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Using fluid structures to encode predictions of glassy dynamics
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Data-driven approaches that infer the local structures responsible for plasticity in amorphous materials have
made substantial contributions to our understanding of the failure, flow, and rearrangement dynamics of super-
cooled fluids. Some of these methods, such as the “softness” approach, have identified combinations of local
structural features in a supercooled particle’s environment that predict energy barriers associated with particle
rearrangements. This approach also predicts the onset temperature, often characterized as the temperature below
which the system’s dynamics becomes non-Arrhenius and above which local structures are no longer predictive
of dynamical activity. We implement a transfer learning approach in which we first show that classifiers can
be trained to predict dynamical activity even far above the onset temperature. We then show that applying
these classifiers to data from the supercooled phase recovers the same essential physical information about the
relationship between local structures and energy barriers that softness does.
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I. INTRODUCTION

At the microscopic scale glassy materials possess amor-
phous structures very similar to their dense fluid phase [1],
but their dynamical properties are radically different [2].
Many different temperature scales have been identified in the
transition from an equilibrium fluid to an out-of-equilibrium
amorphous solid; the first one encountered upon cooling the
system is the onset temperature T0, which marks a transition to
“landscape-influenced” dynamics [3–6]. Above this tempera-
ture the particle-level dynamics are simple and diffusive and
do not depend on local structure; below this temperature dy-
namics become both spatially and temporally heterogeneous,
depend strongly on local structure, and (for fragile glass for-
mers) begin slowing down superexponentially [7–11].

The role of local microscopic structure in local dynamics
is a deep question, and a major theme of recent research has
been the search for correlations between them [12–17]. Data-
driven approaches, using numerical simulations to generate
large data sets for the training of support vector machines
(SVMs) [18–20], graph neural networks [21], and other tech-
niques [22,23], have shown substantial promise for finding
maximally correlative structures for the dynamics at different
timescales in strong glass formers [24], fragile glass form-
ers [19,21,25] and even anomalous glass formers modeled
after biological systems [26]. Notably, approaches based on
SVMs [19] have found physically interpretable classifiers.
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This physical interpretation comes from training classifiers at
low temperatures and studying how they behave when applied
to data at other temperatures: by maximizing correlations
in the training data in a compressed way, these classifiers
are learning combinations of structural features that can be
interpreted as a local energy barrier to particle rearrange-
ments. However, relatively little is known about why these
approaches work and whether or how one could use these
results to help build a more robust theoretical description
of glass-forming systems. Key unresolved questions include
why these particular approaches lead to what is apparently a
local order parameter for the supercooled liquids and how the
learned energy barriers actually depend on the construction of
the classifiers.

In this work we bridge the changing dynamical behavior
above and below the onset temperature, on the one hand,
and the physical interpretation of amorphous state classifiers,
on the other. We first demonstrate that the same machine
learning techniques that have successfully correlated structure
and dynamics in the supercooled phase can be used to classify
“extreme diffusive” events even far above the onset tempera-
ture. In the spirit of a transfer learning approach, we show that
these liquid-state classifiers can statistically identify activated
events in the supercooled phase, even though the character of
the activated dynamics below T0 changes dramatically. We
further show that not only can accuracy on a classification
task be maintained but also the physical interpretability is
maintained: apparently, fluid-phase classifiers also learn en-
ergy barriers in the supercooled phase.

II. METHODS

A. Model and simulations

Our analysis is focused on a large set of molecular dy-
namics simulations of N = 4096 particles, using the standard
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80:20 Kob-Andersen model [27] (with a cutoff distance of
2.5) at a density of ρ = 1.2 in a cubic box with periodic
boundary conditions. Throughout we report all quantities in
dimensionless (reduced) units, using the standard Lennard-
Jones (LJ) convention in which the base units are distance
(measured in units of the large-particle diameter σAA), energy
(in units of the interaction parameter εAA), and mass (in units
of the particle mass m). For this model the dimensionless
onset temperature is often reported as T0 ≈ 0.87 [7,19]; given
the broad crossover in the dynamics, values between 0.8 and
1.2 are also reasonable estimates for this temperature scale
[4,11]. Our simulations were done in the NV T ensemble for
temperatures in the range T ∈ [0.45, 2.0] in standard LJ units
(i.e., ranging from the moderately supercooled to the super-
critical fluid phase). We note that our use of a deterministic
Nosé-Hoover thermostat [28] should not unduly influence the
results reported below: in our classification task we do not in-
clude any information about the fictitious degrees of freedom
used by the thermostat to maintain an average temperature,
and we expect that, if anything, our quantitative results would
improve upon conducting simulations in an NV E ensemble.

