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Three-dimensional (3D) gapped topological phases with fractional excitations are divided into two subclasses:
one has topological order with point-like and loop-like excitations fully mobile in the 3D space, and the other
has fracton order with point-like excitations constrained in lower-dimensional subspaces. These exotic phases are
often studied by exactly solvable Hamiltonians made of commuting projectors, which, however, are not capable
of describing those exhibiting surface states with gapless chiral dispersion. Here we introduce a systematic way,
based on cellular construction recently proposed for 3D topological phases, to construct another type of exactly
solvable models in terms of coupled quantum wires with given inputs of cellular structure, two-dimensional
Abelian topological order, and their gapped interfaces. We show that our models can describe both 3D topological
and fracton orders (and even their hybrid) and study their universal properties such as quasiparticle statistics and
topological ground-state degeneracy. We also apply this construction to two-dimensional coupled-wire models
with ordinary topological orders and translation-symmetry-enriched topological orders. Our results pave the way
for effective quantum field theory descriptions or microscopic model realizations of fracton orders with chiral
gapless surface states.
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I. INTRODUCTION

Strongly interacting quantum many-body systems can
realize topological phases of matter with fractionalized quasi-
particle excitations. The search for those topological phases
is an active area of current physics research not only from
fundamental physics perspectives but also from their potential
applications to robust quantum memories and fault-tolerant
quantum computation [1–4]. Representative examples of
topological phases are the fractional quantum Hall states [5,6],
in which electrons are fractionalized into point-like quasipar-
ticles obeying nontrivial braiding statistics. As a consequence
of the fractionalization, such a topological system has degen-
erate ground states when it is placed on a torus or a closed
manifold with higher genus. These phenomena are known
as topological order [7–9]. While quasiparticles can only
be point-like objects in two-dimensional (2D) topologically
ordered phases, they can be either point-like or loop-like ob-
jects with nontrivial braiding statistics in three-dimensional
(3D) topologically ordered phases [10–12]. It is believed that
these topologically ordered phases are effectively described
by topological quantum field theory (TQFT).

In three dimensions, however, it has recently been rec-
ognized that there exist topological phases beyond common
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wisdom of the topological order [13–20]. Such phases ex-
hibit point-like quasiparticles completely immobile or mobile
only within lower-dimensional subspaces of the 3D space.
Depending on the mobility, those quasiparticles are called
fractons, lineons, and planons, which refer to quasiparticles
mobile only within zero-, one-, and two-dimensional sub-
spaces, respectively. The presence of such low-dimensional
quasiparticles results in ground-state degeneracy subexten-
sively growing with the increase of the system size. These
features are contrasted with the existence of fully mobile
quasiparticles and system-size-independent ground-state de-
generacy in topologically ordered phases and are coined
fracton order [21,22]. The fracton phases evade an effective
description in terms of TQFT, and novel quantum field the-
ories capturing essential features of fracton order have been
proposed and studied [23–51].

In developing our understanding of basic properties of
topologically ordered phases and fracton phases, exactly solv-
able models are of primary importance. They also play a
pivotal role in exploring microscopic origins and experimen-
tal realizations of topological or fracton order, since strong
interactions among constituent degrees of freedom substan-
tially limit possible theoretical approaches to microscopic
models. While exactly solvable lattice models often involve
complicated multibody interactions, nontrivial 3D models ex-
hibiting topological or fracton order with simpler interactions
have been constructed from coupled 2D layers of topological
phases or coupled spin chains [52–64]. A natural question is
to what extent such exactly solvable models are capable of de-
scribing topological and fracton orders. It has been shown that

2643-1564/2023/5(4)/043108(53) 043108-1 Published by the American Physical Society

https://orcid.org/0000-0002-3381-6642
https://orcid.org/0000-0001-8394-0003
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.5.043108&domain=pdf&date_stamp=2023-11-03
https://doi.org/10.1103/PhysRevResearch.5.043108
https://creativecommons.org/licenses/by/4.0/


YOHEI FUJI AND AKIRA FURUSAKI PHYSICAL REVIEW RESEARCH 5, 043108 (2023)

2D lattice models consisting of commuting projectors cannot
realize topological phases with nonzero electric or thermal
Hall conductance [65,66] and also that 2D frustration-free
spin models cannot support gapless chiral edge states [67].
These facts severely limit the construction of 3D lattice mod-
els from coupled layers of 2D topological phases and possibly
indicate the existence of 3D topological or fracton orders that
fall outside the description in terms of exactly solvable lattice
models.

However, there is yet another class of exactly solvable
models defined on an array of one-dimensional (1D) quantum
wires, where one direction is continuum whereas the other di-
rections are discrete. This so-called coupled-wire construction
[68] has been successfully applied to 2D topological phases,
including chiral ones, such as fractional quantum Hall states
[69–81] and quantum spin liquids [82–91]. With the helps
of bosonization technique and conformal field theory (CFT)
[92–96], this construction yields exactly solvable models in
the strong-coupling limit and allows us to study universal
features of topological order. Since the continuum theory of
quantum wires can in principle be derived from the low-
energy limits of 1D lattice systems, the coupled-wire approach
has been used to investigate microscopic realizations of 2D
interacting topological phases in lattice systems [74,82,86–
90,97]. Furthermore, the coupled-wire approach allows us to
derive effective gauge theory for topological phases [77,98–
103] and thus provides a direct bridge between quantum
field theory and microscopic models. Although it has also
been used to construct 3D topological phases [104–115], its
versatility for 3D topological and fracton orders is not fully
explored yet.

In this paper, we propose a systematic way to construct
a family of exactly solvable coupled-wire models that de-
scribe 3D topological and fracton orders. Our construction is
based on a recently proposed approach for building fracton
topological orders, called the topological defect network by
Aasen, Bulmash, Prem, Slagle, and Williamson [62] or the
cellular topological state by Wen [63] and Wang [64]. In this
approach, one first decomposes the 3D space into small 3D
cells, places 2D and/or 3D topologically ordered states on
each cell, and couples them via nontrivial gapped interfaces.
The gapped interfaces dictate the mobility of quasiparticles
between neighboring cells, and the resulting 3D states exhibit
a variety of quasiparticle dynamics as observed in fracton
models, leading to the conjecture that this approach produces
all gapped fracton phases [62]. Aside from its conceptual
significance, it will also be used to build 3D microscopic
models for fracton order when exactly solvable models are
known for constituent topologically ordered states and their
gapped interfaces. The coupled-wire construction is precisely
suited for this purpose and enables us to find exactly solvable
models corresponding to topological defect networks/cellular
topological states built upon 2D topologically ordered states.
In particular, it can produce solvable models built from chiral
topological phases, which may not be realized in lattice sys-
tems made of commuting projectors and may thus constitute
a novel family of fracton order.

In the rest of this section, we summarize the results of this
paper. Before proceeding, a comment is in order. Since our
construction exclusively uses thin strips of 2D topologically

ordered states as building blocks, we choose to use the ter-
minology of cellular topological states throughout this paper
because of the similarity to the construction in Refs. [63,64]
rather than to the one in Ref. [62]. However, we empha-
size that the topological defect network [62] and the cellular
topological states [63,64] share essentially the same idea for
constructing fracton phases as both use topologically ordered
phases and their gapped interfaces as basic ingredients. The
use of cellular topological states in this paper is nothing more
than the choice of terminology.

A. Summary of results

Coupled-wire models. A primary goal of this paper is to
provide a general framework for obtaining exactly solvable
coupled-wire models for given data sets of cellular topological
states. We consider a 3D system consisting of thin 2D strips,
which extend along the x axis and form a grid structure in the
yz plane. Examples of such 3D cellular topological states on
the square, honeycomb, and triangular grids are illustrated in
the top row of Fig. 1, in addition to a 2D cellular topological
state defined on the 2D array of strips. We place 2D topolog-
ically ordered states on each strip and couple them together
by 1D gapped interfaces, at which edge modes along the x
axis from neighboring strips interact with each other and open
an excitation gap in the energy spectrum. In this paper, we
only consider cellular topological states made of 2D Abelian
topological orders, for which a simple algebraic framework
in terms of the so-called K matrix is available to describe
quasiparticle properties [116]. For each 1D interface labeled
by its 2D coordinate in the yz plane, i.e., r = (y, z), we can
describe the edge modes from the neighboring 2D strips with
a symmetric integer matrix Ke,r and associate the 1D gapped
interface with a set of integer vectors Lr called the Lagrangian
subgroup [117–122]. Thus, the input data for building a cel-
lular topological state are the grid structure formed by strips
and Ke,r and Lr at each interface.

With these input data, we can construct a coupled-wire
model for the corresponding cellular topological state. For
demonstration purposes, here we consider only a cellular
topological state on the square grid, but the construction can
be easily extended to other grid structures. We place 2D topo-
logical orders described by an N0 × N0 integer matrix K0 on
each strip in a translation invariant manner. Supposing that
the strips are wide enough that the hybridization between two
edges is negligible compared with the bulk gap, gapless edge
modes at each interface are described by the 4N0 × 4N0 matrix
Ke,r ≡ Ke with

Ke =

⎛⎜⎜⎝
K0

K0

−K0

−K0

⎞⎟⎟⎠, (1)

where the diagonal entries correspond to edge modes from
the left, bottom, right, and top strips surrounding the interface
in the ascending order. We then gap them out by placing a
gapped interface described by the Lagrangian subgroup Lr ≡
L, which can be generated by a set of 4N0-dimensional integer
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FIG. 1. Generic recipe to obtain coupled-wire models from cellular topological states made of strips of 2D Abelian topological orders and
their gapped interfaces. We consider cellular decompositions of (a) a 2D plane into an array of thin strips extended along the x axis, and a 3D
space into (b) the square, (c) honeycomb, and (d) triangular grid of thin strips projected onto the yz plane. Cellular topological states may be
obtained by directly coupling gapless edge states from strips meeting at each interface to open a gap and to induce the condensation of anyons.
In general, such coupled-edge models require extra quantum wires added at each interface. One can choose interactions at the interface such
that the edge modes from the strips are not directly coupled with each other but their interactions are only mediated by the additional quantum
wires. At the final step, strips of 2D topological orders are shrunk and removed, yielding coupled-wire models with the same low-energy
properties as those of the original cellular topological states.

vectors M = {ma} as

L =
{∑

a

pama

∣∣∣∣∣ pa ∈ Z, ma ∈ M

}
. (2)

This gives a set of condensed quasiparticles between neigh-
boring strips and thus determines how quasiparticles move
from one strip to another across the interface. Given L, we
can always find a set of 8N0-dimensional integer vectors {�̃α}
to write down a tunneling Hamiltonian of the form

Vew = −g
∫

dx
∑

r

4N0∑
α=1

cos
[
�̃

T
α Kewφew

r (x)
]

(3)

with some coupling constant g. Here, Kew and φew
r (x) rep-

resent an 8N0 × 8N0 K matrix and 8N0-component bosonic
fields, respectively, for the original 4N0 edge modes and extra
4N0 gapless modes from 2N0 quantum wires added at each
interface. This hybrid system of the edge modes and the ad-
ditional quantum wires is regarded as a coupled-edge model
for the cellular topological state, as depicted in the middle
row of Fig. 1. This coupled-edge model provides an exactly
solvable Hamiltonian in the strong-coupling limit g → ∞, but
it is actually redundant and lacks the microscopic description
of the edge modes at the lattice level.

In fact, we can always find a set of 4N0-dimensional integer
vectors {�w,α} corresponding to L, which gives a tunneling
Hamiltonian written only in terms of the bosonic fields in the
added quantum wires,

Vw = −g
∫

dx
∑

r

N0∑
a=1

(
cos �w

r+ey/2,a + cos �w
r+ez/2,a

)
, (4)

where we have defined

�w
r+ey/2,a = �T

w,2N0+aKwφw
r + �T

w,aKwφw
r+ey

,

�w
r+ez/2,a = �T

w,3N0+aKwφw
r + �T

w,N0+aKwφw
r+ez

,
(5)

ey = (1, 0), and ez = (0, 1). Here, Kw and φw
r are a 4N0 ×

4N0 K matrix and 4N0-component bosonic fields, respec-
tively, for 2N0 quantum wires at each interface. This gives
a coupled-wire model for the cellular topological state, as
shown in the bottom row of Fig. 1, which is exactly solvable
in the strong-coupling limit g → ∞. It can be derived from
the coupled-edge model with a special choice of {�̃α} and
through a process of shrinking and removing the strips of
2D topological orders. The resulting coupled-wire model is
represented either by bosonic quantum wires when L contains
only condensed quasiparticles with bosonic self statistics,
or by fermionic quantum wires when L contains at least
one condensed quasiparticle with fermionic self statistics.
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Quasiparticle excitations moving across an interface are cre-
ated by a vertex operator exp[ip · φw

r (x)] with an integer
vector p, which has one-to-one correspondence with an ele-
ment of L. On the other hand, quasiparticle excitations along
a 2D strip are created in pairs by a string operator exp[iq ·∫ x1

x0
dx ∂xφ

w
r (x)] with some vector q. These vertex and string

operators have genuine microscopic origins in the sense that
they can in principle be written as the continuum limits of
some lattice operators in 1D systems.

Applications to topological and fracton orders. We apply
the above procedure to cellular topological states built from
U (1)k topological orders, which are the simplest chiral topo-
logical orders with K0 = k (1 × 1 matrix), and provide their
coupled-wire models. To do so, we first classify all possi-
ble gapped interfaces between four U (1)k topological orders
for small k and those between six U (1)3 topological orders,
which will naturally constitute 3D cellular topological states
on the square and triangular grid, respectively. The results
are presented in the Supplemental Material (SM) [123]. We
found several nontrivial gapped interfaces, which lead to 2D
and 3D cellular topological states with intriguing quasiparticle
properties as found in topological and fracton orders.

For 2D cellular topological states, we consider the 2D
array built from strips of 2D topological orders described by
a symmetric integer matrix K0. When those strips are coupled
via gapped interfaces that induce the condensation of pairs
of a quasiparticle and its antipartner between neighboring
strips, we find conventional 2D coupled-wire models for the
2D topological order K0 as studied in Refs. [69,70,84]. On
the other hand, if we consider gapped interfaces that induce
the condensation of nontrivial pairs of quasiparticles between
neighboring strips, the 2D coupled-wire models exhibit the
ground-state degeneracy depending on the linear size of a
torus along the y axis. This is a characteristic feature of
translation-symmetry-enriched topological orders, which has
recently been discussed in the context of coupled-wire models
[81,124].

For 3D cellular topological states, we adapt a classification
scheme proposed by Ref. [125] for 3D topological and fracton
orders. Since our cellular topological states inevitably have
quasiparticles mobile along strips, they cannot realize type-
II fracton orders, which possess only completely immobile,
fracton excitations. Nevertheless, we can still find a variety of
conventional topological orders, which have constant ground-
state degeneracy on a torus and are dubbed as the TQFT-type
topological orders, and type-I fracton orders with planons
and lineons. The type-I fracton order is further divided into
two subclasses: foliated type-I fracton order characterized
by subextensive ground-state degeneracy and fractal type-I
fracton order characterized by fluctuating ground-state degen-
eracy with subextensive envelope [125].

We present 3D coupled-wire models that exhibit the fol-
lowing topological and fracton orders: (i) foliated type-I
fracton order with only planons, (ii) foliated type-I fracton
order with both lineons and planons, for which a dipole of li-
neons moves along directions perpendicular to the dipole axis
and thus becomes a planon, (iii) TQFT-type topological order
with 3D point-like and 3D loop-like excitations exhibiting
nontrivial mutual braiding statistics, (iv) hybrid of TQFT-type
topological order and foliated type-I fracton order, for which

not only 3D point-like excitations but also planons have non-
trivial braiding statistics with 3D loop-like excitations, and
(v) fractal type-I fracton order with lineons, for which the
mobility of quasiparticles is highly restricted in the yz plane
and leads to ground-state degeneracy with fractal-like growth
in the system size. We remark that coupled-wire models real-
izing (iii) and (iv) have ground-state degeneracy extensively
growing with the number of wires due to local loops of 3D
point-like excitations, which can be subsequently lifted by
adding appropriate local perturbations to yield genuine 3D
loop-like excitations as expected in TQFT-type topological
orders. These results are summarized in Table I.

Comparison with previous studies. We here make a com-
parison between topological and fracton orders found in our
coupled-wire models and those in some previous results. The
dipole nature of planon excitations seen in the foliated type-I
fracton order (ii) is similar to what has been found in several
exactly solvable lattice models, such as the X-cube model
[126] and the anisotropic planon-lineon model [127]. Hybrids
of topological and fracton orders with nontrivial planon-loop
statistics as found in (iv) have recently been discussed in
the context of lattice models [128,129]. Our coupled-wire
models for the fractal type-I fracton order (v) are similar to
the Sierpinski fractal spin liquid, which has been proposed
in Refs. [16,18] and constructed from 3D cellular topological
states based on the 2D or 3D toric codes in Refs. [62,63], as
quasiparticles spread on a fractal lattice in the yz plane but
freely move along the x axis. Quasiparticle properties of our
fractal type-I fracton models in the yz plane can be emulated
by 2D classical spin liquids and are related to 1D cellular
automata, which have already been utilized in Ref. [18] to
construct commuting projector Hamiltonians for a variety of
quantum fractal spin liquids. It is also important to notice
that 3D cellular topological states constructed in this paper
from U (1)k topological orders on the square grid generally
possess 2D gapless surface states composed of multiple 1D
chiral gapless modes with the same chirality under appropriate
surface terminations. Such surface states cannot be gapped out
by any local perturbations and imply that there are no exactly
solvable lattice models for these cellular topological states.

