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Anelastic internal friction of dislocations in two-dimensional Yukawa solids
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Langevin dynamical simulations are performed to investigate the dislocation internal friction (IF) of solid
two-dimensional (2D) dusty plasmas under oscillating shear deformations. The magnitude of IF is quantified
using the loss factor Q−1 from the stress-strain hysteresis. It is discovered that the dislocation IF is significantly
dependent on the dislocation’s slip direction relative to the shear direction. It is found that the variation trend
of the dislocation IF with the dislocation’s slip direction is positively related to the dislocation’s slip distance,
while the energy loss occurs due to the generation of shear bands. The dislocation IF in solid 2D dusty plasmas is
found to be heavily dependent on the shear deformation frequency, while nearly independent of the shear strain
amplitude, corresponding to a typical anelastic property.
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I. INTRODUCTION

Internal friction (IF) is generally defined as the mechanical
energy dissipation inside a material [1–4]. In a solid ma-
terial, IF usually refers to the energy dissipation related to
the deviation from Hooke’s law, which is manifested from
the stress-strain hysteresis under the cyclic loading [4]. Also
known as mechanical spectroscopy, IF measurements are
widely performed in solid state physics, physical metallurgy,
and various engineering applications [2–10]. To quantify the
magnitude of the IF, the loss factor is mostly used, which can
be defined as [1–4]

Q−1 = �W/2πW. (1)

Here, �W is the corresponding dissipated energy during one
deformation cycle, while W is the maximum elastic stored
energy during that cycle.

The definition of anelasticity was first proposed in 1948 [1]
to separate it from the more general viscoelastic behavior. Un-
der external loading, the deformed solid may undergo a series
of transitions from elastic to anelastic and then microplastic
or even, finally, plastic [3]. The transition from elastic to
plastic is characterized by irreversible macroscopic deforma-
tion. However, the anelastic transition is caused by structural
defects in solids within the elastic deformation range, which
are the sources of the mechanical energy scattering. Anelas-
ticity meets the requirements of the law of elasticity, such
as each stress value corresponding to only one equilibrium
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value of the strain and vice versa, as well as the linear stress-
strain response [11]. As compared with the traditional elastic
behavior, the anelastic behavior exhibits a noninstantaneous
stress-strain response, so that a relaxation process is needed to
achieve the linear stress-strain response [11]. For the anelastic
behavior [3,4,11], the elastic modulus can be separated into
two parts, namely, the energy storage and dissipation portions,
which are strongly related to the frequency and independent
from the stress level or the strain amplitude. The IF caused by
this relaxation process is called the anelastic IF.

Dusty plasma, or complex plasma, typically refers to a
collection of micrometer-sized dust particles in the plasma
environment [12–25]. Under typical laboratory conditions,
dust particles are highly charged to approximately −104e,
so that tens of thousands of these dust particles can form a
single-layer suspension in the plasma sheath, i.e., the two-
dimensional (2D) dusty plasma [26–28]. Since these dust
particles are highly charged, the potential energy between
neighboring dust particles is much higher than their kinetic
energy, i.e., these dust particles are strongly coupled, exhibit-
ing the collective properties of liquids [22,29–33] or solids
[34–40]. Due to the individual particle identification and
tracking in experiments, dusty plasma provides an excellent
platform to study various behaviors of solids at the individual
particle level, such as elastic [41–47], viscoelastic [33,48], and
plastic [38,39,49] behaviors. However, in our literature search,
we have not found any previous investigations of the anelastic
behavior or IF in dusty plasmas, which we will study here.

This paper is organized as follows. In Sec. II, we intro-
duce our simulation method to mimic solid 2D dusty plasmas
under uniform oscillating shear deformations. In Sec. III, we
calculate the dislocation IF of our simulated solid 2D dusty
plasma for various dislocation slip directions, different shear
strain amplitudes, and varying shear deformation frequencies.
Furthermore, to study the underlying mechanism of the dis-
location IF, we also calculate the distributions of the average
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atomic shear strain and atomic elastic constant. Finally, we
provide a brief summary in Sec. IV.