All simulations were conducted using HOOMD-BLUE [29],
and in the following we focus on the behavior of the large
particles. Our simulation configurations were generated as
follows. We first equilibrated a system with random initial
conditions 5000τ at a temperature of T = 0.45. We used the
final configuration of this as an initial seed for our other
simulations: a snapshot was loaded as the initial configura-
tion for our other simulations, each of which was allowed to
equilibrate for 1000τ at its target temperature. After this, data
used in this study were saved at intervals of 1τ .

We begin by characterizing the local structural environ-
ment of particles in these simulations, using two-point radial
structure functions GX (i; r, δ) [30]. For a target particle i, these
functions are defined as

GX (i; r, δ) =
∑
j∈X

exp

(−(r − Ri j )2

2δ2

)
, (1)

where X denotes which of the components of the binary
mixture is being considered, r is a parameter controlling the
distance from which dominant contributions to the feature
come, δ is a parameter controlling the width of the Gaussian
shells, and Ri j is the distance between particles i and j. We
characterize the local environment of particle i with a vector in
a 100-dimensional feature space �Fi, with δ = 0.2, 0 < r < 5
in increments of 0.1, and X = A, B. Each feature is standard-
ized [31] so that at the training temperature it has zero mean
and unit variance.

We next choose a measure for the dynamics of particles; to
be consistent with work on activated dynamics we use phop as
introduced in Ref. [32]. We use an observational time window
of 10 LJ time units, for which

phop(i, t ) =
√

〈(�ri(t ) − 〈�ri〉w2 )2〉w1〈(�ri(t ) − 〈�ri〉w1 )2〉w2 ,

where w1 = [t − 5, t], w2 = [t, t + 5], and thus 〈· · · 〉wi av-
erages over one half of the observation window. We do not
believe that using phop as a dynamical label is crucial—
preliminary results indicate that choosing instead to mea-
sure particle dynamics using their cumulative displacement

over the same time window leads to qualitatively identical
results—and we note that the length of the time window is
optimized for detecting activated events in the supercooled
regime.

B. Machine learning protocol

We train SVMs connecting structural features with dy-
namic observables largely following the “softness” method-
ology [19]. We build a training set by combing through
molecular dynamics trajectories for examples of dynami-
cally active (“rearranging”) and inactive (“nonrearranging”)
particles and train a linear soft margin SVM (using the SCIKIT-
LEARN package [33]) to classify these examples. We can then
use the learned classifier (here, a hyperplane in feature space)
to try to predict dynamics based on a particle’s instantaneous
environment, and we define the softness of particle i at time t ,
Si(t ), as the shortest distance between its vector of structural
features and this classifying hyperplane.

The training set construction for our softness classifier
closely followed the protocol outlined in Ref. [19]. We
constructed a balanced 7600-sample training set using the
coldest temperature considered (T = 0.45): 3800 rearranging
samples and 3800 nonrearranging samples. We adopted the
previously used convention of associating the structural data
of a particle i at time t − 2τ with the dynamical state at time t .
We defined a rearranging particle if, at time t , phop(i, t ) > pc,
where pc = 0.2. We defined a nonrearranging particle by
requiring its phop(i, t ) value to remain less than a lower thresh-
old of pl = 0.0085 for at least 120τ duration of time. We then
used the local structure of the nonrearranging particle in the
middle of its time of low activity. Unlike in previous work,
we take structure and phop values directly from the thermal
configurations rather than quenching to the inherent states (in
part because the fluid-phase simulations would be far from
any minima). Unless otherwise stated, we used a soft-margin
misclassification hyperparameter of C = 10−2.