There are also several recent attempts to construct exactly
solvable coupled-wire models for 3D topological and fracton
orders [110,112–115]. In Ref. [112], Sullivan, Iadecola, and
Williamson have constructed 3D coupled-wire models for
foliated type-I fracton order with fractons. Their models can
be understood from p-string condensation mechanism [53,56]
for two orthogonal stacks of 2D topological orders and can
also be interpreted as 3D cellular topological states made
of 2D topological orders placed on three orthogonal faces
of cubes in the cubic lattice. As a result, their coupled-wire
models can support immobile fracton excitations, while our
coupled-wire models cannot, as any quasiparticles are mobile
along the wires due to the original cellular structure. An-
other distinguishing feature is that their coupled-wire models
have bulk gapless excitations on a torus, whereas our models
are fully gapped. It has been discussed that such gapless
excitations are also present in earlier coupled-wire mod-
els for higher-dimensional Abelian topological orders [106].
In Ref. [113], Sullivan, Dua, and Cheng have constructed
coupled-wire models for both gapped and gapless fracton
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TABLE I. List of topological orders (TOs) and fracton orders (FOs) constructed in this paper. Third column indicates the K matrix for 2D
topological orders placed on strips. For the 3D cases, the grid structures are also written in square brackets: square grid [Sq] or triangular grid
[Tri]. Forth column indicates the Lagrangian subgroup L used for gapped interfaces and symbols are adopted from the SM [123]. Fifth column
indicates ground-state degeneracy on an Lx × Ly torus for the 2D cases and on an Lx × Ly × Lz torus for the 3D cases. Expressions after right
arrows “→” are parts of degeneracy robust under local perturbations.

Type Excitations K0 L Degeneracy on a torus Section

2D TQFT-type TO 2D point

(
0 2
2 0

)
L(2TC)

2B;1 22 Sec. III D 1

k {(l,−l ) | l ∈ Z} k Sec. III D 2

2D translation symmetry
enriched TO 2D point

(
0 2
2 0

)
L(2TC)

2F;3

{
22 (Ly ∈ 2Z)
2 (Ly ∈ 2Z + 1)

Sec. III E 1(
2 0
0 −2

)
L(2,2,2,2)

2F;1

{
22 (Ly ∈ 2Z)
2 (Ly ∈ 2Z + 1)

Sec. III E 2(
5 0
0 −5

)
L(5,5,5,5)

2F;9

{
52 (Ly ∈ 4Z)
1 (Ly /∈ 4Z)

Sec. III E 3

3D TQFT-type TO 3D point and 3D loop 4 [Sq] L(4,4,4,4)
3B;1 4 · 2LyLz → 23 Sec. IV C 1

9 [Sq] L(9,9,9,9)
3F;11 9 · 3LyLz → 33 Appendix B 3

3D foliated type-I FO Planon 2 [Sq] L(2,2,2,2)
2F;1 2gcd(Ly,Lz ) Sec. IV A 1

6 [Sq] L(6,6,6,6)
2F;6 3Ly+Lz · 2gcd(Ly,Lz ) Sec. IV A 2

6 [Sq] L(6,6,6,6)
2B;9 3Ly+Lz · 2gcd(Ly,Lz ) Appendix B 1

Lineon and planon 4 [Sq] L(4,4,4,4)
2F;8 22 · 4Ly+Lz−2 Sec. IV B 1

8 [Sq] L(8,8,8,8)
2B;16 42 · 8Ly+Lz−2 Appendix B 2

Hybrid of 3D TO and 3D point, 3D loop, 8 [Sq] L(8,8,8,8)
3B;13 4 · 2LyLz+Ly+Lz Sec. IV D 1

3D foliated type-I FO and planon → 23 · 2Ly+Lz

3D fractal type-I FO Lineon 7 [Sq] L(7,7,7,7)
2F;9 Fluctuating Sec. IV E 1

3 [Tri] L(3,3,3,3,3,3)
3F;23 Fluctuating Sec. IV E 2

orders. For gapped cases, the corresponding coupled-wire
models have planon and/or lineon excitations as in foliated
type-I fracton order. However, their models have quasiparti-
cles with infinite-order fusion properties, which do not match
with any known construction of cellular topological states.
Thus, these coupled-wire models belong to different classes
from coupled-wire models constructed in this paper. It has
also been argued [130] that some of the former models are de-
scribed by infinite-component Chern-Simons theories [131].

Meanwhile, our models include the coupled-wire models
proposed in Ref. [110] by the present authors. There, we have
utilized conformal embeddings for (1 + 1)d CFTs to construct
coupled-wire models, for which the associated branching
rules dictate the mobility of excitations. We have originally
interpreted this construction as coupled-wire implementations
of anyon condensation used for a coupled-layer construction
of 3D topological orders [132]. It turns out that the resulting
models can be naturally understood within the framework
of cellular topological states. Existence of a nontrivial con-
formal embedding implies existence of a nontrivial gapped
interface between 2D topological orders associated with the
embedding CFTs. For example, the conformal embedding
U (1)k × U (1)k ⊃ U (1)2k × U (1)2k implies the existence of a
nontrivial gapped interface between four Abelian topological

orders described by the U (1)2k CFT, which can be used to
construct a 3D cellular topological state from strips of the
U (1)2k topological orders on the square grid. We demonstrate
that the corresponding coupled-wire model precisely repro-
duces a model constructed in Ref. [110]. We further show
that the same conformal embedding implies the existence
of a nontrivial gapped interface between the U (1)k × U (1)k

and U (1)2k × U (1)2k topological orders, which allows us to
construct equivalent 3D cellular topological states from strips
of the U (1)k and U (1)2k topological orders on the honeycomb
grid.

References [114,115] provided coupled-wire constructions
of strongly interacting 3D topological phases protected by
subsystem symmetries, i.e., symmetries acting only on lower-
dimensional manifolds. While 2D surface states of these
phases can be gapped, 1D hinge states localized along the
intersection of orthogonal 2D surfaces cannot be gapped in
the presence of the subsystem symmetries. The coupled-wire
constructions yielded both unfractionalized [114,115] and
fractionalized phases [114]. A particular model constructed
in Ref. [114] for the latter case can actually be regarded as a
cellular topological state consisting of 2D strips of the doubled
U (1)k topological orders and their 1D gapped interfaces. It
hosts lineon and planon excitations and has subextensively
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degenerate ground states on the 3D torus, similarly to the
coupled-wire model of foliated type-I fracton order con-
structed in Sec. IV B.

B. Outline of the paper

The rest of the paper is organized as follows. In Sec. II, we
review the general theory for 2D Abelian topological orders
and their gapped boundaries and how they are applied to
gapped interfaces. In Sec. III, we present a systematic con-
struction of coupled-wire models from 2D cellular topological
states and discuss their applications to conventional 2D topo-
logical orders and translation-symmetry-enriched topological
orders. In Sec. IV, we generalize the construction for 3D
cellular topological states and provide explicit examples of
coupled-wire models for 3D TQFT-type topological orders,
3D foliated and fractal type-I fracton orders, and hybrid of
topological and fracton orders. Section V concludes this paper
with several outlooks.

Appendix A provides an explicit way to construct a special
form of integer vectors used for deriving tunneling interac-
tions in coupled-wire models. In Appendix B, we discuss
several 3D models that have similar quasiparticle properties
with those constructed in Sec. IV. In Appendix C, we argue
that some of 3D models on the square grid can be equivalently
formulated on the honeycomb grid by utilizing their confor-
mal embedding structures.

II. PRELIMINARIES

We first review the general theory for 2D Abelian topo-
logical order (Sec. II A) and its gapped boundary (Sec. II B).
A gapped interface between 2D topological orders can be
viewed as a gapped boundary for a stack of the 2D topological
orders by the folding trick (Sec. II C). These will be main
building blocks for cellular topological states studied in this
paper.

A. 2D Abelian topological order

The low-energy effective theory of 2D Abelian topological
order is given by an N-component U (1) Chern-Simons theory
[116], whose Lagrangian density is defined by

LCS = −
N∑

I,J=1

KIJ

4π
εμνλaI

μ∂νaJ
λ, (6)

where K is a symmetric, nondegenerate, N × N integer matrix
and aI

μ are U (1) gauge fields. For bosonic topological orders,
the K matrix has only even integers in the diagonal entries. For
fermionic topological orders, the K matrix has at least one odd
integer in the diagonal entries. A quasiparticle excitation is
associated with an N-dimensional integer vector l and carries
integer charges lI of the gauge fields aI

μ. The statistical angle
θl of the quasiparticle l is given by

θl = π lT K−1l . (7)

It is also related to the statistical spin sl via θl = 2πsl . The
mutual statistics θl,l ′ between two quasiparticles l and l ′ is
given by

θl,l ′ = 2π lT K−1l ′. (8)

Local bosonic or fermionic excitations must have trivial statis-
tics and correspond to l ∈ KZN . Quasiparticle excitations
with nontrivial statistics, which are called anyon excitations,
are associated with l /∈ KZN . The number of anyon excita-
tions distinguished up to addition of local particle excitations,
or equivalently the number of distinct l’s up to the identifi-
cation l ∼ l + KZN , is given by |det K|, which is also equal
to the number of degenerate ground states when the system is
placed on a 2D torus.

When the system is placed on a manifold with a boundary,
there exist gapless edge modes along the boundary, which are
described by free boson CFT with the action

Sedge = − 1

4π

∫
dtdx

N∑
I,J=1

(KIJ∂tφI∂xφJ + vIJ∂xφI∂xφJ ).

(9)

Here, vIJ is a positive definite matrix associated with the
velocities of the edge modes and depends on microscopic
details. The number of right-moving and left-moving bosonic
modes, which we denote by cR and cL, respectively, is given
by the number of positive and negative eigenvalues of the
matrix K , respectively. The signature of K , i.e., the number
of positive eigenvalues minus the number of negative ones,
corresponds to the chiral central charge

c = cR − cL. (10)

Quasiparticle excitations at the boundary are created by vertex
operators

� = exp

(
i

N∑
I=1

lIφI

)
, (11)

where l ∈ KZN corresponds to a local particle excitation
while l /∈ KZN to an anyon excitation. The conformal spin
of an operator � associated with l is precisely given by the
statistical spin sl . Therefore, those with integer conformal
spins are bosonic, whereas those with half-integer conformal
spins are fermionic.

In the following discussion, we prefer to use the Hamilto-
nian formalism. The Hamiltonian corresponding to the edge
action (9) is given by

Hedge = 1

4π

∫
dx

N∑
I,J=1

vIJ∂xφI∂xφJ , (12)

where the bosonic fields φI (x) obey the equal-time commuta-
tion relations

[∂xφI (x), φJ (x′)] = 2π iK−1
IJ δ(x − x′), (13)

where K−1
IJ is the (I, J ) entry of the inverse matrix of K .

Although the Hamiltonian (12) has gapless excitations, one
can generally add interactions consisting of local particle op-
erators. If the signature of K , or equivalently the chiral central
charge c, vanishes, such interactions have a chance to fully
gap out the edge modes; the precise condition is discussed
in the next subsection. When c 	= 0, there are stable chiral
edge modes even in the presence of interactions. We call
topological orders with nonvanishing c chiral, whereas those
with vanishing c nonchiral in this paper.
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We provide several examples of the 2D Abelian topological
orders. The topological order of the 2D toric code or the 2D
Z2 gauge theory [1] is described by the 2 × 2 K matrix [133]
of the form

K =
(

0 2
2 0

)
. (14)

This is a nonchiral bosonic topological order. It has three
nontrivial quasiparticles l = (1, 0)T , (0, 1)T , and (1, 1)T . The
first two are bosonic but have nontrivial mutual statistics of
π . They can thus be identified with an electric (e) and a mag-
netic (m) excitation. The last one is a fermionic ( f ) excitation
obtained by fusing the e and m excitations.

Another example is the Laughlin state at filling fraction
ν = 1/k [6], which is given by the 1 × 1 K matrix [116]

K = k. (15)

It is also called the U (1)k topological order in relation with
the level-k Chern-Simons theory as given in Eq. (6). It is a
chiral bosonic topological order for even k, whereas it is a
chiral fermionic one for odd k. The nontrivial quasiparicles
are simply given by l = 1, 2, 3, . . . , k − 1, which we denote
by 1, 2, 3, and so on. Its antichiral (time-reversal) partner
U (1)k is described by K = −k. We denote their quasiparticles
by 1, 2, 3, and so on. This simplest chiral topological order
is extensively used for constructing nontrivial 2D and 3D
coupled-wire models in the following sections.

B. Gapped boundary

When a 2D Abelian topological order has nonchiral edge
states with c = 0 or the vanishing signature of the K matrix,
there is a possibility to open an excitation gap at the boundary
with a suitable choice of interactions. In fact, the presence
of nonchiral edge states is a necessary but not sufficient
condition to have a gapped boundary. A general criterion
is provided by the existence of the Lagrangian subgroup L
[117–122], which is a set of quasiparticles satisfying the fol-
lowing conditions:

(1) All quasiparticles in L have bosonic or fermionic self
statistics: lT K−1l ∈ Z for l ∈ L.

(2) Any two quasiparticles in L have trivial mutual statis-
tics: lT K−1l ′ ∈ Z for l, l ′ ∈ L.

(3) Quasiparticles not included in L have nontrivial mutual
statistics with at least one quasiparticle in L: for n /∈ L, there
exits l ∈ L such that nT K−1l /∈ Z.

A gapped boundary for a given topological order is pos-
sible if and only if there exists a Lagrangian subgroup.
Physically, the first two conditions indicate that all quasi-
particles in the Lagrangian subgroup can be simultaneously
condensed in the sense of anyon condensation [134]. In con-
trast to the original concept of anyon condensation applied
to phase transitions between topological orders, the last con-
dition implies that there are no nontrivial quasiparticles in
the resulting condensate; quasiparticles not included in the
Lagrangian subgroup are all confined, that is, they become
high-energy excitations above the condensate. Although the
notion of anyon condensation is originally applied to the set
of bosonic quasiparticles, it has also been extended to the
set of fermionic quasiparticles, which can be condensed by

supplementing local fermion excitations via fermionic anyon
condensation [135–138]. When the theory of a topological
order and its gapped boundary is entirely described in a
bosonic Fock space, we call such a gapped boundary bosonic.
This is the case for gapped boundaries of bosonic topological
orders obtained by bosonic anyon condensation. On the other
hand, when the theory is described in a fermionic Fock space,
we call a gapped boundary fermionic. This is the case for
gapped boundaries of bosonic topological orders obtained by
fermionic anyon condensation and any gapped boundaries of
fermionic topological orders.

For gapped boundaries of Abelian topological orders, we
can explicitly write down Hamiltonians for gapping potentials
in terms of bosonic fields [118–120]. We here assume that K is
a symmetric, nondegenerate, 2N × 2N integer matrix in order
to have vanishing signature. Let us denote by M a subset of the
Lagrangian subgroup L, which contains the minimal number
of quasiparticle m’s that generate all quasiparticles in L by
their linear combinations. Namely,

L =
{∑

a

pama

∣∣∣∣∣ pa ∈ Z, ma ∈ M

}
. (16)

We call the number of elements in M as the rank of the
Lagrangian subgroup L. If the rank of L is equal to N and
we can choose M = {m1, . . . , mN } to satisfy

mT
a K−1mb = 0, (17)

then we can define integer vectors by

�a = caK−1ma, (18)

where ca is the minimal integer such that �a becomes an
integer vector. With this set of N integer vectors {�a}, we can
find an interaction at the boundary,

V = −g
∫

dx
N∑

a=1

cos
(
�T

a Kφ
)
, (19)

where g is some positive constant, φ = (φ1, . . . , φ2N )T , and
φI ’s are the bosonic fields appearing in the edge Hamiltonian
(12). Since the integer vectors �a obey

�T
a K�b = 0, (20)

the bosonic fields �T
a Kφ commute with each other and their

cosine terms too. Thus, the interaction V can open a gap for
the gapless edge modes [139] by pinning the bosonic fields φI

at the minima of the cosine potentials,

�T
a Kφ = camT

a φ = 2πna, (21)

where na is an integer. Then, the following vertex operators
have finite expectation values at the boundary:〈

eimT
a φ

〉 = e2π ina/ca 	= 0 (22)

in the limit of strong coupling g, implying that quasiparticles
in the Lagrangian subgroup L are condensed at the boundary.

