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Universal topological data of topologically ordered phases can be captured by topological quantum field
theory in continuous space time by taking the limit of low energies and long wavelengths. While previous
continuum field-theoretical studies of topological orders in three-dimensional (3D) real space focused on either
self-statistics, braiding statistics, shrinking rules, fusion rules, or quantum dimensions, it has yet to systematically
put all topological data together in a unified continuum field-theoretical framework. Here, we construct the
topological BF field theory with twisted terms (e.g., AAdA and AAB) as well as a K-matrix BB term to simul-
taneously explore all such topological data and reach anomaly-free topological orders. Following the spirit of
the famous K-matrix Chern-Simons theory of two-dimensional topological orders, we present general formulas
and systematically show how the K-matrix BB term confines topological excitations, and how self-statistics
of particles is transmuted between bosonic one and fermionic one. To reach anomaly-free topological orders,
we explore, within the present continuum field-theoretical framework, how the principle of gauge invariance
fundamentally influences possible realizations of topological data. More concretely, we present the topological
actions of (i) particle-loop braidings with emergent fermions, (ii) multiloop braidings with emergent fermions,
and (iii) Borromean rings braidings with emergent fermions, and calculate their universal topological data.
Together with previous efforts, our paper paves the way toward a more systematic and complete continuum
field-theoretical analysis of exotic topological properties of 3D topological orders. Several interesting future
directions are also discussed.
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I. INTRODUCTION

Exploring low-energy long-wavelength effective field the-
ories of quantum many-body systems has a long history in
condensed matter physics [1]. For example, the Ginzburg-
Landau (GL) field theory, in terms of local order parameters,
is applied to symmetry-breaking phases and phase transi-
tions; nonlinear sigma models with topological θ term are
applied to quantum spin chains. Since the discovery of the
fractional quantum Hall effect in the 1980s, the notion of
topological order has been introduced as a route toward ex-
otic phases of matter that cannot be characterized by the
mechanism of symmetry breaking. While there has been
a broad consensus that the essence of topological order is
deeply rooted in patterns of long-range entanglement that is
robust against local unitaries of finite depth [2], the orig-
inal definition of topological order really comes from the
fact that the low-energy effective field theory of the proto-
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typical topological order—fractional quantum Hall states—is
the Chern-Simons theory which is a topological quantum
field theory (TQFT) [3,4] in continuous spacetime. Along
this line of thinking, the common expectation for topological
phases of matter—topological robustness against any local
perturbations—is achievable by simply noting the fact that
correlation functions of all spatially local operators in TQFTs
vanish [5], which is in sharp contrast with the GL theory.
Particularly, as the most general Abelian formulation, the
K-matrix Chern-Simons theory [6,7] whose action is writ-
ten in terms of ∼ ∫ KIJ

4π
AI dAJ , serves as the standard TQFT

framework of two-dimensional (2D) Abelian topological or-
ders, providing a highly efficient algorithm for computing
topological data, such as anyon types, self-statistics, mutual
statistics, fusion algebra, chiral central charge, and ground-
state degeneracy. Besides topological orders, the K-matrix
Chern-Simons theory has also been successfully applied to the
study of symmetry-enriched topological phases (SETs) [8,9]
and symmetry-protected topological phases [10–14] where
global symmetry is nontrivially imposed.

While the K-matrix Chern-Simons theory works very well
in 2D topological phases of matter, it is no longer applicable
to three-dimensional (3D) and higher, where exotic spatially
extended excitations [e.g., loops in no less than 3D space and
membranes in no less than four dimensional (4D) space] in-
duce very rich emergent phenomena. Instead, if particles and
loops, respectively, carry gauge charges and gauge fluxes of a
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discrete Abelian gauge group G = ∏n
i=1 ZNi , one may apply

the twisted BF field theory [15,16] by properly including
twisted terms (denoted as T ) [17–21]. This series of TQFTs
has been proven to be a very powerful way to efficiently
describe various types of nontrivial braiding statistics, such
as particle-loop braiding [16,22–26], multiloop braiding [27]
(with the twisted terms ∼AAdA and ∼AAAA), and particle-
loop-loop braiding (i.e., Borromean rings braiding with the
twisted term ∼AAB) [21]. Recently, the untwisted (twisted)
BF theory has also been successfully applied to SET [28–32]
and SPT [19,33–36] in 3D.

In the twisted BF theory (symbolically denoted as BF +
T ), each type of braiding statistics is associated with a par-
ticular formulation of TQFT actions, which does not mean
that all types of braiding statistics are mutually compatible
and can thereby coexist in an anomaly-free topological order.
To further examine whether two different types of braiding
processes are allowed to compatibly exist in the same topo-
logical order, Ref. [37] exhausted all combinations of twisted
terms and found that TQFTs of some combinations inevitably
violate the principle of gauge invariance. Thus, among all
combinations, only a part of combinations are legitimate such
that braiding processes can coexist. After TQFTs with mutu-
ally compatible braiding processes are obtained, fusion rules
and shrinking rules in the TQFTs are further investigated,
from which quantum dimensions of both particles and loops
are computed [38]. Recently, the ideas of Refs. [37,38] have
been subsequently extended to 4D real space [39,40] where
membrane excitations are allowed and hierarchy of shrinking
rules is definable.

On the other hand, in the untwisted BF theory with the in-
clusion of a BB term [41] (symbolically denoted as BF + BB),
the boson-fermion statistical transmutation of self-statistics
(i.e., exchange statistics) of particles in 3D [18] has been stud-
ied through equations of motion, where the scenario of Dirac-
string-attachment implied by the equations of motion mimics,
to some extent, the physics of dyons studied intensively in
other contexts [32,42–45]. Along this line, it has become clear
that all particles with anyonic statistics (neither fermionic
nor bosonic) are exactly confined and thus disappear in the
low energy spectrum, which is perfectly consistent with the
well-known fact that anyons are impossible in 3D and higher
[46–48]. Thanks to the statistical transmutation induced by
the BB term, we may realize both emergent fermions (defined
as topologically nontrivial particles that are fermionic) and
transparent fermions (defined as topologically trivial particles
that are fermionic) in a topological action that is composed
of merely bosonic degrees of freedom (i.e., gauge fields). As
a side, by definition, once transparent particles are fermionic,
the topological order is said to be fermionic. In addition to
boson-fermion transmutation, the single-component BB term
also provides a Higgs mechanism that confines either partially
or completely the gauge group G set by the coefficient of
the BF term [49]. In addition, the multicomponent BB term
was successfully applied to 3D bosonic topological insulators
(bosonic SPTs with particle number conservation and time-
reversal symmetry) where bulk topological order is trivial but
boundary admits anomalous surface topological orders [33].

Logically, once we have understood (i) how to obtain
compatible braiding processes via legitimate combinations

of twisted terms in the twisted BF theory (BF + T ) and
(ii) how to assign self-statistics on particles via the boson-
fermion transmutation in the untwisted BF theory with the BB
term (BF + BB), it becomes urgent to make a step forward
by examining whether braiding statistics is compatible with
the assignment of self-statistics on particles in the twisted
BF theory with the BB term (denoted as BF + T + BB)
within the present continuum-field-theoretical framework. We
are motivated to combine all known topological terms in
continuous spacetime to achieve a more complete continuum-
field-theoretical description of topological data encoded in 3D
topological orders with the gauge group G.

In this paper, we first explain the microscopic origin of
topological terms via various condensation pictures at the be-
ginning of Sec. II to (i) make the gauge theories more physical
in the context of many-body physics and (ii) introduce the
critical role of Lagrange multipliers. The topological action
of a ZN topological order is dual to a standard Abel-Higgs
model that describes a boson or vortex-line condensate cou-
pled to gauge field. Other topological twisted terms and BB
terms can be formally derived through introducing topological
interactions among different condensates. In the remaining
part of Sec. II, we systematically formulate the untwisted
BF theory with a K-matrix BB term (i.e., ∼Ki j

4π
BiB j with

a symmetric integer matrix K). In the presence of the K-
matrix BB term, we present general mathematical formulas
that can be applied to efficiently determine (i) excitation
contents, i.e., inequivalent Wilson operators of deconfined
particles and deconfined loops (Fig. 1), and (ii) self-statistics
assignment on particles. In particular, the situation of the
single-component BB term has been naturally included by
regarding the K matrix as an integer. Then, the self-statistics
of particles is rigorously derived by computing the expecta-
tion values of framed Wilson loops (Fig. 2). We obtain the
formula Eq. (16) in a compact form that completely fixes
self-statistics of the particle labeled by an integer vector,
whose usefulness is comparable to the familiar formula in
the famous K-matrix Chern-Simons theory of 2D topological
orders [6,7]. In Table I, we collect, for our purpose, the most
useful properties of the untwisted BF theory with a single-
component BB term. To determine whether a topological order
is fermionic or bosonic, we may calculate the self-statistics
of trivial (i.e., transparent) particles. To determine whether a
topological order supports emergent fermions, we may calcu-
late the self-statistics of particles that carry nontrivial gauge
charges of G.