A major finding of Ref. [19] was that this signed distance—
softness—encodes the probability the target particle would
rearrange at a given temperature. The corresponding curves
for the probability of rearranging at different values of S as a
function of T all intersected at a common temperature, which
in turn suggested the existence of an onset temperature above
which structure was no longer predictive of dynamical events.
The predicted value of T0 was consistent with alternative def-
initions [4,7,19] and with the numerical values cited above.
Before we return to this finding, we first ask, Can we learn to
classify dynamical events based on structure not in the super-
cooled regime but at and even above the onset temperature?

For T > T0 individual particle motion is diffusive rather
than activated, and it is not clear that using phop as a dynamical
label is the most natural choice. We continue to use it as an
indicator function—it is still large for dynamical trajectories
that move a particle far from its initial position and small for
diffusive motions that stay near a particle’s initial position—
and will show in a later work that this choice is not crucial
to our results. To identify “extreme events” to classify, we
select particles in high and low tails of the probability density
function of phop at different temperatures. To have similarly
sized training sets as in the case of softness, we choose lower
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and upper cutoffs (pl and pu) that capture the most extreme
0.033% of low- and high-activity events, respectively. We
identify particle i at a given time t as “extremely diffusive” if
phop(i, t ) > pu and associate it with the particle’s local struc-
ture at time t − 2τ . Similarly, if phop(i, t ) < pl , the particle
is identified as “extremely nondiffusive,” and its structure at
time t − 2τ is included in the training set. The training set for
each temperature we considered above T0 contained 10 400
balanced samples.

Aside from this difference in choosing “rearranging” and
“nonrearranging” labels, we follow the methodology above:
we find a linear soft-margin SVM that best classifies a labeled
training set and then apply this classifier to new data. To
distinguish it from softness we call the distance of a point in
feature space to such a classifying hyperplane the “fluidity,”
and we use we FT

i to denote the fluidity of particle i with re-
spect to a classifier trained from data at temperature T . Given
any of our classifiers, one can compute a particle’s softness
or fluidity by computing its feature vector (which depends
only on the instantaneous structure around the particle) and
evaluating αi(t ) = �wα · �Fi(t ) − bα, where �wα is the normal
vector, bα is the bias defining a classifying hyperplane, and
α refers to either softness S or fluidity FT . We note that the
term “fluidity” was previously to describe an average rate of
plastic events in models of soft glassy rheology [34]; while our
definition is different, we will see that highly “fluid” particles
have more active dynamics at high temperatures and, indeed,
are more likely to undergo plastic rearrangement events at low
temperatures.

III. CLASSIFICATION IN THE FLUID PHASE

We find that we can learn to classify extreme diffusive
events even far above the onset temperature using local struc-
ture. Hyperplanes are characterized by a normal vector and
a bias; the direction of the normal corresponds to the linear
combination of features that has been learned, and the bias
is an offset that best separates the training set given that
direction. We expect the direction to encode the key physical
features governing rearrangements, whereas we expect the
bias may be strongly dependent on details such as the choice
of time window or the temperature of the training set. For
instance, with our fixed-threshold definition of a rearrange-
ment the total number of rearranging particles increases as T
increases, so even if the same underlying structural variable
controls rearrangements, the optimal bias of the hyperplane
will shift to maximize the soft margin in the training set data.
Because of this, we want to remove the influence of the bias
on our later results. In Fig. 1 we show the training accuracy
of fluidity as a function of the bias, and during our transfer
learning approach later we will select values that maximize
our classification accuracy not on the training but on a low-
temperature test set.

We believe it is noteworthy that at such high temperatures,
any structural features predictive of dynamics can be found.
We find that even a softness classifier, i.e., a classifier trained
on activated dynamics, has some ability to classify diffusive
events in the fluid phase: as shown in the inset, the accuracy
of the high-T training sets is almost as good as the classifiers
trained at those temperatures. The optimal bias that needs

FIG. 1. Fluidity classifies rare events at high and low temper-
atures. The points show the fivefold cross-validation accuracy of
linear SVMs trained on extreme diffusive samples at T = 1.0,

