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Rapid progress in developing near- and long-term quantum algorithms for quantum chemistry has provided us
with an impetus to move beyond traditional approaches and explore new ways to apply quantum computing
to electronic structure calculations. In this work, we identify the connection between quantum many-body
theory and a quantum linear solver, and implement the Harrow-Hassidim-Lloyd (HHL) algorithm to make
precise predictions of correlation energies for light molecular systems via the (nonunitary) linearized coupled
cluster theory, where the term “light molecular systems” refers to those molecules whose constituent atoms
have low atomic number. For the purposes of practical computations, we make suitable changes to the HHL
framework. This entails two aspects: (1) Adapt, prescribing a novel scaling approach that allows one to scale any
arbitrary Hermitian matrix, A, that in turn dictates the controlled-rotation angles without having to precompute
the eigenvalues of A, and yet achieve a reasonably high precision in |x〉, and (2) Lite, for which we devise
techniques that reduce the depth of the relevant quantum circuit. In this context, we introduce the following
variants of HHL for different eras of quantum computing: AdaptHHLite in its appropriate forms for noisy
intermediate-scale quantum (NISQ), late-NISQ, and the early fault-tolerant eras, as well as AdaptHHL for the
fault-tolerant quantum computing era. We demonstrate the ability of the NISQ variant of AdaptHHLite to capture
correlation energy precisely, while simultaneously being resource lean, using simulation as well as the 11-qubit
IonQ quantum hardware.
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I. INTRODUCTION

Computations in the field of quantum chemistry on quan-
tum computers typically involve evaluating energies by
using different variants of either the quantum phase es-
timation (QPE) algorithm [1–8], which is suited for the
fault-tolerant quantum computing (FTQC) era as it involves
deep quantum circuits, or the quantum-classical hybrid varia-
tional quantum eigensolver (VQE) algorithm, which is noisy
intermediate-scale quantum (NISQ) friendly and involves exe-
cuting shallow circuits for each iteration [9–15]. In particular,
considering that we are currently in the era of NISQ comput-
ing, it is important to note that scalable electronic structure
calculations using VQE-based approaches can be hampered
by two issues: (1) rapid increase of the circuit repetitions
in order to suppress the effect of shot noises on the total
energy [16], and (2) difficulties associated with the varia-
tional optimizations of parameters. The latter problem arises
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because VQE minimizes a single objective function regardless
of the number of variational parameters. By contrast, in the
traditional quantum chemical calculations on classical com-
puters, the total energy is usually obtained by solving a secular
equation, and it works well even for over 100 000 variational
parameters. It is, therefore, timely to design approaches that
are naturally suited for the current NISQ era to the early
fault-tolerant phase, and which could naturally blend into the
fault-tolerant era.

In this work, we identify that the Harrow-Hassidim-Lloyd
(HHL) algorithm [17], which is used to solve equations of the
form A|x〉 = |b〉, can be employed for quantum chemical cal-
culations. In particular, we solve the linearized coupled cluster
(LCC) equations to calculate correlation energies of light
molecular systems with significant precision. The coupled
cluster method involves a nonunitary wave operator which
assumes the form of an exponential function [18–20]. We lin-
earize the coupled cluster ansatz, and appropriately transcribe
the problem to a quantum computing framework. In this sense,
we go beyond the otherwise traditional but restrictive ap-
proach of employing unitary operators for quantum chemistry
on quantum computers. It is worth adding at this point that the
coupled cluster approach is considered to be the gold standard
of electronic structure calculations on traditional computers,
due to its ability to make precise predictions of atomic and
molecular properties in a wide array of applications ranging
from spectroscopy to expanding our understanding of particle
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physics [21–28]. Our work may serve as a stepping stone
towards the development of quantum algorithms that employ
nonlinear and nonunitary wave operators for precision quan-
tum chemical studies.

After establishing the link between the HHL algorithm and
LCC equations, we redirect our focus to the pressing issue
of resource reduction while retaining precision in results, in
the practical implementation of the algorithm. In the NISQ
era, we are limited by the number as well as the quality of
qubits. These factors restrict our computations to only small
systems, and necessitate quantum resource reductions. This
is accompanied by classical computing overheads. Given the
reasonably powerful classical computers available today, we
can accommodate any accompanying cost incurred on the
traditional computing side in achieving quantum resource re-
duction. However, as the NISQ era gradually recedes into the
background to usher the FTQC era, one expects to have an
abundance of quantum resources and therefore access to large-
scale quantum computation. In such calculations that involve
large system sizes, any classical computing cost associated
intrinsically with a quantum algorithm would be exorbitant.
During the in-between transition period, an algorithm needs
to be adapted to gradually increase its reliance on quan-
tum resources while diminishing its dependence on classical
resources. All the while, it is important to ensure that the
precision in results is reasonably good, for predictive sciences
such as quantum chemistry, as resource reduction schemes
may or may not impact precision.

Considering this complicated interplay between resource
utilization (classical and quantum) and precision, we intro-
duce revamped versions of the HHL algorithm, which we have
termed as the “XHHLite” algorithms.

We begin by elaborating on the significance of the “X”
part. The choice of scaling the input matrix, A, has far-
reaching effects, as it impacts the QPE evolution time as well
as controlled-rotation angles via a constant, c, in the HHL
algorithm [17]. This, in turn, could strongly influence our
predictions of correlation energies. However, the current HHL
implementations [29–32] rely upon carrying out a classical
computation of the eigenvalues of A—a necessary yet expen-
sive overhead in order to scale A and choose the constant
c efficiently. This cost becomes intractable as system size
increases, and negates the speedup benefit that the HHL al-
gorithm offers. The X module is designed to address precisely
this issue, and, to this end, we introduce the “AdaptHHL” and
the “PerturbedHHL” algorithms in this work. Through these
variants, we completely circumvent the underemphasized is-
sue of having to learn the eigenvalues of the input matrix using
traditional computation a priori to achieve results with high
accuracy, and therefore the associated cost. We discuss how
the AdaptHHL algorithm can become a powerful framework
that obviates compute-intensive eigenvalue estimation, start-
ing from the NISQ and all the way into the FTQC eras. We
add at this point that in the PerturbedHHL variant, one still
estimates the eigenvalues of the matrix, but via perturbation
theory in a resource-efficient way.

We now proceed to cover the “Lite” aspect. The crux of
our approach involves studying the eigenvalue distribution
from a QPE module, in order to reduce the number of gate
applications in the HHL quantum circuit. This strategy is

inspired by the improved HHL algorithm [31] but is suffi-
ciently different, in that our methodology involves multiqubit
fixing on the QPE ancilla qubits, with the number of fixings
controlled by a single tunable parameter, which we refer to
as the probability threshold. Furthermore, we augment this
strategy with our own variant of pipeline-based circuit op-
timization, which is based on an earlier work [33]. Both
of these approaches, which rely upon classical computing
resources heavily, are strung together in our HHLite algo-
rithm for the NISQ era. We show how the “Lite” approach
can be customized in a resource-efficient way to blend into
different timelines of quantum computing. To this end, we
propose suitable adaptations to accommodate the needs of
different eras. For the late NISQ era, we propose to use a
quantum version of multiqubit fixing (thereby removing the
exponential cost associated with the classical processing of
data incurred in studying the outputs of the QPE module),
while for the early FTQC era, we put forward a method based
on the Lloyd-Mohseni-Rebentrost (LMR) algorithm [34] for
achieving multiqubit fixing. The LMR-based route offers a
single-shot solution to identify dominant probabilities from
probability distributions, which makes it a viable option for
applications beyond quantum chemistry. We envisage that our
LMR-based multiqubit fixing approach could come in handy
in real-world situations, where there is a need to frequently
identify dominant probabilities from rapidly changing large
probability distributions. The algorithm could also be adapted
and/or augmented into other quantum algorithms, particularly
in those involving quantum phase estimation subroutines such
as that of Shor [35,36] and quantum state discrimination ap-
proaches [37,38]. Figure 1 showcases the core themes that
underpin our work.

We evaluate our various NISQ-era-suited implementations
by carrying out calculations of correlation energies of several
small molecules. We work with the following molecules: H2,
H+

3 , LiH, BeH+ and HF, with each of them considered in five
different geometries. Throughout, we keep in mind the ap-
plicability of a single reference theory and select appropriate
geometries where strong correlation effects do not dominate.
We also execute our implementations on the 11-qubit IonQ
hardware, to compute the correlation energies of select light
molecular systems from our list. It is also worth mentioning
that, to the best of our knowledge, a few works propose the
use of quantum linear solvers to quantum chemistry [39–41].
We now briefly explain each of these works in literature.
Cai et al. [39] propose a theoretical framework of carrying out
molecular response properties using the HHL algorithm. An-
other theoretical work carried out by Tong et al. [40] proposes
employing preconditioned quantum linear solvers to obtain
single-particle Green’s functions of quantum many-body sys-
tems. It is worth noting that the work utilizes block encoding
in realizing the algorithm. The recent work by Kwek et al.
[41] (carried out independently around the same time as our
work) prescribes the preparation of highly excited eigenstates
of physical systems using a combination of HHL and the
variational principle (which utilizes classical optimizer sub-
routines), analyzes their applicability for near- and long-term
quantum computers, and applies it to the LiH system. We now
present the salient features of our work: (1) identifying the
connection between LCC and HHL, (2) introducing in view
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FIG. 1. Illustration of the central concepts of the current work. The panel on the left conveys the connection between the HHL algorithm
and the linearized coupled cluster equations, which facilitates the computation of correlation energy using the HHL algorithm. The panel also
highlights the two limitations associated with the scheme: grappling with a deep quantum circuit, and the requirement of possessing a priori
knowledge of the eigenvalues of the matrix, A, in order to obtain precise values from the computation. The former challenge is a limitation
associated with the NISQ era and can be tackled by introducing classical overheads (cost to algorithm on the classical computing front). These
overheads are acceptable for small-scale systems that the NISQ era is equipped to handle. On the other hand, a solution to the latter issue
of a priori eigenvalue estimation is necessary for the FTQC era in view of intractable classical computations. However, it is also a welcome
and valuable resource-saving addition to the preceding eras. The central panel delineates our solutions to the two issues (with the “X” module
addressing eigenvalue computation overhead and the “Lite” component tackling the challenge of quantum circuit depth reduction) for the
NISQ era. All of our simulation and hardware results for correlation energies presented in this work employ these variants. The panel to the
right outlines the different forms of our recommended AdaptHHLite approach, tailored to meet the demands of each of the quantum computing
eras.

of the key issue of resource reduction the PerturbedHHL and
AdaptHHL variants as well as the “Lite” modules for each
quantum computing era (multiqubit fixing and pipeline-based
quantum circuit optimization for the NISQ era, quantum mul-
tiqubit fixing for the late NISQ era, and the LMR-based
approach for the early fault-tolerant quantum computing era),
and (3) numerical results for several molecules for the NISQ-
era AdaptHHLite approach (both simulation and on quantum
hardware with error mitigation when necessary) in the spirit
of quantum chemistry being a predictive science.

II. THEORY

A. HHL algorithm and linearized coupled cluster equations:
The connection

In this section, we briefly introduce the linearized coupled
cluster equations and the HHL algorithm in that order (we
delve into some details of the former in the Appendix ). We
then proceed to find the connection between the two topics.