Section III is devoted to studying the interplay of topo-
logical data including self-statistics and braiding statistics as
well as fusion rules. For this purpose, BF theories with BB
term and different twists are studied, leading to BF + T +
BB. Three root-braiding processes (coined in Ref. [37]) and
their braiding phases are considered: particle-loop braiding
(BF term), multiloop braiding (AAdA and AAAA twist), and
Borromean rings braiding (AAB twist). For completeness, we
start our discussions in Sec. III A by considering particle-loop
braiding with emergent fermions, which is described by BF +
BB. Then, we move to a continuum field theory description
of the coexistence of emergent fermions and multiloop braid-
ings (Sec. III B) and the coexistence of emergent fermions
and Borromean rings braiding (Sec. III C). We present
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TABLE I. Properties of S = ∫ N1
2π

B1dA1 + K11
4π

B1B1 with different values of N1 and K11. �trivial is the self-statistics of trivial particle
excitation, i.e., those carrying 0 mod N unit of gauge charge. �trivial = 1(−1) means that the trivial particle excitation is a boson (fermion)
or, equivalently, the theory is a bosonic (fermionic) one. �e1 min is the self-statistics of a particle excitation with e1 min units of gauge
charge where e1 min = N1/ gcd( K11

N1
, N1). e1 min is the minimal units of gauge charge carried by a deconfined particle excitation in theory

S = ∫ N1
2π

B1dA1 + K11
4π

B1B1. An emergent fermion appears when �trivial = 1 while �e1 min = −1. In other words, there exists nontrivial
fermionic particle excitations in a bosonic theory.

N1 K11 �trivial �e1 min Bosonic or fermionic theory? Emergent fermion?

odd even 1 1 bosonic No
odd odd −1 −1 fermionic
even odd 1 1 bosonic No

even even and
lcm
(

K11
N1

,N1

)
gcd
(

K11
N1

,N1

) ∈ 2Z 1 1 bosonic No

even even and
lcm
(

K11
N1

,N1

)
gcd
(

K11
N1

,N1

) ∈ 2Z + 1 1 −1 bosonic Yes

topological actions, gauge transformations for each case, and
calculate topological data including inequivalent Wilson oper-
ators, braiding statistics, self-statistics, fusion rules, shrinking
rules, and quantum dimensions. We draw our conclusions and
make some discussions in Sec. IV.

FIG. 1. (a) When K11
N1

= 0, the charges of deconfined particle ex-
citations of action (18) are labeled by ZN1 = Z12. Once a B ∧ B term
with K11

N1
is added, some particle excitations become confined. Those

deconfined are labeled by the unbroken gauge group Z
gcd(

K11
N1

,N1 )
=

Z4. (b) Period of fluxes for different values of K11
N1

. When K11
N1

= 0,

fluxes has a period of N1. When K11
N1

= 8, some fluxes are actually
equivalent as shown in the same color. In this case, the minimal
period of flux is gcd( K11

N1
, N1) = 4.

II. CONDENSATION PICTURE AND K-MATRIX BB TERM

A. Condensation picture via Abel-Higgs models
with topological interactions

Here we review a condensation picture for TQFT in (3 +
1)D [12,16,19,33,37]. A ZN topological order described by
a topological action S = ∫

N
2π

B ∧ dA can be viewed as the
Higgs phase of a Abel-Higgs model. Such a model de-
scribes a condensate of charge boson (or flux-threaded vortex
lines) coupled to a gauge field. In this section, we will
explain this microscopic origin of topological actions. We
start from a single-layer condensate of boson or vortex lines.
Then, by turning on topological interactions among different
condensates, other topological terms emerge after a duality
transformation.

We first show how to derive the topological BF term
from a boson condensation (or a vortex-line condensation)

FIG. 2. (a) The physical picture of BB term is to bind flux strings
(lines with arrow) to particle excitations (red solid circle); see the
Wilson operator of a particle excitation Eq. (9). Different orientations
of flux strings can be connected by an SO(3) rotation. (b) Consider a
particle excitation attached by a flux string, e.g., Eq. (19), exchanging
such two particle excitations can be viewed as a self 2π rotation of a
particle. A nontrivial framing of the world line of particle excitation
is shown to illustrate this point.
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coupled to a gauge field. Consider a condensation of charge-N
bosons that couple to a gauge field: L = ρ

2 (∂μθ − NAμ)2 +
LMaxwell, where A is a U (1) gauge field. This is nothing
but the deconfined phase of the Abel-Higgs model. With
a Hubbard-Stratonovich auxiliary field jμ, this Lagrangian
is dual to Ld = − 1

2ρ
( jμ)2 + jμ(∂μθ − NAμ). Integration of

θ results in a constraint δ(∂μ jμ) in the path integral mea-
sure which can be resolved by introducing a two-form
gauge field Bμν : jμ = − 1

4π
εμνλρ∂νBλρ . Substituting this so-

lution to the dual Lagrangian and dropping the irrelevant
Maxwell terms, we obtain Ld∼ N

4π
εμνλρAμ∂νBλρ . Then the ac-

tion is S = ∫
Ld dxdt∼ ∫ N

2π
A ∧ dB, where A = ∑

μ Aμdxμ

and B = 1
2!

∑
μν Bμνdxμdxν . Through integration by parts

and dropping the total derivative term, we reach the topolog-
ical BF term, S = ∫

N
2π

B ∧ dA. In this action, B serves as a
Lagrange multiplier to enforce dA = 0 locally.

On the other hand, we can also consider a condensation
of flux-N vortex-lines [33] coupled to a two-form gauge
field: L′ = ρ

2 (∂[μ�ν] − NBμν )2 + L′
Maxwell, where � is the

phase of vortex-line condensation, B is a U (1) gauge field,
and ∂[μ�ν] = ∂μ�ν − ∂ν�μ. This actually is another kind
of Abel-Higgs model of a two-form gauge field. Similar
to previous discussions, L′ is dual to L′

d = − 1
8ρ

(�μν )2 +
1
2�μν (∂[μ�ν] − NBμν ) with a Hubbard-Stratonovich auxil-
iary field �μν . Integrating over � leads to a constraint
∂ν�μν = 0, which can be resolved by �μν = − 1

2π
εμνλρ∂λAρ .

Once again, we arrive at L′
d∼ N

4π
εμνλρBμν∂λAρ and S′ =∫

L′
d dxdt = ∫

N
2π

A ∧ dB + · · · , where · · · includes Maxwell
terms and boundary terms that can be dropped. In this case,
it is A that plays the role of Lagrange multiplier to enforce
dB = 0 locally. A ∧ dB is also a BF term since it differs from
B ∧ dA by a total derivative.

From the above discussion, we have seen that there are
two kinds of Abel-Higgs models that can be dual to the BF
term. The first (second) one realizes the Higgs phase of a
one-form (two-form) gauge theory. This also reveals that a
ZN topological order has a condensation picture: it originates
from either a boson condensate coupled to gauge field or a
vortex-line condensate coupled to gauge field. The ZN gauge
group structure is encoded in the value of Wilson operator of a
one-form gauge field or two-form gauge field. This picture can
be generalized to a

∏n
i=1 ZNi topological order. We can derive

different topological terms, e.g., AAdA, AAAA, and AAB (∧
is omitted), through topological interactions among different
condensates.