We remark that the choice of integer vectors {�a} in
Eq. (18) does not necessarily give the set of primitive inte-
ger vectors [140,141], meaning that it may lead to a gapped
boundary with spurious degeneracy due to spontaneous sym-
metry breaking. The primitivity condition is satisfied if and
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only if the greatest common divisor of N × N minors of the
2N × N matrix 
 = (�1, . . . ,�N ) is unity. This condition
is equivalent for the Smith normal form of 
 to have only
±1 in its diagonal entries. Primitive integer vectors {�a} are
generally related to the Lagrangian subgroup generated by
M = {ma} via the condition

N∑
b=1

BabK�b = cama, (23)

for some integers Bab, ca ∈ Z, which is weaker than Eq. (18)
but is enough to ensure the condensation of quasiparticles in
L at the boundary. Although the spurious degeneracy arising
from nonprimitive vectors can be removed by adding local
perturbations at the boundary, we require that the integer vec-
tors {�a} be primitive in the following analysis for simplicity.

The above procedure of constructing gapping potentials
cannot be applied to the general case of gapped boundaries.
Such situations happen when the rank of the Lagrangian
subgroup L is larger than N or when quasiparticles in any
choice of the subset M cannot have zero statistical spins.
In particular, the latter happens for gapped boundaries ob-
tained via fermionic anyon condensation. For the general case,
we can still find gapping potentials by stacking N trivial
nonchiral bosonic topological orders on top of the origi-
nal one for bosonic gapped boundaries, and by stacking N
trivial nonchiral fermionic topological orders for fermionic
gapped boundaries. This is equivalent to adding N purely 1D
(nonanomalous) bosonic or fermionic wires at the boundary.
Slightly extending the algorithms in Ref. [120] to include
gapped boundaries with fermionic anyon condensation for
bosonic topological orders, we can construct gapping poten-
tials separately for bosonic and fermionic gapped boundaries
as we will show below.

As a side remark, while the integer quantum Hall states or
the Kitaev E8 states [142,143] are trivial in the sense that they
do not admit bulk anyon excitations, we do not use them as
external resources to open a gap; they are chiral topological
orders and the corresponding edge states cannot be regarded
as purely 1D systems. They might be used as resources to
construct gapped boundaries for some chiral topological or-
ders, but we do not consider such cases in this paper. Trivial
nonchiral topological orders that we will use for constructing
gapping potentials are a stack of integer quantum Hall states
with the Chern numbers +1 and −1 for fermionic boundaries
or a bosonic integer quantum Hall state [143] for bosonic
boundaries. Since we do not consider any global symmetry
in this paper, their edge states can be realized as purely 1D
fermionic or bosonic systems.

1. Bosonic gapped boundary

Let us consider a gapped boundary of a bosonic topo-
logical order obtained via bosonic anyon condensation. In
this case, all diagonal entries of K must be even integers
and mT

a K−1ma ∈ 2Z for any ma ∈ M. We consider a 2N-
dimensional lattice defined by

� = {l + Kq | l ∈ L, q ∈ Z2N }, (24)

from which we can define a 2N × 2N integer matrix U such
that � = UZ2N . We then define

P = U T K−1U, (25)

which is a symmetric unimodular matrix with diagonal entries
being all even and with vanishing signature. Then, there exists
a unimodular matrix W that brings the matrix P into the
following form:

W T PW =
(

0 IN

IN 0

)
, (26)

where IN is the N × N identity matrix. We then define the
transformed matrices

U ′ = W T UW, (27)

K ′ = W T KW, (28)

P′ = W T PW. (29)

Since W is unimodular and causes only the basis change, the
theories described by K and K ′ are topologically equivalent
and the columns of U ′ still generate the same Lagrangian
subgroup as M does. We then introduce a 4N × 4N extended
K matrix

K̃ ′ =

⎛⎜⎜⎝
K ′

X
. . .

X

⎞⎟⎟⎠. (30)

It contains N diagonal blocks of the Pauli matrix X ,

X =
(

0 1
1 0

)
, (31)

corresponding to stacking of N trivial bosonic topological
orders on top of the topological order described by K ′. We
may write this matrix compactly as K̃ ′ = K ′ ⊕ X ⊕ · · · ⊕ X
or K̃ ′ = K ′ ⊕ X ⊕N in the following discussion. In this ex-
tended theory, the Lagrangian subgroup can be generated by
the following set of 4N-dimensional integer vectors:⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m̃′T
1

m̃′T
2

m̃′T
3

m̃′T
4

...

m̃′T
2N−1

m̃′T
2N

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u′T
1 0 1 0 0 · · · 0 0

u′T
N+1 −1 0 0 0 · · · 0 0

u′T
2 0 0 0 1 · · · 0 0

u′T
N+2 0 0 −1 0 · · · 0 0
...

...
. . .

...

u′T
N 0 0 0 0 · · · 0 1

u′T
2N 0 0 0 0 · · · −1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(32)

where u′
I is the Ith column of U ′. Since the last 2N compo-

nents of m̃′
I correspond to additions of trivial bosonic degrees

of freedom, {m̃′
I} generate the same Lagrangian subgroup as

M does. They now satisfy

m̃′T
I K̃ ′−1m̃′

J = 0, (33)

which can be used to construct a gapping potential.
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For our later purpose, we further consider a transformation
generated by a 4N × 4N unimodular matrix

W̃ =
(

W
I2N

)
, (34)

where I2N is the 2N × 2N identity matrix. Its inverse brings
the extended K matrix to

K̃ = (W̃ −1)T K̃ ′W̃ −1 =

⎛⎜⎜⎝
K

X
. . .

X

⎞⎟⎟⎠. (35)

We then define

m̃I = (W̃ −1)T m̃′
I , (36)

which now satisfy

m̃T
I K̃−1m̃J = 0. (37)

With this set of integer vectors {m̃I}, we can define integer
vectors by

�̃I = c̃I K̃
−1m̃I , (38)

where c̃I is the minimal integer such that �̃I becomes an
integer vector. They satisfy

�̃
T
I K̃�̃J = 0. (39)

Again, the integer vectors {�̃I} defined in Eq. (38) may not
satisfy the primitivity condition, but it will be satisfied by
taking their appropriate linear combinations. We can then
construct a gapping potential at the boundary,

Ṽ = −g
∫

dx
2N∑
I=1

cos
(
�̃

T
I K̃φ̃

)
, (40)

where g is some constant and φ̃ = (φ1, . . . , φ4N )T . Here, φI

with I = 1, . . . , 2N correspond to the edge modes of the
nontrivial topological order described by K as defined in
Eq. (12), whereas those with I = 2N + 1, . . . , 4N correspond
to nonchiral bosonic fields of N purely 1D bosonic wires
associated with the diagonal blocks of X . The advantage
of this transformation becomes clear when the topological
order described by K itself is a decoupled stack of several
topological orders. In such a case, each cosine term in the
gapping potential is written as a coupling between a local
boson operator of each constituent topological order and those
of the 1D bosonic wires.

Importantly, we find that the integer vectors {�̃I} can al-
ways be made in the special form,

(�̃1, . . . , �̃2N ) =
(

I2N


w

)
, (41)

where I2N is the 2N-dimensional integer matrix and 
w is a
2N × 2N integer matrix. This form ensures that the integer
vectors {�̃I} are primitive. The explicit construction of 
w is
discussed in Appendix A. This choice of {�̃I} is extremely
useful for writing down minimal coupled-wire models for
the associated cellular topological states with bosonic gapped
interfaces as we will discuss in the next sections.

2. Fermionic gapped boundary

Here, we consider a gapped boundary of a bosonic topo-
logical order via fermionic anyon condensation or that of a
fermionic topological order. In the former case, all diagonal
entries of K are even but mT

a K−1ma ∈ 2Z + 1 for some ma ∈
M. In the latter case, at least one of the diagonal entries of K
must be odd. In both cases, we can define a 2N-dimensional
lattice � as in Eq. (24) and also a 2N × 2N integer matrix U
by � = UZ2N . We can then define the matrix P as in Eq. (25).
However, reflecting the fact that quasiparticles generating the
Lagrangian subgroup now include fermionic anyons, the ma-
trix P becomes a symmetric unimodular matrix with some
diagonal entry being odd and with vanishing signature. In this
case, there exists a unimodular matrix W that brings the matrix
P into

W T PW =
(

IN 0
0 −IN

)
, (42)

where IN is again the N × N identity matrix. We define the
transformed matrices of U , K , and P as given in Eqs. (27)–
(29). We then introduce a 4N × 4N extended K matrix by

K̃ ′ =

⎛⎜⎜⎝
K ′

Z
. . .

Z

⎞⎟⎟⎠. (43)

It contains N diagonal blocks of the Pauli matrix Z ,

Z =
(

1 0

0 −1

)
, (44)

corresponding to stacking of N trivial fermionic topological
orders on top of the original topological order described by
K . As in the bosonic case, the extended K matrix may be
written as K̃ ′ = K ′ ⊕ Z ⊕ · · · ⊕ Z or K̃ ′ = K ′ ⊕ Z⊕N . In this
extended theory, the Lagrangian subgroup can be generated
by the following set of 4N-dimensional integer vectors:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m̃′T
1

m̃′T
2

m̃′T
3

m̃′T
4

...

m̃′T
2N−1

m̃′T
2N

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u′T
1 + u′T

N+1 1 1 0 0 · · · 0 0

u′T
1 − u′T

N+1 −1 1 0 0 · · · 0 0

u′T
2 + u′T

N+2 0 0 1 1 · · · 0 0

u′T
2 − u′T

N+2 0 0 −1 1 · · · 0 0

...
...

. . .
...

u′T
N + u′T

2N 0 0 0 0 · · · 1 1

u′T
N − u′T

2N 0 0 0 0 · · · −1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (45)
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where u′
I is the Ith column of U ′. Since the last 2N com-

ponents of m̃′
I correspond to additions of trivial fermionic

degrees of freedom, {m̃′
I} generate the same Lagrangian sub-

group as M does. These integer vectors now satisfy Eq. (33).
Applying the inverse of the unimodular transformation (34),
the extended K matrix is brought into the form

K̃ = (W̃ −1)T K̃ ′W̃ −1 =

⎛⎜⎜⎝
K

Z
. . .

Z

⎞⎟⎟⎠. (46)

We finally obtain the transformed integer vectors {m̃I} and
{�̃I} and the gapping potential Ṽ as given in Eqs. (36), (38),
and (40), respectively. Here, the last 2N components of φ̃

correspond to chiral bosonic fields of N purely 1D fermionic
wires associated with the diagonal blocks of Z . When the
topological order described by K is a decoupled stack of 2D
topological orders, each cosine term in the gapping potential
is written as a coupling between local bosonic or fermionic
operator of each constituent topological order and those of
the 1D fermionic wires. Again, the integer vectors {�̃I} can
be made into the special form (41), whose explicit form for
the fermionic gapped boundary is presented in Appendix A.
This can be used to construct coupled-wire models for the
associated cellular topological states with fermionic gapped
interfaces.

3. Examples: Toric code

As a simple example, we consider gapped boundaries of
the 2D toric code, whose K matrix is given in Eq. (14). There
are two bosonic gapped boundaries obtained by condensation
of the bosonic quasiparticles e or m, which are called the
rough and smooth boundaries, respectively [144,145]. The
rough boundary is associated with the Lagrangian subgroup
generated by

Me = {(1, 0)T }, (47)

and is obtained by adding a gaping potential

Ve = −g
∫

dx cos(2φ1), (48)

to the edge Hamiltonian (12). The smooth boundary is associ-
ated with the Lagrangian subgroup generated by

Mm = {(0, 1)T }, (49)

and its gapping potential is given by

Vm = −g
∫

dx cos(2φ2). (50)

There is also a fermionic gapped boundary obtained by con-
densation of the fermionic quasiparticle f . The corresponding
Lagrangian subgroup is generated by

M f = {(1, 1)T }. (51)

In order to explicitly construct a gapping potential, we need to
stack a trivial fermionic topological order on top of the toric
code or to add a fermionic wire at the boundary. As discussed

FIG. 2. (a) Gapped interface between two topological orders de-
scribed by K1 and K2. (b) The folding trick yields a gapped boundary
for a stack of topological orders K1 and −K2. When the gapped
interface admits the condensation of (−μ1, μ2)T , (c) a pair of −μ1

and μ2 can be created across the interface or (d) μ1 can go across the
interface and convert into μ2.

in Sec. II B 2, this leads to the extension of the K matrix

K̃ =

⎛⎜⎜⎜⎝
0 2
2 0

1 0
0 −1

⎞⎟⎟⎟⎠. (52)

We can then find a gapping potential

Ṽ f = −g
∫

dx[cos(2φ1 − φ3 + φ4)

+ cos(2φ2 + φ3 + φ4)], (53)

where φ3 and φ4 are associated with the right-moving and left-
moving fermionic modes, respectively, added at the boundary.
This type of gapped boundary obtained via fermionic anyon
condensation allows us to convert a physical fermion into an
emergent fermion excitation in the bulk of topological order,
as recently proposed for the non-Abelian Ising topological
order [146]; there are also earlier studies in this direction
[147,148].

C. Gapped interface between topological orders

The above theory of gapped boundary for 2D Abelian
topological orders is immediately applied to classification of
gapped interfaces between multiple Abelian topological or-
ders. Let us consider an interface between two topological
orders described by matrices K1 and K2, which are placed on
the left and right sides, respectively, of the same 2D plane as
depicted in Fig. 2(a). We employ an orientation convention for
the topological orders such that their right edges host gapless
modes with the commutation relations given by K1 or K2 [see
Eq. (13)]. Then, their left edges host gapless modes described
by −K1 or −K2. If K1 and K2 have the same signature,
there are equal numbers of left-moving and right-moving edge
modes at the interface. Hence, the interface might be gapped
by adding suitable interactions between the edge modes. By
the so-called folding trick [120,136,149], the problem of such
a gapped interface is mapped to that of a gapped boundary for
a stacked topological order described by the K matrix

Ke =
(

K1

−K2

)
, (54)
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FIG. 3. (a) Gapped interface connecting four topological orders
described by K1, K2, K3, and K4. (b) By the folding trick, the gapped
interface is mapped to a gapped boundary of a stack of topological
orders K1, −K2, K3, and −K4. When the gapped interface admits the
condensation of (μ1, 0, μ3, 0)T and (μ′

1, μ
′
2, μ

′
3,μ

′
4)T , (c) a pair of

quasiparticles can be created between the K1 and K3 layers, or (d) a
quadruplet of quasiparticles can be created among all four layers.

as schematically shown in Fig. 2(b). The gapped boundary for
the topological order Ke is then classified by the Lagrangian
subgroup, as reviewed in Sec. II B, which is nothing but a
set of condensed quasiparticles at the boundary. Going back
to the problem of gapped interface, the Lagrangian subgroup
tells us which quasiparticle in the topological order K1 can
go across the interface and converts into a quasiparticle in the
topological order K2.

Suppose that integer vectors μ1 and μ2 represent quasi-
particles in the topological orders K1 and K2, respectively.
They can be created or annihilated by local operators in pair
with their antipartners −μ1 or −μ2. By the folding trick, the
topological order K2 becomes its mirror image −K2, but we
suppose that the mirror image of a quasiparticle μ2 is still
described by the same integer vector μ2. We now assume that
the Lagrangian subgroup for a gapped boundary of the stacked
topological order Ke contains a composite of quasiparticles
(−μ1,μ2)T . This means that we can create or annihilate a
pair of −μ1 and μ2 at the boundary or at the interface by
unfolding [see Fig. 2(c)]. In other words, the quasiparticle μ1
on the topological order K1 can be brought to the interface to
fuse with the condensed quasiparticle (−μ1,μ2)T and can be
transmuted to the quasiparticle μ2 on the topological order K2

[see Fig. 2(d)].
This consideration can be easily extended to more compli-

cated interfaces. For example, we can consider an interface
connecting four topological orders described by the matrices
K1, K2, K3, and K4, as shown in Fig. 3(a). Here, the topo-
logical orders K1 and K2 are placed on the left and right
sides, respectively, of the same horizontal plane, while K3 and
K4 are placed on the top and bottom sides, respectively, of

the same vertical plane. The four topological orders meet at
the intersection of the two planes. We employ an orientation
convention such that the right edges on the horizontal plane
host gapless bosonic modes with the commutation relations
given by K1 or K2, while the bottom edges on the vertical plane
host those with the commutation relations given by K3 or K4.
If all four topological orders have the same signature, the
interface have equal numbers of right-moving and left-moving
edge modes and thus might be gapped. Again by the folding
trick [see Fig. 3(b)], the problem of finding a gapped interface
is mapped to a problem of finding a gapped boundary for a
stacked topological order described by the K matrix

Ke =

⎛⎜⎜⎝
K1

−K2

K3

−K4

⎞⎟⎟⎠. (55)

Some gapped interfaces might be regarded as a stack of a
gapped interface between two topological orders and that be-
tween another two, say, one between K1 and K2 and the other
between K3 and K4. The Lagrangian subgroup corresponding
to such an interface will contain bound pairs of quasiparti-
cles, (−μ1,μ2, 0, 0)T and (0, 0,−μ3,μ4)T , where we have
denoted quasiparticles in each topological order by μ1, μ2,
μ3, and μ4, and trivial vacuum excitations by zero vectors
0 = (0, . . . , 0)T . In this case, a pair of quasiparticles can be
created between the K1 and K2 layers or the K3 and K4 layers
but not between other combinations, say, between the K1 and
K3 layers.

