions, we repeatedly apply a parametrized sequence with
constant pulses to the atoms. The latter evolve under Ĥ (t )
according to their interactions, which are set by the atom
positions at each cycle.

The QUBO to solve, Q, first acts as a resource to design
the trap pattern (Nt , shape, spacing) sent to the QPU (see
Fig. 4). Once a chosen budget of samples has been acquired
on the QPU, we are left with a bit-string distribution D. Using
again the QUBO, we apply a relabeling procedure (described
in Appendix A 1) to each bit string according to both Q
and the related atom positions. This optimization procedure
is designed to scale only linearly with N and is tasked to
search for a way of labeling the atoms from 1 to N which
minimizes for each repetition the difference between ĤQ and
Ĥint . Finally, we compute the bit string corresponding to the
optimized weights for the ensemble of learners considered.

While RGS offers no theoretical guarantee of sampling
a global minimum of the cost function, we can still ex-
pect to output bit strings with low function value. We
can compare RGS performances to several state-of-the-art
quantum-inspired methods. Quantum-inspired algorithms are
run on classical devices and allow with some approximation
a fast emulation of the quantum phenomena happening in a
QPU. Two numerical methods are introduced to benchmark
QUBO solving: a naive analog QAOA with three pulse du-
rations as optimizable parameters (see Appendix A 1) and
simulated annealing (SA) [48,49]. The methods are always
compared for similar budgets of cycle repetitions, and we
can assess the quality of the bit-string distribution or the
scalability of each approach. We also propose in the following
a numerical tensor-networks-based algorithm to handle large
QUBOs without any restriction on their structure.

G. Tensor network optimization

Tensor networks (TNs) are a mathematical description
for representing quantum many-body states based on their
entanglement amount and structure [50,51]. They are used
to decompose highly correlated data structures, i.e., high-

dimensional vectors and operators, in terms of more funda-
mental structures and are especially efficient in classically
simulating complex quantum systems.

To be more specific, one can consider an N-qubit sys-
tem and its wave function naively described by its O(2N )
coefficients aw in the computational basis. Formally, these
coefficients can be represented by a tensor with N indices,
each of them having two possible values (0 and 1), which
quickly become costly to store and process with increasing
N . However, we can replace this huge tensor by a network of
interconnected tensors with fewer coefficients, defining a TN.
Each subsystem corresponds in practice to the Hilbert space
of one qubit. By construction, the TN depends on O(poly(N ))
parameters only, assuming that the rank of the interconnecting
indices is upper-bounded by a parameter, called the bond
dimension. Because of polynomial scaling, TNs constitute
useful tools for emulating quantum computing, and many of
the current state-of-the-art simulators of quantum computers
are precisely based on them.

In addition, TNs have also proven to be a natural tool for
solving both classical and quantum optimization problems [9].
They have been used as an ansatz to approximate low-energy
eigenstates of Hamiltonians. In our case, which involves a
classical cost function, we propose an optimization algorithm
based on time-evolving block decimation (TEBD) [52]. In this
approach, we simulate an imaginary-time evolution driven by
the classical Hamiltonian ĤQ and simulate the state of the
evolution at every step by a particular type of tensor network
called a matrix product state (MPS). By using this approach,
the algorithm reaches an optimum final configuration of the bit
string minimizing the cost function. The optimal configuration
of the ensemble thus achieved was used to make predictions
on the unseen test set.

IV. RESULTS

In this section, we present the classification results based
on the RGS quantum optimization procedure performed on
a QPU for QUBOs of sizes up to 60 qubits. In addition,
we present the performance of the boosting variation of the
quantum classifier, already capable of beating the benchmark
by reaching a precision of 29% for 90 qubits or learners, based
on tensor network methods.

A. QPU optimizer results

We experimentally implement the RGS method described
in Sec. II F to solve six sets of QUBOs ranging in size from
N = 12 to N = 60 qubits. QUBOs of one set being produced
by repeatedly applying the subsampling approach on the
same data set, they only exhibit minor discrepancies between
their structure and range of values. Therefore we can, within
reasonable approximation and for faster implementation on
the quantum hardware, use only one trap pattern per set. In
addition, we can reuse statistics acquired at large sizes and
extract from them distributions of bit strings of smaller size
as explained in Appendix A 2. In essence, by neglecting the
interaction between pairs of atoms separated by more than
one site, an N-atom regular array can be divided into smaller
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FIG. 5. Gap convergence obtained with classical uniform sam-
pling (black), simulated annealing sampling (blue), and RGS with
optimized relabeling (relabel., red) for increasing size of QUBOs.
The best gap found after some cycle repetitions is averaged over sets
of five QUBOs (solid curves).

clusters with similar regular shape and isolated from each
other.