For a AAdA-type topological term, its microscopic origin
can be traced back to two-layer or three-layer condensates of
charged bosons [19], e.g., L = ∑3

i=1
ρi

2 (∂μθ i − NiAi
μ)2 +

iqεμνλρ (∂μθ1 − N1A1
μ)(∂νθ

2 − N2A2
ν )∂λA3

ρ + LMaxwell,
where q is a proper coefficient. The theory is dual to
S∼ ∫ ∑3

i=1
Ni
2π

BidAi + qA1A2dA3 that captures the three-loop
braiding. For a AAAA-type topological term, it can be
derived from a four-layer condensate where each layer is in
charge-Ni boson condensation [12], e.g., L = ∑4

i=1
ρi

2 (∂μθ i −
NiAi

μ)2 + iqεμνλρ × (∂μθ1 − N1A1
μ) × (∂νθ

2 − N2A2
ν ) ×

(∂λθ
3 − N3A3

λ) × (∂ρθ
2 − N4A4

ρ ) + LMaxwell. This theory is

dual to S∼ ∫ ∑4
i=1

Ni
2π

BidAi + qA1A2A3A4 that corresponds
to the four-loop braiding. Such condensation picture applies

for AAB and BB topological terms with the caveat that the
two-form gauge field B indicates a vortex-line condensation.
The topological action S = ∫ ∑3

i=1
Ni
2π

BidAi + qA1A2B3

can be derived from [37]: L = ∑2
i=1

ρi

2 (∂μθ i − NiAi
μ)2 +

(φ3 )2

2 (∂[μ�3
ν] − N3B3

μν )2 + iqεμνλρ (∂μθ1 − N1A1
μ)(∂νθ

2 −
N2A2

ν )(∂[λ�ρ] − N3B3
λρ ) + LMaxwell where layers 1 and 2 are

in charge-N1 and -N2 boson condensation while layer 3 is in
flux-N3 vortex-line condensation. For the topological action
S = ∫ N1

2π
BidAi + K11

4π
B1B1, where K11 is a proper coefficient,

it can be derived from a condensate of flux-N1 vortex line
coupled to the gauge field [33]: L = φ2

2 (∂[μ�s
ν] − N1B1

μν )2 +
iK11ε

μνλρ (∂[μ�s
ν] − N1B1

μν )(∂[λ�
s
ρ] − N1B1

λρ ) + LMaxwell.
Keeping this condensation picture in mind, we can examine

these TQFT actions more carefully. To describe a multi-
loop braiding, one can utilize S∼ ∫ BdA + AAdA (three-loop
braiding) or S∼ ∫ BdA + AAAA (four-loop braiding). In these
two actions, the two-form gauge field B′s serve as Lagrange
multipliers to enforce dA = 0 locally. A Borromean rings
braiding can be described by S∼ ∫ ∑3

i=1
Ni
2π

BidAi + A1A2B3.
From the above derivation, we note that B1 and B2 serve
as Lagrange multipliers while A3 is the Lagrange multiplier
for layer 3. Similarly, for the TQFT action S∼ ∫ BdA + BB,
one-form gauge field A serves as Lagrange multiplier. We
shall emphasize the importance of Lagrange multiplier here.
When we consider an Abel-Higgs model of a one-form gauge
field (A), a two-form gauge field B emerges as a Lagrange
multiplier to encode the constraint dA = 0 in the path integral
and vice versa. In other words, in a BF term B ∧ dA, either
A or B serves as the Lagrange multiplier, meaning that its
microscopic origin can be derived from either a vortex-line
condensation or a boson condensation. When we discuss a∏n

i=1 ZNi topological order, the BF term is
∑n

i=1
Ni
2π

BidAi. For
each index i, only one of Ai and Bi is a Lagrange multiplier and
there must be one Lagrangian multiplier such that a ZNi gauge
theory can be realized in continuous spacetime. We can draw
a conclusion that in our framework of continuum field theory
S = SBF + Sint, Ai and Bi cannot be simultaneously involved
in the interaction term Sint, i.e., Ai and Bi cannot show up in
twisted terms and BB term at the same time.

B. K-matrix BB term: Topological action, gauge
transformations, coefficient quantization, and periods

The untwisted BF theory with a K-matrix BB term is (∧ is
omitted)

S =
∫ n∑

i=1

Ni

2π
BidAi +

n∑
i, j=1

Ki j

4π
BiB j, (1)

where K is an n × n symmetric matrix (Ki j = Kji) whose
quantization and periods will be determined shortly. The co-
efficients {Ni} of the first term, i.e., the BF term, determine
the gauge group G = ∏n

i=1 ZNi . The [U (1)]n × [U (1)]n gauge
transformations of this gauge theory are defined as

Ai →Ai + dχ i −
n∑

j=1

Ki j

Ni
V j, Bi → Bi + dV i, (2)
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where χ i and V i are, respectively, zero-form and one-form
gauge parameters that satisfy the usual compactness condi-
tions: 1

2π

∫
dχ i ∈ Z and 1

2π

∫
dV i ∈ Z. It is clear that the BB

term, denoted as SBB = ∑n
i, j=1

Ki j

4π
BiB j , induces an extra term∑n

j=1
Ki j

Ni
V j compared to the usual gauge transformations of

the one-form gauge field Ai.
After the transformations, two additional terms are

induced in the BB term: SBB → S′
BB = SBB + �S(1)

BB +
�S(2)

BB , where �S(1)
BB = 2

∫ ∑n
i, j=1

Ki j

4π
BidV j and �S(2)

BB =∫ ∑n
i, j=1

Ki j

4π
dV idV j . In a compact manifold, these two terms

vanish if gauge parameters are topologically trivial. But, in
general,

∫
dV i can be nonzero. Here �S(1)

BB can be written
as �S(1)

BB = 2
∫ ∑n

i=1
Kii
4π

Bi dV i + 2
∫ ∑n

i< j
Ki j

4π
BidV j + 2

∫∑n
i< j

Kji

4π
B jdV i, in which 1

2π

∫
BidV j ∈ 2π

Ni
Z for arbitrary i

and j. Demanding �S(1)
BB ∈ 2πZ, we find constraints Kii

Ni
∈ Z,

Ki j

Ni
∈ Z (i < j), and Kji

Nj
∈ Z (i < j). Recall Ki j = Kji and we

find Ki j

Ni
∈ Z and Ki j

Nj
∈ Z for i �= j. In fact, the constraint on

Ki j is Ki j

lcm(Ni,Nj )
∈ Z where lcm(Ni, Nj ) is the least common

multiplier of Ni and Nj .
For the calculation of �S(2)

BB , we need to consider whether
a spin structure is taken into account. On a nonspin manifold,

1
4π2

∫
dV idV i is quantized to Z; while on a spin manifold,

it is quantized to 2Z. For 1
4π2

∫
dV idV j with i �= j, it is

quantized to Z no matter on a spin or nonspin manifold. To
keep �S(2)

BB ∈ 2πZ for gauge invariance, we have (i) nonspin
manifold: Kii ∈ 2Z, Ki j ∈ Z (i �= j) and (ii) spin manifold:
Kii ∈ Z, Ki j ∈ Z (i �= j). Only on a spin manifold can the
diagonal elements Kii be an odd integer. Indeed, as shown
in the following main text, the parity of Kii controls the self-
statistics of trivial particle excitations of ZNi gauge subgroup.
As long as one of the diagonal elements Kii is odd, there must
exist a fermionic trivial particle excitation; thus, by definition,
theory Eq. (1) describes a fermionic topological order. This
is consistent with the fact that a fermionic theory can only be
defined on a spin manifold. On the other hand, when all K ′

iis
are even, this theory Eq. (1) is a bosonic one.

For the period of Ki j , we consider SBB ∈ ∑n
i=1

Kii
4π

(2π )2

NiNi
Z +∑n

i< j 2 × Ki j

4π

(2π )2

NiNj
Z . Since exp(iSBB) should be invariant if we

shift either Kii
4π

(2π )2

NiNi
or 2 × Ki j

4π

(2π )2

NiNj
by 2π , we have the follow-

ing relations (we use � to denote such identification relation):
Kii
4π

(2π )2

NiNi
� Kii

4π

(2π )2

NiNi
+ 2π and 2 × Ki j

4π

(2π )2

NiNj
� 2 × Ki j

4π

(2π )2

NiNj
+

2π . Therefore, Kii � Kii + 2(Ni )2 and Ki j � Ki j + NiNj, i <

j. The period for Ki j (i > j) is the same as that of i < j.
In conclusion, the matrix elements of the symmetric K

matrix are simultaneously constrained by the following con-
ditions (TO stands for topological order):

Ki j

Ni
∈ Z,

Ki j

Nj
∈ Z (∀i, j), (3)

Ki j ∈ Z (i �= j), (4)

Kii � Kii + 2(Ni )
2, (5)

Ki j � Ki j + NiNj (i �= j), (6)

For a bosonic TO: Kii ∈ 2Z, (7)

For a fermionic TO: at least one of K ′
iis is odd. (8)

C. Wilson operators and (partial) confinement of gauge group

A particle excitation carrying ei units of ZNi gauge charges
can be labeled by a particle vector l = (e1, e2, · · · , en)T with
ei ∈ ZNi , whose Wilson operator is

W (l, γ ) = exp

⎛⎝∫
γ

i
n∑

i=1

eiA
i +

n∑
i, j=1

ieiKi j

Ni

∫
�

j
i

B j

⎞⎠, (9)

where �
j
i
′s are Seifert surfaces of γ . The physical picture

of Eq. (9) is a particle excitation being attached by flux
strings, see Fig. 2(a). The amounts and species of fluxes are
controlled by Ki j , elements of the K matrix. Seifert surfaces
�

j
i with different i, j correspond to the world sheets swap

by different flux strings. Due to the tension on strings, a
particle excitation may be confined. Only those attached by
2π fluxes are deconfined, i.e., eiKi j

Ni

∫
�

j
i

B j = eiKi j

Ni

2πn j

Nj
∈ 2πZ,

where n j is an integer. If a particle excitation labeled by l
is deconfined, it is required that eiKi j

NiNj
∈ Z,∀i, j ∈ {1, · · · , n}.