1. Linearized coupled cluster equations

The coupled cluster (CC) wave function for closed-shell
systems is represented as

|�〉 = eT̂ |�0〉, (1)

where T̂ = T̂1 + T̂2 + · · · + T̂N for an N-electron molecule. T̂1

and T̂2 are the single and double excitation operators that pro-
duce one-hole-one-particle and two-hole-two-particle states,
respectively, while |�0〉 is the Hartree-Fock state. It is worth
noting here that eT̂ is not a unitary operator. In the spin-free
framework, which we adopt in this work, T̂1 = ∑

ia t a
i {êa

i } and
T̂2 = ∑

i jab t ab
i j {êab

i j }, where the set i, j, k, . . . denotes occu-

pied “hole” orbitals and a, b, c, . . . signifies the unoccupied
“particle” orbitals. t a

i and t ab
i j are the cluster amplitudes (the

unknowns) associated with T̂1 and T̂2, respectively, and ê
refers to a spin-free operator that induces the orbital substitu-
tion out of the Hartree-Fock reference state. { } represents the
normal ordering of the elementary excitation operators with
respect to the closed-shell Hartree-Fock function (which is
chosen as the vacuum).

In the present work, we demonstrate the potential of a
quantum linear solver to solve quantum many-body theoretic
equations by considering the linearized CC (LCC) approach,
where only the terms linear in T̂ are considered from Eq. (1).
The form of the LCC amplitude equations can be shown to be

〈χP|ĥ|�0〉 +
∑

Q

〈χP|ĥ{êQ}|�0〉tQ = 0, ∀P. (2)

We refer the reader to the Appendix for details. In the
above equation, tQ refers to the Qth cluster amplitude, while
ĥ refers to the Hamiltonian operator. The |χ〉’s denote the
excited functions, constructed as |χP〉 = {êP}|�0〉. The above
equation can be rearranged as

∑
Q

〈χP|ĥ|χQ〉tQ = −〈χP|ĥ|�0〉 ∀ P. (3)

In this work, we use the HHL algorithm for the inversion
of the matrix on the left-hand side of the above equation,
to be denoted as A. The constant vector on the right-hand
side is identified with b, and the vector of unknown cluster
amplitudes with x. The right-hand side of Eq. (3) is a vector
because the bra index varies over the various possible excited
functions while the ket index is fixed to be the Hartree-Fock
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determinant, and the same holds true for the cluster ampli-
tudes. Thus, we have a matrix-vector equation of the form

Ax = −b. (4)

It is pertinent to mention at this stage that treating the
matrix A in the HHL circuit would be simpler if it is Her-
mitian. This would require that the excited functions forming
the basis of this matrix be orthogonal to each other. In other
words, the spin-free excitation operators need to have zero
overlap within themselves. This condition holds true for the
single excitation operators but not for double and higher ex-
citations. For example, the spin-free operators êab

i j and êba
i j

(i �= j and a �= b) generate excited determinants which are
indistinguishable in terms of spatial orbital occupancies and
hence will have a nonzero overlap among them. Thus, to
have a Hermitian matrix, A, one needs to suitably generate
a new set of orthogonal excitation operators, which would
be linear combinations of the nonorthogonal êP’s. We note
that the matrices we encounter in the context of closed-shell
nonrelativistic coupled cluster theory are symmetric positive
definite.

2. Correlation energy in the LCC framework

The LCC correlation energy can be expressed as (see the
Appendix for details)

〈�0|ĥ|χP〉tP = Ecorr. (5)

Identifying the term on the left-hand side of the above equa-
tion as an inner product between the vector b† and the cluster
amplitudes, i.e., the vector (−A−1b), one gets the final form
for obtaining the LCC correlation energy as

Ecorr = −b†A−1b. (6)

3. The HHL algorithm to calculate the LCC correlation energy

The HHL algorithm [17] is the most widely used quantum
linear solver for solving linear systems of equations (Ax = b),
and it is known to provide exponential speedup over the
best known classical algorithm under certain conditions. The
solution to these equations is encoded as amplitudes of the
quantum state |x〉. This algorithm allows one to extract a fea-
ture of the solution vector by obtaining the expectation value
of a linear operator M on |x〉, as 〈x|M|x〉. It also presumes
that there exists a unitary that is capable of preparing vector
b, an nb-qubit quantum state, |b〉. We proceed to give a brief
overview of the HHL algorithm followed by our module to
directly extract correlation energy. Figure 2 accompanies the
description.

(1) Initialize three quantum registers to |0〉1|0〉2|b〉3. The
first is the one-qubit ancilla register, the second is the nr-qubit
clock (or the QPE ancilla) register, and the third is the state
register that holds information of the input state, |b〉.

(2) QPE is applied between the state register and the clock
register. After this step, the state is |0〉1 ⊗ ∑

j β j |λ̃ j〉2|v j〉3.
We note that |b〉 = ∑

j β j |v j〉, and λ̃ j is the nr-bit binary
approximation of the eigenvalue of A associated with the
eigenvector |v j〉.

(3) A controlled rotation is now performed on the ancilla
qubit |0〉1 conditioned on the state of the clock register qubits,

FIG. 2. Quantum circuit schematic of the HHL algorithm, fol-
lowed by the Hong-Ou-Mandel module, using which one computes
the overlap, |〈b|x〉|, and hence the correlation energy, Ecorr , of a
quantum many-body system in the LCC framework. In the Hong-Ou-
Mandel module, the compact notation of the controlled-X gate with
an (i) indicates that the gate is controlled on the ith qubit of the fourth
register (marked as |b〉4), with the target being the ith qubit of the
state register. The details of the notation employed in the figure can
be found in Sec. II A 3.

|λ̃ j〉. Such a rotation encodes the inverted eigenvalues in the
amplitudes of the ancilla qubit |0〉1 as shown below:

∑
j

β j

(√
1 − c2

λ̃ j
2 |0〉 + c

λ̃ j
|1〉

)
1

|λ̃ j〉2|v j〉3. (7)

(4) An inverse QPE module restores the clock register’s
qubits to |0〉. The state is now

∑
j

β j

(√
1 − c2

λ̃ j
2 |0〉 + c

λ̃ j
|1〉

)
1

|0〉2|v j〉3. (8)

(5) Measurement: Finally, the ancilla qubit is measured
in the Z basis and a nontrivial measurement outcome would
mean that solution |x〉 is obtained in the third register as shown
below: ∑

j

β j
c

λ̃ j
|1〉1|0〉2|v j〉3 = |1〉1|0〉2|x〉3. (9)

However, a trivial outcome would mean a failure in obtaining
the solution vector. Therefore, the probability of successfully
obtaining the result is the probability of obtaining a nontrivial
measurement outcome and is given as

P(1) =
∥∥∥∥∥∥
∑

j

cβ j

λ̃ j
|v j〉

∥∥∥∥∥∥
2

. (10)

Once a nontrivial outcome is detected in the first register,
one extracts some feature of the solution vector obtained in
the third register by applying suitable operations to it. In our
case, Ecorr can be extracted as the inner product between the
solution vector |x〉 and |b〉.

(6) From Eq. (6), we can write our correlation energy as

Ecorr = −k|〈b|x〉|, (11)

where k is the norm factor corresponding to normalized |x〉
and |b〉 (i.e., k = ‖x‖‖b‖2). |x〉 is proportional to the solution
vector A−1|b〉 obtained in the third register. One now adds an
additional fourth register, initialized to |b〉, which we refer
to as |b〉4, as shown in Fig. 2, and thus obtains an overlap
between |x〉3 and |b〉4 using the Hong-Ou-Mandel module [42]
to compute the correlation energy Ecorr.
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(7) The overlap of quantum states |x〉3 and |b〉4 can be
computed following Ref. [42] as

|〈b|x〉|2 =
∑

α,β∈{0,1}n

(−1)α·βP(αβ ), (12)

where α · β refers to a bitwise AND of the two n-bit strings,
and P(αβ ) refers to the probability of obtaining each of the
2nr -bit strings.

B. XHHLite algorithm

In this section, we introduce our variants of the HHL algo-
rithm that suit the needs of different quantum computing eras
in detail. We begin with the “Lite” modules and proceed to
introduce the “X” parts, and then integrate the two. Finally,
we comment briefly on the time complexity of our algorithm.

1. The Lite module

The HHLite module, defined as “HHL implementation
using truncated eigenspace,” aims to “lighten” the quantum
resource consumption by encompassing two key elements of
depth reduction, the first of which stems from studying the
eigenvalue distribution from a QPE module to fix the qubits,
while the other aspect involves optimizing the quantum cir-
cuit by executing a sequence of operations in tandem, as we
describe below.

a. Classical multiqubit fixing. A QPE module with nr an-
cilla qubits can capture a total of 2nr eigenvalues. The goal
of our multiqubit fixing strategy is to identify the dominant
bits from these 2nr -bit strings so that one can markedly reduce
the controlled unitaries that occur subsequently in the HHL
circuit. We now enumerate the steps involved in this strategy
below:

(1) We first measure all the nr qubits in the Z basis and
obtain their probability distributions. For each of the nr qubits,
we say that an outcome 0 or 1 is dominant when its probability
of occurrence is greater than or equal to a fixed probability
threshold value, Pth.

(2) Note that classical multiqubit fixing only requires clas-
sical postprocessing of the probability distributions of 2nr bit
outcomes that one obtains by measuring nr qubits in the Z
basis. We fix the maximum among the dominant bit outcomes
based on step 1. This defines n f = 1; that is, one qubit is said
to be fixed. We note that if we identify no dominant outcome,
that is, there are no probabilities of occurrence greater than or
equal to 0.8, we stop. We now proceed to obtain the marginal
probability distribution for each of the remaining 2nr−1 bits to
decide the maximum of the dominant bit outcomes again. This
defines n f = 2.

(3) We recursively perform step 2 after fixing the domi-
nant bit outcome each time.

(4) After thus obtaining the dominant bit outcomes for
the nr qubits, we are ready to fix the respective qubits in
the subsequent HHL run. For instance, for a given qubit, if
we identify that 0 (1) is the dominant bit outcome after Z
measurement then we fix that particular qubit to |0〉 (|1〉) in
the subsequent HHL run. The reduction in depth is achieved
in this framework as follows: if the control qubit of the clock
register is fixed to |0〉, one performs nothing on the target, and

if the control qubit is fixed to |1〉, one executes the unitary,
U 2m

, where m ∈ {0, 1, 2, . . . , nr − 1}.
Thus, our procedure enables fixing multiple qubits n f > 1,

which we refer to as multiple qubit fixing (or multiqubit
fixing). Henceforth, we consistently use the notation n f to in-
dicate the number of qubit fixings. We note at this juncture that
through the process of multiqubit fixing, several controlled
unitaries that occur in HHL quantum circuits reduce either to
the corresponding unitaries or to simply identity gates.

Note that this process is controlled by a single tunable
parameter, which is a probability threshold, Pth. It is important
to stress that the idea of a probability threshold avoids the
need to carry out multiple calculations at different values of
n f to find the optimal fixing number for a given molecule.
Instead, this single parameter decides n f and hence dictates
the precision of our results. In other words, the precision in
the correlation energies may vary for a given Pth, depending
on the choice of the molecule. In this work, we have set Pth

to 0.8 throughout, drawing from our background in applying
traditional many-body techniques on such molecular systems.
It is to be noted that while the set threshold is found to work
well in general, in case one seeks to systematically find the
threshold in order to obtain a desired precision, the process
is accompanied by an associated classical overhead. A simple
illustration of multiqubit fixing for the NISQ era is presented
in Fig. 3(a).

b. Pipeline-based quantum circuit optimization. Current-
day quantum hardware has limited operational qubits that are
noisy and gates that are not yet sufficiently robust for calcu-
lations involving deep circuits. Therefore, it is necessary to
efficiently decompose quantum circuits [43–45]. In particular,
implementing the HHL algorithm which has two QPE mod-
ules is challenging even for light molecules. Therefore, we
adopt the idea of quantum circuit optimization, which reduces
the depth of the overall circuit. This makes it amenable to
implementation on a quantum device, but accompanied by a
significant amount of classical overhead. Therefore, we note
that this technique could only be employed for the NISQ era
of quantum computing.