Considering a loading probability p = 0.55, we design a
triangular pattern with Nt = 40/0.55 ≈ 73 traps for QUBOs
of size 40 (see Fig. 4) and similarly with 91 traps for QUBOs
of size 50. While this choice is motivated by both available
trapping laser power and maximization of the number of sam-
ples at sizes 40 and 50, it restricts the number of statistics
gathered at size 60. Results at this size are thus subject to large
uncertainty bars. The spacing of the regular pattern and thus
the atomic interaction in the array is chosen in combination
with the maximum value of �(t ) reached during the pulse
sequence. Having Hamiltonian terms � and U of comparable
magnitude in Ĥ (t ) enables us to explore the strongly interact-
ing regime.

Finally, we introduce the gap of a bit string w defined as

gap =
∣∣∣∣∣HQ(w) − HQ

(
w0

Q

)
HQ

(
w0

Q

)
∣∣∣∣∣, (12)

FIG. 6. Scaling analysis of the number of repetitions needed to
reach a gap below a threshold of 1% with respect to problem size.
The results obtained by the three mentioned methods at sizes N =
12, 20, 32, 40, 50, and 60 (open circles) are fitted either exponentially
or polynomially (curves) depending on the best match.

where w0
Q is the best solution returned by a state-of-the-art SA

algorithm given a large number of repetitions (200 000 here).
This solution, w0

Q, is not guaranteed to be the best possible,
but acts as such for benchmark purposes. Reaching a gap of
0 amounts to having found the best solution provided by the
benchmark. Note that for small sizes of N , it is possible to use
an exhaustive search as a benchmark and w0

Q is in that case
the theoretical best solution. Finding a bit string with a gap
below 1%, for instance, means finding a solution with a cost
close to 1% of the optimal one, which, in many operational
problems such as our case study, is often sufficient. We check
that for the various sizes considered, the difference between
selecting a 1% solution and the optimal one, i.e., with a gap
of 0, is reflected in the classification model with variation of
precision P smaller than the standard deviation obtained on
the QUBO set. We thus consider as a good enough solution a
bit string with a gap below 1%.

The results obtained by RGS with relabeling are show-
cased both in terms of convergence to low-cost-value HQ(w)
solutions (see Fig. 5) and scalability of the method with
respect to the complexity of the problem, i.e., the QUBO
size (see Fig. 6). The classical random method consists in
uniformly sampling with replacement bit strings from BN ; it
scales exponentially with N . In contrast, the RGS algorithm
shows better performance, already finding solutions with a
gap smaller than 10% after only a few repetitions. Looking at
the number of repetitions needed to go below 1% with respect
to N , a log-log linear fit returns a scaling in 0.2 × N1.55. Since
the QPU runtime scales linearly with the number of cycles,
the quantum optimization duration is also expected to scale
polynomially. Comparing RGS with the SA algorithm, we
observe better performance of the latter at small sizes but
more and more comparable performance at increasing sizes.
In the case of N = 40, this specific implementation of RGS
finds on average a gap below 0.2% after 150 repetitions, while
SA needs around four times more cycles. For N = 60, the
mean gap achieved after hundreds of cycles is around 1.5%.
Overall, RGS with relabeling applied to QUBOs produced by
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FIG. 7. QPU classification results obtained using the proposed quantum classifier based on subsampling (dark red) when optimizing
50-qubit-sized QUBOs. Its precision is compared with the precision obtained with the random forest approach (blue) using 1200 learners. On
the right, the corresponding confusion matrix of the implemented model is displayed with the proportions of Tp, Tn, Fp, and Fn as percentages
of the test data set.

the subsampling-based classifier exhibits similar behavior to
the state-of-the-art SA algorithm.