For example, the constraints on e1 are e1K11
N1N1

∈ Z, e1K12
N1N2

∈
Z, · · · , e1K1n

N1Nn
∈ Z, which demands e1 ∈ N1

gcd( K11
N1

,
K12
N2

,··· , K1n
Nn

,N1 )
Z,

where gcd(a, b, · · · ) is the greatest common divisor of
a, b, · · · . In other words, for a deconfined particle excitation
carrying ZN1 gauge charges, the minimal nonzero amount
of ZN1 gauge charges is e1min = N1

gcd( K11
N1

,
K12
N2

,··· , K1n
Nn

,N1 )
. Since e1

is equivalent to e1 + N1, the number of nonequivalent val-
ues of e1 is gcd( K11

N1
, K12

N2
, · · · , K1n

Nn
, N1), i.e., e1 is labeled by

Zgcd( K11
N1

,
K12
N2

,··· , K1n
Nn

,N1 ). This derivation can be applied to any i.

As a result, to make the particle labeled by l deconfined, all
e′

is need to satisfy

eimin = Ni

gcd
(Ki1

N1
, Ki2

N2
, · · · , Kin

Nn
, Ni
) . (10)

Any particle excitation carrying ei units of ZNi gauge charges
with ei /∈ ei minZ is confined. To illustrate, an example is
shown in Fig. 1, where we consider a BF theory with a single
component BB term with ZN1 = Z12 and K11

N1
= 8.

The confinement on ZNi gauge charge also alters the period
of ZNi gauge fluxes. Since the ZNi gauge fluxes carried by a
loop excitation can be detected by braiding a particle excita-
tion around this loop excitation, we can consider the following
particle-loop braiding phase:

�PL(ei min, mi ) = exp

[
− i2πei minmi

Ni

]

= exp

[
− i2πmi

gcd
(K11

N1
, K12

N2
, · · · , K1n

Nn
, N1

)].

(11)
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One can see that

mi � mi + gcd

(
K11

N1
,

K12

N2
, · · · ,

K1n

Nn
, N1

)
(12)

in the sense that �PL(ei min, mi ) differs by an integral multiple
of 2π . An illustration for the smaller period of mi is presented
in Fig. 1 where a BF theory with a single component BB term
with ZN1 = Z12 and K11

N1
= 8 is considered. In conclusion, the

number of deconfined particle excitations and deconfined loop
excitations are equivalent, satisfying the general belief of re-
mote detectability of topological excitations in anomaly-free
topological orders [50].

D. Self-statistics from the expectation values of framed
Wilson operators

Next, we study self-statistics (i.e., exchange statistics) of
particle excitations in 3D topological order which turns out to
be controlled by the coefficients of the BB term. Furthermore,
the expression of self-statistics shares a similar form of that of
(2 + 1)D Chern-Simons theory.

In the following, we apply the standard methodology in
TQFTs to determine self-statistics of particles: computing the
expectation values of framed Wilson operators,

〈W (l, γ )〉=
〈
exp

(∫
γ

i
n∑

i=1

eiA
i+

n∑
i, j=1

ieiKi j

Ni

∫
�

j
i

B j

)〉
,

where 〈O〉 is defined as: 〈O〉 = Z−1
∫
DAiDBi exp(iS)O .

The partition function Z = ∫
DAiDBi exp(iS) with the action

given by Eq. (1).
For this purpose, we integrate out Ai, which results in

Bi = − 2πei
Ni

δ⊥(�i ) with ∂�i = γ . δ⊥(�i ) is a delta distribu-
tion supported on �i, which is two-form valued since Bi is a
two-form. Plugging this solution back to the path integral, we
have

〈W (l, γ )〉 = exp

⎡⎣i
n∑

i, j=1

Ki j

4π

2πei

Ni

2πe j

Nj
#(�i ∩ � j )

⎤⎦
× exp

⎡⎣−i
n∑

i, j=1

ieiKi j

Ni

2πe j

Nj
· #
(
�

j
i ∩ � j

)⎤⎦,

(13)

where #(� j
i ∩ � j ) is the intersection number of two Seifert

surfaces �
j
i and � j . It equals 1 if γ has a nontrivial framing,

see Fig. 2(b). Using #((�i − �
j
i ) ∩ (� j − �i

j )) = 0, which
is because two closed manifolds (i.e., the difference of two
Seifert surfaces) in S4 has zero intersection number, one has

#(�i ∩ � j ) − #
(
�

j
i ∩ � j

)− #
(
�i ∩ �i

j

)
= −#

(
�

j
i ∩ �i

j

)
. (14)

Therefore, we have

〈W (l, γ )〉 = exp

⎡⎣−i
n∑

i, j=1

πKi jeie j

NiNj
#
(
�

j
i ∩ �i

j

)⎤⎦, (15)

#(� j
i ∩ �

j
i ) = 1 if a nontrivial framing is introduced. The

self-statistics of a particle with ei charge is exp(−i πKiieiei
NiNi

).

Off-diagonal terms exp(−i 2πKi j eie j

NiNj
) with i �= j is the mutual

statistics of two particle excitations with ei units of ZNi gauge
charges and e j units of ZNj gauge charges. Remember that for
a deconfined particle excitation, ei ∈ ei minZ mod Ni, such
e′

is guarantee that the self-statistics of a particle is ±1 and
the mutual statistics of two particles are always trivial. In
conclusion, for a particle labeled by l = (e1, e2, · · · , en)T , the
self- (exchange) statistics is given by

�l = exp

⎛⎝−i
n∑

i, j=1

πKi jeie j

NiNj

⎞⎠ = exp(−iπ lT K̃ l), (16)

where (K̃ )i j = Ki j

NiNj
. One can recognize that this result is simi-

lar to the self-statistics of particles in (2 + 1)D Chern-Simons
theory. In the Chern-Simons theory with a KCS matrix, the
self-statistics of a particle labeled by a vector lT is charac-
terized by

�CS
l = exp(iπ lT (KCS)−1l). (17)

In addition, when all diagonal elements of K are even, the triv-
ial particle excitation [l = (0 mod N1, · · · , 0 mod Nn)T ] is
bosonic. When at least one diagonal element is odd, this the-
ory admits fermionic trivial particle excitation. This result is
similar to that in the KCS Chern-Simons theory. The coefficient
matrix K of the BB term plays a similar role as that of the
Chern-Simons theory.

So far, we have seen how a K-matrix BB term dramatically
changes the number of deconfined operators and exchange
statistics of a

∏n
i=1 ZNi gauge theory. The exchange and mu-

tual statistics can be better explained by the examples of the
BF theory with a single- (two-) component BB term. In the
single component case, the action is

S =
∫

N1

2π
B1dA1 + K11

4π
B1B1 (18)

and the Wilson operator of a particle excitation carrying e1

units of ZN1 gauge charges is

W (e1, γ ) = exp

(
ie1

∫
γ1

A1 + ie1K11

N1

∫
�1

B1

)
, (19)

which describe a particle excitation with one attached flux
string. For a deconfined particle excitation, it is required that

e1 min = N1

gcd
(K11

N1
, N1

) . (20)

To calculate self-statistics of this particle excitation, we can
make use of spin-statistics theorem, see Fig. 2(b). Its expecta-
tion value is

〈W (e1, γ )〉 = exp

[
− iπK11e1e1

N1N1
· #(�1 ∩ �1)

]
. (21)
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The value of #(�1 ∩ �1) depends on whether the framing
of γ is nontrivial or not. A framing of γ can be understood
as assigning a vector on each point along γ . Actually, we
are now considering a particle attached with a flux string. In
regularization, the charge and the endpoint of flux string (i.e.,
monopole) cannot be placed on the same lattice site, i.e., the
charge-monopole composite is not isotropic. It is necessary to
use a vector to indicate the shape of the composite. Such vec-
tors along the world line of a particle constitute the framing.
In (2 + 1)D, there are different ways to equip a vector to each
point along the world line. The number of ways to equip is
π1(SO(2)) = Z that counts nonequivalent mappings from S1

(the world line) to SO(2) (2D rotation of vector on each point).
π1(SO(2)) = Z means that in (2 + 1)D there can be anyonic
statistics. In (3 + 1)D, the 3D rotation of vector on each point
is captured by SO(3) and π1(SO(3)) = Z2 means that there
are only two kinds of statistics in (3 + 1)D.