II. SIMULATIONS

To mimic solid 2D dusty plasmas under uniform oscillating
shear deformations, we perform Langevin dynamical simula-
tions of 2D Yukawa solids with N = 4096 dust particles using
Large-Scale Atomic/Molecular Massively Parallel Simulator
(LAMMPS) [50]. For each particle i, the equation of motion
within a 2D plane is

mr̈i = −∇�φi j − νmṙi + ζi(t ), (2)

where the three terms on the right-hand side are the interpar-
ticle Yukawa repulsion φr j = Q2exp(−rr j/λD)/4πε0rr j , the
frictional gas drag [51], and the Langevin random kicks [52],
respectively. Here, ri j is the distance between particles i and
j, Q is the particle charge, and λD is the screening length.

Following the tradition of Refs. [17,43,44], we use the
coupling parameter 
 and the screening parameter κ to char-
acterize 2D dusty plasmas. These two parameters are defined
as 
 = Q2/(4πε0akBT ) and κ = a/λD, respectively, where T
is the kinetic temperature of dust particles, kB is the Boltz-
mann constant, and a is the Wigner-Seitz radius (1/nπ )1/2 for
the 2D areal number density of n [17]. To normalize the time
scale, we use the nominal 2D dusty plasma frequency [17]
ωpd =

√
Q2/2πε0ma3. In this paper, we keep the unchanged

values of κ = 0.5 and 
 = 800, corresponding to a typical
solid state for 2D dusty plasmas [53]. Note that our simulated
N = 4096 dust particles are all confined in a 2D plane of
Lx × Ly, where Lx = 121.896a and Ly = 105.565a.

The uniform oscillating shear deformation is applied in
the x direction using the Lees-Edwards periodic boundary
conditions [54]. The shear strain is specified as a sinusoidal
function of

γ (t ) = γ0 sin(ωt ). (3)

Here, ω is the shear deformation frequency, while the shear
strain amplitude γ0 is a dimensionless measure of deforma-
tion, defined as the ratio of the length change along the shear
direction to the reference length perpendicular to the shear,
i.e., �x/Ly. We vary the shear strain amplitude γ0 from 0.019
to 0.057; these values are much smaller than the elastic upper
limit of the softer 2D Yukawa crystal of κ = 0.75 [42,47]. Fur-
thermore, from the strain-stress response tests performed here
in the corresponding perfect crystal of κ = 0.5 and 
 = 800,
we also confirm that our specified shear strain amplitude is
always in the apparent linear elastic regime. The shear defor-
mation frequency ω/ωpd is varied from 0.0001 to 0.005; these
frequencies are much slower than the motion of individual
particles. With the specified values of γ0 and ω above, the
applied oscillating shear deformation of our simulated solid
2D dusty plasma can be approximately regarded as a series of
quasistatic processes.

To prepare suitable initial configurations for our anelastic
IF investigation, each simulation run always starts from a fully
annealed solid lattice under the conditions of κ = 0.5 and

 = 800. After a full relaxation over a long time, there are
usually only a few dislocations left in the final lattice. We
only choose a lattice with just one pair of dislocations left,

FIG. 1. Typical trajectories of dislocations in 2D Yukawa solids
during one period of the oscillating shear deformation (a), as well
as the obtained stress-strain responses under different conditions
[(b) and (c)]. Under the oscillating shear deformation, dislocations
mostly slip along one specific direction, as θ relative to the shear
direction in (a). From (b), while dislocations slip along the direction
of θ = 0, the stress-strain curve exhibits a hysteresis, indicating the
dissipation of the internal friction (IF). However, from (c), when
the dislocations slip along θ = π/4, the linear relationship between
stress and strain without hysteresis clearly indicates that the energy
dissipation is nearly zero.