Specifically, we opt for a pipeline-based optimization strat-
egy, inspired by Ref. [33]. The underlying idea is to be able to
carry out a sequence of several optimization procedures (such
as peephole optimization based on KAK decomposition [46],
removal of redundant gates by combining gate-inverse pairs
or by using commutation relations, etc.) thereby compressing
the circuits. A ZX-calculus-based approach may not lead to
noticeable gains, since most of the gates that we have are
non-Clifford in nature due to arbitrary rotation gates. It is
important to note that a given optimization subroutine can be
used again in the pipeline, as long as they are not successive
in their occurrence. We employ a brute-force search to narrow
down the best-performing pipeline, and for our purposes, we
find that the QISKIT-PYTKET-QISKIT [47,48] pipeline (a note
on notation: the name of each software development kit here
actually refers to the optimization routines employed within
its framework) gives the best reduction in depth. It is worth
noting that we have a specific quantum hardware, the 11-qubit
IonQ Harmony device, in mind for carrying out the calcu-
lations. Hence, we choose for our optimization strategies a
supporting gate set that is sufficiently close to the native gate
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FIG. 3. (a) The role of the pipeline-optimized QPE algorithm, whose output eigenvalue distribution is utilized for depth reduction in
each stage of the AdaptHHL circuit via multiqubit fixing. The resulting multiqubit fixed HHL circuit is then pipeline optimized to obtain
the AdaptHHLite circuit suited for the NISQ era. (b) The workflow of the late-NISQ-era AdaptHHLite variant, which utilizes multiple QPE
modules to achieve a quantum version of multiqubit fixing. On the other hand, (c) depicts our LMR-based approach to multiqubit fixing for a
simple example of a four-qubit extended QPE (EQPE) (ne = 4). The approach, while requiring additional gates, involves substantially fewer
measurements as system size increases. V1 and V2 refer to the two qubits between which the operation, Û , occurs. The choice of notation used
in this figure can be found in Sec. II B 1 e.

set of the hardware [49]. We expect that the same pipeline-
based procedure should work efficiently for other hardware
devices too with optimization carried out in their native gate
sets. A part of Fig. 3(a) illustrates the “Lite” workflow for the
NISQ era.

We now proceed to assess the degree of compression in
the circuit due to optimization in terms of reduction in circuit
depth, involving two-qubit and single-qubit gates from the
IonQ-supported gate set: (Rx, Ry, Rz, and Rxx ). The metric
that we use is termed depth compression (expressed in per-
centage), which is defined as

depth compression = |Dout − Din|
Din

× 100, (13)

where Din is the depth of the input circuit (that is, the unopti-
mized circuit), and Dout is the depth of the output circuit (that
is, the pipeline optimized circuit).

c. Optimization verification. We now discuss the verifi-
cation process to check for the equivalence of circuits with
and without optimization. We concatenate the unoptimized

circuit with the conjugate transpose of the optimized circuit
and observe that it yields the identity matrix up to a global
phase:

UunoptU
†
opt = eiφI, (14)

where Uunopt(opt) is the unitary before (after) optimization and
φ ∈ [0, 2π ]. Furthermore, we also study the classical fidelity
[33] between the two output probability distributions obtained
from optimized and unoptimized circuits, given as

Fcl =
∑

γ∈{0,1}n

√
punopt (γ )popt (γ ), (15)

where punopt(opt)(γ ) is the probability distribution of the mea-
sured bit string γ of length n, in the unoptimized (optimized)
circuit. If the output probability distributions of the circuits
exactly coincide, then the measured classical fidelity reaches
1, implying the equivalence of the original and optimized
circuits. The classical fidelity, in our case, is sufficiently close
to 1, at 0.99998669.
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d. Quantum multiqubit fixing. The cost of a classical mul-
tiqubit fixing algorithm grows exponentially with the system
size. Therefore, it becomes necessary to develop a quantum
variant of our multiqubit fixing algorithm. We prepare a QPE
circuit with nr ancilla qubits and measure only a subsystem
in the Z basis to obtain its single-bit probability distribution.
This process is repeated for each of the nr ancilla qubits. From
the nr histograms thus obtained, we only fix those ancilla
qubits to |0〉(|1〉) in the subsequent HHL run, depending on
which of those exceeds a threshold probability Pth of 0.80
for obtaining bit 0 (1). Such an algorithm could be thought
of as more suitable for the late NISQ era where one has
access to more quantum resources, and where the reliance
upon classical resources begins to wane. A schematic of the
quantum multiqubit fixing process is given in Fig. 3(b).

e. LMR-based multiqubit fixing. We now present another
variant of our multiqubit fixing algorithm, which we call the
LMR-based scheme for multiqubit fixing. In this variant, as
illustrated in Fig. 3(c), one performs an additional set of QPE
computations [referred to as extended QPE (EQPE)] on each
of the nr eigenvalue qubits at the output of the initial QPE
modules, to extract the dominant bit outcome for each of
the nr subsystems. We constructed the circuits based on the
idea illustrated in Ref. [34]. The goal of an EQPE module is
to extract the expectation values of each QPE ancilla qubit
density matrix in the Z eigenbasis, in a single shot. In doing
so, we obviate the need for having to prepare and measure
a QPE module multiple times. We rely on improved qubit
quality, better coherence times, and improved gate fidelities
to achieve our desired outcomes much faster, by performing
EQPE computations in parallel, on nr qubits.

We now present the steps involved in the implementation
of the EQPE module. In order to extract the expectation
values of interest to us for each QPE ancilla qubit whose
density matrix could be given as ρ̂, via EQPE, one has to
perform a controlled-unitary operation { ˆCU , ˆCU2, ˆCU4, . . .},
where the unitary Û is implemented as a sequence of eiSWAP�t

repeatedly on ρ̂ and an ancilla |ζ 〉 ∈ C2, as shown in Fig. 4(a),
such that for each �t time step of evolution, the following
relation holds:

e−iSWAP�t (ρ̂ ⊗ σ̂ )eiSWAP�t

= e−iσ̂�t (ρ̂ )eiσ̂�t ⊗ e−iρ̂�t (σ̂ )eiρ̂�t + O(�t2),

where σ̂ = |ζ 〉〈ζ | and |ζ 〉 ∈ {|0〉, |1〉}, satisfying

eiρ̂t |ζ 〉 = eip1t |ζ 〉, (16)

where p1 is the expectation value of ρ̂ in |ζ 〉. Once p1

is known, one can easily obtain p2 = 1 − p1 for the
complementary input state to determine which among
the two is dominant. Each QPE ancilla density matrix ρ̂

could be made diagonal by entangling it with an ancilla in
|0〉 via a controlled-NOT (CNOT). This step is crucial since
it is only then that one can have a diagonal ρ̂, such that
its eigenvectors are {|0〉, |1〉}. In order to execute an EQPE
module, we prepare ne copies of ρ̂ by performing QPE ne

times and initialize ne ancilla qubits to |ζ 〉 ∈ {|0〉, |1〉}. One
then performs controlled-unitary operations connecting each
copy of a ρ̂ with one input state |ζ 〉, as shown in Fig. 3(c),
where each ˆCU operation is executed as shown in Fig. 4(a)

FIG. 4. (a) The extended QPE (EQPE) module, where |ζ 〉 ∈
{|0〉, |1〉} evolves with respect to the subsystem ρ̂1 via the LMR
circuit [34], based on the control qubit. We note that this illustration
is for one EQPE ancilla qubit. (b) The cost estimate in terms of the
total number of two-qubit gates required, relative to input state size,
nb, for the QPE, HHL, and QPE + EQPE approaches.

by applying a series of controlled-eiSWAP�t shown in Eq. (16)
interspersed with a unitary V̂ = eiσ̂�t impacting an evolution
on |ζ 〉, as e−iρ̂t |ζ 〉. Thus, we perform EQPEs in parallel across
each QPE ancilla as illustrated in Fig. 3(c). The notation ne

here refers to the precision with which one wishes to compute
the expectation values for a QPE ancilla qubit ρ̂.

Figure 4(b) demonstrates the scaling of the cost associated
with various modules (in terms of the number of two-qubit
gates [50]) with the system size. The cost associated with
QPE and QPE-LMR modules becomes comparable with the
increase in system size and is nearly half of the total cost
associated with executing an HHL module. This point empha-
sizes the fact that our LMR-based approach is faster and more
efficient when compared to the previous approach (quantum
multiqubit fixing) of having to perform nrM measurements
(for M number of shots) to extract the probabilities, whereas
the LMR-based approach requires nrne number of measure-
ments, with ne < M, as Fig. 3 shows.

2. The X module and integration with the Lite segment

In this section, we delve into the workings of our XHHLite
algorithm. In order to solve a system of linear equations of
the form A|x〉 = |b〉, where the elements of the matrix are
arbitrary, one must first scale A appropriately to be able to
capture its inverse eigenvalues with sufficiently good preci-
sion. One often scales according to the condition number κ =
λmax/λmin, where λmax and λmin refer to the largest and the
smallest eigenvalues of A, respectively, in order to maximize
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the probability of obtaining the solution vector. However, this
incurs O(N3) cost that stems from diagonalizing an N × N
matrix. On the other hand, employing an arbitrary approach to
scaling A could lead to a severe loss in precision. In our work,
we circumvent the problem of having to learn the eigenvalues
of A. We propose two distinct methods to scale down the
input matrix A efficiently, both in terms of cost and precision.
The letter “X” in our algorithm refers to these two variants,
namely, (1) AdaptHHL and (2) PerturbedHHL. We elaborate
on each one of these techniques in the following subsections.

a. AdaptHHL. When the size of the input matrix A grows,
calculating its eigenvalues becomes intractable. In this vari-
ant, we address the twofold connected problem of efficiently
scaling down an arbitrary Hermitian matrix and picking a
close-to-optimum value for the coefficient c in Eq. (8), with-
out having to learn its eigenvalues. This allows us to capture
the solution, x = A−1b, with arbitrarily high accuracy. We
scale the input Hermitian matrix A as sA, where the scaling
parameter can be given as s = 2−nr /d̃min, adapted to the input
matrix A, such that nr is the number of qubits in the clock
register of the QPE module, and d̃min is what we call an
estimate-by-inspection value chosen carefully, as we describe
below. Consider a Hermitian matrix given as

A =
[

dmax d12

d21 dmin

]
. (17)

Here A = A†, dmax is the largest diagonal element, dmin is the
smallest diagonal element of A, and d12 = d∗

21 are the off-
diagonals. We demand that our scaling factor s = 2−nr /d̃min

satisfy the following conditions:
(i) For a given nr , d̃min is chosen to scale A such that

the diagonal entries are less than 1, so that QPE captures
its eigenvalues using nr ancillas. For this reason, the largest
diagonal entry of the scaled matrix sA has to satisfy

2−nr dmax/d̃min < 1. (18)

The left-hand side has to be strictly less than 1 so that the
largest eigenvalue is also less than 1 and is captured appropri-
ately.