However, when a gapped interface cannot be decomposed
into gapped interfaces between two topological orders, pairs
of quasiparticles can be created not only between two fixed
pairs among four topological orders but also between other
pairs. In such a case, quasiparticles may be created between,
say, the K1 and K3 layers, even though they have the same
nonzero signature and thus a direct gapped interface between
them is impossible [see Fig. 3(c)]. Furthermore, the La-
grangian subgroup may contain bound triplets or quadruplets
of quasiparticles, such as (μ′

1,μ
′
2,μ

′
3,μ

′
4)T , which cannot be

written as bound objects of more elementary condensed pairs.
In that case, quasiparticles must be created at the interface in
quadruplets among all four topological orders [see Fig. 3(d)].
Such nontrivial gapped interfaces are in fact a key ingredient
for cellular topological state construction of nontrivial fracton
phases as we will discuss in the next sections.

In the SM [123], we provide a thorough classification of
gapped interfaces for 2D toric codes and U (1)k topological
orders with small k. Nontrivial gapped interfaces in the above
sense can be found for three or four toric codes, which have
been used in Refs. [62–64] to construct cellular topological
states for fracton phases. We have also found that nontrivial
gapped interfaces exist between four U (1)k topological orders
with k = 2, 4, 5, 6, 7, 8, 9 and between six U (1)3 topological
orders. In particular, gapped interfaces between four U (1)7’s
or six U (1)3’s admit the condensation of no pairs of quasipar-
ticles but only triplets or quadruplets, which lead to cellular
topological states for fractal type-I fracton phases with fluctu-
ating ground-state degeneracy.
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III. 2D CELLULAR TOPOLOGICAL STATES
AS COUPLED-WIRE MODELS

Before proceeding to the construction of 3D models, we
here revisit the coupled-wire construction of 2D topological
orders [69,70] in light of cellular topological states. There
are three steps to find a coupled-wire Hamiltonian from a
2D cellular topological state: (i) We first construct a cellular
topological state from an array of thin strips of 2D topological
orders by coupling them via gapped interfaces, which may
be written in terms of gapless edge modes of neighboring
strips (Sec. III A). (ii) By adding extra bosonic or fermionic
quantum wires at each interface, we construct a coupled-edge
model for the cellular topological state, in which the coupling
between the edge modes from neighboring strips are medi-
ated by the additional quantum wires (Sec. III B). (iii) By
shrinking and removing the strips of 2D topological orders,
the added quantum wires between neighboring interfaces are
directly coupled, yielding the coupled-wire Hamiltonian for
the desired cellular topological state (Sec. III C).

When gapped interfaces are trivial in the sense that pairs of
a quasiparticle and its antipartner are condensed, we obtain the
conventional coupled-wire models for 2D topological orders,
which are exemplified for the 2D toric code and the Laughlin
states (Sec. III D). On the other hand, if we choose non-
trivial gapped interfaces, the resulting coupled-wire models
exhibit translation-symmetry-enriched topological order with
ground-state degeneracy depending on the number of wires
[81,124], which are illustrated for the 2D toric code, doubled
semion model, and doubled U (1)5 model (Sec. III E).

A. 2D cellular topological state

For a 2D Abelian topological order described by an N0 ×
N0 matrix K0, we consider the following cut-and-glue proce-
dure: We first cut the topological order placed in the xy plane
apart into thin strips aligned along the x axis [see Figs. 4(a)
and 4(b)]. Supposing that the strips are wide enough that the
hybridization between two edges is negligible compared with
the bulk gap, each strip will possess gapless modes on its
right and left edges, which are described by the Hamiltonian
(12) corresponding to the matrices K0 and −K0, respectively.
Quasiparticles created on a strip can move freely along the
strip but not across strips. In order for quasiparticles to move
from one strip to another, a quasiparticle λl ∈ ZN0 from the left
strip should be paired up with a quasiparticle λr ∈ ZN0 from
the right strip and then condensed together at the interface.
The corresponding gapped interface is described by the K
matrix

Ke =
(

K0

−K0

)
, (56)

and the Lagrangian subgroup L = {(λl,λr)T }. If all strips are
connected by trivial interfaces at which quasiparticles are al-
ways paired with their antipartners, i.e., for λl = −λr ≡ λ, the
whole system behaves as a single topological order K0 with
the same topological properties as the original one. This may
be seen as a trivial 2D cellular topological state built out of the
strips of 2D topological orders and their gapped interfaces, as
schematically shown in Fig. 4(c).

FIG. 4. (a) A 2D topological order placed in the xy plane has
gapless modes described by K0 and −K0 at the right and left edges,
respectively. (b) The 2D topological order is cut apart along the x axis
into thin strips of the topological orders, each of which hosts gapless
edge modes φ l

y+1,a and φr
y,a on its right and left edges, respectively.

(c) Tunneling terms cos �e
y,a open a gap for the edge modes and

induce the condensation of pairs of quasiparticles (λ, −λ)T between
neighboring strips. (d) The action of string operators on the ground
state creates pairs of quasiparticles associated with λ and −λ, which
are marked by filled and empty crosses, respectively. Two quasi-
particles enclosed by a circle in the middle of the string are pair
annihilated.

In order to verify the above argument, we now explic-
itly construct the Hamiltonian for a trivial gapped interface
L = {(λ,−λ)T | λ ∈ ZN0}. Let φl

y = (φ l
y,1, . . . , φ

l
y,N0

)T be an
N0-component bosonic fields describing the right edge modes
of the left strip with respect to the yth interface and φr

y =
(φr

y,1, . . . , φ
r
y,N0

)T be an N0-component bosonic field describ-
ing the left edge mode of the right strip. We then collectively
denote them as φe

y = (φl
y,φ

r
y)T . They satisfy the commutation

relations[
∂xφ

e
y,α (x), φe

y′,β (x′)
] = 2π iδy,y′

(
K−1

e

)
αβ

δ(x − x′). (57)

The system is then described by the Hamiltonian for the
gapless edge modes,

He = ve

4π

∫
dx

∑
y∈Z

2N0∑
α,β=1

∂xφ
e
y,α∂xφ

e
y,β , (58)

and the Hamiltonian for tunneling between the edges,

Ve = −ge

∫
dx

∑
y∈Z

N0∑
a=1

cos �e
y,a, (59)

�e
y,a(x) = (

K0φ
l
y(x) − K0φ

r
y(x)

)
a
. (60)

Here, we have assumed that the velocity ve and the
coupling constant ge are uniform for simplicity, but
this assumption is not necessary. The tunneling Hamilto-
nian (59) corresponds to the gapping potential given in
Eq. (19) with 2N0-dimensional integer vectors (�a)β =
δa,β + δN0+a,β . This obviously satisfies Eq. (20) and Eq. (23)
for (ma)β = δa,β − δN0+a,β with Bab = | det K0|(K−1

0 )ab and
ca = | det K0|. Since M = {ma} generates the desired La-
grangian subgroup L = {(λ,−λ)T | λ ∈ ZN0}, pairs of λ

and −λ are condensed at each interface by the tun-
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neling Hamiltonian (59). Such pairs of quasiparticle
excitations can be created over consecutive strips between y0

and y1 by acting a string of vertex operators,

Se
y0;y1,λ

(x) =
y1−1∏
y=y0

exp
[
iλ · (

φr
y(x) − φl

y+1(x)
)]

, (61)

on the ground state. From the commutation relations in
Eq. (57), each factor of the string operator creates kinks at
x for the arguments of the cosine terms �e

y,a and �e
y+1,a in

Eq. (59), where their ground-state expectation values jump
by 2πλa and −2πλa, respectively. These kinks are canceled
at interfaces for y ∈ (y0, y1), while pairs of kinks are left at
the outermost interfaces y0 and y1; the latter kinks are thus
regarded as a pair of quasiparticles λ and −λ, as schemati-
cally shown in Fig. 4(d). We can also consider another string
operator

Se
y,λ(x0; x1) = exp

[
iλ ·

∫ x1

x0

dx ∂xφ
l
y(x)

]
, (62)

which creates a pair of λ at x1 and −λ at x0 along the yth
interface [see Fig. 4(d)]. We note that replacing φ l

y,a with φr
y,a

in Eq. (62) yields a string operator with the same role. We
can read off the statistics between two quasiparticle excita-
tions λ and λ′ by these string operators: When the system
is placed on an Lx × Ly torus, two string operators Se

1;Ly,λ
(x)

and Se
y,λ′ (0; Lx ), which wind noncontractible cycles of the

torus along the x and y axes, respectively, commute with the
Hamiltonian and obey the algebra

Se
y,λ(0; Lx )Se

1;Ly,λ
′ (x) = eiθλ,λ′ Se

1;Ly,λ
′ (x)Se

y,λ(0; Lx ), (63)

where θλ,λ′ = 2πλT K−1
0 λ′ and is precisely the mutual statis-

tics between λ and λ′ of the original topological order K0.
This also implies the ground-state degeneracy | det K0| on the
2D torus, which corresponds to the minimal dimension of
representations for this algebra.

B. 2D coupled-edge model

Although the above model exhibits the same topological
properties as those described by K0, it does not immediately
tell us how the model is built out of microscopic degrees of
freedom, since the edge Hamiltonian cannot be regarded as a
purely 1D lattice system for a nontrivial K0. In addition, the
tunneling Hamiltonian involving only edge modes, as given
in Eq. (59), does not always exist for general gapped inter-
faces L = {(λl,λr)T } with λl 	= −λr. In order to connect 2D
cellular topological states with “microscopic” models made
of purely 1D bosonic or fermionic wires and to deal with gen-
eral gapped interfaces, we utilize a redundant description of
gapped interfaces, as discussed in Sec. II B, with an extended
K matrix of the form

Kew = Ke ⊕ Kw =
(

Ke
Kw

)
, (64)

where Ke is the 2N0 × 2N0 matrix defined in Eq. (56). For a
bosonic gapped interface, the 2N0 × 2N0 matrix Kw is given

FIG. 5. (a) Each interface hosts the original gapless edge modes
φe

y,α from neighboring strips and extra bosonic or fermionic modes
φw

y,α from additional quantum wires, which are gapped by tunneling
terms cos �ew

y,α . (b) String operator along the y axis is constructed
from the original one by supplementing extra vertex operators from
the quantum wires. That along the x axis is written solely in terms of
bosonic fields of the quantum wires.

by

Kw = X ⊕N0 =

⎛⎜⎝X
. . .

X

⎞⎟⎠, (65)

corresponding to the addition of N0 bosonic wires at each
interface. For a fermionic gapped interface, it is given by

Kw = Z⊕N0 =

⎛⎜⎝Z
. . .

Z

⎞⎟⎠, (66)

corresponding to the addition of N0 fermionic wires. Includ-
ing these additional quantum wires, the Hamiltonian for the
gapless interface modes is given by

Hew = vew

4π

∫
dx

∑
y∈Z

4N0∑
I,J=1

∂xφ
ew
y,I ∂xφ

ew
y,J , (67)

where φew
y = (φe

y ,φ
w
y )T and φw

y = (φw
y,1, . . . , φ

w
y,2N0

)T rep-
resents a 2N0-component bosonic field added at the yth
interface. These bosonic fields obey the commutation rela-
tions[

∂xφ
ew
y,I (x), φew

y′,J (x′)
] = 2π iδy,y′

(
K−1

ew

)
IJδ(x − x′), (68)

with the extended K matrix given in Eq. (64). This system is
schematically shown in Fig. 5(a). For a general Lagrangian
subgroup L, a tunneling Hamiltonian involving the additional
quantum wires can be constructed by following the prescrip-
tion given in Sec. II B 1 for the bosonic case or in Sec. II B 2
for the fermionic case. It generally takes the form of Eq. (40),

Vew = −gew

∫
dx

∑
y∈Z

2N0∑
α=1

cos �ew
y,α, (69)

�ew
y,α (x) = �̃

T
α Kewφew

y (x), (70)

where �̃α are 4N0-dimensional integer vectors. As discussed
in Appendix A, these integer vectors can be chosen to take the
form (

�̃1 · · · �̃2N0

) =
(

I2N0


w

)
, (71)
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with the 2N0 × 2N0 identity matrix I2N0 and a 2N0 × 2N0 inte-
ger matrix 
w, each of which acts only on the bosonic fields
for edge or wire modes from the block-diagonal structure of
Kew. This ensures that the primitivity condition is satisfied for
the set of integer vectors {�̃I}, and Eq. (39) implies that

�T
w,αKw�w,β = −(Ke)αβ, (72)

where �w,α is the αth column of 
w. We thus find

�ew
y,a = (

K0φ
l
y

)
a
+ �T

w,aKwφw
y , (73a)

�ew
y,N0+a = −(

K0φ
r
y

)
a + �T

w,N0+aKwφw
y , (73b)

for a = 1, . . . , N0. Therefore, at each interface, the edge
modes of the left strip are not directly coupled with those
of the right strip, but they are mediated by the additional
quantum wires.

As this tunneling Hamiltonian just gives a redundant
description of the trivial gapped interface considered in
Sec. III A with L = {(λ,−λ)T | λ ∈ ZN0}, the model is ex-
pected to retain the same topological properties as those
described by K0. We can explicitly construct a string operator
that creates a pair of quasiparticle excitations λ and −λ sepa-
rated by the distance |y1 − y0| along the y axis [see Fig. 5(b)],

Sew
y0;y1,λ

(x) =
y1−1∏
y=y0

exp
[
iλ · (

φr
y(x) − φl

y+1(x)
) + ipλ · φw

y (x)
]
,

(74)

where pλ is a 2N0-dimensional integer vector satisfying

�w,a · pλ = λa, (75a)

�w,N0+a · pλ = −λa, (75b)

for a = 1, . . . , N0. Compared with Eq. (61), the first term in
the exponent of each exponential factor of Eq. (74) creates
kinks of 2πλa and −2πλa in �ew

y,N0+a and �ew
y+1,a, respectively.

They are now canceled by antikinks created by the additional
factor exp(ipλ · φw

y ) from the condition (75), except for those
of �ew

y0,a and �ew
y1,a. The latter two kinks are regarded as a

pair of quasiparticle excitations created at the y0th and y1th
interfaces, respectively. The string operator defined in Eq. (62)
still creates a pair of quasiparticles along the yth interface in
the present case. However, we can write it solely in terms
of the bosonic fields of the additional quantum wires, for
example, as

Sew
y,λ(x0; x1) = exp

[
−iqλ ·

∫ x1

x0

dx ∂xφ
w
y (x)

]
, (76)

where qλ is the 2N0-dimensional vector defined by

qλ =
N0∑

a,b=1

(
K−1

0

)
abλbKw�w,a. (77)

This string operator creates two kinks of 2πλa at x1 and
−2πλa at x0 in �ew

y,a. On an Lx × Ly torus, the two string oper-
ators Sew

1;Ly,λ
(x) and Sew

y,λ′ (0; Lx ) commute with the Hamiltonian
and obey the same algebra as Eq. (63),

Sew
y,λ(0; Lx )Sew

1;Ly,λ
′ (x) = eiθλ,λ′ Sew

1;Ly,λ
′ (x)Sew

y,λ(0; Lx ). (78)

FIG. 6. (a) After shrinking and removing the strips of the topo-
logical orders, we end up with a model only with purely 1D gapless
quantum wires described by φw

y,α , which are gapped by tunneling
terms cos �w

y+1/2,a. (b) The action of string operators in the coupled-
wire model for trivial gapped interfaces with L = {(λ, −λ)T }.

Hence, we have confirmed that the model with additional
quantum wires still exhibits the topological properties de-
scribed by K0.

C. 2D coupled-wire models

At the last step, we consider a process of shrinking and
removing the strips of 2D topological orders with leaving
only the quantum wires added to each interface, as shown
in Fig. 6(a). With this process, the quantum wires between
neighboring interfaces will directly interact with each other.
After removing the edge modes associated with each strip, we
are left with the Hamiltonian for the gapless quantum wires,

Hw = vw

4π

∫
dx

∑
y∈Z

2N0∑
α,β=1

∂xφ
w
y,α∂xφ

w
y,β , (79)

where φw
y = (φw

y,1, . . . , φ
w
y,2N0

)T is the 2N0-component bosonic
field for the yth wire. They satisfy the commutation relations[

∂xφ
w
y,α (x), φw

y′,β (x′)
] = 2π iδy,y′ (Kw)αβδ(x − x′), (80)

where Kw is given in Eq. (65) for the bosonic case and in
Eq. (66) for the fermionic case and we have used K−1

w = Kw.
The bosonic fields of quantum wires that were coupled with
the right strip at the yth interface in the tunneling Hamiltonian
(69) now interact with those coupled with the left strip at the
(y + 1)th interface, yielding the tunneling Hamiltonian with
only the quantum wires,

Vw = −gw

∫
dx

∑
y∈Z

N0∑
a=1

cos �w
y+1/2,a, (81)

�w
y+1/2,a = �w

y,N0+a + �w
y+1,a, (82)

where we have defined

�w
y,α = �T

w,αKwφw
y , (83)

and �w,α are the integer vectors introduced in Eq. (71).
This shrinking process can also be considered as follows.
Very thin strips will naturally have quasiparticle tunnel-
ings, −gqp cos(φr

y,a − φ l
y+1,a), connecting their edge modes.