For a nontrivial framing of γ , #(�1 ∩ �1) = 1, which also
indicates a 2π -rotation of this particle excitation that induces
a phase

�e1 = exp

(
− iπK11e1e1

N1N1

)
. (22)

According to spin-statistics theorem, �e1 is the self-statistics
of particle excitation with e1 units of gauge charge. Note that

e1 ∈ N1

gcd( K11
N1

,N1 )
Z, and we find �e1 min = exp[− iπ lcm( K11

N1
,N1 )

gcd( K11
N1

,N1 )
] =

±1 corresponding to bosonic or fermionic statistics.
For a trivial particle excitation, i.e., that with e1 = 0

mod N1, its self-statistics is given by

�trivial = exp (−iπK11). (23)

When K11 is odd, �trivial = −1, meaning the trivial particle
excitation is fermionic, which tells us the theory Eq. (18) is
a fermionic theory. Notice that an odd K11 can only happen
when the theory is defined on a spin manifold. When K11 is
even, �trivial = 1 indicating that the trivial particle excitation
is a boson, i.e., the theory (18) is a bosonic one.

For nontrivial particle excitations, i.e., those with e1 �= 0
mod N1, their self-statistics depends on the values of N1, K11

N1
,

and n. Among all possible combinations, it is possible that
some particle excitations with e1 �= 0 mod N1 are fermionic
while the trivial one is bosonic. We call such particle ex-
citations emergent fermions in the sense that they exhibit
fermionic statistics in a bosonic theory. Below we summary
the properties of theory Eq. (18) for different N1 and K11 in
Table I.

The second example is a two-component BB term with the
action:

S =
∫ 2∑

i=1

Ni

2π
BidAi +

2∑
i, j=1

Ki j

4π
BiB j . (24)

Considering a particle excitation carrying two types of gauge
charges, denoted by l = (e1, e2)T , its exchange statistics is

given by

〈W (l, γ )〉 = 1

Z

∫
D[Ai, Bi] exp (iS)

× exp

⎛⎝∫
γ

i
2∑

i=1

eiA
i +

2∑
i=1

2∑
j=1

ieiKi j

Ni

∫
�

j
i

B j

⎞⎠
= exp

⎡⎣−i
2∑

i, j=1

πKi jeie j

NiNj
#
(
�

j
i ∩ �i

j

)⎤⎦. (25)

By choosing a nontrivial framing of γ , i.e., #(� j
i ∩ �i

j ) = 1,
we find the self-statistics of a particle excitation labeled by
l = (e1, e2)T is

�l = exp

(
− iπK11e1e1

N1N1
− iπK22e2e2

N2N2
− i2πK12e1e2

N1N2

)
,

(26)
where exp(− i2πK12e1e2

N1N2
) is the mutual statistics of ZN1 charges

and ZN2 charges. Keep in mind that for a deconfined particle
excitation, ei ∈ qi minZ mod Ni, where ei min = Ni

gcd( Ki1
N1

,
Ki2
N2

,Ni )
.

Such e′
is guarantee that the self-statistics of a particle is ±1

and the mutual statistics of two particles are always trivial. To
see this, we consider

�e1 min,e2 min = exp

(
− i2πK12e1 mine2 min

N1N2

)
. (27)

We can see that
K12e1 mine2 min

N1N2
= K12

N1N2

N1

gcd
(K11

N1
, K12

N2
, N1

) N2

gcd
(K21

N1
, K22

N2
, N2

)
∈ K12

N1N2

N1

gcd
(K12

N2
, N1

) N2

gcd
(K21

N1
, N2

)Z, (28)

since gcd( K12
N2

, N1) ∈ gcd( K11
N1

, K12
N2

, N1)Z and gcd( K21
N1

, N2) ∈
gcd( K21

N1
, K22

N2
, N2)Z. Furthermore, using

K12

N1N2

N1

gcd
(K12

N2
, N1

) N2

gcd
(K21

N1
, N2

)
= K12N1N2

gcd(K12, N1N2) gcd (K21, N1N2)

= lcm(K12, N1N2)

gcd (K12, N1N2)
, (29)

we can see that �mutual(e1 min, e2 min ) = exp(−i2πZ) = 1.
This is consistent with the fact that in 3D space, the mutual
statistics (i.e., full braiding) of two particles is topologically
trivial.

III. TQFT WITH NONTRIVIAL BRAIDING STATISTICS
AND EMERGENT FERMIONS

A. Particle-loop braiding in the presence of
emergent fermions (BF + BB)

A pure BF theory describes the particle-loop braiding. A
BF term is compatible with a BB term to form a legitimate
TQFT action. This simplest BF theory with a single com-
ponent BB term is given by Eq. (18). Emergent fermionic
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particle excitations are possible provided proper values of
N1 and K11. To explicitly show how the emergent fermion
influences particle-loop braiding, we can consider the phase
of particle-loop braiding given by

�PL = 1

Z

∫
D[Ai]D[Bi] exp (iS)

× exp

(
ie1

∫
γ

A1 + i
e1K11

N1

∫
�

B1

)
exp

(
im1

∫
σ

B3

)
,

(30)

where γ is a closed curve with ∂� = γ , σ is a closed surface,
e1 and m1 are the numbers of charges and fluxes carried by the
particle and the loop. γ and σ can be understood as the world
line and world sheet of the particle and the loop. The phase of
particle-loop braiding is

�PL = exp

[
− iπK11e1e1

N1N1
#(� ∩ �)

− i2πe1m1

N1
#(�′ ∩ σ )

]
, (31)

where ∂�′ = γ and #(�′ ∩ σ ) is the linking number of
γ and σ . There are two contributions to this phase.
exp[− i2πe1m1

N1
#(�′ ∩ σ )] is the usual particle-loop braid-

ing phase due to the particle traveling around the loop.
exp[− iπK11e1e1

N1N1
#(� ∩ �)] is just the self-statistics of the par-

ticle excitation. As discussed in previous section, the values
of e1 and m1 are constrained by

e1 =e1 min · p = N1

gcd
(

K11
N1

, N1

) · p, p ∈ Z
gcd
(

K11
N1

,N1

); (32)

m1 �m1 + gcd

(
K11

N1
, N1

)
. (33)

Consider a particle and a loop carrying minimal gauge charge
and flux, the phase contributed by a particle-loop braiding is
given by

�PL = exp

(
− i2πe1minm1

N1

)
= exp

(
− i2πm1

gcd
(K11

N1
, N1

)),

(34)

where m1 ∈ Zgcd( K11
N1

,N1 ). This means that the BF theory with

a nontrivial BB term only labels fewer topologically ordered
phases than a pure BF theory. This is because a BB term
would confine part of the topological excitations, making
fewer physical observable braiding phases.

Each topological excitation e can be represented by a
gauge invariant Wilson operator Oe. Using path integral, we
can extract fusion rules a ⊗ b = ⊕iNab

ei
ei from [38]

〈a ⊗ b〉 = 1

Z

∫
D[Ai, Bi] exp (iS) × (Oa × Ob)

= 1

Z

∫
D[Ai, Bi] exp (iS) ×

(∑
i

Nab
ei
Oei

)
=〈⊕iN

ab
ei

ei
〉
. (35)

Since emergent fermion can be induced by a proper BB term
and we can couple a BB term to other topological terms such
that we can study whether and how emergent fermion would
influence braiding statistics and fusion rules.

Consider a general topological excitation labeled by
(e1, m1); when m1 = 0, it is a pointlike particle excitation;
when e1 = 0, it is a pure loop excitation (a loop excitation
without particle attached on it); when e1, m1 �= 0, it is a dec-
orated loop excitation, i.e., the bound state of a particle and a
pure loop. It is straightforward to see that the fusion rule of
two topological excitations is given by

(e1, m1) ⊗ (e′
1, m′

1) = (e1 + e′
1, m1 + m′

1). (36)

Since both e1 and m1 are labeled by Zgcd( K11
N1

,N1 ), the fusion

rules can be captured by a Zgcd( K11
N1

,N1 ) × Zgcd( K11
N1

,N1 ) group.