(ii) The choice of d̃min decides the representability of the
eigenvalues of a given matrix. If A has only positive eigenval-
ues or only negative eigenvalues, then its largest eigenvalue
λmax and smallest eigenvalue λmin satisfy the following crite-
rion:

|λmax| � dmax; |λmin| � dmin. (19)

Therefore, one then scales A to be able to represent its smallest
eigenvalue within nr qubits, which leads to the condition

2−nr dmin/d̃min � 2−nr . (20)

Combining Eq. (18) and Eq. (20), we have

dmin � d̃min > 2−nr dmax. (21)

(iii) One can also choose d̃min depending on the nature of
the matrix A. For a matrix that is diagonally dominant or a
matrix that satisfies |λmin| � dmin, one could choose d̃min =
dmin. This would just mean that all the eigenvalues are well
represented in nr qubits. We now motivate this through the
following example. Consider a matrix A, as given below:

A2×2 =
[

1.5 0.1
0.1 0.75

]
. (22)

If we choose a scaling s = 2−3/0.75, where nr = 3, the matrix
scales down as

A2×2 =
[

0.25 0.0166
0.0166 0.125

]
. (23)

The eigenvalues of this matrix are {0.122815, 0.252184},
which are captured using three qubits in the clock register with
almost 1.7% loss in the precision for the input state |b〉 = |1〉
which is a −1 eigenvalue’s eigenstate of the Pauli Z operator.

We now discuss another example, and pick a system from
the set of molecules that we considered in our Results and
Discussion section, namely, the H2 molecule in its equilibrium
bond length of 1.40 bohr. Its A matrix takes the form

A4×4 =

⎡
⎢⎢⎣

1.12854 0 0 0.03593
0 1.44616 0.08368 0
0 0.08368 1.44616 0

0.03593 0 0 1.94607

⎤
⎥⎥⎦.

By choosing the scaling s = 2−3/1.12854, where nr = 3 and
d̃min = dmin, the matrix scales down as

A4×4 =

⎡
⎢⎢⎣

0.01562 0 0 0.00050
0 0.02002 0.00116 0
0 0.00116 0.02002 0

0.00050 0 0 0.02694

⎤
⎥⎥⎦.

The eigenvalues of this matrix are {0.01560,

0.02697, 0.02118, 0.01886}, which are captured using
three qubits in the clock register with almost 4% loss in the
precision for an input state |b〉 = |11〉, where |1〉 is the −1
eigenstate of the Pauli Z operator.

(iv) As a consequence of such a scaling we obtain a fixed
set of controlled-rotation angles dictated only by nr . We con-
struct a conditional rotation module, with the rotation angle
θi = 2 arcsin(c/λ̃i ), where c = 2−nr and the eigenvalue λ̃i =
i/2nr leads to c/λ̃i = 1/i, i ∈ {1, 2, . . . , 2nr − 1}. The angle
θi = 0, when i = 0. Importantly, 2−nr is the smallest value that
can be chosen for c so that 0 � (c/λ̃i ) � 1.

(v) The norm of obtaining the solution vector |x〉 could be
written as

‖|x〉‖ =
√√√√∑

i

∣∣∣∣bis

λ̃i

∣∣∣∣
2

=
√√√√∑

i

∣∣∣∣bi
2−nr

d̃minλ̃i

∣∣∣∣
2

=
√

P(1)/d̃min,

where P(1) is the probability of obtaining 1 in the ancilla
register and the coefficients of the input state |b〉 satisfy∑

i |bi|2 = 1, {λ̃i}’s are the eigenvalues of the scaled matrix
sA, and d̃min is an estimate-by-inspection value of the smallest
eigenvalue of A (matrix before scaling).

(vi) Our systematic way of looking for d̃min and nr to
represent all the eigenvalues of the matrix with good preci-
sion, as shown in Eqs. (18)–(21), would ensure results with
arbitrarily high accuracy. We now present the performance
of a few molecules in the Appendix (Fig. 10) where we plot
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percentage fraction differences (PFDs) with LCC on a tradi-
tional computer vs d̃min and P(1) vs d̃min.

It is relevant to mention at this point that for the purposes
of this work on applying AdaptHHL to the LCC problem,
we choose d̃min = dmin for all our numerical results. We fur-
ther note that the “Adapt” in AdaptHHL is not in the same
vein as ADAPT-VQE [12]. It is important to stress that the
AdaptHHL approach is relevant for all quantum computing
eras, in view of its salient feature of bypassing an otherwise
expensive classical overhead that scales as the third power of
system size.

b. AdaptHHLite. In AdaptHHLite, we integrate the two
ideas, where we combine our way of scaling down the matrix
with the “Lite” module described in early parts of Sec. II B.
We observe that performing AdaptHHLite could lead to in-
triguing textbooklike examples, where some molecules in
specific geometries accommodate all-fixing, thus effectively
reducing an AdaptHHLite computation to a one-qubit calcu-
lation. This stems from the fact that when all the qubits are
already fixed, there are no controlled operations coming out of
the clock register in practice. This leads to a peculiar situation,
where |〈b|x〉| is one, as we really extract |b〉 at the end of the
AdaptHHLite procedure on the state register. Therefore, for a
practical computation, there is no need for a Hong-Ou-Mandel
module, or, for that matter, a state register. This leaves us
with a one-qubit computation, where |0〉 is merely rotated
and measured to extract ||x||2, and hence Ecorr. It is impor-
tant to appreciate that this trivial single-qubit computation is
preceded by a pipeline-optimized QPE calculation to
determine n f .

For our hardware computations that we will discuss in
Sec. III D, we choose the special cases mentioned in the above
paragraphs. We note that the pipeline-optimized QPE itself is
carried out on a classical computer in view of limitations in
current-day quantum resources, but it is conceivable that this
be executed on a quantum computer as we gradually tune out
of the NISQ era. The AdaptHHLite computation is carried out
on the IonQ Harmony device.

c. PerturbedHHL. This variant allows us to scale a matrix
by estimating the condition number, κ = λmax/λmin in a way
that is much cheaper than classically diagonalizing a matrix.
In this method, we examine the diagonal elements of matrix A
to obtain the minimum diagonal element, dmin, and maximum
diagonal element, dmax, to determine whether they are degen-
erate or nondegenerate, resulting in two potential scenarios:

(1) If dmin (dmax) is degenerate, we apply a level shift to
the repeating dmin (dmax) diagonal elements of A, by replacing
them with dii − mξ , where m ∈ {1, 2, 3, . . .} represents the
instance of repetition of that element, and ξ ∈ (0, 1]. We call
this new matrix B. Then, we find the resulting eigenvalue by
using the equation

λ̃ = dii +
N∑
j �=i

|bi j |2
bii − b j j

, (24)

where i corresponds to the index of dmin (dmax), resulting in an
approximate value λ̃min (λ̃max).

(2) If dmin (dmax) is nondegenerate, we apply perturbation
to the dmin (dmax) element of matrix A using Eq. (24), resulting
in an approximate eigenvalue λ̃min (λ̃max).

Thus, we utilize the information of the minimum and max-
imum diagonal elements to arrive at λ̃min and λ̃max through
perturbation on level-shifted dmin (dmax), which has a compu-
tational complexity of O(N ). This approach yields correlation
energies with reasonable precision, as shown in Table I. The
pseudocode for the algorithm is given below:

Algorithm 1. Algorithm for approximate maximum and mini-
mum eigenvalue computation.

Through a careful examination of various values of ξ ,
we found ξ = 1 to be a desirable value (see Fig. 7 of the
Appendix), resulting in a maximum PFD of about 7% and
a minimum −0.06% for the set of molecules considered.
Figure 8 of the Appendix shows the behavior of PFD with
nr . We observe anomalous behavior in LiH for nr � 9. We
reason that while the focus was to evaluate eigenvalues of
matrix A approximately, there was no in-built rule to constrain
the scaled A between 0 and 1. As nr increases, the precision
in the Ecorr of LiH is severely affected. Curing this problem is
beyond the scope of the current study, and we defer it to future
work.

d. PerturbedHHLite. This approach is a straightforward
integration of the PerturbedHHL way of scaling the input
matrix and the “Lite” module described in early paragraphs
in Sec. II B.

3. The complexity of the AdaptHHL algorithm

In this section, we briefly describe the complexity of our
AdaptHHL strategy. We carry out the analysis for d̃min set
to dmin, as mentioned in Sec. II B 2 a. In determining the
complexity, we exclude state preparation (|b〉) as well as the
Hong-Ou-Mandel and the eigenvalue inversion parts, as the
QPE modules significantly outweigh these.

Now, recall that the complexity of the original HHL al-
gorithm is O(log2(N )s2t ), where s refers to the sparsity of
the input N × N matrix. QPE requires the time variable to
be t = O(κ/ε). This is because we have nr = O(log2(κ/ε))
without amplitude amplification (see Ref. [30]), so that t =
O(2nr ) = O(κ/ε). Here, nr is the number of qubits in the
clock register as used in the earlier sections, κ is the condition
number of the matrix and is the ratio of the largest to the
smallest eigenvalue of the matrix, i.e., λmax/λmin, and ε/2 is
the precision error in trace distance of the phase estimation
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process. Taking into account O(κ ) amplitude amplification
iterations, the total complexity of the HHL algorithm turns
out to be O(log2(N )s2κ2/ε).

Notice from Sec. II B 2 a that in the AdaptHHL algorithm,
the time variable t gets scaled to t2−nr /dmin. Here, as used in
the earlier sections, dmin is the minimum diagonal element of
the matrix. The original HHL algorithm used c = O(1/κ ) to
yield t = O(κ/ε) without amplitude amplification. By con-
trast, here we have c = 2−nr = O(ε/κ ), which, in turn, yields
t = O(κ/ε2), that also evidently subsumes an extra com-
plexity of O(1/ε) for amplitude amplification steps, that we
need not actually perform as mentioned earlier. Because of
the additional scaling of 1/dmin in the scaling factor s, we
get t = O(κdmin/ε

2) ≈ O(λmax/ε
2). Thus, the total complex-

ity of AdaptHHL turns out to be O(log2(N )s2κdmin/ε
2) ≈

O(log2(N )s2λmax/ε
2).

In the case of general positive-definite matrices, i.e.,
without the assumption of the matrix being diagonally dom-
inant, we have dmin � λmin and dmax � λmax, where dmin

and dmax are the smallest and the largest diagonal ele-
ments of the matrix, respectively, and λmin and λmax are the
smallest and the largest eigenvalues of the matrix, respec-
tively. Thus, the complexity of our AdaptHHL algorithm
is given by O(log2(N )s2κdmin/ε

2) � O(log2(N )s2λmax/ε
2),

where the equality holds when the matrix is a diagonal ma-
trix. Notice that for matrices with dmin < 1, our AdaptHHL
algorithm is a sub-κ algorithm, since κdmin < κ , although the
cost in ε increases from O(1/ε) to O(1/ε2), when compared
to the original HHL algorithm.

III. RESULTS AND DISCUSSION

A. A summary of our results

As we are currently in the NISQ era, practical results
for correlation energies can realistically only be obtained in
the NISQ variants of PerturbedHHLite and AdaptHHLite,
with both the approaches utilizing classical multiqubit fixing
and pipeline-based quantum circuit optimization. To that end,
we begin with HHL results, against which we compare the
performance of PerturbedHHLite and AdaptHHLite (we here-
after do not explicitly mention classical multiqubit fixing and
pipeline-based quantum circuit optimization, as it is implied
in the rest of the results) algorithms. Finally, we present our
HHL results on the IonQ hardware for a 2 × 2 size matrix,
followed by AdaptHHLite results for a larger 4 × 4 case with
all the qubits fixed as well as for a 4 × 4 case with all but one
qubit fixing.