B. QPU classification results

In this section, we present the classification results ob-
tained using the quantum classifier based on subsampling (see
Sec. II B), trained using the quantum optimizer implemented
on a QPU of up to 60 qubits. This quantum classifier, leverag-
ing the subsampling approach without boosting, is based on
the optimization of QUBOs with positive off-diagonal values,
amenable to efficient optimization with the current quantum
hardware (see Sec. II D). We find the best results for 50 qubits
(recalling that few statistics were available at 60 qubits), cor-
responding to an initial weak ensemble of 50 learners, whose
percentages of kNNs and DTs have been optimally chosen
through a hyperparameter optimization procedure. For this
hyperparameter optimization (see Appendix B), the training
set was split into 80% training and 20% cross-validation sets
using stratified-shuffled splitting.

As depicted in Fig. 7, the proposed quantum classifier is
able to achieve very similar performances to the classical
random forest algorithm. Using bit strings with gap below
1%, our model reaches P = 27.9 ± 0.09%, closely approach-
ing the benchmark threshold P = 28.0 ± 0.07% for the same
recall value of R = 83%. Very interestingly, this result is
obtained with only 50 initial learners compared with the ran-
dom forest’s ensemble of 1200 learners. The difference in
the number of learners employed is of great relevance for
the interpretability of the model. Indeed, the model-outputted
decision for a new unseen point can be traced back more easily
and better understood by the user. Furthermore, we report
the total runtimes for this model up to 50 qubits in Table I
of Appendix C. As seen, the best results for 50 qubits were
obtained with a total runtime of around 50 min, against a

total runtime of more than 3 h for the classical benchmark,
representing a relevant practical speedup.

Next, we show in Fig. 8 precision values for R = 83% for
two quantum classifiers (based on subsampling) with different
compositions of kNNs and DTs respectively optimized to get
the best possible performance up to hardware capabilities of
60 qubits (brown line; best results for 50 qubits are taken from
here) and to get an optimal performance and a more favorable
scaling trend at the same time (yellow line). For the sake of
comparing scaling trends, linear extrapolations are applied,
and the corresponding intersections between the interpolation
lines and the benchmark threshold are marked. As seen, on the
one hand, quantum classifier 1 (brown line) presents the best
performance with a slowly increasing trend and is expected to
beat the benchmark performance at around 150 qubits. On the
other hand, quantum classifier 2 (yellow line) presents a lower
level of performance in terms of available data points but an
expected steeper increase, showing a predicted surpassing of
the benchmark (blue line) and of quantum classifier 1 (brown
line) at around 282 and 342 qubits, respectively.

TABLE I. Total training time including the time taken by training
(ensemble training and optimization using the QPU) and hyperpa-
rameter tuning (10 min) of the proposed quantum-enhanced classifier
based on subsampling.

Total training time (min)
Number of qubits Subsampling, QPU, heterogeneous

12 31.8
20 35.5
32 37.2
40 43.2
50 46.5
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FIG. 8. Scaling of precision P of various proposed quantum classifiers with respect to the number of qubits, keeping R = 83%. The two
variations of the subsampling approach (yellow, brown) are implemented on a QPU (solid circles) with between 12 and 60 qubits. The boosting
approach (red) is implemented using the TN optimizer (open circles) with between 12 and 90 qubits. The best performance of the random
forest classifier acts as the threshold (blue). The error bars represent the variability in the corresponding performance across five iterations or
QUBOs. Scaling projections are obtained by linear extrapolation (solid lines).

C. TN classification results

In Fig. 8 we also show the mean classification performance
of the quantum classifier optimized with the TN and based on
boosting (red line). This model being based on the boosting
procedure leverages the optimization of QUBOs with nega-
tive off-diagonal values which cannot be currently directly
optimized on a neutral atom QPU. It can be seen that even
at low values of qubits or learners, the proposed model based
on boosting already showed the same level of performance as
the random forest with 1200 trees. With 90 learners, it shows
a mean precision score of about P = 29% (reducing the false
positives by 1%) corresponding to a recall of 83%. An outlook
of the training and total runtimes for this heterogeneous model
and the homogeneous variation with just DTs can be found
in Table II of Appendix C. The best results for 90 qubits or
learners present a total runtime of the order of 20 min against
the total runtime of more than 3 h for the classical benchmark,
attaining also in this case a relevant practical speedup.

Based on the scaling projections, it can be argued that
this type of model is expected to remain the best-performing
one. It can be seen in the inset of Fig. 8 that a crossing with
quantum classifier 2 (yellow line) based on subsampling could
occur for a large number of qubits, around 2800, although it is
difficult to assess the reliability of the extrapolation for such
high numbers.