While for a pure BF theory S = ∫ N1
2π

B1dA1, its fusion rules
are captured by a ZN1 × ZN1 group.

In conclusion, the coefficient of BB term K11 would con-
fine, either partially or completely, the gauge group structure
of ZN1 BF theory, leaving the deconfined gauge group to be
Zgcd( K11

N1
,N1 ). Only gcd( K11

N1
, N1) of N1 particle excitations are

deconfined and the gauge fluxes are labeled by Zgcd( K11
N1

,N1 ).

The cyclic structure of the particle-loop braiding phase is
described by the deconfined gauge group and so are the fusion
rules. The fusion rules are still Abelian.

B. Multi-loop braiding in the presence of emergent fermions
(BF + AAdA/AAAA + BB)

In 3D topological order, multiloop braiding includes three-
loop braiding (described by an AAdA topological term) and
four-loop braiding (described by an AAAA topological term).
The corresponding simplest TQFT actions are as follows: For
a three-loop braiding,

S3L =
∫ 2∑

i=1

Ni

2π
BidAi + q1A1A2dA2 (37)

or

S′
3L =

∫ 2∑
i=1

Ni

2π
BidAi + q2A2A1dA1, (38)

with G = ZN1 × ZN2 and a proper coefficient q1, q2; for a
four-loop braiding:

S4L =
∫ 4∑

i=1

Ni

2π
BidAi + q4LA1A2A3A4, (39)

with G = ∏4
i=1 ZNi and a proper coefficient q4L. Now we try

to consider emergent fermion together with multiloop braid-
ing. Based on the discussion in the previous section, we want
to add a BB term to the above topological actions for three-
loop braiding or four-loop braiding. However, according to the
condensation picture illustrated in Sec. II A, such an attempt
would not succeed. The topological action for a multiloop
braiding originates from a multilayer Abel-Higgs model in
which each layer describes a condensate of boson coupled
to one-form gauge field (Ai). For example, an A1A2dA2 topo-
logical term is derived from the interaction of two layers of
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boson condensation. Introducing a BB term requires that at
least one layer is vortex-line condensation. Since a boson
condensation is totally different from a vortex-line conden-
sation, it is impossible for a Abel-Higgs model to describe
both of them simultaneously. In other words, one of Ai and
Bi must be a Lagrange multiplier and they cannot both appear
in AAdA + BB. We may draw such a conclusion: in bosonic
topological orders, multiloop braiding is not compatible with
the emergent fermion, based on our condensation picture.

In principle, there seems no reason to forbid multiloop
braidings in a system that supports emergent fermions. For
example, multiloop braiding is studied in gauged fermionic
symmetry-protected topological (fSPT) phases, see, e.g.,
Refs. [51,52]. Some lattice cocycle models are used to
describe multiloop braiding in fermionic systems [51]. A
question arises: How do we describe the coexistence of mul-
tiloop braidings and emergent fermions in continuum field
theory that is believed to be capable for liquidlike phases of
matter that have a well-defined thermodynamical limit? We
leave this question to future exploration. Here, we come up
with some hints: While Wilson operators for fermions should
be regularized by framing, loop excitations that correspond to
emergent fermions in a given gauge subgroup ZNi may also
require a regularization of some sort.

C. Borromean rings braiding in the presence of emergent
fermions (BF + AAB + BB)

A Borromean rings braiding is described by an AAB topo-
logical term [21]. A system is equipped with Borromean rings
topological order if it supports a Borromean rings braiding. A
Borromean ring topological order is featured by non-Abelian
fusion rules and loop shrinking rules [38]. Unlike the AAdA
term, there is a chance that an AAB term can be compatible
with the BB term, so we can consider the following TQFT
action:

S =
∫ 3∑

i=1

Ni

2π
BidAi + qA1A2B3 + K33

4π
B3B3, (40)

where q = pN1N2N3

N123
with N123 = gcd(N1, N2, N3), p ∈ ZN123 ,

and the gauge group is G = ∏3
i=1 ZNi . The gauge transforma-

tions are

A1 →A1 + dχ1, (41)

A2 →A2 + dχ2, (42)

A3 → A3 + dχ3 − K33

N3
V 3 − 2πq

N3

(
χ1A2 + 1

2
χ1dχ2

)
+ 2πq

N3

(
χ2A1 + 1

2
χ2dχ1

)
, (43)

B1 →B1 + dV 1 − 2πq

N1
(χ2B3 − A2V 3 + χ2dV 3), (44)

B2 →B2 + dV 2 + 2πq

N2
(χ1B3 − A1V 3 + χ1dV 3), (45)

B3 →B3 + dV 3. (46)

The compatibility of the AAB term and BB term indicates that
emergent fermion is possible in Borromean rings topological
order.

We use Pe1e2e3 to denote a particle excitation carrying ei

units of ZNi gauge charges and Lm1m2m3 to denote a pure loop
excitation carrying mi units of ZNi gauge fluxes (i = 1, 2, 3).
A decorated loop (formed by attaching a particle excitation to
a pure loop excitation) is denoted by Le1e2e3

m1m2m3
. Considering a

Borromean rings braiding involving Lm100, L0m20, and P00e3 ,
the phase is

�BR(m1, m2, e3) = exp

[
− i2π pm1m2e3

N123
· Tlk

]
× exp

[
− iπK33e3e3

N3N3
#(� ∩ �)

]
, (47)

where Tlk is the Milnor’s triple linking number of the link
formed by the two loops’ world sheets σ1, σ2 and the particle’s
world line γ , � is a Seifert surface of γ . The first term is
the phase of Borromean rings braiding �BR [21] while the
second term is due to the possible self-2π rotation of P00e3

during the braiding process. Since the self-2π rotation of
P00e3 would introduce an extra phase of ±1, depending on its
own exchange statistics (spin-statistics theorem), we can just
ignore it. Notice that the existence of the BB term will confine
some particle excitation carrying ZN3 gauge charges, the value
of e3 is given by

e3 ∈ N3

gcd
(K33

N3
, N3

)Z. (48)

When K33 = 0, i.e., no BB term considered, e3 is labeled by
ZN3 and the minimal e3 is 1. The Borromean rings braiding
phase

�BR(m1, m2, 1) = exp

(
− i2π pm1m2

N123

)
(49)

is labeled by p ∈ ZN123 . In the case of K33 �= 0, the minimal
e3 cannot be 1 any longer since it would be confined. The
minimal value of e3 is e3 min = N3

gcd( K33
N3

,N3 )
. The Borromean

rings braiding phase is

�BR(m1, m2, e3 min ) = exp

(
− i2π pm1m2e3 min

N123

)

= exp

(
− i2π pm1m2N3

N123 gcd
(K33

N3
, N3

)). (50)

Since N3
N123

∈ Z, we can see that p is identified with p +
gcd( K33

N3
, N3). Combined with p ∈ ZN123 , we find that p is

actually labeled by Zgcd(N1,N2,N3,
K33
N3

). We can see that adding

a BB term to S = ∫ ∑3
i=1

Ni
2π

BidAi + qA1A2B3 may reduce
the number of different Borromean rings braiding phases.
This result is reasonable since some particle excitations are
confined by the BB term and hence cannot contribute to an
observable Borromean rings braiding phases.