B. Computational details

Before discussing our results, we provide an overview
of the computational aspects involved in our work prior to
executing the (Adapt/Perturbed)HHL(ite) algorithm. For a
given molecule, we generate the matrix A and the vector b
using a traditional computer. We obtain the relevant one- and
two-body Hamiltonian integrals (the Fock and Coulomb inte-
grals, respectively) using the GAMESS-2014 [51] package.
It is worth noting that we leverage molecular point-group
symmetry in our matrix generation procedure (D2h for H2, and
C2v for the rest of the considered molecules). We also calcu-
late the correlation energy with the LCC approach using our

in-house program, by employing a traditional computer. The
precision of Ecorr predicted by (Adapt/Perturbed)HHL(ite)
approaches is assessed by comparing them with the result
obtained from the traditional computation. We consider the
simple cases of one-hole orbital and multiple particle or-
bitals or one particle orbital and multiple hole orbitals for
the systems considered in this work. Thus, under a singles
and doubles truncation scheme, the two-body spin-free exci-
tation operators are of the type {êab

ii } or {êaa
i j } and the operator

manifold becomes intrinsically orthogonal. No further manip-
ulation of the operators would be required to render the matrix
A Hermitian.

The dimension of A is equal to the square of the total
number of excitations taken in the manifold, while that of
vector b is equal to the total number of excitations. For ex-
ample, in LCCD (LCC with only double excitations, and the
approximation that we almost always employ in this work),
the dimension of b is n2

hn2
p (with nh and np referring to the

number of holes and particles, respectively). In the case of
LCCSD (which includes singles and doubles), the dimension
of b is n2

hn2
p + nhnp. The general expression for the dimension

of vector b, N , of an LCCi or CCi (i = degree of excitation
taken) theory would be

∑
i(nhnp)i and the dimension of A

would be N × N . For a matrix of size N × N , the number
of qubits in the third register is (nb = �log2(N )�). Our base
HHL implementation is a slightly modified version of the
HHL program from Vazquez et al. [30].

In this work, we consider five closed-shell molecules (in-
cluding a triatomic molecular ion), each in five geometries.
The considered systems as well as the details of their geome-
tries and choice of single-particle bases are shown in the first
three columns of Tables I through III of the Appendix. nr is
set to 6 for the 4 × 4 cases, while it is set to 8 for systems
of 16 × 16 matrix size. Figure 8 of the Appendix presents the
variation in PFD with nr for all of the considered molecules in
their equilibrium geometries. We note at this point that all our
simulation results were obtained using the state-vector back
end of the QISKIT software development kit [47].

C. Results from simulation

The results obtained from our calculations are presented
in Tables II through III of the Appendix. The tables provide
data on the correlation energies (in units of millihartree),
as well as the depth of the corresponding quantum cir-
cuit, the number of two-qubit gates in that circuit, and n f ,
along with the PFD with respect to LCC calculations car-
ried out on a traditional computer, for HHL and HHLite
(Table II), PerturbedHHL and PerturbedHHLite (Table I), and
AdaptHHL and AdaptHHLite (Table III). Figure 5 compactly
presents the important data given in the tables by consid-
ering two metrics for all of the considered molecules and
geometries, the PFD with respect to LCC correlation en-
ergy obtained on a classical computer denoted by color in a
heat map, and the circuit depth compression in each of our
variants relative to the depth of the HHL circuit denoted as
percentages.

We now proceed to comment on the overall observed trends
from Fig. 5 and Tables II through III, in the subsequent para-
graphs. It is important to comment at this juncture that the
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FIG. 5. Heat map plot showing the circuit depth compression observed in the corresponding HHL variant with respect to quantum circuit
depth of the HHL algorithm, as well as the PFD of correlation energies obtained from (a) HHL, (b) PerturbedHHL, (c) AdaptHHL, (d) HHLite,
(e) PerturbedHHLite, and (f) AdaptHHLite schemes for the set of molecules considered. The text inside the grid shows the circuit depth
compression in percentage along with the geometry of the molecule. The color gradient represents the PFD with respect to LCC calculation
on a traditional computer. We note that for all of our numerical results for AdaptHHL and AdaptHHLite, we set d̃min to dmin, as mentioned in
Sec. II B 2 a.

quantity of interest to us is the correlation energy (presented
in units of millihartree), and not the total energy (which is
a substantially larger quantity relative to correlation energy).
Therefore, all the PFDs indicate the precision with which we
obtain the correlation energy in the present work. We note here
that the smallest value of Ecorr is about 10 millihartree, while
the largest is about 44 millihartree.

The data in the table show that while results from HHL
in general agree well with the LCC calculation carried out
on a traditional computer, it leads to deep circuits, with the
deepest one being containing over 18 700 two-qubit gates
(with a depth of almost 100 000). On the other hand, the
worst-case scenario for AdaptHHLite is about 9400 two-qubit
gates (depth of almost 27 000). On this note, it is worth noting
that AdaptHHLite accommodates a large n f for our Pth of 0.8,
including all-qubit fixing for four out of five geometries for
H+

3 and at least an n f of 6 for the three larger molecules
(16 × 16 cases). Figure 9 of the Appendix shows the reduction
in depth with increasing n f for our HHLite, PerturbedHHLite,
and AdaptHHLite. We note that this particular analysis was
carried out by hard-coding n f , and not via a probability thresh-
old. Turning our attention to Fig. 5, we find that HHLite leads

to a depth compression of at least 45.0%, and can lead to a
compression as much as 84.3%. AdaptHHLite takes it further
and leads to a minimum and maximum compression of 72.4%
and 89.6%, respectively. Note that the molecular systems
where we find the minimum and maximum compression need
not be the same for HHLite and AdaptHHLite. As the fig-
ure shows, PerturbedHHLite offers a noticeable improvement
in terms of depth reduction over HHLite for the worst and
best cases but does marginally worse relative to AdaptHH-
Lite. However, if we compare the three approaches, namely
HHLite, PerturbedHHLite, and AdaptHHLite, for each of the
considered molecules, we observe that while PerturbedHH-
Lite sometimes can give a slightly deeper circuit than HHLite,
AdaptHHLite always provides a noticeable reduction in depth
relative to HHLite.

We also observe the unsurprising implication of resource
reduction from both Fig. 5 as well as Tables II through III,
namely, the trade-off with precision. To that end, we devote
the rest of this paragraph for reporting our PFDs along with
the energy difference with respect to the LCC value for cor-
relation energy obtained on a traditional computer, for our
considered variants. For HHL, the best- and worst-case PFDs
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FIG. 6. (a) The potential energy curve of H2 in the STO-6G basis obtained using the HHL algorithm (simulation and hardware) compared
with results obtained using LCC, FCI, and the Hartree-Fock levels of theory on traditional computers. The grey line represents the Hartree-Fock
energy, and serves as a visual reference that shows the size of correlation effects for each of the considered geometries. To avoid an excessively
zoomed-out panel due to the diverse range of correlation energies across the geometries that we considered, the Hartree-Fock energy curve is
shifted down vertically by a fixed quantity C1(= −0.015 hartree), so that all the important components of computation are seen in the same
graph. The FCI and LCC energy curves obtained from computations on a traditional computer are represented in the green and yellow curves,
respectively. The correlation energies obtained from hardware (red circles with error bars) and simulation (blue diamonds) are summed with
corresponding Hartree-Fock energies, yielding total energies, which we show in the plot. We also present the energy differences with respect
to LCC energies from classical computers for each of the methods on the top panel. Potential energy curves obtained from AdaptHHLite
(all-qubit fixing cases) of LiH and HF are presented in (b) and (c), respectively.

are −0.02 and 3.04, respectively, with the energy differences
themselves being below a millihartree level throughout. The
worst-case energy difference is observed to be about 0.45
millihartree. In the case of HHLite, the PFDs range from
−0.04 to 5.78, with the worst-case energy difference now be-
ing about 1.3 millihartree. For the PerturbedHHL algorithm,
the worst-case PFD goes to 7.28 with the corresponding en-
ergy difference being about 1.306 millihartree, while for the
PerturbedHHLite variant, it is 6.95 with the associated energy
difference of about 1.6 millihartree. Finally, we see that the
AdaptHHL and the AdaptHHLite variants yield worst-case
PFDs of 9.2 and 13.7, respectively, with the worst-case energy
difference being about 4 millihartree for the latter. We reiterate
at this point that the precision can be improved to some extent
by tuning the probability threshold but at the cost of incurring
more depth.

We now discuss the sources of errors in all our numerical
simulations. Note that in the HHL algorithm, the inadequacy
in the number of QPE clock register qubits (nr) could limit
precision. In the AdaptHHL variant, the choice of d̃min and
nr has a direct impact on the precision. We recall that we
choose d̃min = dmin for all our numerical results. The problem
of finding the optimal d̃min in a resource-efficient manner is
deferred to a future study. However, we present our results
from a preliminary analysis on the possibility of narrowing
down the search range in Fig. 10 of the Appendix. In the
AdaptHHLite framework, the multiqubit fixing scheme of the
Lite module involves elimination of the nondominant out-
come probabilities from the QPE module via a probability
threshold, which in turn contributes to the error budget. In the
pipeline optimization module, the optimized unitary is slightly
different from the original one. This minute difference still
reflects as an error in correlation energies.

We finally comment very briefly on the efficacy of
our quantum multiqubit fixing procedure described in
Sec. II B 1 d. We found that in the AdaptHHLite framework,
for 24 out of the 25 molecular systems that we considered,
we obtain the same values for n f as in the equivalent classical
multiqubit fixing procedure, and for the remaining case, we
obtained a slightly better value of n f with quantum multiqubit
fixing.

D. Proof-of-principle hardware results

We carry out two proof-of-principle hardware experiments.
The first computation serves as a pilot demonstration of HHL
being able to predict LCC correlation energies. To that end,
we consider a trivial case of H2 in the STO-6G basis (the A
matrix size is 2 × 2), and carry out an HHL computation in
the LCCSD approximation to construct the potential energy
curve for the molecule in the neighborhood of the equilibrium
bond length. The second experiment involves two sets of
calculations for obtaining the potential energy curves of LiH
and HF, to demonstrate the performance of our AdaptHHLite
algorithm. Both of these cases involve 4 × 4 size A matrices,
but since we obtained all-qubit fixing for our Pth of 0.8, the
computation vastly simplifies. All of our results are presented
in Fig. 6.

1. HHL hardware results

Before carrying out our hardware experiments, we need to
compute the required number of shots needed to achieve rea-
sonable precision. In Fig. 11 of the appendix, we demonstrate
the behavior of the correlation energy of H2 in the STO-6G
basis (chosen as a representative system for this purpose) with
the number of shots, such that each computation with a given
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number of shots is repeated 200 times, on the QISKIT noiseless
QASM simulator. We observe that the mean correlation en-
ergy for these repetitions lies between the full configuration
interaction (FCI) and LCCSD classical computation value
and is closer to the latter. Furthermore, beyond 1000 shots,
we observe that the spread in the correlation energy starts
falling below 0.25 millihartree, around the LCCSD (classical)
value. Therefore, we set the number of shots to 1000 while
performing our hardware experiments.