D. Current limitations and future upgrades

The training of the proposed model involves optimization
of a heterogeneous ensemble comprising DTs and kNNs. Due
to the slow execution speed and large memory requirements
of kNNs, the training time of this model was found to be
relatively higher than the homogeneous models comprising

TABLE II. Total training time including the time taken by
training (ensemble training and optimization using tensor net-
work optimization) and hyperparameter tuning (10 min) of the
proposed homogeneous and heterogeneous quantum-enhanced clas-
sifiers based on boosting.

Total training time (min)

Number of Boosting, TN, Boosting, TN,
qubits homogeneous heterogeneous

12 10.1 11.3
20 10.3 12.1
32 10.6 13.6
50 11.4 15.5
60 12.1 16.7
70 13.9 17.8
80 14.8 19.4
90 15.2 20
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just DTs. In the near future, this could be overcome by us-
ing a faster implementation of kNNs [53], leveraging GPU
architectures, for instance.

Implementing the boosting variation of the classifier di-
rectly on neutral atom hardware is at the moment hindered
by several limitations. As presented in Sec. II D, perfectly
embedding a QUBO into atomic positions requires one to
satisfy some constraints of the form {Qi j = Ui j}i �= j . Choosing
a specific Rydberg state to implement the Ising model implies
that the interaction U will be positive between all atomic pairs.
Choosing another Rydberg state such as |1〉 can enable one to
have negative interactions, but only globally. Thus QUBOs
with both positive and negative off-diagonal values, such as
those produced in the boosting variation, cannot be natively
implemented, restricting the type of classification models ac-
cessible on a current neutral atom QPU.

However, as shown in Fig. 8, the subsampling variation,
which produces QUBOs with all positive off-diagonal values,
could be able to beat the threshold set by the benchmark at
around 150 qubits. In order to optimize a heterogeneous en-
semble of this size with RGS, a pattern with around 290 traps
is needed. In a recent work [38], a new prototype success-
fully produced atomic arrays of size N = 324 with patterns
of 625 traps. As more capabilities become available for this
hardware technology, future implementations may offer an
opportunity to achieve an industry-relevant quantum value by
beating state-of-the-art methods at larger numbers of qubits or
learners.

V. CONCLUSIONS AND OUTLOOK

In this paper, we propose a quantum-enhanced ma-
chine learning solution for the prediction of credit rating
downgrades, also known as fallen-angels forecasting. Our al-
gorithm comprises a hybrid classical-quantum classification
model based on QBoost, tested on a neutral atom quantum
platform and benchmarked against random forest, one of the
state-of-the-art classical machine learning techniques used in
the finance industry. We report that the proposed classifier
trained on a QPU achieved competitive performance with
27.9% precision against the benchmarked 28% precision for
the same recall of approximately 83%. However, the proposed
approach outperformed its classical counterpart with respect
to interpretability with only 50 learners employed versus 1200
for the random forest and comparable runtimes. These results
were obtained leveraging the hardware-tailored random graph
sampling method to optimize QUBOs up to size 60. The RGS
method showed similar performance to the simulated anneal-
ing approach and was able to provide solutions to QUBO
within an acceptable repetition budget.

We also report a classification model based on the pro-
posed heterogeneous structure and leveraging the boosting
procedure that, although it is not amenable to being trained
on current hardware, was trained using a quantum-inspired
optimizer based on tensor networks. This model showed the
capability to already perform better across all the relevant
metrics, achieving a precision of 29%, which is 1% above the
benchmark, with just 90 learners (against 1200) and runtimes
of around 20 min compared with more than 3 h for the bench-
marked random forest.

Going forward, hardware upgrades in terms of qubit num-
bers will lead to performance improvements. This behavior is
illustrated in Fig. 8, where we show how the precision of the
quantum classifiers evolves with system size. Extrapolating
from these results and keeping other factors constant, the pro-
posed quantum classifiers could outperform the benchmarked
model within a few hundred addressable qubits. In addition,
hardware improvements enabling the resolution of QUBOs
with negative off-diagonal values could offer additional ad-
vantages to the quantum solution and improve performance
over the classical benchmark.