First, let us find Wilson operators for those topological
excitation carrying only one kind of gauge charge or flux for
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the action

S =
∫ 3∑

i=1

Ni

2π
BidAi + qA1A2B3 + K33

4π
B3B3, (51)

with G = ZN1 × ZN2 × ZN3 . The particle excitations carrying
ZN1 or ZN2 gauge charges are represented by gauge invariant
Wilson operators

Pe100 = N e100 exp

(
ie1

∫
γ

A1

)
, (52)

P0e20 = N 0e20 exp

(
ie2

∫
γ

A2

)
, (53)

and the pure loop excitations carrying ZN3 gauge fluxes are
represented by

L00m3 = N00m3 exp

(
im3

∫
σ

B3

)
, (54)

where the factor N ′s are to be determined. The operator for
pure loop excitation carrying ZN1 gauge fluxes is

Lm100 = Nm100

× exp

[
im1

∫
σ

B1 + 1

2

2πq

N1
(d−1A2B3 + d−1B3A2)

]
× δ

(∫
γ

A2

)
δ

(∫
σ

B3

)
, (55)

where the Kronecker delta function are δ(
∫
γ

A2)

= {1,
∫
γ

A2 = 0 mod 2π

0, else and δ(
∫
σ

B3) = {1,
∫
σ

B3 = 0 mod 2π

0, else

to ensure d−1A2 and d−1B3 are well-defined [17,38,53].
Similarly, the operator for pure loop carrying ZN2 gauge
fluxes is

L0m20 = N0m20

× exp

[
im2

∫
σ

B2 − 1

2

2πq

N2
(d−1B3A1 + d−1A1B3)

]
× δ

(∫
γ

A1

)
δ

(∫
σ

B3

)
. (56)

The particle excitation carrying ZN3 gauge charges is repre-
sented by

P00e3 = N 00e3 exp

[
ie3

∫
γ

A3 + 1

2

2πq

N3
(d−1A1A2 − d−1A2A1)

+i
e3K33

N3

∫
�

B3

]
δ

(∫
γ

A1

)
δ

(∫
γ

A2

)
. (57)

These Kronecker delta functions can be expanded
by summation of some exponentials, e.g., δ(

∫
γ

A1) =
1

N1

∑N1
k=1 exp(ik

∫
γ

A1) [38,53]. As mentioned in the previous
section, P00e3 is a particle excitation attached by a flux string
and may be confined due to the tension on the string. P00e3 is
deconfined only when the flux on the string is a multiple of
2π . The minimal e3 for deconfined P00e3 is

e3min = N3

gcd
(

K33
N3

, N3

) . (58)

Note that the limitation of values of e3 influences the period
of ZN3 gauge fluxes. Since a loop excitation is detected by
a particle excitation, we consider the particle-loop braiding
phase of P00e3 min and L00m3 :

�PL(e3 min, m3) = exp

[
−2πe3 minm3

N3

]

= exp

⎡⎢⎣− 2πN3m3

gcd
(

K33
N3

, N3

)
⎤⎥⎦. (59)

We immediately see that m3 is equivalent with m3 +
gcd( K33

N3
, N3). In other words, m3 has a period of gcd( K33

N3
, N3).

This is important when we discuss the fusion rules in the
following text.

So far, we have found Wilson operators for topological ex-
citation carrying only one kind of gauge charge or flux. Other
excitations with multiple species of gauge charges or fluxes,
e.g., a particle excitation with different ZNi gauge charges, is
defined by

Pe100 ⊗ P0e20 ⊗ P00e3 ≡ Pe1e2e3 , (60)

or a decorated loop excitation with ZNi gauge fluxes and ZNj

gauge charges is defined by

Pe100 ⊗ P0e20 ⊗ P00e3 ⊗ Lm100 ⊗ L0m20 ⊗ L00m3 ≡ Le1e2e3
m1m2m3

.

(61)

Next, we need to determine the factors N for each oper-
ator. For an illustration, we consider the loop excitation L100

which carries the flux of the ZN1 gauge subgroup; its Wilson
operator is

L100 = N100 exp

[
i
∫

σ

B1 + 1

2

2πq

N1
(d−1A2B3 + d−1B3A2)

]
× δ

(∫
γ

A2

)
δ

(∫
σ

B3

)
. (62)

Since L100 represents element 1 in group ZN1 , according to the
ZN1 cyclic structure, it is natural to require

L100 ⊗ L100 ⊗ · · · ⊗ L100︸ ︷︷ ︸
N1 terms

= 1 + · · · , (63)

where · · · denotes other fusion channels if this fusion is non-
Abelian. Here we have made an assumption: For an excitation
with only kind of charge or flux, fusing it and its antiexcitation
would outputs one vacuum. This assumption is reasonable
since a pair of particle and antiparticle, or a pair of loop and
antiloop, can be created from vacuum and then be annihilated
to vacuum. For those with multiple kinds of non-Abelian
charges or fluxes, fusing a pair of excitation and antiexci-
tation may output more than one vacua [38]. In the path
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integral, the fusion Eq. (63) is written as

〈(L100)⊗N1〉 = (N100)N1

〈
exp

[
iN1

∫
σ

B1 + 1

2

2πq

N1
(d−1A2B3 + d−1B3A2)

]
δ

(∫
γ

A2

)
δ

(∫
σ

B3

)〉

= (N100)N1

N2N3

〈
1 +

N2−1∑
e2=1

exp

(
ie2

∫
γ

A2

)
+

N3−1∑
m3=1

exp

(
im3

∫
σ

B3

)
+

N2−1∑
e2=1

N3−1∑
m3=1

exp

(
ie2

∫
γ

A2 + im3

∫
σ

B3

)〉
, (64)

where we have used〈
exp

[
iN1

∫
σ

B1 + 1

2

2πq

N1
d−1A2B3 + d−1B3A2

]〉
= 1, (65)

since B1 is ZN1 valued. Since the fusion coefficient of vacuum
is 1, it is required that (N100 )N1

N2N3
= 1, i.e., the factor of Wilson

operator for L100 is N100 = N1
√

N2N3. Now we are going to
show that the factor N100 is exactly equal to the quantum
dimension of L100. Notice that the result in Eq. (64) tells us
that the output of fusing N1 L′

100s is

(L100)⊗N1 = 1 ⊕ (⊕N2−1
e2=1 P0e20

)⊕ (⊕N3−1
m3=1L00m3

)
⊕ (⊕N2−1

e2=1 ⊕N3−1
m3=1 L0e20

00m3

)
. (66)

It is easy to see that P0e20 is an Abelian particle excitation
whose quantum dimension is 1. This is because

〈(P010)⊗N2〉 =
〈
(N 010)N2 exp

(
iN2

∫
γ

A2

)〉
= 〈(N 010)N2 · 1〉
= (N 010)N2 · 1, (67)

where 1 denotes the vacuum. Our assumption above re-
quires (N 010)N2 = 1, thus N 0e20 = 1,∀e2 ∈ ZN2 . Similarly,
we know that L′

00m3
s and L0e20

00m3

′s are all Abelian excitations.
For a fusion rule

ei ⊗ ek = ⊕mNik
m em,

where the quantum dimension of ei is denoted as di, there is a
relation of these quantum dimensions (the proof can be found
in the Appendix):

didk =
∑

m

Nik
m dm. (68)

Let the quantum dimension of L100 be d100. Applying Eq. (68)
to fusion rule (66), we have

(d100)N1 =
∑

m

Nik
m dm = N2N3, (69)

thus the quantum dimension of L100 is d100 = N1
√

N2N3. We
can see that the quantum dimension of excitation L100 is just
the factor of its Wilson operator.

Let us go through this line of thinking again: First, we
write the Wilson operator of L100 with an unknown factor
N100. At this time, we do not know any fusion rules of L100

yet. By demanding L100 ⊗ L(N1−1)00 = 1 + · · · from the ZNi

cyclic structure, we obtain N100 = N1
√

N2N3. Meanwhile, by
expanding the Kronecker delta functions, we obtain the fusion
ruleEq. (66), which tells us the channels are all Abelian exci-
tations. Since the quantum dimension of Abelian excitation is

1, applying Eq. (68) we find the quantum dimension of L100

is d100 = N1
√

N2N3, the same as its Wilson operator’s factor.
So far, we have seen that for topological excitation carrying
only one species of charge or flux, its quantum dimension
is the same as the factor of its Wilson operator. For topo-
logical excitation carrying charges or fluxes from different
ZNi subgroups, it is defined by fusion of those with only one
kind of charge or flux, see Eqs. (60) and (61). Their quantum
dimension can be obtained by Eq. (68) and the factor of their
Wilson operator can obtained by the path integral calculation
according to Eqs. (60) and (61).

We are ready to discuss how the fusion rules of action
Eq. (40) are affected by the BB term. We take an example
of G = Z2 × Z2 × Z6 and K33

N3
= 2. We will compare the two

situations of K33 = 0 and K33
N3

= 2. The fusion rules of action
Eq. (40) without the BB term in the case of G = (Z2)3 are
studied in Ref. [38].