We now compute the correlation energies for H2 in the
STO-6G basis with 1000 shots and 10 repetitions for various
values of the internuclear distances on the 11-qubit IonQ
trapped-ion quantum hardware available via AWS Braket.
The benchmark FCI values have been generated using the
GAMESS-2014 [51] software. Figure 6(a) gives the potential
energy curve of H2 plotted around the vicinity of the equilib-
rium region. The HHL simulation and hardware experiments
are computed by setting nr = 2 keeping in mind the limi-
tations of the current state of the art of quantum hardware.
Increasing the number of qubits in the clock register improves
the accuracy of Ecorr but translates to an increased number of
gates and depth, thereby accumulating more hardware noise
to the final result. For example, consider the case of H2 in
the STO-6G basis with a bond length of 1.70 bohr. Increasing
nr from 2 to 4 improves the correlation energy difference
with respect to the LCC result on a traditional computer from
2 to 0.1 millihartree. Since our hardware runs are proof of
principle in nature, we make a deliberate trade-off between
precision with depth. The mean results for the correlation
energies obtained using hardware experiments for various
internuclear distances lie within ∼3 millihartree difference
with respect to LCCSD on a traditional computer and are
presented in Fig. 6(a). The well-known lower-bound nature
of LCC energies with respect to configuration interaction [52]
is also validated in our results. Table IV illustrates the mean
correlation energies and standard deviation with respect to the
mean for the results obtained on the trapped-ion device. The
value of the standard deviation is at most 1.4 millihartree over
the multiple repetitions on hardware.

2. AdaptHHLite (NISQ variant) hardware results

We now turn our attention to AdaptHHLite. For this pur-
pose, we choose LiH and HF molecules, in the STO-6G
basis. We carry out LCCD computations with one-hole and
two-particle orbitals and two-hole and one-particle orbitals for
LiH and HF, respectively. We chose five geometries in the
neighborhood of the equilibrium bond lengths for both sys-
tems. With a probability threshold of 0.8, we obtain all-qubit
fixing for all of the geometries considered. The immediate
consequence of all-qubit fixing as discussed in Sec. II B 2 b
is that the calculation simplifies extensively. Therefore, the
hardware results we obtain are of very high quality and agree
with the LCC calculations carried out on classical computers
to within −6%. Our results are presented in Figs. 6(b) and
6(c). The hardware computation is performed with 100 shots
and 10 repetitions for each of the considered data points.

The preceding paragraph presented our AdaptHHLite re-
sults for two molecules, all of whose respective matrices were
of 4 × 4 size, with all-qubit fixing, on the IonQ Harmony

device. We now briefly discuss our results for a 4 × 4 case
once again, but with an all-but-one multiqubit fixing example.
The reason for carrying out the exercise is to demonstrate the
performance of our AdaptHHLite algorithm (the NISQ-era
variant) for a nontrivial case where all-qubit fixing is not
possible. For this purpose, we choose the H2 molecule in the
6-31G basis and at 2 bohr bond length, where we achieve
all-but-one fixing with Pth = 0.8. The resulting AdaptHHLite
quantum circuit has 171 single-qubit gates (GPi and GPi2
gates) and 41 two-qubit MS gates. We observed that the er-
ror rate was a staggering 50% with even 3000 shots on the
Harmony machine, on which we had reported all our earlier
results. We therefore executed these computations on the next-
generation Aria machine, and we found the error to be 26%
with 5000 shots. After mitigating the dominant source of error
in our results due to imperfect two-qubit gates using the zero
noise extrapolation approach [53], the error reduced to about
13% as presented in Fig. 12 of the Appendix.

E. On reusability of clock register qubits

We briefly comment on a possible alternative to introduc-
ing more qubits to the HHL algorithm via the Hong-Ou-
Mandel module. An interesting offshoot of multiqubit fixing
is the observation that the associated clock register qubits that
are fixed to zero have no gates acting on them, although the
fact that they are fixed to zero influences the operations on
the state register and the HHL ancilla register. Therefore, as
long as the number of clock register qubits that are fixed to
zero, n( f ,0), is greater than or equal to nb, we could reuse nb

number of clock register qubits by preparing |b〉 for the Hong-
Ou-Mandel module. However, one may not expect the number
of clock register qubits to scale strongly with system size,
as they are only related to the precision in eigenvalues. For
large system sizes, when nb > n( f ,0), we could resort to using
the other clock register qubits that are fixed to 1. Note that
after the AdaptHHLite execution, the clock register qubits are
not strictly |0〉⊗nr . Therefore, while using those clock register
qubits that are qubit-fixed to zero is ideal, reusing those fixed
to 1 is not, and introduces an error to the resulting correlation
energy. In the extreme case of requiring more nb-register
qubits than there are multiqubit fixed clock register qubits,
additional qubits need to be introduced. Furthermore, if the
quantum hardware permits mid-circuit qubit reinitialization,
then one could reuse the nr appropriately by reinitializing
them to |0〉⊗nr and encode |b〉 for Hong-Ou-Mandel module
computation.

F. A comparison between QPE-CASCI and HHL-LCCSD:
Coexistence across scales

Finally, we compare HHL-LCC and QPE-CASCI (with
CASCI standing for complete active space configuration
interaction, where one does full CI within an active space, and
which is much more commonplace in practical CI calculations
than FCI), both on the grounds of cost and accuracy.

Although HHL involves two QPE routines, thus appearing
seemingly more expensive relative to QPE, this is true if both
the algorithms have the same qubit count. One can see that for
the same molecular system in the same single-particle basis
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and the same active space, HHL-LCCSD (we choose SD as
an example) incurs fewer qubits, and hence lower cost than
QPE-CASCI. The number of qubits in the state register for
QPE-CASCI is the number of spin orbitals, whereas in the
case of HHL-LCC, it is the �log2� of the number of excita-
tions, which are defined in our work in terms of spatial orbital
substitutions. This exponential suppression is precisely why
the number of state register qubits grows slower in HHL-LCC
relative to QPE-CASCI.

We consider now a few examples for number of qubits
incurred on the state register for QPE-CASCI versus
HHL-LCCSD (with the number of excitations chosen to be
∼n2

hn2
p), in a given basis set to illustrate the growth pattern

of the qubit number: (a) LiH STO-3G, 12 and 6 for an all-
electron-all-virtual (ae-av) computation, and with an active
space of 2 occupied spin orbitals and 4 virtuals (denoted
hereafter as [2,4]), it is 6 and 2; (b) LiH cc-pVDZ, 38 and 11
for an ae-av computation, and 12 and 5 for active space choice
of [2,10]; (c) RbH Sapporo dzp basis, 80 and 18 for an ae-av
calculation, and 28 and 11 for [10,18] active space; and (d)
RbH Sapporo qzp basis, 224 and 22 for an ae-av calculation.

We note that we mention “CASCI” and not truncated CI
such as CISD or CISDT while comparing QPE and HHL, as
there is no straightforward way that we are aware of to carry
out truncated CI using QPE. Note that this aspect indicates
that the HHL algorithm offers flexibility in terms of number of
qubits (and therefore depth) for truncated LCC computations,
whereas QPE-CASCI does not.

We now turn our attention to the accuracy aspect, the
crux of which is that QPE and HHL are not to be viewed
as competitors, but rather algorithms that excel at different
system sizes, due to the fewer qubits involved on HHL-LCC.
Therefore, while LCCSD is inferior to CASCI but is still
superior to the HF method, it can always be employed to
capture correlation effects for larger system sizes than QPE-
CASCI can, for a given number of qubits that some eras’
hardware can at most accommodate. For example, if at some
point in the future, a quantum hardware can accommodate
1000 qubits reasonably (with sufficiently good two-qubit gate
fidelity, etc.), QPE-CASCI allows one to explore systems
where the number of spin orbitals is a few hundreds whereas
HHL-LCCSD offers the scope to probe correlation effects in
larger systems with substantially more spin orbitals but with
lesser accuracy than CASCI. In this sense, HHL-LCCSD and
QPE-CASCI can be thought of as being analogous to density
functional theory and CCSD, respectively, on classical hard-
ware. It is also important to note that the CC method (as well
as its linearized counterpart) scales correctly with increase in
system size. That is, it is rigorously size extensive due to the
presence of completely connected terms, while a truncated
CI will not be so (where some future quantum algorithms
can handle truncated CI efficiently). This is also why CC is
preferred over CI in the classical computing scenario. On a
related note, the well-known interesting lower bound feature
for the energy of a system using LCC means that the theory
does possess seemingly good predictive capability, and can
yield energies even lower than those predicted by CISD.

Lastly, we comment on future scope for extensions of our
work stemming from our pilot study. We note that our work
opens a new direction for quantum chemistry on quantum

computers, outside the scope of VQE and QPE. Since this is a
pilot study, we envisage that there will be future works in this
direction that improve accuracy and go beyond linearized CC
by including nonlinear terms in a systematic manner.

IV. CONCLUSION

In summary, we recognize that the HHL algorithm can
be utilized in quantum many-body theory (in this work, the
linearized coupled cluster method) to compute ground-state
correlation energies of molecular systems. We customize the
HHL algorithm to cater to the needs of different quantum
computing eras—NISQ, late NISQ, early fault tolerant, and
fault tolerant. In particular, our HHL variants integrate two
aspects: (1) given a Hermitian matrix, we demonstrate how
to scale down the matrix efficiently without precomputing its
eigenvalues and choose the coefficient c in Eq. (7) conve-
niently with a reasonably low loss in precision, and (2) we
then rigorously aim at reducing the quantum circuit depth and
tailor the HHL modules to suit various timelines of quan-
tum computing. Central to this work is the variant called
AdaptHHLite, with the “Adapt” part consistently integrated
into the algorithm in all of the eras. The “Lite” component
assumes different forms in the NISQ, late-NISQ, and early
fault-tolerant timelines while becoming obsolete in the fault-
tolerant era.

The Adapt part introduces a novel scaling scheme that in
turn decides the controlled-rotation angles through a coeffi-
cient c in the HHL algorithm. Instead of having to choose
the so-called coefficient c in Eq. (7) by trial and error, we
lay down a more stringent yet powerful condition that allows
one to pick c suitably, resulting in correlation energies with
reasonably high precision. Our simple yet subtle modification
altogether eliminates the classical overhead of O(N3) required
for calculating eigenvalues of the matrix, A, thus making the
Adapt part suitable for all quantum computing eras. On the
other hand, the “Lite” component draws upon classical multi-
qubit fixing and pipeline-based quantum circuit optimization
to reduce quantum resources in the NISQ era. For the late
NISQ period, the classical fixing can be superseded by quan-
tum multiqubit fixing with or without circuit optimization
schemes. For the early fault-tolerant era, we recommend ex-
ecuting an LMR module-based quantum algorithm in place
of quantum multiqubit fixing to achieve the desired resource
reduction. We note at this juncture that the scaling strategy
that we introduce in the AdaptHHL framework broadens the
reach of the algorithm to encompass problems across various
domains.

We calculated correlation energies of several light molec-
ular systems (five molecules, each in five geometries) using
the HHL, HHLite, PerturbedHHL, PerturbedHHLite (with the
Perturbed variants being less powerful cousins of the Adapt
versions), AdaptHHL, and AdaptHHLite algorithms (NISQ
version) in order to compare each variant’s performance in
balancing precision with resource reduction. We add a Hong-
Ou-Mandel module at the end of all of these implementations
to extract the correlation energy. For the molecules considered
in our work, we deal with matrix (which we call A) sizes that
are 2 × 2, 4 × 4, and 16 × 16, resulting in computations on 5,
11, and 17 qubits, respectively. Our findings demonstrate that
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HHLite can yield a depth compression of as much as 84.3%
while incurring a precision loss of 0.4 millihartree in ∼25 mil-
lihartree correlation energy. On the other hand, AdaptHHLite
can lead to a substantial compression of at most 89.6%, while
compromising on precision by about 2 millihartree in a total of
27.5 millihartree. We observe that, more generally, our scaling
approach in AdaptHHLite aids in substantial circuit depth
reduction yet yields results with reasonable loss in precision.
Our hardware results on the 11-qubit IonQ Harmony device
show that (a) the HHL algorithm predicts correlation energies
of the H2 molecule (2 × 2 size matrix for A) in the 0.03%
to 16.59% precision band, and (b) the AdaptHHLite (NISQ
variant) algorithm, in the event of an all-qubit-fixing case, for
the LiH and HF molecules (4 × 4 size matrix for A), yields
precise results to within −6% trivially.