These results open up the way for quantum-enhanced ma-
chine learning solutions to a variety of similar problems that
can be found in the finance industry. Interpretability and
performance improvements for real cases with complex and
highly imbalanced data sets are pressing issues. As such, we
foresee a large number of applications for quantum-enhanced
machine learning, especially implemented on neutral atom
platforms, in solving computationally challenging problems
of the financial sector.
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APPENDIX A: RGS DETAILS

1. Optimized relabeling

We describe here the relabeling process used in random
graph sampling (see Sec. II F). For a given cycle where N
traps out of Nt are filled with atoms, a first measure of the
system before the quantum processing part enables us to lo-
cate the atoms, as shown in Fig. 9(a). The latter are randomly
labeled, and this memorized labeling usually orders the bit
string measured after the quantum processing. However, we
can choose another labeling more specific to the QUBO we
want to solve. This postprocessing step determines a labeling
σopt of the atoms such that the resulting interaction matrix
better reproduces the QUBO matrix than the one obtained
from the randomly generated graph. For each way of labeling
the atoms from 1 to N , i.e., each permutation of length N , we
compute the separation

sQ(σ ) =
∑
i< j

‖Uσ (i)σ ( j) − Qi j‖, (A1)

where Q is the QUBO matrix, σ is a permutation of length
N , and Uσ (i)σ ( j) is the interaction term between atoms orig-
inally named i and j. The two matrices are normalized to
allow a proper comparison. We perform a random search
with fixed budget niter over the N! possible labeling permu-
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(a)

(b)

FIG. 9. (a) Fifteen atoms (green dots) are filling a fraction of a triangular trap layout (gray circles). Each atom is randomly labeled (green),
and from their positions an interaction matrix U is derived. Using the QUBO to solve, Q, and Eq. (A1), a permutation of the labels σopt is
found. The atoms are relabeled (red) such that the resulting interaction matrix better replicates Q. (b) Normalized interaction matrices obtained
when averaging over many repetitions of traps loading. While the random labeling (top row) produces a uniform matrix, the optimized labeling
(bottom row) enables us to access some features of the QUBO at each cycle, producing an average matrix resembling Q.

tations. The permutation minimizing sQ is then used to read
out the measured bit string. Searching for such a permutation
is reasonably fast for the sizes that can be loaded in the
QPU. We have checked that for N � 100, this takes less than
niter × 2 ms. In the following, we set niter = 10N so as to scale
only linearly with the number of qubits and not as N!. This
may not be sufficient to identify the best permutation, but
it remains enough to reproduce some of the features of the
QUBO at each cycle as shown in Fig. 9(b). Furthermore, on
average, the whole QUBO is much better represented with
this optimized relabeling step than simply using a random
permutation. It is worth pointing out that this optimization
step can be done retrospectively, after the quantum data have
been acquired, as long as we have access to the initial traps’
filling. Thus its execution time does not limit the duration of
a cycle, and this can become effectively a postprocessing step
performed on a classical computer.

We benchmark this approach on a set of randomly gen-
erated QUBOs of size 15 and compare it with a classical
uniform sampling of BN and with a numerical simulation of
a QAOA [54], all using a similar budget of 1000 cycles, or
measurements. Getting into the details, the QAOA is allowed
ten iterations with 100 cycles each in order to optimize the
duration of three pulses. The cost function evaluated at each

iteration is 〈HQ〉 averaged over the 100 measurements. The
atoms are located at the same positions for each iteration,
meaning that an experimental implementation would use the
rearrangement algorithm, lengthening the duration of each
cycle. In contrast, for RGS, the positions are random at each
cycle, while the pulse sequence remains the same: three pulses
with nonoptimized durations. We show the results of these
three methods in Fig. 10 with both the convergence of each
one with respect to the number of cycles performed and the
aggregated bit-string distributions sorted by increasing values
of HQ. Not only does RGS converge faster, achieving a gap
of less than 1% with three times fewer cycles than the QAOA,
but also it produces, on average, sampled distributions with a
greater concentration on bit strings with low value. For this
set, a bit string sampled using RGS+relabeling is on average
in around the best 11% of BN , while one sampled with the
QAOA is in around the best 17%.