In the strong-coupling limit gqp → ∞, the bosonic fields from
the edge modes are pinned at the cosine minima so that
φr

y,a − φ l
y+1,a = 2πny,a with ny,a ∈ Z. In this limit, individual

bosonic fields φl
y and φr

y are strongly fluctuating and thus the
tunneling terms cos �ew

y,α in Vew have vanishing expectation
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values. However, second-order perturbations in Vew generate
terms of the form cos(�ew

y+1,a + �ew
y,N0+a), which contain the

fluctuating fields in the pinned combination φr
y,a − φ l

y+1,a;
these second-order terms yield the tunneling terms in Vw.

We thus end up with the Hamiltonian written solely in
terms of the bosonic fields of the added quantum wires that
can be realized as the low-energy limit of purely 1D bosonic
or fermionic lattice systems. In this sense, the resulting Hamil-
tonian has a microscopic origin. From Eq. (72), it is easy
to verify that any pair of two cosine terms in Vw commute
with each other. Thus, the tunneling Hamiltonian can open a
gap for all quantum wires when the system is placed on the
torus. On the other hand, when the system has boundaries at
y = 1 and y = Ly, there are unpaired gapless modes �w

1,a and
�w

Ly,N0+a. Since these bosonic fields satisfy the commutation
relations,[

∂x�
w
y,α (x),�w

y′,β (x′)
] = −2π iδy,y′ (Ke)αβδ(x − x′), (84)

they can be identified with the edge modes of the orig-
inal topological order described by K0. We note that in
terms of these bosonic fields, operators creating local par-
ticle excitations are given by vertex operators exp(i�w

y,α ),
which only contain integer multiples of φw

y,α . On the other
hand, operators creating anyon excitations are given by
exp[i

∑
β (K−1

e )αβ�w
y,β], which contain fractions of φw

y,α and
cannot be regarded as local operators.

For the trivial gapped interface L = {(λ,−λ)T | λ ∈ ZN0},
pairs of bulk quasiparticles associated with λ and −λ are
created by the string operators [see Fig. 6(b)],

Sw
y0;y1,λ

(x) =
y1−1∏
y=y0

exp
[
ipλ · φw

y (x)
]
, (85)

Sw
y,λ(x0; x1) = exp

[
−iqλ ·

∫ x1

x0

dx ∂xφ
w
y (x)

]
, (86)

with pλ and qλ defined in Eqs. (75) and (77), respectively.
Here, each factor in the string operator (85) creates kinks of
2πλa and −2πλa in the link fields �w

y−1/2,a and �w
y+1/2,a,

respectively. When the system is placed on the torus, these
string operators obey the algebra

Sw
y,λ(0; Lx )Sw

1;Ly,λ
′ (x) = eiθλ,λ′ Sw

1;Ly,λ
′ (x)Sw

y,λ(0; Lx ). (87)

This case of the trivial gapped interface is reduced to the
coupled-wire construction of 2D Abelian topological orders
developed in Refs. [69,70]. In particular, each factor appear-
ing in the string operator (85) is typically constructed from
local “backscattering” operators in a system conserving both
particle number and momentum.

For a general gapped interface with L = {(λl,λr)T }, λl and
λr are not necessarily a quasiparticle and its antipartner. In
this case, a pair of quasiparticles l = (λl,λr)T ∈ L is created
from an interface by acting a local vertex operator exp(ipl ·
φw

y ) with an integer vector pl satisfying

�w,a · pl = λl
a, (88a)

�w,N0+a · pl = λr
a. (88b)

The string operator along the y axis, which has been defined
for λl = −λr in Eq. (85), must be modified such that kinks
inside the region (y0, y1) are properly canceled. On the other

hand, the string operators along the x axis remain unchanged
so that they create a pair of quasiparticles λ and −λ. This
affects the algebra obeyed by the string operators and thereby
the statistics of quasiparticles and the ground-state degeneracy
on a torus.

D. 2D models from trivial gapped interfaces

In this subsection, we provide several examples of the
coupled-wire Hamiltonians obtained by the above procedure
from 2D cellular topological states with the trivial gapped
interface L = {(λ,−λ)T | λ ∈ ZN0}. We specifically consider
the 2D toric code and U (1)k topological orders.

1. 2D toric code

We start with an array of strips of the 2D toric codes, whose
interface hosts gapless edge modes φe

y = (φe
y,1, . . . , φ

e
y,4)T

corresponding to the K matrix

Ke =

⎛⎜⎜⎝
0 2
2 0

0 −2
−2 0

⎞⎟⎟⎠. (89)

We then consider a gapped interface at which pairs of quasi-
particles (e, e), (m, m), and ( f , f ) from neighboring strips
are condensed. The corresponding Lagrangian subgroup is
generated by M = {ma} with

m1 = (1, 0, 1, 0)T ,

m2 = (0, 1, 0, 1)T . (90)

Here, we note that e, m, and f are their own antiparticles in the
toric code: two integer vectors (1, 0, 0, 0)T and (−1, 0, 0, 0)T

associated with an e excitation, say, are related by addition or
subtraction of the local bosonic excitation (2, 0, 0, 0)T . Such
integer vectors, however, should be distinguished when we
construct string operators commuting with the Hamiltonian
[this requirement has been encoded in Eq. (75)]. While it is
easy to write down the tunneling Hamiltonian only with the
edge modes, we instead consider a redundant one by adding
two bosonic wires at each interface. We thus introduce four
extra bosonic fields φw

y = (φw
y,1, . . . , φ

w
y,4)T and the extended

K matrix Kew = Ke ⊕ Kw with Kw = X ⊕ X as defined in
Eq. (65). Following the algorithm of Sec. II B 1 with the
choice of matrices,

U =

⎛⎜⎜⎜⎝
1 0 −1 0
0 1 0 −1
1 0 1 0
0 1 0 1

⎞⎟⎟⎟⎠, W =

⎛⎜⎜⎜⎝
−1 0 0 0
0 −1 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎟⎠,

(91)

we find a set of four-dimensional integer vectors {�w,α},
�w,1 = (0, 1,−1, 0)T ,

�w,2 = (−1, 0, 0, 1)T ,

�w,3 = (0, 1, 1, 0)T ,

�w,4 = (1, 0, 0, 1)T . (92)
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Substituting this into Eq. (81) yields the desired tunneling
terms for a coupled-wire model of the 2D toric code [70,84].
For comparison with microscopic bosonic degrees of free-
dom, it might be helpful to write the bosonic fields for
quantum wires as φw

y = (2θ1
y , ϕ1

y , 2θ2
y , ϕ2

y )T and relate θσ
y and

ϕσ
y with density and current fluctuations, respectively, of the

σ th component of bosons in the yth wire. By imposing the
commutation relations[

θσ
y (x), ϕσ ′

y′ (x′)
] = iπδσ,σ ′δy,y′�(x − x′),[

θσ
y (x), θσ ′

y′ (x′)
] = [ϕσ

y (x), ϕσ ′
y′ (x′)] = 0,

(93)

with �(x) being the Heaviside step function, the bosonic
fields φw

y satisfy the required commutation relations in
Eq. (80). We can then identify exp(−iϕσ

y ) as a boson creation
operator and exp(2iθσ

y ) as a backscattering operator of the
wave number 2kF [150]. The tunneling Hamiltonian is written
as

Vw = −g
∫

dx
∑
y∈Z

[
cos

(
ϕ1

y + 2θ2
y − ϕ1

y+1 + 2θ2
y+1

)
+ cos

(
ϕ2

y + 2θ1
y − ϕ2

y+1 + 2θ1
y+1

)]
. (94)

This will be a natural coupled-wire Hamiltonian for the 2D
toric code in a system of two-component bosons with particle-
number conservation for each component [84].

A pair of quasiparticles (λ,−λ)T in neighboring links can
be created by the vertex operator exp(ipλ · φw

y ) with an integer
vector pλ satisfying Eq. (75). We find pλe

= (0, 0,−1, 0)T for
the e excitation λe = (1, 0)T and pλm

= (−1, 0, 0, 0)T for the
m excitation λm = (0, 1)T . We thus find string operators,

Sw
y0,y1;λe

(x) =
y1=1∏
y=y0

exp
[−2iθ2

y (x)
]
, (95a)

Sw
y0,y1;λm

(x) =
y1=1∏
y=y0

exp
[−2iθ1

y (x)
]
, (95b)

Sw
y,λe

(x0; x1) = exp

[
i

2

∫ x1

x0

dx ∂x
(
ϕ1

y − 2θ2
y

)]
, (95c)

Sw
y,λm

(x0; x1) = exp

[
i

2

∫ x1

x0

dx ∂x
(
ϕ2

y − 2θ1
y

)]
. (95d)

When these string operators wind nontrivial cycles of the
2D torus, they constitute logical operators acting on the 22-
dimensional space of degenerate ground states.

2. U (1)k topological orders

We start with an array of strips of the ν = 1/k Laughlin
states or U (1)k topological orders, whose interface hosts gap-
less edge modes φe

y = (φe
y,1, φ

e
y,2)T corresponding to the K

matrix

Ke =
(

k
−k

)
. (96)

We consider a gapped interface at which pairs of quasipar-
ticles (λ,−λ)T with λ = 1, 2, . . . , k − 1 are condensed. The
corresponding Lagrangian subgroup is generated by

m1 = (1,−1)T . (97)

Let us treat the bosonic and fermionic cases separately. For
the bosonic case, since k is even, we set k = 2κ with integer κ .
We introduce two extra bosonic fields φw

y = (φw
y,1, φ

w
y,2)T and

the extended K matrix Kew = Ke ⊕ Kw with Kw = X . Follow-
ing the algorithm in Sec. II B 1 with the choice of matrices,

U =
(

1 κ

−1 κ

)
, W =

(
1 0
0 1

)
, (98)

we find a set of two-dimensional integer vectors {�w,α},
�w,1 = (κ,−1)T ,

�w,2 = (κ, 1)T . (99)

Similarly to the previous case for the 2D toric code, we write
φw

y = (ϕy, 2θy)T and relate θy and ϕy with the density and cur-
rent fluctuations, respectively, of a single-component bosonic
wire. They will satisfy the commutation relations

[θy(x), ϕy′ (x′)] = iπδy,y′�(x − x′),

[θy(x), θy′ (x′)] = [ϕy(x), ϕy′ (x′)] = 0. (100)

By substituting these expressions in Eq. (81), we obtain the
tunneling Hamiltonian

Vw = −g
∫

dx
∑
y∈Z

cos(ϕy + 2κθy − ϕy+1 + 2κθy+1), (101)

which reproduces the coupled-wire Hamiltonian proposed for
the bosonic Laughlin states [70]. String operators associated
with a pair of excitations (λ1,−λ1)T = (1,−1)T can be con-
structed as

Sw
y0;y1,λ1

(x) =
y1−1∏
y=y0

exp[−2iθy(x)], (102a)

Sw
y,λ1

(x0; x1) = exp

[
− i

2κ

∫ x1

x0

dx ∂x(ϕy − 2κθy)

]
. (102b)

Here, each factor of Eq. (102a) is a backscattering operator
of the wave number −2πρ̄ with ρ̄ being the average density
of bosons. When these operators are defined on a torus, they
nontrivially act on the 2κ-dimensional space of degenerate
ground states.

For the fermionic case, we set k = 2κ + 1 with integer κ .
We then consider the extended K matrix Kew = Ke ⊕ Kw with
Kw = Z . Following the algorithm in Sec. II B 2 with the choice
of matrices,

U =
(

1 κ

−1 κ + 1

)
, W =

(−1 0
−1 −1

)
, (103)

we arrive at a set of integer vectors {�w,α},
�w,1 = (κ, 1 + κ )T ,

�w,2 = (κ + 1, κ )T . (104)

We then write φw
y = (φy,R, φy,L )T where φy,R and φy,L corre-

spond to right- and left-moving fermionic modes of the yth

043108-16



BRIDGING THREE-DIMENSIONAL COUPLED-WIRE … PHYSICAL REVIEW RESEARCH 5, 043108 (2023)

quantum wire, obeying the commutation relations

[φy,R(x), φy′,R(x′)] = iπδy,y′sgn(x − x′) + iπsgn(y − y′),

[φy,L(x), φy′,L(x′)] = −iπδy,y′sgn(x − x′) + iπsgn(y − y′),

[φy,R(x), φy′,L(x′)] = iπδy,y′ + iπsgn(y − y′), (105)

where sgn(x) is the sign function and sgn(0) = 0. These re-
lations ensure Eq. (80) and also that any pair of fermionic
operators exp(iφy,R) and exp(iφy,L ) anticommute with each
other. We then obtain the tunneling Hamiltonian

Vw = −g
∫

dx
∑
y∈Z

cos[(κ + 1)φy,R − κφy,L

+ κφy+1,R − (κ + 1)φy+1,L], (106)

which reproduces the coupled-wire Hamiltonian proposed for
the fermionic Laughlin states [69,70]. String operators can be
constructed as

Sw
y0;y1,λ1

(x) =
y1−1∏
y=y0

exp[−i(φy,R(x) − φy,L(x))], (107a)

Sw
y,λ1

(x0; x1) = exp

[
− i

2κ + 1

∫ x1

x0

dx ∂x((κ + 1)φy,R

− κφy,L )
]
, (107b)

which nontrivially act on the (2κ + 1)-dimensional space of
degenerate ground states when they are defined on a torus.
Each factor of Eq. (107a) is a backscattering operator of the
wave number −2kF with kF being the Fermi momentum of
the 1D quantum wire.

E. 2D models with nontrivial gapped interfaces

We here provide 2D coupled-wire models correspond-
ing to 2D cellular topological states with nontrivial gapped
interfaces. These models are based on the 2D toric code, dou-
bled semion model, and doubled U (1)5 model. The resulting
coupled-wire models exhibit the ground-state degeneracy on a
torus depending on the number of wires and might be regarded
as translation-symmetry-enriched topological orders as dis-
cussed in Refs. [81,124]. We note that these models could
also be characterized by non-Abelian zero modes localized at
dislocations [151].

1. Toric code with e ↔ f interface

We start again with an array of strips of the 2D toric codes,
whose interface hosts gapless edge modes corresponding to
the K matrix (89). We here consider a gapped interface at
which pairs of e and f excitations between neighboring strips
are condensed. In other words, an e excitation from one strip
is converted to an f excitation in the other strip through
the interface and vice versa. The corresponding Lagrangian
subgroup is generated by M = {ma} with

m1 = (1, 0, 1, 1)T ,

m2 = (1, 1, 1, 0)T . (108)

As the bound objects of e and f are fermionic quasiparticles,
this is an example of fermionic gapped interface, whose gap-
ping potential can be constructed by adding extra fermionic
wires at the interface. We thus consider the extended K matrix
Kew = Ke ⊕ Kw with Kw = Z ⊕ Z . Following the algorithm
in Sec. II B 2 with the choice of matrices,

U =

⎛⎜⎜⎜⎝
0 1 0 −1

1 0 −1 0

0 1 0 1

1 1 1 −1

⎞⎟⎟⎟⎠, W =

⎛⎜⎜⎜⎝
0 0 −1 0

−1 0 0 −1

1 0 0 0

0 1 −1 0

⎞⎟⎟⎟⎠,

(109)

we find a set of integer vectors {�w,α},
�w,1 = (−1, 1, 1, 1)T ,

�w,2 = (1, 1, 0, 0)T ,

�w,3 = (1, 1, 1,−1)T ,

�w,4 = (0, 0, 1, 1)T . (110)

We then write φw
y = (φ1

y,R, φ1
y,L, φ2

y,R, φ2
y,L )T where φσ

y,R and
φσ

y,L correspond to right- and left-moving modes of the σ th
component of fermions in the yth wire. The anticommutation
relations between any pair of fermion operators exp(iφσ

y,R) and
exp(iφσ

y,L ) are ensured by the commutation relations for the
bosonic fields,[

φσ
y,R(x), φσ ′

y′,R(x′)
] = iπδy,y′δσ,σ ′sgn(x − x′)

+ iπδy,y′sgn(σ − σ ′) + iπsgn(y − y′),[
φσ

y,L(x), φσ ′
y′,L(x′)

] = −iπδy,y′δσ,σ ′sgn(x − x′)

+ iπδy,y′sgn(σ − σ ′) + iπsgn(y − y′),[
φσ

y,R(x), φσ ′
y′,L(x′)

] = iπδy,y′δσ,σ ′ + iπδy,y′sgn(σ − σ ′)

+ iπsgn(y − y′). (111)

For this two-component fermion system, we find the tunneling
Hamiltonian

Vw = −g
∫

dx
∑
y∈Z

[
cos

(
φ1

y,R − φ1
y,L + φ2

y,R + φ2
y,L

− φ1
y+1,R − φ1

y+1,L + φ2
y+1,R − φ2

y+1,L

)
+ cos

(
φ2

y,R − φ2
y,L + φ1

y+1,R − φ1
y+1,L

)]
. (112)

While this coupled-wire Hamiltonian is fully gapped and
translation invariant, its ground-state degeneracy on a torus
depends on the system size due to its nature of excitations.
A pair of quasiparticles l = (λ,λ′)T is created by the vertex
operator exp(ipl · φw

y ) with an integer vector pl satisfying
Eq. (88). For instance, we may find p(λe,λ f )T = (0, 0, 1, 0)T

and p(λ f ,λe )T = (0, 1, 0, 0)T where λe = (1, 0)T and λ f =
(1, 1)T . The associated string operator is constructed by al-
ternatively multiplying these (λe,λ f )-pair and (λ f ,λe)-pair
creation/annihilation operators along the y axis; if we create
a pair of kinks associated with e on the (y − 1/2)th link and
f on the (y + 1/2)th link, we must create a pair of antikinks
associated with f on the (y + 1/2)th link and e on (y + 3/2)th
link, and so on.