1.2, 1.4, 1.8, 2.0 (dark blue to light red) as a function of the clas-
sifier’s bias. Each classifier achieves near-peak accuracy for small
values of the bias. In contrast, the inset shows the test classification
accuracy of the “softness” classifier trained on activated dynamics at
T = 0.45 and applied to the extremes of diffusive events at different
temperatures, for which very different values of the bias optimize
performance.

to be chosen is quite different, but the direction in feature
space learned is quite similar. This finding encourages us
to more explicitly frame a transfer learning task from the
high-temperature to the low-temperature regime. Concretely,
we apply the fluid-phase classifiers, trained at temperatures
ranging from T = 1 to T = 2, to labeled data from T = 0.47.
As shown in Fig. 2, even though we have trained on data
well above T0, we find that our classifiers maintain substantial
classification accuracy. Again, the optimal bias varies strongly

FIG. 2. A transfer learning approach connects extreme diffusive
events above T0 with activated dynamics below T0. The main plot
shows the test accuracy of linear SVMs, trained on extreme diffusive
samples at T = 1.0, 1.2, 1.4, 1.8, 2.0 (dark blue to light red), as
applied to a test set of activated dynamics at T = 0.47 as a function
of the classifier’s bias relative to the optimal bias for that choice of
temperature. The inset shows the self part of the Van Hove correla-
tion function for large particles at a timescale of 10 LJ time units.
(Black dots are for T = 0.45.)
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FIG. 3. The probability of rearrangement conditioned on fluidity
reveals energy barriers below the onset temperature. (a) The log
probability of rearrangement conditioned on F2.0 vs inverse tempera-
ture. Point colors correspond to different bins of fluidity, as indicated
in the legend. (b) The same features for rearrangements conditioned
on S. In all cases, dotted lines are Kramers form fits.

with training and testing temperature, but the direction in
feature space is extremely highly correlated.

To highlight how surprising this is, in the inset we show
the self part of the Van Hove function characterizing single-
particle displacements, choosing as a timescale the same
window we used for phop. At high temperatures this distribu-
tion is essentially Gaussian and involves a substantial number
of particles moving many times their own size; at low temper-
atures this distribution is nontrivial and has an exponential tail
corresponding to hopping motions whose size is less than the
single-particle diameter.

IV. INTERPRETABILITY OF FLUIDITY AND SOFTNESS

Using T > T0 classifiers, we are able to obtain reason-
able accuracy for training sets (which are, by definition,
constructed from atypical particles at the various training
temperatures), but remarkably, we find that fluidity has the
same kind of physical interpretability as softness. We define
a rearrangement as a particle having an instantaneous value
of phop > pc and fit the probability of rearranging PR to a
Kramers form [35]: PR = 1

T exp[�(FT )] exp[−	E (FT )/T ].
Just as for softness, we show in Fig. 3 that fluidity partitions

FIG. 4. Collapse of inferred landscape features from different
training temperatures. The energy barrier as a function of the distance
to the optimized classifier, 	E vs xα , as inferred from Kramers fits to
PR(S) shows little variation across a wide range of classifier training
temperatures. The inset showing the entropic contribution similarly
collapses in this representation.

the overall system dynamics into a collection of barrier-
hopping processes characterized by an energy barrier scale
	E and an entropic contribution �. We also find that our
prediction of the onset temperature itself, whether from the
intersection of the Kramers form fits or more qualitatively
from where the data collapse, is the same across our softness
and fluidity classifiers, suggesting that a consistent physical
interpretation is being learned.

The identification of a scalar value—fluidity—that en-
codes the energy barrier characterizing an activated process
by training a classifier on diffusive events is striking. Given
the crossover nature of the onset temperature, perhaps this
qualitative result could have been expected for training tem-
peratures close to T0, but it holds even when training far above
T0, as shown in Fig. 3(a). How do the energy barriers learned
by these classifiers compare to the energy barriers learned
by classifiers trained on supercooled data, i.e., to those from
softness? A direct answer to this question is complicated by
two aspects of the training and testing procedure.