while others with more than two dislocations are abandoned.
The lattice with only one pair of dislocations left is regarded as
the initial configuration of our studied solid dusty plasma with
defects. Next, we apply the oscillating shear strain of Eq. (1)
to the initial configuration and then record the positions and
velocities of all particles for at least ten cycles for the data
analysis reported here. The integration time step is specified
as either 1.41 × 10−2ω−1

pd or 7.07 × 10−3ω−1
pd for the lower

or higher shear deformation frequencies. Note that the gas
damping rate is specified as ν = 0.027ωpd , comparable to
typical experimental values [31,33]. Other simulation details
are the same as in Ref. [47]. Here, we would like to clarify that
we only focus on the IF caused by one pair of dislocations, so
that the IF of high-temperature 2D Yukawa solids with more
dislocations is well beyond the scope of this paper.

III. RESULTS

A. IF dependence on dislocation slip direction

Figure 1(a) shows typical trajectories of a pair of disloca-
tions within one shear deformation cycle. Due to the applied
shear deformation, dislocations in 2D Yukawa solids slip
along one specific direction with a constant angle θ relative to
the shear direction, as shown in Fig. 1(a). For nearly all sim-
ulation runs of our current IF investigation with only one pair
of dislocations inside the studied solid 2D dusty plasma, we
confirm that the dislocation’s slip direction does not change at
all; that is, the dislocation’s slip angle θ is only determined by
the particle arrangement and the dislocation’s location in the
initial configuration. Only when the two dislocations collide
with each other, or are extremely close to each other, would
their slip angle change substantially. In fact, since the Burgers
vectors of these two dislocations are reversely in parallel,
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the two dislocations always slip in two completely opposite
directions. Note that for the studied conditions with only one
pair of dislocations, the dislocation is only able to slip along
the principal axis of the lattice, so that the dislocations’ slip
angle can be regarded as the angle of the lattice orientation
relative to the shear direction, as confirmed in our simulation
data.

To quantify the magnitude of IF, we need to determine
the dissipated energy per unit area �W and the maximum
elastic energy per unit area W in Eq. (1). We calculate W
using W = Gγ 2

0 /2 [11], where G is the shear modulus of 2D
Yukawa solids derived from the theoretical transverse sound
speed of a 2D Yukawa crystal CT in the theory of Ref. [55]
and the number density n using G = mnC2

T [42]. For our sim-
ulation condition of κ = 0.5, the obtained values of CT and G
are 0.25aωpd and 0.040σ0, respectively. The dissipated energy
per unit area �W is directly determined from the area of the
enclosed region in the stress-strain response hysteresis [3,4].
After the external shear strain γ is applied, the time series
of the shear stress Pxy is calculated as in Ref. [47]. Thus the
stress-strain response relationship is obtained; two examples
are shown in Figs. 1(b) and 1(c). Note that to easily compare
our results with results for other systems, we normalize the
obtained shear stress using σ0 = Q2/4πε0a3, as in Ref. [47].

For our studied solid 2D dusty plasma undergoing ap-
plied periodic shear deformation, we find that the stress-strain
response significantly varies with the dislocation’s slip di-
rection, as shown in Figs. 1(b) and 1(c). Clearly, when the
dislocations slip along the direction of θ = 0 [Fig. 1(b)], the
stress-strain response exhibits a typical hysteresis, clearly in-
dicating the significant energy dissipation. However, as seen
in Fig. 1(c), when the dislocations slip along θ = π/4, the
response curve changes to a straight line instead, indicating
that the dissipated energy is nearly zero.

As the major result of this paper, we discover the variation
trend of the dislocation IF as a function of the dislocation’s
slip angle θ , presented in Fig. 2. We find that when the
absolute value of θ varies from 0 to π/4, the value of Q−1

decreases from its maximum to zero monotonically. When |θ |
increases from π/4 to π/2, the value of Q−1 increases from
zero monotonically back to its maximum again. Note that for
the data points presented in Fig. 2, the shear deformation fre-
quency and the shear strain amplitude are specified as constant
values of ω/ωpd = 0.001 and γ0 = 0.038, respectively. The
error bars are determined by the standard deviation of the
obtained Q−1 values from multiple deformation periods in the
same simulation run. Note that besides the simulation results
reported here, we also perform test runs with 16 384 particles,
with the other conditions being the same, and we confirm that
the IF variation trend under these conditions does not change
from the trend in Fig. 2, although the IF value due to one pair
of dislocations decreases due to the lower dislocation density.