We first take a look at the particle excitation P00e3 :

P00e3 = N 00e3 exp

[
ie3

∫
γ

A3 + 1

2

2πq

N3
(d−1A1A2 − d−1A2A1)

+ i
e3K33

N3

∫
�

B3

]
δ

(∫
γ

A1

)
δ

(∫
γ

A2

)
. (70)

As shown in the previous discussion, turning on the K33
4π

B3B3

term in action Eq. (40) would narrow the choices of e′
3s. When

K33 = 0, e3 takes values from ZN3 = Z6. When K33
N3

= 2, there
exist a minimal value of e3, e3 min, and the charges of decon-
fined P00e3 should satisfy e3 ∈ e3 minZ, where

e3 min = N3

gcd
(K33

N3
, N3

) = 3. (71)

In the case of K33 = 0, the charges of P00e3 are labeled by Z6.
This Z6 cyclicity of e3 indicates the following fusion rule:

(P001)⊗6 = 1 ⊕ P100 ⊕ P010 ⊕ P110. (72)

The quantum dimension of P001 is N 001 = 6
√

1 + 1 + 1 + 1 =
2

1
3 . In the case of K33

N3
= 2, the charges of deconfined P00e3 are

3 and 6, labeled by Zgcd( K33
N3

,N3 ) = Z2. By definition, P00e3 min =
(P001)⊗3 = P003 and its operators are

P00e3 min = N 00e3 min exp

[
ie3 min

∫
γ

A3

+ ie3 min

∫
γ

1

2

2πq

N3
(d−1A1A2 − d−1A2A1)

+ i
e3 minK33

N3

∫
�

B3

]
δ

(∫
γ

A1

)
δ

(∫
γ

A2

)
. (73)

043111-11



ZHI-FENG ZHANG, QING-RUI WANG, AND PENG YE PHYSICAL REVIEW RESEARCH 5, 043111 (2023)

Since P00e3 is labeled by Z2 when K33
N3

= 2, from 〈P00e3 min ⊗
P00e3 min〉 and requiring the coefficient of vacuum to be 1, we
have

P00e3 min ⊗ P00e3 min = 1 ⊕ P100 ⊕ P010 ⊕ P110. (74)

Compared to the case of K33 = 0, this is just the fusion rule
of two P′

003s. Through this example, we see that one of the
effects of the BB term is to confine some particle excitations,
i.e., P00e3 with e3 �= 3Z. However, the fusion rules of decon-
fined particle excitations are unchanged. This result can be
understood as that the flux attachment due to BB term does not
change the particle excitation’s internal degrees of freedom
that correspond to fusion.

Next, we focus on the loop excitation L00m3 . As aforemen-
tioned, the BB term makes m3 have a smaller period than
N3: In the case of K33

N3
= 2, m3 is equivalent to m3 + 2. In

other words, m3 is labeled by Z2: for m3 ∈ {0, 2, 4}, L00m3

is equivalent to the vacuum 1; for m3 ∈ {1, 3, 5}, L00m3 is
equivalent to L001. The corresponding fusion rules are

L001 ⊗ L001 ⊗ · · · ⊗ L001︸ ︷︷ ︸
N3=6 terms

= 1,K33 = 0, (75)

L001 ⊗ L001 = L002,K33 = 0, (76)

L001 ⊗ L001 = 1,
K33

N3
= 2. (77)

The last example to show is the non-Abelian loop excita-
tion L100:

L100 = N100 exp

[
i
∫

σ

B1 + 1

2

2πq

N1
(d−1A2B3 + d−1B3A2)

]
× δ

(∫
γ

A2

)
δ

(∫
σ

B3

)
. (78)

When K33 = 0, these two delta functions can be expanded as

δ

(∫
γ

A2

)
= 1

2

[
1 + exp

(
i
∫

γ

A2

)]
, (79)

δ

(∫
σ

B3

)
= 1

6

6∑
m3=1

exp

(
im3

∫
σ

B3

)
. (80)

We can calculate the factor N100 from 〈L100 ⊗ L100〉: N100 =√
2 × 6 = 2

√
3. As shown in the above discussion, N100 is

also the quantum dimension of L100. By setting K33
N3

= 2, we
turn on the BB term. Due to the period of m3, m3 � m3 +
gcd( K33

N3
, N3), the expansion of δ(

∫
σ

B3) actually becomes (in
the sense of correlation with other operators)

δ

(∫
σ

B3

)
= 1

2

[
1 + exp

(
i
∫

σ

B3

)]
. (81)

The factor N100 as well as the quantum dimension of L100 then
becomes N100 = √

2 × 2 = 2.

In summary, the influences of the BB term on fusion rules
are as follows. First, the BB term would confine part of the
particle excitations. This, in turn, makes some loop excitations

that used to be distinguishable now become equivalent in the
sense of correlation with other excitations. As in the above
example, L00m3 used to be labeled by Z6 but is now labeled
by Z2 due to the BB term. Consequently, other topological
excitations’ quantum dimensions are changed. In the above
example, the output of fusion two L′

100s used to be

L100 ⊗ L100 = 1 ⊕ P010 ⊕ (⊕6
m3=1L00m3

)⊕ (⊕6
m3=1L010

00m3

)
,

(82)

but due to the BB term becomes

L100 ⊗ L100 = 1 ⊕ P010 ⊕ L001 ⊕ L010
001. (83)

IV. CONCLUSION AND OUTLOOK

In this paper, we constructed the topological BF field
theory in the presence of both twisted terms (e.g., AAdA
and AAB) and a K-matrix BB term. In this TQFT, we are
allowed to simultaneously explore the self-statistics of par-
ticles, particle-loop braiding, multiloop braiding, Borromean
rings braiding, shrinking rules, and fusion rules to reach
a more complete continuum-field-theoretical description of
anomaly-free 3D topological orders. We carefully explored
the effect of K-matrix BB term in two aspects: (i) self-statistics
transmutation and (ii) confinement of excitations. Specially,
we illustrated how a general BB term with a coefficient
matrix K alternates the self-statistics of deconfined parti-
cle excitations through computing framed Wilson loops. We
found that the self-statistics of a particle excitation labeled by
l = (e1, e2, · · · , en)T is given by �l = exp(−iπ lT K̃ l), where
K̃i j = Ki j

NiNj
as shown in Eq. (16). The expression of this sta-

tistical angle is formally very similar to that of K-matrix
Chern-Simons theory [6,7]. We also examined in what situa-
tion, respectively, trivial fermions (fermionic trivial particles)
and emergent fermions (fermionic particles that carry nontriv-
ial gauge charges) are possible and how they influence the
braiding statistics and fusion rules studied in Ref. [38].

If three-loop braiding and/or BR braiding are considered,
the loops are allowed to carry gauge fluxes from different
gauge subgroups. We found that for those gauge subgroups
whose gauge fluxes take part in three-loop braiding [27]
or BR braiding [21], their gauge charges can only be car-
ried by bosonic particle excitations. This result is obtained
from the incompatibility between AAdA twisted term and
BB term within our framework of continuum field theory.
Physically, this can be interpreted as these two topological
terms having different microscopic origins (see Sec. II A). For
example, when G = ZN1 × ZN2 and three-loop braidings are
considered, all particle excitations are bosonic, i.e., emergent
fermions are forbidden. Furthermore, we take BR topological
order as an example to see how the emergent fermion influ-
ences its fusion rules.

For future directions, it would be interesting to write all
compatibility conditions proposed in Ref. [37] and the present
paper in a more symbolical way and compare the continuum-
field-theoretical analysis and the mathematics of a higher
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category. Due to the general belief on the bulk-boundary cor-
respondence, we may examine the (2 + 1)D boundary theory
by placing TQFTs on an open manifold to understand com-
patibility from boundary.
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APPENDIX: THE RELATION OF QUANTUM DIMENSIONS
IN A FUSION RULE

Let the quantum dimension of ei be di. Now we prove
that for

ei ⊗ ek = ⊕mNik
m em, (A1)

one can know

didk =
∑

m

Nik
m dm. (A2)

From the associativity of fusion rules, we have

(ei ⊗ e j ) ⊗ ek = ei ⊗ (e j ⊗ ek ). (A3)

The left-hand side can be written as ⊕mNi j
m em ⊗ ek =

⊕mNi j
m ⊕l Nmk

l el and the right-hand side can be written as
e j ⊗ (⊕mNik

m em) = ⊕mNik
m ⊕l N jm

l el . The fusion coefficients
Ni j

k
′s can form a matrix Ni with (Ni )k j = Ni j

k . Therefore,
we have

⊕mNi j
m Nmk

l = ⊕mNik
m N jm

l . (A4)

Note that ⊕mNi j
m Nmk

l = ∑
m Ni j

m Nmk
l = ∑

m(Ni )m j (Nk )lm =
(NiNk )l j and ⊕m Nik

m Nim
l = ∑

m Nik
m N jm

l = ∑
m Nik

m (Nm)l j ,
where we have used Nab

c = Nba
c . So, we have a relation be-

tween matrices:

NiNk =
∑

m

Nik
m Nm. (A5)

Since N ′
i s are commutative, their largest eigenvalues d ′

i s,
i.e., quantum dimensions of corresponding topological exci-
tations, satisfy

didk =
∑

m

Nik
m dm. (A6)
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