The first is that there is no reason to think that the hyper-
plane bias should be held constant when moving from one
task to another. This is implicit in the relatively large shifts
in bias needed in the inset of Fig. 1 and in the test accuracy
for suboptimal choices of bias in Fig. 2. The second issue
is related to the fact that we study systems across such a
wide temperature range that the distribution of the structural
features changes substantially (a similar issue arose in the
context of applying classifiers to systems at different densities
[36]). To account for these, we compare the physical inter-
pretations of the different classifiers by defining xα = ( �wα ·
�F − bbest

α )/σα . That is, we adjust the bias to the optimal value
when the classifier is applied to a common (T = 0.47) training
set and rescale the feature vector by the standard deviation of
the distribution of fluidity (or softness) at the training temper-
ature. With this choice, in Fig. 4 we show that the learned
aspects of the landscape associated with particle structure,
including both the energy barrier and entropic contribution,
are almost identical. We note that fitting the data only in
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TABLE I. Optimal bias b of the hyperplane during training,
the standard deviation of fluidity (or softness for T = 0.45) at the
training temperatures, and the optimal bias bbest that maximizes test
accuracy at T = 0.47. The last column displays the projection of our
classifiers onto the softness classifier.

T b σT bbest ŵS · ŵα

0.45 0.0096 1.1188 0.55710 1.0000
1.0 −0.0056 0.7653 −0.2385 0.8246
1.2 −0.0171 0.7028 −0.4644 0.8071
1.4 −0.0099 0.6760 −0.4644 0.6643
1.8 −0.0262 0.6286 −0.5774 0.7104
2.0 −0.0341 0.6286 −0.6151 0.7198

the regime unambiguously below the onset temperature, i.e.,
the points for which T < 0.8, does not qualitatively change
these results. We speculate that there may be some correlation
between training at higher temperatures and a hint of a slight
curvature in the data but do not yet have sufficient data to
confirm this.

Given these results, Table I reports several values that
contribute to the formation of the results: the bias (i.e., the
bias that achieves the highest accuracy during training), the
standard deviation of fluidity and softness, and the optimal
choice of bias when the classifier is applied to a test set at
T = 0.47. We also report, as a simple measure of the similarity
of the classifiers, the dot product between the normal vector
describing each classifier and that of the softness classifier.

V. DISCUSSION

Taken together, our results establish a surprising connec-
tion between the structural features that control activated
events at low temperatures and those apparently responsible
for the tails of the distribution of diffusive events above the on-
set temperature. Although many approaches have considered
the link between local structural arrangements and dynamical
arrest in the supercooled regime [37], much of this knowl-
edge is set aside when studying the liquid phase. Our finding
that structure is relevant even above the temperature of the
liquid-gas critical point (roughly T = 1.2 in this model [38])
suggests that further pursuing this avenue of research may
prove fruitful. The connections between structure and dynam-
ics across temperatures that we find may be a consequence
of the only modestly growing structural length scales over
the temperature range studied, but we again emphasize that
the qualitative character of the dynamics changes significantly
over these same temperatures.

A natural hypothesis might be that our classification ac-
curacy stems from an ability to identify fluid-phase particles
that do not diffuse very much: perhaps we are identifying
rare particles that consistently sample a similar, high-barrier
part of the energy landscape and do not truly distinguishing
both immobile and highly mobile particles. We show in the
Appendix that this hypothesis fails and that using both tails of
the diffusive-motion distribution is crucial to our results. We
comment that our main finding—that one can take a classifier
built on fluid-phase data without barrier-hopping dynamics,
apply it to data in a dynamically heterogeneous phase, and

infer the existence of energy barriers there—is reminiscent
of the results reported in Ref. [26]. That work considered a
biologically inspired model with highly unusual glassy dy-
namics [39–41] meant to mimic the behavior of dense cellular
materials. There, it was speculated that it was the anomalous
sub-Arrhenius behavior of the model that was responsible for
the success of the transfer learning task; the results presented
here suggest an alternative explanation may be needed.

Our work highlights what we believe continue to be cru-
cial unanswered questions: why do these machine learning
methodologies learn simple structural order parameters that
correspond to local energy barriers in disordered phases of
matter? What aspects of the training lead to this result? And
to what extent can we use this result to uncover new, relevant
descriptions for the physics of amorphous solids? We note that
there is some indication that the specific methodology used
here and earlier—linear SVMs—may not be crucial to recover
this physical interpretation; Ref. [23] hinted at a similar result
using a Graph Neural Network-inspired linear-regression-
based model. We believe it will be crucial to compare different
machine learning techniques as applied to predicting glassy
dynamics [21,42] not only along dimensions of predictive
capacity, generalizability, efficiency, and training cost but also
in terms of their physical interpretability.