The variation trend of Q−1 in Fig. 2 clearly indicates that
the slip angle θ of dislocations has a significant effect on the
magnitude of IF. Apparently, the IF is caused by the phase
difference between the stress and the strain of the material.
In essence, the IF occurs due to the existence of energy dis-
sipation sources, which are structural defects inside the solid,
as well as the motion and interaction of these defects in our
studied system. Our observed variation trend Q−1 here is quite

FIG. 2. Obtained dislocation IF Q−1 of 2D Yukawa solids as the
slip angle of dislocations |θ | varies. When the slip angle θ increases
gradually from 0 to π/2, the value of Q−1 first decreases to nearly
zero when |θ | = π/4 and then increases back nearly symmetrically.
Note that for these results, the shear deformation frequency and
the shear strain amplitude are specified as ω/ωpd = 0.001 and γ0 =
0.038, respectively.

similar to the IF results in real crystals [56,57], where the
dislocation IF varies with the angle between the sample axis
and the direction of the distribution of the ultrasound wave.
Since the dissipation source of IF is only one pair of dislo-
cations in our simulation, let us investigate the mechanism of
the dislocation IF from the trajectories of dislocations in detail
next.

B. IF due to dislocation slip motion

To explore the underlying mechanism of the dislocation IF
in 2D Yukawa solids, we investigate the local strain caused by
the slip motion of dislocations at the individual particle level.
We quantify the atomic shear strain using

˜γvM(i) = γvM(i) − 〈γvM(i)〉, (4)

where γvM(i) is the von Mises local shear invariant of the
strain tensor [58] for particle i. Here, the overline refers to the
mean of the corresponding quantity within one shear defor-
mation period, while 〈 〉 means the average over all particles
within the whole simulation region. The von Mises local shear
invariant [58] is a sensitive quantity to accurately measure the
local shear deformation along any arbitrary directions, which
is defined as γvM(i) = {Exy(i)2 + 1/2[Exx(i) − Eyy(i)]}1/2 for
2D systems [58]. Here, Eαβ (i) is the αβ component of the
atomic Green-Lagrangian strain tensor E [59].

Our obtained distributions of the averaged shear strain
for three different dislocation slip directions are presented in
Fig. 3. For the dislocation slip direction θ ≈ 0 in Fig. 3(a),
two channels with significant shear deformations exactly
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vM vM vM

FIG. 3. Obtained distribution of the atomic shear strain ˜γvM(i) in one shear deformation period for θ ≈ 0 (a), θ = π/9 (b), and θ = π/4
(c), respectively. All crosses correspond to various locations of two dislocations within one shear deformation period. When θ ≈ 0 in (a), the
corresponding IF is the largest, where the trajectories of two dislocations result in two remarkable shear bands as they travel. However, when
θ = π/4 in (c), the corresponding IF is nearly zero, where the two dislocations do not move further, so that the shear strain is localized within
limited regions around the two dislocations. For θ = π/9 in (b), the strain evolution is somewhere between those for θ ≈ 0 and π/4.

follow the trajectories of the two dislocations, while the rest of
the region is nearly undeformed. However, when θ = π/4 in
Fig. 3(c) for the nearly zero value of Q−1, the two dislocations
do not move much further during the shear deformation, so
that the shear strain is only localized around the two dis-
locations. When θ = π/9 in Fig. 3(b), the dislocation’s slip
distance is much more significant than that for θ = π/4 and
less than that for θ = 0. These results clearly indicate that
the mechanical energy dissipation is related to the two shear
bands caused by the slip motion of two dislocations. The
longer the slip distance, the greater the energy dissipation, i.e.,
the larger the IF.