043108-17



YOHEI FUJI AND AKIRA FURUSAKI PHYSICAL REVIEW RESEARCH 5, 043108 (2023)

FIG. 7. String operators for the coupled-wire model based on
the 2D toric codes with the e ↔ f interfaces. (a) On a torus with
even Ly, alternating excitations of e- f and f -e pairs lead to two
string operators along the y axis. (b) On a torus with odd Ly, such
alternating excitations wind the torus twice and lead to one string
operator creating m-m pairs.

On a torus with even Ly, we can construct two independent
string operators along the y axis,

Sw
1;Ly,s1

(x) =
Ly/2∏
j=1

exp
[
i
(
φ2

2 j−1,R(x) − φ1
2 j,L (x)

)]
, (113a)

Sw
1;Ly,s2

(x) =
Ly/2∏
j=1

exp
[
i
(
φ1

2 j−1,L (x) − φ2
2 j,R(x)

)]
, (113b)

which are associated with the string of excitations

s1 = {(λe,λ f ),−(λ f ,λe), (λe,λ f ), · · · ,−(λ f ,λe)}, (114a)

s2 = {(λ f ,λe),−(λe,λ f ), (λ f ,λe), · · · ,−(λe,λ f )}. (114b)

We can also find string operators along the x axis,

Sw
y,λe

(0; Lx ) = exp

[
− i

2

∫ Lx

0
dx ∂x

(
φ1

y,R(x) − φ1
y,L(x)

)
]
,

(115)

which create a pair of e excitations, move one of them around
a cycle of the torus along the yth wire, and annihilate them
in pair. These string operators are schematically presented
in Fig. 7(a). The string operators Sw

1;Ly,s1
(x) and Sw

2 j,λe
(0; Lx )

form an anticommuting pair and Sw
1;Ly,s2

(x) and Sw
2 j−1,λe

(0; Lx )
form another anticommuting pair, but any other combinations
commute with each other. Thus, the ground-state degeneracy
on a torus with even Ly is four.

On the other hand, a string of excitations of alternating
(λe,λ f ) and (−λ f ,−λe) must wind a cycle along the y axis
twice on a torus with odd Ly in order to cancel kinks on
all links as shown in Fig. 7(b). Since λe − λ f = −λm, this
process is equivalent to move m excitations along the cycle
and is represented by the string operator

Sw
1;Ly,s3

(x) =
Ly∏

y=1

exp
[−i

(
φ1

y,L(x) − φ2
y,R(x)

)]
, (116)

which is associated with the string of excitations

s3 = {(−λm,λm), (−λm,λm), . . . , (−λm,λm)}. (117)

String operators along the x axis remain the same as Eq. (115).
Since there is only one independent string operator along the y
axis, we have only one anticommuting pair of string operators,
which leads to the ground-state degeneracy of two on a torus
with odd Ly.

To summarize, we find

GSD =
{

22 (Ly ∈ 2Z)

2 (Ly ∈ 2Z + 1)
. (118)

As inferred from the properties of the string operators, we will
have three quasiparticles in this coupled-wire model, whose
properties are inherited from the 2D toric code: two of them
fuse to the other and have the mutual statistics of π . However,
their self statistics are obscured: As our system consists of
fermionic quantum wires, the bosonic and fermionic statistics
can be interchanged by adding local fermionic excitations.

2. Doubled semion model with 1 ↔ 1̄ interface

We here provide another unconventional coupled-wire
model starting with an array of strips of the doubled semion
models, each of which is a stack of the U (1)2 topological
order and its antichiral counterpart U (1)2. Each interface hosts
four gapless edge modes φe

y = (φe
y,1, . . . , φ

e
y,4)T correspond-

ing to the K matrix

Ke =

⎛⎜⎜⎜⎜⎝
2

−2

−2

2

⎞⎟⎟⎟⎟⎠. (119)

Since the semion 1 and its antichiral counterpart 1̄, whose cor-
responding integer vectors are given by λ1 = (1, 0)T and λ1̄ =
(0, 1)T , are their own antiparticles, a conventional coupled-
wire model for the doubled semion model is obtained by
condensing pairs of two 1’s or two 1̄’s at each interface.
However, we here consider a gapped interface at which pairs
of 1 and 1̄ from neighboring strips are condensed. The cor-
responding Lagrangian subgroup is generated by M = {ma}
with

m1 = (1, 0, 0, 1)T ,

m2 = (0, 1, 1, 0)T . (120)

These bound pairs of semions have the statistical spins s =
±1/2 and thus are fermionic quasiparticles. Hence, in order to
explicitly construct a gapping potential, we need to add extra
fermionic wires at each interface and to consider the extended
K matrix Kew = Ke ⊕ Kw with Kw = Z ⊕ Z . Following the
algorithm presented in Sec. II B 2 with the choice of matrices,

U =

⎛⎜⎜⎜⎜⎝
1 0 0 −1

0 1 −1 0

0 1 1 0

1 0 0 1

⎞⎟⎟⎟⎟⎠, W =

⎛⎜⎜⎜⎜⎝
0 −1 0 0

0 0 0 −1

0 0 −1 0

1 0 0 0

⎞⎟⎟⎟⎟⎠,

(121)
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we find a set of integer vectors {�w,α},
�w,1 = (0, 1, 0, 1)T ,

�w,2 = (−1, 0, 1, 0)T ,

�w,3 = (1, 0, 1, 0)T ,

�w,4 = (0, 1, 0,−1)T . (122)

As in Sec. III E 1, we introduce bosonic fields φw
y =

(φ1
y,R, φ1

y,L, φ2
y,R, φ2

y,L )T corresponding to two-component
fermionic wires, which satisfy the commutation relations in
Eq. (111). We then find the tunneling Hamiltonian

Vw = −g
∫

dx
∑
y∈Z

[
cos

(
φ1

y,R + φ2
y,R − φ1

y+1,L − φ2
y+1,L

)
+ cos

(
φ1

y,L − φ2
y,L − φ1

y+1,R + φ2
y+1,R

)]
. (123)

As in the previous case, this Hamiltonian is translation
invariant, but its ground-state degeneracy on a torus depends
on the parity of the linear size Ly. We can create kinks cor-
responding to a (λ1,λ1̄)-pair excitation on neighboring links
by the vertex operator exp(ip · φw

y ) with p = (0, 1, 0, 0)T and
a (λ1̄,λ1)-pair excitation with p = (0, 0, 1, 0)T . In order to
construct a string operator along the y axis, the two vertex op-
erators associated with (λ1,λ1̄) and (λ1̄,λ1) excitations must
be alternately multiplied such that semion or antichiral semion
excitations are pair annihilated in the bulk of the string. We
thus find two independent string operators on a torus with even
Ly,

Sw
1;Ly,s1

(x) =
Ly/2∏
j=1

exp
[
i
(
φ1

2 j−1,L (x) − φ2
2 j,R(x)

)]
, (124a)

Sw
1;Ly,s2

(x) =
Ly/2∏
j=1

exp
[
i
(
φ2

2 j−1,R(x) − φ1
2 j,L (x)

)]
, (124b)

which create the string of excitations,

s1 = {(λ1,λ1̄),−(λ1̄,λ1), (λ1,λ1̄), . . . ,−(λ1̄,λ1)}, (125a)

s2 = {(λ1̄,λ1),−(λ1,λ1̄), (λ1̄,λ1), . . . ,−(λ1,λ1̄)}, (125b)

as schematically shown in Fig. 8(a). On the other hand, such
a string of excitations winds twice a cycle along the y axis on
a torus with odd Ly, resulting in creating a string of bosonic
anyon excitations λ11̄ = (1,−1)T , which are bound states of
semions and antichiral semions in the doubled semion model.
This leads to one independent string operator [see Fig. 8(b)],

Sw
1;Ly,s3

(x) =
Ly∏

y=1

exp
[
i
(
φ1

y,L − φ2
y,R

)]
, (126)

with

s3 = {(λ11̄,−λ11̄), (λ11̄,−λ11̄), . . . , (λ11̄,−λ11̄)}. (127)

For both cases, we can construct string operators along the x
axis,

Sw
y,λ1

(0; Lx ) = exp

[
i

2

∫ Lx

0
dx ∂x

(
φ1

y,L(x) + φ2
y,L(x)

)
]
, (128)

FIG. 8. String operators for the coupled-wire model based on the
doubled semion with 1 ↔ 1̄ interfaces. (a) On a torus with even
Ly, alternating excitations of 1-1̄ and 1̄-1 pairs lead to two string
operators along the y axis. (b) On a torus with odd Ly, such alternat-
ing excitations wind the torus twice and lead to one string operator
creating pairs of bosonic quasiparticles 11̄.

which is associated with semion excitations λ1 = (1, 0)T .
Reflecting the quasiparticle statistics of constituent dou-
bled semion models, two pairs of the string operators
{Sw

1;Ly,s1
(x), Sw

2 j−1,λ1
(0; Lx )} and {Sw

1;Ly,s2
(x), Sw

2 j,λ1
(0; Lx )} form

anticommuting pairs, leading to a fourfold degenerate ground
state on a torus with even Ly. On the other hand, there is only
one anticommuting pair {Sw

1;Ly,s3
(x), Sw

y,λ1
(0; Lx )} on a torus

with odd Ly, leading to a twofold degenerate ground state. To
summarize, we find

GSD =
{

22 (Ly ∈ 2Z)
2 (Ly ∈ 2Z + 1)

. (129)

It is interesting to note that in this coupled-wire model,
single local fermion excitations created by eiφσ

y,R/L are directly
fractionalized into two semion excitations, whereas in the
conventional U (1)2 or doubled semion topological orders,
local bosonic excitations are fractionalized into two semion
excitations. Similar excitation properties can also be found in
the 3D fermionic coupled-wire model with semionic planon
excitations constructed in Sec. IV A 1.

3. Doubled U (1)5 model with 1 ↔ 2̄ interface

We consider a coupled-wire model starting with an array
of strips made of stacks of the U (1)5 and U (1)5 topolog-
ical orders. Each interface hosts gapless edge modes φe

y =
(φe

y,1, . . . , φ
e
y,4)T corresponding to the K matrix

Ke =

⎛⎜⎜⎝
5

−5
−5

5

⎞⎟⎟⎠. (130)

We then consider a gapped interface at which pairs of 1 and 2̄
or 1̄ and 2 between neighboring strips are condensed. The cor-
responding Lagrangian subgroup is generated by M = {ma}
with

m1 = (1, 0, 0, 2)T ,

m2 = (0, 1, 2, 0)T ,
(131)

which have s = ±1/2 and thus are fermionic quasiparticles.
In order to explicitly construct a gapping potential, we need
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to add two extra fermionic wires at each interface and to
consider the extended K matrix Kew = Ke ⊕ Kw with Kw =
Z ⊕ Z . Following the algorithm presented in Sec. II B 2 with
the choice of matrices,

U =

⎛⎜⎜⎜⎝
1 0 0 −2

0 1 −2 0

0 2 1 0

2 0 0 1

⎞⎟⎟⎟⎠, W =

⎛⎜⎜⎜⎝
1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

⎞⎟⎟⎟⎠,

(132)

we find a set of integer vectors {�w,α},
�w,1 = (0,−1, 0, 2)T ,

�w,2 = (2, 0,−1, 0)T ,

�w,3 = (−1, 0,−2, 0)T ,

�w,4 = (0,−2, 0,−1)T . (133)

As in Sec. III E 1, we introduce bosonic fields φw
y =

(φ1
y,R, φ1

y,L, φ2
y,R, φ2

y,L )T corresponding to two-component
fermionic wires, which satisfy the commutation relations in
Eq. (111). We then find the tunneling Hamiltonian

Vw = −g
∫

dx
∑
y∈Z

[
cos

(
φ1

y,R + 2φ2
y,R + φ1

y+1,L − 2φ2
y+1,L

)
+ cos

(
2φ1

y,L + φ2
y,L − 2φ1

y+1,R + φ2
y+1,R

)]
. (134)

This Hamiltonian is translation invariant, but its ground-
state degeneracy on a torus depends on the linear size Ly. To
see this, let us consider a string operator along the y axis,
which nontrivially acts on the manifold of degenerate ground
states. In order for excitations created by such an operator to
cancel with each other, they must form a string with a pattern
of the periodicity four, say,

s1 = {l1, l2,−l1,−l2, l1, l2,−l1,−l2, · · · }, (135)

where the excitation l1 = (1, 0, 0, 2)T and l2 = (0,−2, 1, 0)T

can be created by the vertex operator exp(ip · φw
y ) with p =

(0,−1, 0, 0)T and (−1, 0, 0, 0)T , respectively. Another string
operator creates excitations with the same pattern but shifted
by one wire,

s2 = {−l2, l1, l2,−l1,−l2, l1, l2,−l1, · · · }. (136)

A string of excitations obtained by further shifting s2 by one
wire is equivalent to 4s1 up to local fermionic excitations. We
thus find two independent string operators along the y axis for
Ly ∈ 4Z,

Sw
1;Ly,s1

(x) =
Ly/4∏
j=1

exp
[
i
(−φ1

4 j−3,L(x) − φ1
4 j−2,R(x)

+φ1
4 j−1,L (x) + φ1

4 j,R(x)
)]

, (137a)

Sw
1;Ly,s2

(x) =
Ly/4∏
j=1

exp
[
i
(
φ1

4 j−3,R(x) − φ1
4 j−2,L(x)

−φ1
4 j−1,R(x) + φ1

4 j,L(x)
)]

. (137b)

FIG. 9. String operators for the coupled-wire model based on the
doubled U (1)5 topological orders with 1 ↔ 2̄ interfaces. (a) On a
torus with Ly ∈ 4Z, a string of 1-2̄, 3̄-1, 4-3̄, and 2̄-4 pairs lead to
two independent string operators along the y axis. (b) On a torus with
Ly ∈ 4Z + 3, the string winds the torus four times such that quasi-
particles are completely canceled up to local fermionic excitations
5 and 5̄.

For both string operators, we can construct string operators
along the x axis,

Sw
y,λ1

(0; Lx ) = exp

[
i

5

∫ Lx

0
dx ∂x

(
φ1

y,L(x) − 2φ2
y,L(x)

)
]
,

(138)

which is associated with s = 1/10 quasiparticle excita-
tions λ1 = (1, 0)T . These string operators are illustrated in
Fig. 9(a). They obey the algebra

Sw
1;Ly,s1

(x)Sw
4 j−3,λ1

(0; Lx ) = e2π i/5Sw
4 j−3,λ1

(0; Lx )Sw
1;Ly,s1

(x),

(139a)

Sw
1;Ly,s2

(x)Sw
4 j−2,λ1

(0; Lx ) = e2π i/5Sw
4 j−2,λ1

(0; Lx )Sw
1;Ly,s2

(x),

(139b)

leading to the ground-state degeneracy 52 on a torus with
Ly ∈ 4Z. On the other hand, on a torus with Ly /∈ 4Z, a string
of excitations must wind several times a cycle along the y
axis to completely cancel excitations, as shown in Fig. 9(b).
The corresponding string operator becomes trivial up to local
fermionic excitations and thus leads to the unique ground
state. To summarize, we find

GSD =
{

52 (Ly ∈ 4Z)

1 (Ly /∈ 4Z)
. (140)

IV. 3D CELLULAR TOPOLOGICAL STATES
AS COUPLED-WIRE MODELS

The construction of coupled-wire models starting from 2D
cellular topological states in the previous section is readily
extended to three dimensions. We now consider a 3D array of
thin strips extended along the x axis, as schematically shown
in Fig. 10(a). For simplicity, we suppose that the strips form
a square grid when projected onto the yz plane. We place the
same 2D Abelian topological order described by an N0 × N0

matrix K0 on each strip in both xy and xz planes in order to
maintain translation invariance. Let us specify an interface
between four strips by the 2D coordinates r = (y, z) ∈ Z2 in
the yz plane. At the interface r, we have 4N0 bosonic fields
φe

r = (φl
r,φ

b
r ,φ

r
r,φ

t
r)T , where each of φl

r, φb
r , φr

r, and φt
r is an
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FIG. 10. (a) 3D cellular topological state consisting of thin strips
of 2D topological orders K0 along the x axis. (b) Projection of the
cellular topological state onto the yz plane forms a square grid.