Data used in this paper are available from Zenodo [43].
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APPENDIX

1. Fluidity distribution

Similar to the distribution of softness shown in Ref. [19],
the distribution of fluidity, when measured at different test
temperatures, remains approximately Gaussian. This is shown
in Fig. 5 for two training temperatures (T = 1.2 and T = 2.0).
The mean of the distribution behaves monotonically as the test
temperature changes.

2. Determination of the rearrangement threshold for fluidity

The dependence of softness on various choices for training
set thresholds was explored in Ref. [19], and our choices
are consistent with widely employed values. In the case of
fluidity, as noted above, we selected threshold values to have
comparably sized training sets given the length of our sim-
ulations (i.e., to generate of the order of 104 elements of a
balanced training set). We first emphasize that the qualitative
outcome of our analysis is not crucially dependent on the
choice of threshold. In Figs. 6 and 7 we show (at a fixed repre-
sentative temperature above the onset temperature, T = 1.2)
that our classification accuracy for the test set is only weakly
dependent on the precise choice of pl and pu: sensibly, more
extreme events are slightly easier to classify, but we are far
enough into the tail of rare events that the effect is a small
one.

043112-5



TOMILOLA M. OBADIYA AND DANIEL M. SUSSMAN PHYSICAL REVIEW RESEARCH 5, 043112 (2023)

FIG. 5. The distribution of fluidity at different test temperatures
for two considered training temperatures. Training at both (a) T =
1.2 and (b) T = 2.0, the distribution of fluidity is approximately
Gaussian. The mean is a monotonic function of the test temperature.

We note, however, that our ability to classify and to
successfully transfer learn is dependent on the selection of ap-
propriate structural examples that correspond to both extreme

FIG. 6. Classification accuracy above the onset temperature as a
function of the misclassification penalty C using different thresholds
for defining extreme events. Three different choices for the fraction
of the distribution of events to use in the training set give broadly
consistent accuracies for the test set, with no systematic changes in
the optimal hyperparameter.

FIG. 7. Classification accuracy above the onset temperature as a
function of bias for a fixed training hyperparameter. Using a fixed
misclassification hyperparameter of C = 10−2, we again see that the
accuracy is only weakly dependent on the chosen event thresholds.

ends of the phop distribution. As discussed in the main text,
one natural hypothesis is that local structures corresponding to
the lower tail of events capture sufficiently deep minima that
influence even particles in the fluid phase and that our ability
to classify stems entirely from these rare, relatively immobile
particles. To test this, we construct a classifier using local
structures from the lower tail of the phop distribution as our
nonrearranging particles and construct the other class from
randomly selected particles with phop > pl . We train such a
classifier at T = 1.2 and evaluate it on the test set of T = 0.47
(as in Fig. 2 in the main text). We show in Fig. 8 that the
accuracy of this “immobile vs randomly selected” classifier
is substantially lower than the accuracy of the “immobile vs
highly mobile” fluidity classifier.

3. Probability of rearrangements as a function of xα

In this section, we show data for the probability of re-
arrangement as a function of xα against 1/T for different
training temperatures; these data lead directly to the results

FIG. 8. Test accuracy against bias of a low mobility vs random
particle classifier. The plot shows that the test accuracy of the clas-
sifier (blue lower points) is lower than the classifier built using both
extreme ends of the phop distribution (orange upper points).
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FIG. 9. The probability of rearrangement conditioned on xα against 1/T . Dotted lines are fits to the Kramers form for different bins of xα .

reported in Fig. 4 in the main text. The probability of rear-
rangement conditioned on xα is the fraction of local structure
with value xα that has a corresponding phop value greater
than pc, where pc is the rearrangement cutoff used at low T .

Figure 9, mirroring Fig. 3, shows the probability of rearrange-
ment as a function of 1/T for the softness and the fluidity
classifiers. In Fig. 4, we report the inferred energy barriers
and “entropic barriers” associated with each of these fits.
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