Furthermore, we also calculate the distribution of the mean
of the atomic elastic constant Cxyxy(i), as shown in Fig. 4.
Following Eq. (3) of Ref. [47], we calculate the atomic elastic
constant Cxyxy(i) from the individual particle motion. We also
obtain the mean of the calculated Cxyxy(i) within one shear
deformation period, marked as Cxyxy(i). As shown in the color
bar of Fig. 4, the average of the mean of the atomic elastic

constant Cxyxy(i) for all particles within the whole simulation
region is marked as 〈Cxyxy(i)〉. For the reported three dislo-
cation slip angles in Fig. 4, our obtained 〈Cxyxy(i)〉 value is
always around 0.043σ0, well agreeing with the theoretical
shear modulus value 0.040σ0 obtained from the transverse
sound speed of the 2D Yukawa lattice [55]. For θ ≈ 0 in
Fig. 4(a), the distribution of Cxyxy(i) in the entire simulation
region is divided into two regions by the trajectories of the
two dislocations, corresponding to the higher and lower elastic
strengths, respectively. However, for θ = π/4, as in Fig. 4(c),
the Cxyxy(i) values for the particles around the dislocation
trajectories increase significantly and are approximately 1.5
times larger than the 〈Cxyxy(i)〉 values. Thus, when θ = π/4,
the local lattice around dislocations is able to sustain higher
shear deformations, so that dislocations there do not move fur-
ther, as observed in Fig. 3(c). When θ = π/9 in Fig. 4(b), the
distribution of Cxyxy(i) is similar to that for θ ≈ 0 in Fig. 4(a),
also containing some features of θ = π/4. Note that we also

calculate the distributions of ˜γvM(i) and Cxyxy for θ ≈ π/2,

FIG. 4. Obtained distribution of the mean of the atomic elastic constant Cxyxy in one shear deformation period for θ ≈ 0 (a), θ = π/9 (b),
and θ = π/4 (c), respectively. For θ ≈ 0 in (a), the whole simulation region is divided into two parts by the trajectories of two dislocations with
two distinctive elastic constants. However, for θ = π/4 in (c), the Cxyxy value of the local lattice around the dislocation trajectories increases
significantly, indicating that this portion is able to sustain a higher rate of shear deformation. For θ = π/9 in (b), the contour of the mean of
the atomic elastic constant Cxyxy is mainly similar to that of θ = 0 with some feathers of θ = π/4.
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which are almost the same as the results for θ ≈ 0 in Figs. 3(a)
and 4(a) with just a 90◦ rotation, probably indicating the same
IF mechanism for θ ≈ 0 and θ ≈ π/2 as also observed in
Fig. 2.

Based on the results presented above, we provide our spec-
ulation about the observed dislocation IF. The generation of
the dislocation IF is directly related to the slip distance of
dislocations. When the value of Q−1 is not zero, due to the
longer slip distance of dislocations, the particles on both sides
of dislocations are totally rearranged, so that the shear bands
through the crystal are generated. Due to the shear bands
induced by the dislocations’ slip motion, the elastic constant
of the lattice on one side of the shear bands increases, while
the elastic constant of the other side decreases. The decrease
of the elastic constant results in the corresponding decrease of
the stress, so that it is easier for dislocations to slip further,
as shown in Fig. 4(a). However, when dislocations slip along
θ = π/4, even though the level of the shear stress amplitude is
almost twice as high as θ ≈ 0, as shown in Figs. 1(b) and 1(c),
it is still difficult for dislocations to slip further away, probably
due to the anisotropy of our studied 2D solids. Our observed
anisotropy of the dislocation motion above is similar to the
feature reported in Ref. [60], where the mixed dislocations in
the fcc metals have different mobilities under varied loading
conditions, due to the phonon drag and radiative damping.
We speculate that the resistance of the dislocation moving in
various directions is also different, leading to different slip
motion for dislocations. As a result, the round-trip motion
of dislocations in the limited regions leads to a substantial
increase of the elastic constant of the surrounding lattice, as
shown in Fig. 4(c), further limiting the slide motion of disloca-
tions, so that the IF nearly does not occur any more. Note that
for systems at higher temperatures with more dislocations, the
interaction between dislocations probably becomes substan-
tial, combined with the severe thermal excitations, leading to
a much more complicated IF mechanism, which is definitely
different from the anelastic IF studied here, well beyond the
scope of this paper.