In conclusion, we note that our algorithmic enhancements
could be applicable across multiple domains going beyond
quantum chemistry, and across different quantum computing
eras. Furthermore, our study has the potential to unveil new
possibilities for exploring quantum many-body methods in the
field of quantum chemistry without the restriction of unitarity
in existing quantum algorithms.
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APPENDIX: TRADITIONAL COUPLED
CLUSTER THEORY

In this section, we present a pedagogical yet brief de-
scription of the coupled cluster (CC) theory, beginning by
introducing the spin-free linearized CC (LCC) framework that
we work with, followed by recasting the LCC equations as a
system of linear equations, and finally expressing the quantity
of interest to us, namely, the correlation energy in the required
form to implement in a quantum algorithm.

Substituting the CC wavefunction ansatz from Eq. (1) of
the main text, that is, |�〉 = eT̂ |φ0〉, onto the Schrödinger
equation gives

ĤeT̂ |�0〉 = EeT̂ |�0〉. (A1)

By writing the Hamiltonian operator in a normal ordered form
with respect to the Hartree-Fock function, one may subtract
the vacuum energy from Eq. (A1) to get

{Ĥ}eT̂ |�0〉 = Ecorre
T̂ |�0〉, (A2)

where Ecorr denotes the electron correlation energy and {Ĥ}
denotes the normal ordered portion of the Hamiltonian.

Left multiplying with e−T̂ on both sides of Eq. (A2), we
get

e−T̂ {Ĥ}eT̂ |�0〉 = Ecorr|�0〉, (A3)

{H}|�0〉 = Ecorr|�0〉. (A4)

H is the similarity-transformed Hamiltonian which can be
expressed in terms of commutators following the Baker-
Campbell-Hausdorff (BCH) expansion,

H = Ĥ + [Ĥ , T̂ ] + 1

2!
[[Ĥ, T̂ ], T̂ ]

+ 1

3!
[[[Ĥ, T̂ ], T̂ ], T̂ ] + · · · . (A5)

The commutators are evaluated using Wick’s theorem and a
commutator [Ĥ , T̂ ] can also be represented as a Wick con-

traction Ĥ T̂ − T̂ Ĥ . Since all the cluster operators are normal

FIG. 7. Variation of (a) λ̃min and (b) λ̃max with the choice of ξ for five representative molecular geometries, in the context of the
PerturbedHHL and the PerturbedHHLite algorithms. In the legend, “Eq” refers to the equilibrium geometry for a given molecule.
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FIG. 8. PFD with varying number of ancilla qubits (nr) with
Pth = 0.8, for HHL, PerturbedHHL, AdaptHHL, HHLite, Perturbed-
HHLite, and AdaptHHLite for H2, H3

+, LiH, BeH+, and HF. Each
PFD is calculated with respect to the classically obtained LCC value
of correlation energy. All of the data correspond to molecules in their
equilibrium geometries.

FIG. 9. Depth of the circuit with varying number of fixings (nf )
with Pth = 0.8, for HHL, HHLite, PerturbedHHLite, and AdaptHH-
Lite for H2, H+

3 , LiH, BeH+ and HF. All of the data are for molecules
at their equilibrium geometries.
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FIG. 10. Variation of PFD and prescaled ‖x‖, which is P(1), with d̃min for three representative molecules: [(a), (d)] H3
+ at 70◦, [(b), (e)] H2

at 1.50 bohr bond length, and [(c), (f)] BeH+ at 2.50 bohr bond length, which yield the worst, the in-between, and the best PFDs, respectively,
in our numerical results with d̃min = dmin. The blue and green lines show the bounds that we set in Eq. (21) in Sec. II B 2 of the main text and
therefore the relevant search range, while the red line shows λmin. One can see from the top panels that the relevant search range could be
narrowed down by ignoring the part of the curve corresponding to “high frequency” oscillations and instead carry out a coarse-grained (and
hence “low-cost”) search in the “low frequency” regime. To that end, a threshold at approximately midway between the bounds can be set. It
is important to stress that the analysis is very preliminary in nature, and further analysis on a resource-efficient choice of d̃min without having
to rely on a priori knowledge of LCC results from traditional computing is deferred to a future work.

ordered with respect to |�0〉, different components of the clus-
ter operators commute among themselves and they can only
contract with Ĥ from the right-hand side, resulting in a single

FIG. 11. Correlation energy versus number of shots for H2

molecule in 1.30 bohr geometry and in the STO-6G basis, with
each data point repeated 200 times. The orange and red dashed
lines signify the correlation energies obtained using FCI and LCCSD
approaches, respectively. The mean Ecorr values are represented by
blue circles and their respective error bars are given by the blue
vertical lines.

term Ĥ T̂ . The Hamiltonian consists of up to two-body terms
and hence the BCH expansion of the similarity-transformed
Hamiltonian terminates at the quartic power of T .

Continuing from Eq. (A4) in the LCC approximation, we
find that the LCC equations are

{(Ĥ + Ĥ T̂ )}|�0〉 = Ecorr|�0〉. (A6)

We now write the operators involved in Eq. (A6) in terms of
a set of composite indices P, Q, . . ., where each such index
represents the orbital substitutions involved in a specific kind
of excitation, i.e., single excitations, double excitations, etc.
The equation for the set of cluster amplitudes tP is obtained by
left-projecting Eq. (A6) by a set of excited functions, say, χP,
∀ P. Here the excited functions are defined as |χP〉 = {êP}|�0〉,
and after projection, we have

〈χP|ĥ|�0〉 +
∑

Q

〈χP|ĥ{êQ}|�0〉tQ = 0, ∀P. (A7)

In the above equation, ĥ refers to the Hamiltonian operator.
The above equation can be rearranged to give

∑
Q

〈χP|ĥ|χQ〉tQ = −〈χP|ĥ|�0〉. (A8)
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TABLE I. Relevant data associated with our PerturbedHHL and PerturbedHHLite computations for the chosen molecules using λ̃min and
λ̃max. The first two columns provide the molecule along with the choice of single-particle basis as well as the information on molecular
geometries. Nt (=2 × nb + nr + 1) is a shorthand for the total number of qubits, while E clc

corr refers to the correlation energy obtained from LCC
calculation on a traditional computer. This serves as the benchmark for our computations. “2Q” is the number of two-qubit gates involved in a

computation, and PFD (= Eclc
corr−EX

corr
Eclc

corr
× 100) is a percentage fraction difference, where X ∈ {PerturbedHHL, PerturbedHHLite}. nf is the total

number of qubit fixings for a given calculation. The correlation energies are given in units of millihartree, and are rounded off to five decimal
places.

Molecule Nt PerturbedHHL PerturbedHHLite

(basis) Geometry (nb, nr) E clc
corr Depth 2Q Ecorr Ediff (PFD) Depth 2Q Ecorr Ediff (PFD) nf

H2 1.20 11(2,6) −10.207 2452 536 −10.001 −0.206 (2.02) 884 334 −10.233 0.026 (−0.25) 2
(6-31G) 1.30 11(2,6) −10.813 2452 536 −10.479 −0.334 (3.09) 636 213 −10.795 −0.018 (0.17) 4

1.40a 11(2,6) −11.546 2452 536 −11.440 −0.106 (0.92) 613 232 −11.607 0.061 (−0.53) 3
1.50 11(2,6) −12.437 2452 536 −12.238 −0.199 (1.59) 1093 395 −12.553 0.116 (−0.93) 1
2.00 11(2,6) −20.053 2452 536 −19.924 −0.129 (0.64) 604 204 −20.034 −0.019 (0.09) 4

H3
+ 1.727, 50◦ 11(2,6) −24.425 2452 536 −24.199 −0.226 (0.92) 876 318 −24.157 −0.268 (1.10) 2

(STO-6G) 1.727, 55◦ 11(2,6) −25.394 2452 536 −25.143 −0.251 (0.99) 321 115 −24.848 −0.546 (2.15) 6
1.727, 60◦a 11(2,6) −26.197 2452 534 −26.221 0.024 (−0.09) 337 120 −26.233 0.036 (−0.14) 6
1.727, 70◦ 11(2,6) −27.423 2452 536 −27.384 −0.039 (0.14) 554 194 −27.642 0.219 (−0.80) 4
1.727, 80◦ 11(2,6) −28.315 2452 536 −28.354 0.039 (−0.14) 659 225 −28.360 0.045 (−0.16) 4

LiH 2.60 17(4,8) −17.464 97 493 18 608 −16.650 −0.814 (4.66) 42 043 14 934 −16.561 −0.903 (5.17) 3
(STO-6G) 2.70 17(4,8) −17.948 97 672 18 636 −16.642 −1.306 (7.28) 41 804 14 800 −17.653 −0.295 (1.65) 3

2.80a 17(4,8) −18.536 97 837 18 652 −17.604 −0.932 (5.02) 37 825 13 356 −17.524 −1.012 (5.46) 4
2.90 17(4,8) −19.227 98 065 18 702 −18.135 −1.092 (5.68) 40 983 14 595 −18.449 −0.778 (4.05) 3
3.00 17(4,8) −20.024 97 998 18 706 −18.610 −1.414 (7.06) 34 239 12 011 −18.786 −1.238 (6.18) 5

BeH+ 2.40 17(4,8) −18.963 98 065 18 698 −18.974 0.011 (−0.06) 50 140 17 796 −19.001 0.038 (−0.20) 1
(STO-6G) 2.50 17(4,8) −20.278 98 680 18 826 −20.290 0.012 (−0.06) 45 584 16 167 −19.570 −0.708 (3.49) 2

2.54a 17(4,8) −20.848 97 475 18 586 −20.832 −0.016 (0.08) 45 469 16 167 −20.412 −0.436 (2.09) 2
2.60 17(4,8) −21.752 97 624 18 620 −21.768 0.016 (−0.07) 44 576 15 915 −21.753 0.001 (−0.01) 2
2.70 17(4,8) −23.391 98 089 18 684 −23.179 −0.212 (0.91) 45 626 16 208 −21.765 −1.626 (6.95) 2

HF 1.32 17(4,8) −13.139 95 807 18 302 −12.936 −0.203 (1.54) 41 809 14 888 −13.028 −0.111 (0.85) 3
(STO-6G) 1.51 17(4,8) −18.224 95 715 18 292 −18.127 −0.097 (0.53) 45 450 16 260 −18.164 −0.060 (0.33) 2

1.71a 17(4,8) −25.555 95 999 18 332 −25.437 −0.118 (0.46) 38 117 13 527 −25.820 0.265 (−1.04) 4
1.88 17(4,8) −33.238 95 417 18 236 −33.186 −0.052 (0.16) 33 201 11 742 −33.500 0.262 (−0.79) 5
2.08 17(4,8) −43.947 95 583 18 274 −43.776 −0.171 (0.39) 41 882 14 903 −44.191 0.244 (−0.55) 3

aEquilibrium geometry.

TABLE II. Relevant data associated with our HHL and HHLite computations for the chosen molecules. The first two columns provide the
molecule along with the choice of single-particle basis as well as the information on molecular geometries. Nt (=2 × nb + nr + 1) is a shorthand
for the total number of qubits, while E clc

corr refers to the correlation energy obtained from LCC calculation on a traditional computer. This serves

as the benchmark for our computations. “2Q” is the number of two-qubit gates involved in a computation, and PFD (= Eclc
corr−EX

corr
Eclc

corr
× 100) is

a percentage fraction difference, where X ∈ {HHL, HHLite}. nf is the total number of qubit fixings for a given calculation. The correlation
energies are given in units of millihartree, and are rounded off to three decimal places.