N0-component vector of bosonic fields associated with edge
modes of the left, bottom, right, and top strips, respectively,
surrounding the interface r, as shown in Fig. 10(b). We collec-
tively denote these bosonic fields as φe

r = (φe
r,1, . . . , φ

e
r,4N0

)T .
They obey the commutation relations[

∂xφ
e
r,α (x), φe

r′,β (x′)
] = 2π iδr,r′

(
K−1

e

)
αβ

δ(x − x′), (141)

where Ke is the 4N0 × 4N0 matrix defined by

Ke =

⎛⎜⎜⎝
K0

K0

−K0

−K0

⎞⎟⎟⎠. (142)

Here, we have assumed that each strip in the xy plane has right
and left edge modes described by K0 and −K0, respectively,
and each strip in the xz plane has top and bottom edge modes
described by K0 and −K0, respectively. The Hamiltonian for
these gapless edge modes is described by

He = ve

4π

∫
dx

∑
r∈Z2

4N0∑
α,β=1

∂xφ
e
r,α∂xφ

e
r,β . (143)

We then place a gapped interface corresponding to the
Lagrangian subgroup L at each interface r. As discussed in
Sec. II B, there are some gapped interfaces whose gapping po-
tential cannot be constructed with the associated edge modes
alone. This is in particular the case for gapped interfaces that
lead to nontrivial bulk quasiparticle properties beyond those
for simple stacks of 2D topological orders. In such a case,
we can still explicitly construct a gapping potential by adding
extra 2N0 bosonic or fermionic wires, depending on whether
the corresponding gapped interface is bosonic or fermionic,
as schematically shown in Fig. 11(a). Let us introduce 4N0

bosonic fields φw
r = (φw

r,1, . . . , φ
w
r,4N0

)T associated with extra
2N0 quantum wires, which satisfy the commutation relations[

∂xφ
w
r,α (x), φw

r′,β (x′)
] = 2π iδr,r′ (Kw)αβδ(x − x′), (144)

where Kw = X ⊕2N0 for bosonic gapped interfaces and Kw =
Z⊕2N0 for fermionic ones. We note that K−1

w = Kw. We thus
consider the Hamiltonian for gapless bosonic fields

Hew = vew

4π

∫
dx

∑
r∈Z2

8N0∑
I,J=1

∂xφ
ew
r,I ∂xφ

ew
r,J , (145)

FIG. 11. (a) Nontrivial gapped interface can be obtained by cou-
pling the bosonic fields φw

r from extra quantum wires with the
bosonic fields φe

r from the edge modes. (b) After removing the strips
of 2D topological orders, we obtain a coupled-wire model for the 3D
cellular topological state.

where φew
r = (φe

r ,φ
w
r )T . One can then find a gapping potential

Vew = −gew

∫
dx

∑
r∈Z2

4N0∑
α=1

cos
(
�̃

T
α Kewφew

r (x)
)
, (146)

where �̃α are 8N0-dimensional integer vectors and

Kew = Ke ⊕ Kw =
(

Ke
Kw

)
. (147)

Furthermore, as discussed in Sec. II C and detailed in Ap-
pendix A, one can always find a set of integer vectors {�̃α}
in the form (

�̃1 · · · �̃4N0

) =
(

I4N0


w

)
, (148)

where 
w is a 4N0 × 4N0 integer matrix. We can thus rewrite
Eq. (146) as

Vew = −gew

∫
dx

∑
r∈Z2

N0∑
a=1

(
cos �ew,l

r,a + cos �ew,b
r,a

+ cos �ew,r
r,a + cos �ew,t

r,a

)
, (149)

where we have defined

�ew,l
r,a = (

K0φ
l
r

)
a + �w

r,a,

�ew,b
r,a = (

K0φ
b
r

)
a + �w

r,N0+a,

�ew,r
r,a = −(

K0φ
r
r

)
a
+ �w

r,2N0+a,

�ew,t
r,a = −(

K0φ
t
r

)
a + �w

r,3N0+a,

(150)

and

�w
r,α = �T

w,αKwφw
r , (151)

and �w,α is the αth column of 
w.
The Hamiltonian Hew + Vew defined by Eqs. (145) and

(149) provides a coupled-edge model for 3D cellular topo-
logical states built out of thin strips of 2D topological orders
K0 and their gapped interface L in terms of the gapless edge
modes and extra quantum wires. However, as seen from the
construction of 2D cellular topological states in Sec. III, this
Hamiltonian is not yet minimal. As shown in Fig. 11(b), we
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can further shrink and remove the strips of 2D topological
orders to obtain the Hamiltonian only with purely 1D quantum
wires,

Hw = vw

4π

∫
dx

∑
r∈Z2

4N0∑
α,β=1

∂xφ
w
r,α∂xφ

w
r,β , (152)

Vw = −gw

∫
dx

∑
r∈Z2

N0∑
a=1

(
cos �w

r+ey/2,a + cos �w
r+ez/2,a

)
,

(153)

where we have defined ey = (1, 0), ez = (0, 1), and

�w
r+ey/2,a = �w

r,2N0+a + �w
r+ey,a,

�w
r+ez/2,a = �w

r,3N0+a + �w
r+ez,N0+a. (154)

Hence, the quantum wires added at each interface are now
directly coupled with each other between neighboring in-
terfaces. This shrinking process can also be understood
within perturbation theory as in the 2D case. Very thin
strips have quasiparticle tunnelings, −gqp cos(φr

r,a − φ l
r+ey,a)

and −gqp cos(φt
r,a − φb

r+ez,a), connecting their edge modes.
In the strong-coupling limit gqp → ∞, the bosonic fields
from the edge modes are pinned at the cosine minima so
that φr

r,a − φ l
r+ey,a = 2πnr,a and φt

r,a − φb
r+ez,a = 2πmr,a with

nr,a, mr,a ∈ Z. In this limit, individual bosonic fields φl
r, φb

r ,
φr

r, and φt
r are strongly fluctuating and thus the tunneling

terms in Vew have vanishing expectation values. However,
second-order perturbations in Vew generate terms of the form
cos(�ew,l

r+ey,a + �ew,r
r,a ) or cos(�ew,b

r+ez,a + �ew,t
r,a ), which contain

the fluctuating fields in the pinned combination φr
r,a − φ l

r+ey,a

or φt
r,a − φb

r+ez,a; these second-order terms yield the tunneling
terms in Vw.

When we consider a system with boundaries in the y or z
directions, some unpaired gapless modes �w

r,α are left at the
boundaries. They satisfy the commutation relations[

∂x�
w
r,α (x),�w

r′,β (x′)
] = −2π iδr,r′ (Ke)αβδ(x − x′), (155)

and thus inherit properties of the edge states for the con-
stituent topological order K0. In contrast to the 2D case, even
though K0 is chiral, these surface modes might be gapped
by short-range interactions between wires, depending on how
the surface is terminated. In the present case for the square
grid, a surface termination parallel to the [010], [001], or
[011] plane yields multiple gapless modes �w

r.α with the same
chirality, which can never be gapped. On the other hand, a
surface termination parallel to the [011̄] plane gives multiple
gapless modes with opposite chiralities, which can potentially
be gapped by local interactions.

Quasiparticle excitations created by local operators in the
yz plane are associated with condensed anyons l in the La-
grangian subgroup, i.e., l = (λl,λb,λr,λt)T ∈ L, where λl,
λb, λr, and λt are N-dimensional integer vectors representing
individual anyons in the left, bottom, right, and top strips,
respectively, surrounding an interface. As in the case of 2D
cellular topological states, kinks 2πλl

a, 2πλb
a , 2πλr

a, and 2πλt
a

in the link fields �w
r−ey/2,a, �w

r−ez/2,a, �w
r+ey/2,a, and �w

r+ez/2,a,
respectively, can be regarded as quasiparticle excitations in
our coupled-wire model. They can be created by acting a

FIG. 12. (a) Quasiparticle excitations in the yz plane associated
with l = (λl, λb,λr, λt)T are created by a local operator exp[ipl ·
φw

r (x)]. (b) Pairs of lineons λ and −λ along the x axis are created
by the string operators Sw,l

r,λ(x0; x1) and Sw,b
r,λ (x0; x1).

vertex operator exp[ipl · φw
r (x)] on the ground state, where pl

is a 4N0-dimensional integer vector satisfying

�w,a · pl = λl
a,

�w,N+a · pl = λb
a,

�w,2N+a · pl = λr
a,

�w,3N+a · pl = λt
a. (156)

These quasiparticle excitations are illustrated in Fig. 12(a).
We can also prove that kinks created by a local operator
exp[ip · φw

r (x)] correspond to some condensed quasiparticle
in the Lagrangian subgroup, i.e., l ∈ L, for any integer vector
p. On the other hand, quasiparticles along the x axis can
always be created in pair on each strip. On a strip in the xy
plane, a pair of λ at x1 and −λ at x0, which corresponds to a
pair of kinks 2πλa and −2πλa in the link field �w

r−ey/2,a, can
be created by the string operator

Sw,l
r,λ(x0; x1) = exp

[
−iql

λ ·
∫ x1

x0

dx ∂xφ
w
r (x)

]
, (157)

where ql
λ is a 4N0-dimensional integer vector given by

ql
λ =

N0∑
a,b=1

(
K−1

0

)
ab

λbKw�w,a. (158)

Similarly, on a strip in the xz plane, a pair of λ and −λ

corresponding to a pair of kinks in the link field �w
r−ez/2,a can

be created by the string operator

Sw,b
r,λ (x0; x1) = exp

[
−iqb

λ ·
∫ x1

x0

dx ∂xφ
w
r (x)

]
, (159)

where qb
λ is a 4N0-dimensional integer vector

qb
λ =

N0∑
a,b=1

(
K−1

0

)
abλbKw�w,N+a. (160)

These excitations along strips are illustrated in Fig. 12(b).
In the context of fracton phases, the string operators (157)

and (159) along the x axis imply the existence of lineon
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excitations. As evident from the construction of 3D cellu-
lar topological states, this is a consequence of the original
quasiparticles freely moving along the thin strips of 2D topo-
logical orders. In contrast, the mobility of quasiparticles in
the yz plane is more intricate and depends on the choice of
gapped interfaces. If the corresponding Lagrangian subgroup
L contains pairs of quasiparticles between two strips, that
is, l = (λl,λb,λr,λt)T ∈ L in which two of λ’s are zero but
the other two are nonzero, there will be point-like excitations
transferred within the yz plane by successively pair-creating
and pair-annihilating excitations l along a certain path. Such
a path will be deformable in the yz plane if pairs of quasi-
particles can be created between arbitrary two strips, whereas
it will be undeformable if pairs are allowed only between two
fixed strips. In combination with the lineon nature of quasipar-
ticles along the x axis, a point-like quasiparticle moving along
deformable paths in the yz plane implies a point-like quasi-
particle fully mobile in the 3D space, while that moving along
undeformable paths implies a planon mobile only within a 2D
plane.

When l = (λl,λb,λr,λt)T ∈ L contains three or four
nonzero λ’s and cannot be decomposed into more elementary
pair excitations, the nature of quasiparticles becomes more
complex. At a single interface, an elementary excitation as-
sociated with such l takes the form of a tiny loop. However,
when combined with the same or other quasiparticles l ′ ∈ L
created on neighboring interfaces, excitations on the whole
will behave in various ways; they may be viewed as loop-like
excitations fully mobile and deformable in the yz plane, dipole
or multipole excitations moving along undeformable paths,
few point-like excitations living at the boundary of fractal-like
geometric objects, and so on.

In the case that the Lagrangian subgroup L contains a
pair of quasiparticles, we have possibilities to find cellular
topological states for foliated type-I fracton order, TQFT-type
topological order, or their hybrid. We construct coupled-wire
models for foliated type-I fracton order with only planons
in Sec. IV A and for that with lineons, which can behave as
planons by fusion or by forming a dipole, in Sec. IV B. In
both cases, there are quasiparticles whose motion in the yz
plane is restricted along undeformable 1D paths. When there
are quasiparticles moving along deformable 1D paths in the
yz plane, we can have TQFT-type topological order, for which
3D loop-like excitations also emerge in addition to 3D point-
like excitations. We construct the corresponding coupled-wire
models in Sec. IV C. In Sec. IV D, we also provide coupled-
wire models for hybrid of TQFT-type topological order and
foliated type-I fracton order, in which not only 3D point-like
excitations but also planons have nontrivial braiding statistics
with 3D loop-like excitations. All these models are con-
structed from cellular topological states on the square grid,
but we find that some of them can also be constructed on
the honeycomb grid with preserving quasiparticle properties
by employing the conformal embedding structure of gapped
interfaces, which is discussed in detail in Appendix C.

Some Lagrangian subgroup L does not admit any pairs of
quasiparticles but only multiplets of them. This is a necessary
condition for the absence of point-like excitations moving
along a 1D path in the yz plane. Through the classification
of gapped interfaces (see the SM [123]), we found that four

U (1)7 topological orders and six U (1)3 topological orders ad-
mit such gapped interfaces with no condensed pairs. We then
construct coupled-wire models from 3D cellular topological
states on the square or triangular grid with those interfaces
in Sec. IV E. Although we do not have a rigorous proof, we
argue that these coupled-wire models do not have mobile
point-like excitations in the yz plane. By examining the nature
of quasiparticles and computing the ground-state degeneracy
on a torus, we conclude that these models are sorts of the
fractal type-I fracton models with lineon excitations.

We remark that many of nontrivial gapped interfaces used
for constructing the coupled-wire models in the present and
previous sections have been found through the comprehensive
classification of gapped interfaces between U (1)k topological
orders, which is summarized in the SM [123]. In the SM
[123], we have also numerically computed the ground-state
degeneracies of coupled-wire models, which are systemat-
ically constructed from U (1)k topological orders and their
gapped interfaces, on an Lx × L × L torus of the square and
triangular grids. In doing so, we have employed an ab ini-
tio approach that has been proposed in Refs. [152,153] and
applied to a 3D coupled-wire model in Ref. [110] for comput-
ing the degeneracy. The results coincide with those obtained
in this section in a heuristic way that requires explicit con-
struction of string and membrane operators commuting with
coupled-wire Hamiltonians.

A. Foliated type-I fracton models with only planons

We consider two models on the square grid: one con-
sists of thin strips of the U (1)2 topological orders and the
other consists of those of the U (1)6 topological orders.
The corresponding coupled-wire models exhibit fractional-
ized quasiparticles confined in a 2D plane, namely planons.
These models provide the simplest examples of the foliated
type-I fracton model with only planons, but they are not quite
trivial in the sense that they cannot be naively decomposed
into decoupled stacks of 2D topological orders as we will
explain.

1. Fermionic U (1)2 model

We consider a 3D cellular topological state built out of the
U (1)2 topological orders, each of which is described by the
1 × 1 K matrix K0 = 2. On the square grid, each interface
possesses four gapless edge modes φe

r = (φe
r,1, . . . , φ

e
r,4)T

corresponding to the K matrix

Ke =

⎛⎜⎜⎝
2

2
−2

−2

⎞⎟⎟⎠. (161)

We then consider a fermionic gapped interface obtained by
condensing pairs of semions with the same chirality, which
is the same gapped interface used to construct a 2D cel-
lular topological state from the doubled semion models in
Sec. III E 2. The corresponding Lagrangian subgroup is gen-
erated by M = {ma} with

m1 = (1, 1, 0, 0)T ,

m2 = (0, 0, 1, 1)T . (162)
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In order to construct a gapping potential, we add two extra
fermionic wires at each interface and consider the extended
K matrix Kew = Ke ⊕ Kw with Kw = Z ⊕ Z . Following the
algorithm presented in Sec. II B 2 with the choice of matrices,

U =

⎛⎜⎜⎜⎝
1 −1 0 0
1 1 0 0
0 0 1 −1
0 0 1 1

⎞⎟⎟⎟⎠, W =

⎛⎜⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎠,

(163)

we find a set of integer vectors {�w,α},
�w,1 = (0,−1, 0, 1)T ,

�w,2 = (0,−1, 0,−1)T ,

�w,3 = (−1, 0, 1, 0)T ,

�w,4 = (−1, 0,−1, 0)T . (164)

We introduce bosonic fields φw
r = (φ1

r,R, φ1
r,L, φ2

r,R, φ2
r,L )T cor-

responding to two-component fermionic wires, which satisfy
the commutation relations[

φσ
r,R(x), φσ ′

r′,R(x′)
] = iπδr,r′δσ,σ ′sgn(x − x′)

+ iπδr,r′sgn(σ − σ ′) + iπsgn(r − r′),[
φσ

r,L(x), φσ ′
r′,L(x′)

] = −iπδr,r′δσ,σ ′sgn(x − x′)

+ iπδr,r′sgn(σ − σ ′) + iπsgn(r − r′),[
φσ

r,R(x), φσ ′
r′,L(x′)

] = iπδr,r′δσ,σ ′ + iπδr,r′sgn(σ − σ ′)

+ iπsgn(r − r′), (165)

where we have defined

sgn(r − r′) ≡ δz,z′ sgn(y − y′) + sgn(z − z′) (166)

for r = (y, z) and r′ = (y′, z′). We then find the tunneling
Hamiltonian

Vw = −g
∫

dx
∑
r∈Z2

[cos(�−
r,R + �−

r+ey,L
)

+ cos(�+
r,R + �+

r+ez,L
)], (167)

where

�±
r,R = φ1

r,R ± φ2
r,R,

�±
r,L = φ1

r,L ± φ2
r,L. (168)

This is schematically shown in Fig. 13(a). We note that
if we regard two-component fermions are spinful electrons
ψ

↑
r,R/L ∝ exp(iφ1

r,R/L ) and ψ
↓
r,R/L ∝ exp(iφ2

r,R/L ), the opera-
tors exp(i�+

r,R/L ) and exp(i�−
r,R/L ) correspond to charge and

spin SU (2)1 currents, respectively, which naturally appear in
the non-Abelian bosonization of the 1D half-filled Hubbard
model [94]. Thus, the tunneling Hamiltonian (167) is entirely
written in terms of the SU (2)1 current-current interactions in
the array of spinful electron wires.