C. Anelastic dislocation IF

As the secondary significant result of this paper, we find
that the reported dislocation IF in 2D Yukawa solids exhibits
a typical anelastic property.

As presented in Fig. 5(a), we find that the dislocation
IF is nearly independent of the shear strain amplitude. In
this investigation, the shear strain amplitude γ0 varies from
0.019 to 0.057; however, the shear deformation frequency and
the dislocation’s slip angle are specified to be unchanged as
ω/ωpd = 0.001 and θ ≈ 0, respectively. From Fig. 5(a), as the
shear strain amplitude increases from 0.019 to three times that
value, the obtained Q−1 values are nearly unchanged around
0.53, only fluctuating very briefly. These obtained dislocation
IF results clearly suggest that the dislocation IF is indepen-
dent of the shear strain amplitude, satisfying one of the key
characteristics of the anelastic property [11].

We also find that the dislocation IF is heavily dependent
on the shear deformation frequency. The variation trend of
the dislocation IF with the shear deformation frequency ω

is presented in Fig. 5(b), under the conditions of the un-

FIG. 5. Obtained variation of the dislocation IF Q−1 as functions
of the shear strain amplitude γ0 (a) and the shear deformation fre-
quency ω (b). When the shear deformation frequency is specified
as ω/ωpd = 0.001 as in (a), the obtained IF values are almost un-
changed under various shear strain amplitudes. When the shear strain
amplitude is specified as γ0 ≈ 0.038 as in (b), there is a prominent
peak of the IF centered at the shear deformation frequency ω/ωpd ≈
0.001. Clearly, the observed dislocation IF mainly depends on the
shear deformation frequency and is nearly independent of the shear
strain amplitude, satisfying a typical anelastic property. Note that all
data points shown here are obtained with a dislocation slip angle of
θ ≈ 0.

changed shear strain amplitude γ0 ≈ 0.038 and the constant
dislocation slip angle θ ≈ 0. Within the shear deformation
frequency range studied here, there is a prominent peak of Q−1

located at the frequency ω/ωpd ≈ 0.001. This prominent peak
in Fig. 5(b) clearly indicates the strong dependence of the dis-
location IF on the frequency ω. Thus our observed dislocation
IF of 2D Yukawa solids possesses the two primary charac-
teristics of anelasticity [11] simultaneously, clearly indicating
that our observed dislocation IF is an anelastic behavior. These
findings greatly deepen our fundamental understanding of the
mechanical properties of 2D Yukawa solids, which may be
experimentally verified in future.

IV. SUMMARY

In summary, we perform Langevin dynamics simulations
to study the dislocation IF in solid 2D dusty plasmas with
oscillating shear deformations. From the obtained stress-strain
response, we determine the magnitude of dislocation IF for 2D
Yukawa solids. We discover that the magnitude of dislocation
IF is significantly dependent on the dislocation’s slip direction
relative to the shear direction. To investigate the underly-
ing mechanism, we calculate the distributions of the atomic
shear strain and elastic constant. We find that the variation
trend of dislocation IF with the dislocation’s slip direction
is related to the slip distance of dislocations. The energy
dissipation process may be accomplished by the formation of
shear bands. Furthermore, we also find that the dislocation
IF in 2D Yukawa solids is an anelastic behavior, since it is
heavily dependent on the shear deformation frequency and
nearly independent of the shear strain amplitude.
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