Molecule Nt HHL HHLite

(basis) Geometry (nb, nr) E clc
corr Depth 2Q Ecorr Ediff (PFD) Depth 2Q Ecorr Ediff (PFD) nf

H2 1.20 11(2,6) −10.207 2452 536 −10.001 −0.206 (2.02) 899 339 −10.235 0.028 (−0.28) 2
(6-31G) 1.30 11(2,6) −10.813 2452 536 −10.485 −0.328 (3.04) 572 199 −10.793 −0.020 (0.19) 4

1.40a 11(2,6) −11.546 2452 536 −11.440 −0.106 (0.92) 635 240 −11.606 0.060 (−0.52) 3
1.50 11(2,6) −12.437 2452 536 −12.241 −0.196 (1.57) 1095 399 −12.556 0.119 (−0.96) 1
2.00 11(2,6) −20.053 2452 536 −19.929 −0.124 (0.62) 621 211 −20.037 −0.016 (0.08) 4

H3
+ 1.727, 50◦ 11(2,6) −24.425 2452 536 −24.133 −0.292 (1.19) 710 243 −24.492 0.067 (−0.27) 4

(STO-6G) 1.727, 55◦ 11(2,6) −25.394 2452 536 −25.367 −0.027 (0.11) 384 134 −24.972 −0.422 (1.66) 6
1.727, 60◦a 11(2,6) −26.197 2452 536 −25.850 −0.347 (1.33) 672 240 −26.326 0.129 (−0.49) 4
1.727, 70◦ 11(2,6) −27.423 2452 536 −27.215 −0.208 (0.76) 1052 368 −27.282 −0.141 (0.51) 2
1.727, 80◦ 11(2,6) −28.315 2452 536 −28.345 0.030 (−0.11) 704 236 −28.342 0.027 (−0.09) 4
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TABLE II. (Continued.)

Molecule Nt HHL HHLite

(basis) Geometry (nb, nr) E clc
corr Depth 2Q Ecorr Ediff (PFD) Depth 2Q Ecorr Ediff (PFD) nf

LiH 2.60 17(4,8) −17.464 97 656 18 644 −17.016 −0.448 (2.56) 42 283 14 970 −16.579 −0.885 (5.06) 3
(STO-6G) 2.70 17(4,8) −17.948 97 557 18 616 −17.648 −0.300 (1.67) 42 464 15 012 −16.984 −0.964 (5.37) 3

2.80a 17(4,8) −18.536 98 013 18 698 −18.282 −0.254 (1.37) 46 096 13 273 −17.615 −0.921 (4.97) 2
2.90 17(4,8) −19.227 97 990 18 704 −19.147 −0.080 (0.42) 46 204 16 394 −18.116 −1.111 (5.78) 2
3.00 17(4,8) −20.024 97 479 18 590 −19.986 −0.038 (0.19) 36 861 13 070 −19.691 −0.333 (1.66) 4

BeH+ 2.40 17(4,8) −18.963 98 189 18 728 −18.966 0.003 (−0.02) 45 431 16 134 −18.452 −0.511 (2.70) 2
(STO-6G) 2.50 17(4,8) −20.278 98 025 18 708 −20.286 0.008 (−0.04) 53 895 19 130 −20.285 0.007 (−0.04) 0

2.54a 17(4,8) −20.848 97 444 18 606 −20.833 −0.015 (0.07) 41 596 14 764 −20.149 −0.699 (3.35) 3
2.60 17(4,8) −21.752 97 950 18 690 −21.761 0.009 (−0.05) 32 823 11 632 −20.810 −0.942 (4.33) 5
2.70 17(4,8) −23.391 96 675 18 476 −23.395 0.004 (−0.02) 45 044 16 102 −22.115 −1.276 (5.45) 2

HF 1.32 17(4,8) −13.139 95 807 18 298 −13.100 −0.039 (0.29) 37 040 13 184 −13.025 −0.114 (0.87) 4
(STO-6G) 1.51 17(4,8) −18.224 96 005 18 342 −18.172 −0.052 (0.28) 45 642 16 285 −18.082 −0.142 (0.78) 2

1.71a 17(4,8) −25.555 96 033 18 348 −25.439 −0.116 (0.46) 38 369 13 587 −25.830 0.275 (−1.07) 4
1.88 17(4,8) −33.238 96 012 18 336 −33.193 −0.045 (0.13) 42 147 14 984 −33.491 0.253 (−0.76) 3
2.08 17(4,8) −43.947 95 783 18 316 −43.800 −0.147 (0.34) 41 260 14 712 −42.967 −0.980 (2.23) 3

aEquilibrium geometry.

TABLE III. Relevant data associated with our AdaptHHL and AdaptHHLite computations for the chosen molecules without using any λmin

and λmax information. The first two columns provide the molecule along with the choice of single-particle basis as well as the information on
molecular geometries. Nt (=2 × nb + nr + 1) is a shorthand for the total number of qubits, while E clc

corr refers to the correlation energy obtained
from LCC calculation on a traditional computer. This serves as the benchmark for our computations. “2Q” is the number of two-qubit gates

involved in a computation, and PFD (= Eclc
corr−EX

corr
Eclc

corr
× 100) is a percentage fraction difference, where X ∈ {AdaptHHL, AdaptHHLite}. nf is the

total number of qubit fixings for a given calculation. The correlation energies are given in units of millihartree, and are rounded off to five
decimal places.

Molecule Nt AdaptHHL AdaptHHLite

(basis) Geometry (nb, nr) E clc
corr Depth 2Q Ecorr Ediff (PFD) Depth 2Q Ecorr Ediff (PFD) nf

H2 1.20 11(2,6) −10.207 2452 536 −10.489 0.282 (−2.76) 532 183 −10.742 0.535 (−5.24) 4
(6-31G) 1.30 11(2,6) −10.813 2452 536 −10.631 −0.182 (1.68) 543 185 −10.884 0.071 (−0.66) 4

1.40a 11(2,6) −11.546 2452 536 −11.081 −0.465 (4.02) 537 182 −11.262 −0.284 (2.46) 4
1.50 11(2,6) −12.437 2452 536 −12.065 −0.372 (2.99) 525 183 −12.124 −0.313 (2.52) 4
2.00 11(2,6) −20.053 2452 536 −19.839 −0.214 (1.07) 379 136 −19.979 −0.074 (0.37) 5

H3
+ 1.727, 50◦ 11(2,6) −24.425 2452 536 −26.274 1.849 (−7.57) 273 100 −27.388 2.963 (−12.13) 6

(STO-6G) 1.727, 55◦ 11(2,6) −25.394 2452 536 −27.120 1.726 (−6.80) 256 97 −27.533 2.139 (−8.42) 6
1.727, 60◦a 11(2,6) −26.197 2452 536 −27.375 1.178 (−4.50) 270 98 −27.472 1.275 (−4.87) 6
1.727, 70◦ 11(2,6) −27.423 2452 536 −29.809 2.386 (−8.70) 272 100 −31.189 3.766 (−13.73) 6
1.727, 80◦ 11(2,6) −28.315 2452 536 −30.016 1.701 (−6.01) 514 177 −30.463 2.148 (−7.59) 4

LiH 2.60 17(4,8) −17.464 80 663 16 374 −17.136 −0.328 (1.87) 26 458 9456 −17.527 0.063 (−0.37) 6
(STO-6G) 2.70 17(4,8) −17.948 80 779 16 394 −17.690 −0.258 (1.44) 26 441 9440 −18.124 0.176 (−0.98) 6

2.80a 17(4,8) −18.536 80 476 16 338 −18.399 −0.137 (0.74) 26 348 9412 −18.874 0.338 (−1.83) 6
2.90 17(4,8) −19.227 80 543 16 350 −19.259 0.032 (−0.17) 26 425 9429 −19.771 0.544 (−2.83) 6
3.00 17(4,8) −20.024 80 591 16 356 −20.255 0.231 (−1.15) 26 574 9465 −20.438 0.414 (−2.06) 6

BeH+ 2.40 17(4,8) −18.963 80 827 16 392 −19.071 0.108 (−0.57) 26 580 9440 −19.224 0.261 (−1.37) 6
(STO-6G) 2.50 17(4,8) −20.278 81 031 16 422 −20.134 −0.144 (0.71) 26 783 9493 −20.335 0.057 (−0.28) 6

2.54a 17(4,8) −20.848 80 724 16 372 −20.591 −0.257 (1.23) 26 654 9456 −20.814 −0.034 (0.16) 6
2.60 17(4,8) −21.752 80 699 16 368 −21.344 −0.408 (1.88) 26 807 9482 −21.613 −0.139 (0.64) 6
2.70 17(4,8) −23.391 80 748 16 374 −22.698 −0.693 (2.96) 26 712 9468 −23.048 −0.343 (1.47) 6

HF 1.32 17(4,8) −13.139 80 238 16 292 −13.308 0.169 (−1.29) 26 190 9396 −13.669 0.530 (−4.03) 6
(STO-6G) 1.51 17(4,8) −18.224 80 098 16 266 −19.901 1.677 (−9.20) 26 388 9427 −20.276 2.052 (−11.26) 6

1.71a 17(4,8) −25.555 80 254 16 292 −27.744 2.189 (−8.57) 26 314 9428 −27.995 2.440 (−9.55) 6
1.88 17(4,8) −33.238 80 256 16 294 −35.680 2.442 (−7.35) 22 589 8055 −37.295 4.057 (−12.21) 7
2.08 17(4,8) −43.947 79 769 16 224 −46.323 2.376 (−5.41) 22 326 8012 −47.394 3.447 (−7.84) 7

aEquilibrium geometry.
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FIG. 12. Our zero noise extrapolated result for the H2 molecule
in the 6-31G basis and at 2 bohr bond length. We achieve all-but-one
fixing with Pth = 0.8. For zero noise extrapolation (ZNE), we choose
local folding of only the two-qubit gates (MS gates) from the left,
with noninteger scale factors (1, 1.2, 1.4, 1.6, and 1.8), and a linear
fit to our data points. Furthermore, each data point presented in the
figure is an average over three repetitions, each with 5000 shots. We
note that the computations were carried out on the IonQ Aria device,
unlike the other less complicated calculations (with all-qubit fixing)
for which we used the older Harmony machine. This is in view of
the former yielding a PFD of 25.71 for scale factor 1 for 5000 shots,
whereas the latter gave about 38 even with 10 000 shots. After ZNE,
the PFD improved from 25.71 to 13.24. We forecast that as state-of-
the-art quantum devices improve in the coming years, much better
PFDs can be achieved with these mitigation techniques.

TABLE IV. The mean and standard deviation with respect to the
mean of Ecorr of multiple hardware runs for H2 molecule in the STO-
6G basis. All units involving correlation energy are in millihartree.

Internuclear Ecorr Mean Standard deviation
distance (bohr) (classical) (Ecorr) (Ecorr)

1.3 −18.5920 −16.991 0.652
1.4 −20.8738 −20.145 1.393
1.5 −23.4209 −23.463 0.610
1.6 −26.2622 −28.928 0.768
1.7 −29.4289 −29.183 0.883

We finally discuss the expression for the LCC correlation
energy. It is found by left-projecting Eq. (A6) by |�0〉. Since
the first term on the right-hand side of Eq. (A6) is the operator
part of the Hamiltonian, it vanishes upon projection by |�0〉
and we are left with

〈�0|ĥ{êP}|�0〉tP = Ecorr,

〈�0|ĥ|χP〉tP = Ecorr. (A9)
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