2. Configuration clustering

In this section, we elaborate on how to extract usable bit
strings of size n from ones of size N > n measured in the
quantum setup. Those smaller bit strings can in specific cases
be used to solve QUBOs of size n.
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FIG. 10. Results obtained from a classical random search, a numerically simulated QAOA, and numerically simulated RGS with QUBO-
dependent labeling (averaged over ten random QUBO instances of size N = 15). The inset shows the frequency and the mean of the proposed
solutions with each method, ranked by their cost function value.

At each computation cycle, a pattern of Nt traps is filled
by N ∼ B(Nt , p) atoms. Many cycles would then produce bit
strings whose sizes follow a Gaussian distribution centered
around Nt p as shown in Fig. 11. For each cycle, knowing
which traps were filled (as shown in the inset), we can isolate
a cluster of atoms with the following rule: Two atoms belong
to different clusters if their pair distance exceeds the pattern
spacing. Therefore, due to the rapid decay of the interac-
tion with the distance, i.e., U (ri j ) ∝ r−6

i j , we can consider
that clusters do not interact between them. Indeed, here, two
non-neighboring atoms are interacting at least 27 times more
weakly than a pair of neighboring ones. Segmenting an N-
sized bit string leads to the extraction of s smaller bit strings
with sizes ni such that

∑s
i ni = N . Applying this method to

the original distribution of ∼65 000 measurements, ranging
in size from 34 to 66 atoms, outputs a wider distribution
of ∼334 000 bit strings ranging in size from 1 to 66. This
method produces bit strings from fully interacting systems,

FIG. 11. Clustering of atomic configurations to extract n-sized
bit strings from N-sized ones with N > n. From an original dis-
tribution of 65 000 bit strings (dark green), we construct a larger
distribution of 334 000 bit strings (light green). A bit string of size
45 has been measured with the atomic configuration displayed in the
inset. Atoms are sorted between clusters (various colors) of sizes 2,
6, 7, 9, and 20, and the initial bit string is cut into five smaller bit
strings, usable to solve QUBOs of corresponding sizes.

as no atom remains isolated. However, it reduces the number
of measurements made at a large size N .

The resulting bit strings can only be used to solve QUBOs
of corresponding sizes and which would have produced the
same trap pattern as the one used to acquire the original
distribution. In this implementation, since we only consider
the QUBOs’ output by the subsampling approach detailed in
Sec. II B, all of them are similar in structure, being produced
by the same data set and with the same hyperparameters for
weak learner ensemble generation. We apply the relabeling
step to the extracted distribution in order to solve the consid-
ered sets of QUBOs (see Sec. III A).

APPENDIX B: HYPERPARAMETER TUNING

For hyperparameter tuning of the proposed quantum clas-
sifier, grid-search cross-validation-based optimization over a
list of possible values was used. An important hyperparameter
of QBoost is regularization (or λ), which serves to penalize
complex models with more learners in order to achieve a
better generalization on unseen data [see Eq. (6)].

As the number of base learners N was increased, the time
required to train the classifier increased. Since tuning of the
regularization parameter involved retraining the classifier with
many different values of λ, it was a computationally expensive
procedure that needed to be sped up. Consequently, taking ad-
vantage of an insight into the cost function, it was proposed to
run the hyperparameter-tuning procedure using a smaller and
simpler variation of the classifier, comprising N = 10 learn-
ers, and use the corresponding optimal λ10 for any N > 10
by multiplying it by a factor of 10/N , inspired by the scaling
of the λ’s boundary discussed in Ref. [25]. In other words,
for all the variations of the proposed quantum classifiers, the
hyperparameter-tuning procedure took a fixed time of about
10 min (see Tables I and II).

APPENDIX C: RUNTIMES

Table I presents QPU runtimes of the proposed quantum
classifier based on subsampling, i.e., the time taken by training
which includes ensemble training on the CPU, optimization
on the QPU, and hyperparameter tuning (see Appendix B). In
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this case, the training set was oversampled. The QPU runtimes
are obtained by multiplying the number of cycles needed to
output a bit string with gap [see Eq. (12)] smaller than 1%
by the current repetition rate of the device. Table II, on the
other hand, presents runtimes of the two different variations
of the proposed quantum classifier based on boosting, with an

undersampled training set. While the homogeneous variation
is based on an ensemble of only decision trees, the heteroge-
neous variation comprises a mix of decision trees (DTs) and
k-nearest neighbors (kNNs). It can be seen that the training
of a heterogeneous classifier generally takes longer than the
training of a homogeneous classifier.
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