In this model, quasiparticle excitations are planons living in
the [011] plane. According to the Lagrangian subgroup gen-
erated by M, we can create a pair of semionic quasiparticles
with s = ±1/4 by acting a local operator at each interface:

FIG. 13. (a) Coupled-wire model for cellular topological states
built out of the U (1)2 topological orders with fermionic gapped inter-
faces on the square grid. (b) Elementary excitations created by local
operators in the fermionic U (1)2 model. (c) Semionic quasiparticle
1 can be transferred along the zigzag path (dashed line) in the yz
plane, which can be specified by a diagonal line � (red solid line). Red
circles represent quasiparticles that cost energy, while white circles
represent quasiparticles annihilated in pairs.

A vertex operator exp(ip · φw
r ) with p = (0, 0, 0, 1)T creates

an excitation l = (1,−1, 0, 0)T , which is a pair of semionic
quasiparticles on the left and bottom strips, whereas a ver-
tex operator with p = (0, 0,−1, 0)T creates an excitation
l = (0, 0, 1,−1)T , which is a pair of semionic quasiparticles
on the right and top strips. These elementary excitations are
illustrated in Fig. 13(b). By successively creating and anni-
hilating these quasiparticles between orthogonal strips in a
zigzag manner, we can transfer a semionic quasiparticle along
a diagonal line in the yz plane, as shown in Fig. 13(c). As
a single semionic quasiparticle can freely move along the x
axis, they behave as planons in the [011] plane.

On a torus with the linear sizes Lx × Ly × Lz, there are
gcd(Ly, Lz ) such planes. For each plane P, we can define a
pair of string operators: One is defined along the diagonal line
�, which is the projection of P onto the yz plane,

X [011]
P =

∏
r∈�

exp
[
i
(
φ2

r,L(x0) + φ2
r−ez,R(x0)

)]
, (169)

where x0 is arbitrary. The other is defined along the x axis on
the left strip with respect to some r� ∈ �,

Z [011]
P = exp

[
− i

2

∫ Lx

0
dx ∂x�

−
r�,L

(x)

]
. (170)

These string operators are illustrated in Fig. 14 for Ly = Lz =
4. Here, the symbols X and Z are used in analogy with the
Pauli algebra obeyed by these string operators,

Z [011]
P X [011]

P = −X [011]
P Z [011]

P . (171)

While the squares of X [011]
P or Z [011]

P are not the identity oper-
ators, they trivially act on the ground state and thus become
genuine Pauli operators in the subspace of degenerate ground
states. The above string operators on different planes are
independent from each other and form mutually commuting
pairs of the Pauli operators. They thus span the ground-state
manifold with degeneracy

GSD = 2gcd(Ly,Lz ). (172)
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FIG. 14. Four sets of the string operators in the [011] plane for
the fermionic U (1)2 model on a torus with Ly = Lz = 4.

Therefore, this model might seem as a trivial fracton
model, which is nothing but a decoupled stack of the 2D
U (1)2 topological orders in the [011] direction. However, the
model cannot be smoothly deformed into such a decoupled
stack since the U (1)2 topological orders are realized in a
bosonic system whereas our model is microscopically de-
scribed in terms of fermions. Indeed, local fermion excitations
ψσ

r,R/L ∝ exp(iφσ
r,R/L ) are directly fractionalized into semionic

quasiparticles in our model, in contrast to the standard U (1)2

topological order where only local bosonic excitations are
fractionalized into semions. In a spinful electron system, this
implies that a single electron excitation is fractionalized into
a (spinless) chargon and (charge neutral) spinon both with
semionic statistics. In this sense, the present model is not
considered as a simple decoupled stack of 2D topological
orders.

2. Fermionic U (1)6 model

We consider a 3D cellular topological state built out of the
U (1)6 topological orders, each of which is described by the
K matrix K0 = 6. On the square grid, each interface possesses
four gapless edge modes φe

r = (φe
r,1, . . . , φ

e
r,4)T correspond-

ing to the K matrix

Ke =

⎛⎜⎜⎝
6

6
−6

−6

⎞⎟⎟⎠. (173)

We then consider a gapped interface obtained by condensing
a set of quasiparticles generated by M = {ma} with

m1 = (1, 3, 2, 0)T ,

m2 = (0, 2, 3, 1)T . (174)

FIG. 15. (a) Elementary excitations created by local operators
in the fermionic U (1)6 model. (b) Semionic quasiparticle 3 can be
transferred along a diagonal line � in the yz plane. Quasiparticle 2 or
4 can be transferred along (c) the y axis or (d) the z axis.

Here, both m1 and m2 are fermionic quasiparticles with s =
±1/2. Therefore, the resulting gapped interface is fermionic.
In order to construct a gapping potential, we add two extra
fermionic wires at each interface and consider the extended K
matrix Kew = Ke ⊕ Kw with Kw = Z ⊕ Z . With the choice of
matrices,

U =

⎛⎜⎜⎝
−1 1 1 −1
−1 −1 1 1
1 −1 2 −2
1 1 2 2

⎞⎟⎟⎠,

(175)

W =

⎛⎜⎜⎝
−1 0 0 0
0 −1 0 0
1 0 −1 0
0 1 0 −1

⎞⎟⎟⎠,

we find a set of integer vectors {�w,α},
�w,1 = (1,−2,−1, 2)T ,

�w,2 = (1,−2, 1,−2)T ,

�w,3 = (2,−1,−2, 1)T ,

�w,4 = (2,−1, 2,−1)T . (176)

By introducing bosonic fields φw
r = (φ1

r,R, φ1
r,L, φ2

r,R, φ2
r,L )T

corresponding to two-component fermionic wires, which obey
the commutation relations in Eq. (165), we find the tunneling
Hamiltonian of the form (167) with

�±
r,R = 2φ1

r,R + φ1
r,L ± (

2φ2
r,R + φ2

r,L

)
,

�±
r,L = φ1

r,R + 2φ1
r,L ± (

φ2
r,R + 2φ2

r,L

)
. (177)

Elementary excitations are dictated by the subset M of
the Lagrangian subgroup and are shown in Fig. 15(a). There
are three types of planons living in the [010], [001], and
[011] planes. At each interface, we can create a pair of 3
quasiparticles, which have s = 3/4 and thus are semionic,
corresponding to l = (3,−3, 0, 0)T or (0, 0, 3,−3)T . As in
the U (1)2 model, they can be transferred along a diagonal
line in the yz plane by successively applying local oper-
ators exp(ip · φw

r ) with p = (0, 0, 1, 2)T or (0, 0,−2,−1)T

[see Fig. 15(b)]. Combined with the mobility along the x
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FIG. 16. Sets of string operators for the fermionic U (1)6 model
on a torus in (a) the [011] plane, (b) the [001] plane, and (c) the [010]
plane. (d) Lineon of 1 or 5 quasiparticle can be seen as a bound state
of planons in two intersecting planes.

axis, semionic quasiparticles become planon excitations in the
[011] plane. On an Lx × Ly × Lz torus, we have gcd(Ly, Lz )
such planes, for each of which we can define a pair of string
operators

X [011]
P =

∏
r∈�

exp
[
i
(
φ2

r,R(x0) + 2φ2
r,L(x0)

+ 2φ2
r−ez,R(x0) + φ2

r−ez,L(x0)
)]

, (178a)

Z [011]
P = exp

[
− i

2

∫ Lx

0
dx ∂x�

−
r�,L

(x)

]
, (178b)

where x0 is arbitrary, � is the projection of P onto the yz plane,
and r� is some r ∈ �. They are illustrated in Fig. 16(a). These
string operators obey the same algebra as in Eq. (171).

We can also create a pair of 2 and 4 quasiparticles, which
have s = 1/3 and −1/3, respectively, corresponding to l =
(2, 0,−2, 0)T . They can be transferred along the y axis by
successively applying local operators exp(ip · φw

r ) with p =
(−1,−1, 1, 1)T [see Fig. 15(c)]. In combination with a string
operator along the x axis, 2 or 4 quasiparticles behave as
planons in the [001] plane. For each plane labeled by z =
1, . . . , Lz, we find string operators,

X [001]
z =

Ly∏
y=1

exp
[−i

(
φ1

(y,z),R(x0) + φ1
(y,z),L(x0)

−φ2
(y,z),R(x0) − φ2

(y,z),L(x0)
)]

, (179a)

Z [001]
z = exp

[
− i

3

∫ Lx

0
dx ∂x�

−
(y0,z),L(x)

]
, (179b)

where the choice of x0 and y0 is arbitrary. They obey the
generalized Pauli algebra

Z [001]
z X [001]

z = e4π i/3X [001]
z Z [001]

z . (180)

This indicates that each [001] plane hosts a planon with the
same statistics as that of the U (1)3 topological order.

Similarly, a pair of quasiparticles corresponding to l =
(0, 2, 0,−2)T can be created between the top and bottom
strips with respect to each interface by a local operator
exp(ip · φw

r ) with p = (−1,−1,−1,−1)T . It leads to planon
excitations moving within the [010] plane [see Fig. 15(d)].
Labeling such a plane by y = 1, . . . , Ly, we find the associated
string operators,

X [010]
y =

Lz∏
z=1

exp
[−i

(
φ1

(y,z),R(x0) + φ1
(y,z),L(x0)

+φ2
(y,z),R(x0) + φ2

(y,z),L(x0)
)]

, (181a)

Z [010]
y = exp

[
− i

3

∫ Lx

0
dx ∂x�

+
(y,z0 ),L(x)

]
, (181b)

where the choice of x0 and z0 is arbitrary. They also obey the
generalized Pauli algebra

Z [010]
y X [010]

y = e4π i/3X [010]
y Z [010]

y . (182)

These string operators are independent from each other
and form mutually commuting pairs of the (generalized) Pauli
operators in the subspace of ground states. Therefore, they
span the ground-state manifold with degeneracy

GSD = 3Ly+Lz · 2gcd(Ly,Lz ). (183)

One may think that this model is made of decoupled stacks of
2D topological orders in the [011], [010], and [001] directions.
However, for the same reason as in the U (1)2 model, we
cannot decouple [011] layers with semionic planons since
our model is microscopically composed of fermions. In par-
ticular, a single fermion excitation ψσ

r,R/L ∝ exp(iφσ
r,R/L ) is

fractionalized into a pair of semionic quasiparticles and two
pairs of 2 and 4 quasiparticles. Lineon excitations moving on
horizontal strips along the x axis, which are originated from
1 quasiparticles with s = 1/12 in the U (1)6 topological order,
are understood as bound pairs of planons between intersect-
ing [011] and [001] planes as shown in Fig. 16(d), whereas
those moving on vertical strips are understood as bound pairs
between intersecting [011] and [010] planes.

We can also construct a bosonic version of the present
model based on a bosonic gapped interface. In that model,
2 and 4 quasiparticles are planons moving in the [001] and
[010] planes as in the present fermionic model. On the other
hand, semionic 3 excitations are planons in the [011̄] planes.
The explicit construction is presented in Appendix B 1.

B. Foliated type-I fracton model with lineons and planons

We here provide another type of foliated type-I fracton
order, which is more nontrivial than the previous models with
only planons. It exhibits both planon and lineon excitations.
Although lineon excitations by themselves only move along
the x axis, they become planons by fusion of two identical
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lineons or by forming a dipole, as observed in the X-cube
model [126] or anisotropic lineon-planon model [127].

1. Fermionic U (1)4 model

We consider a 3D cellular topological state built out of the
U (1)4 topological orders, each of which is described by the
K matrix K0 = 4. On the square grid, each interface possesses
four gapless edge modes corresponding to the K matrix

Ke =

⎛⎜⎜⎝
4

4
−4

−4

⎞⎟⎟⎠. (184)

We consider a gapped interface obtained by condensing a set
of quasiparticles generated by M = {ma} with

m1 = (1, 0, 3, 2)T ,

m2 = (0, 1, 2, 3)T ,
(185)

both of which are fermionic quasiparticles with s = −1/2.
Hence, the corresponding gapped interface is fermionic. In
order to construct a gapping potential, we add two extra
fermionic wires at each interface and consider the extended
K matrix Kew = Ke ⊕ Kw with Kw = Z ⊕ Z . With the choice
of matrices,

U =

⎛⎜⎜⎝
−1 −1 −1 −2
1 0 −1 −1

−1 1 −1 0
1 −2 −1 1

⎞⎟⎟⎠, W =

⎛⎜⎜⎝
1 0 0 0
1 0 0 1

−1 0 1 −1
0 1 −1 0

⎞⎟⎟⎠,

(186)

we find a set of integer vectors {�w,α},
�w,1 = (−1, 1, 0, 2)T ,

�w,2 = (0,−2,−1, 1)T ,

�w,3 = (1,−1,−2, 0)T ,

�w,4 = (2, 0, 1,−1)T . (187)

By introducing bosonic fields φw
r = (φ1

r,R, φ1
r,L, φ2

r,R, φ2
r,L )T

corresponding to two-component fermionic wires, which obey
the commutation relations in Eq. (165), we find the tunneling
Hamiltonian of the form (167) with

�+
r,R = 2φ1

r,R + φ2
r,R + φ2

r,L,

�−
r,R = φ1

r,R + φ1
r,L − 2φ2

r,R,

�+
r,L = 2φ1

r,L − φ2
r,R − φ2

r,L,

�−
r,L = −φ1

r,R − φ2
r,L − 2φ2

r,L. (188)

In this model, there are planon excitations in the [010]
and [001] planes and also planons made of dipoles of lineon
excitations moving in the same planes. The most elementary
excitations created by local operators take the form of triplets
of quasiparticles, such as l = (1, 0,−1, 2)T or (0, 1, 2,−1)T ,
as shown in Fig. 17(a). Fusion of two identical triplets leads to
a pair of 2 quasiparticles with s = ±1/2, which are given by
l = (2, 0,−2, 0)T or (0, 2, 0,−2)T up to local bosonic excita-
tions 4 and are created by exp(ip · φw

r ) with p = (0, 0, 1, 1)T

FIG. 17. (a) Elementary excitations created by local operators in
the fermionic U (1)4 model with lineons and planons. (b) Quasiparti-
cle 2 can be transferred along the y axis. Dipole of quasiparticles 1
or 3 can also be transferred along (c) the y axis or (d) the z axis.

or (−1,−1, 0, 0)T , respectively. By successively applying
these operators, we can transfer 2 quasiparticles along the
y or z axis [see Fig. 17(b)]. With the mobility along the x
axis, these quasiparticles become planons in the [001] or [010]
plane. On each [001] plane labeled by z = 1, . . . , Lz, we can
find a string operator moving a 2 planon along the y axis and
that moving a 1 lineon along the x axis,

X [001]
z =

Ly∏
y=1

exp
[
i
(
φ2

(y,z),R(x0) + φ2
(y,z),L(x0)

)]
, (189a)

Z [001]
z = exp

[
− i

4

∫ Lx

0
dx ∂x�

−
(y0,z),L(x)

]
, (189b)

for arbitrary x0 and y0 [see Fig. 18(a)], while on each [010]
plane labeled by y = 1, . . . , Ly, we have a string operator
moving a 2 planon along the z axis and that moving a 1 lineon
along the x axis,

X [010]
y =

Lz∏
z=1

exp
[−i

(
φ1

(y,z),R(x0) + φ1
(y,z),L(x0)

)]
, (190a)

Z [010]
y = exp

[
− i

4

∫ Lx

0
dx ∂x�

+
(y,z0 ),L(x)

]
, (190b)

for arbitrary x0 and z0 [see Fig. 18(b)]. These string operators
obey the Pauli algebra

Z [001]
z X [001]

z = −X [001]
z Z [001]

z , (191)

Z [010]
y X [010]

y = −X [010]
y Z [010]

y . (192)

Another type of planon is formed by dipoles of 1 or 3
quasiparticles with s = ±1/8. Let us consider two triplets of
quasiparticles l1 = (1, 0,−1, 2)T and l2 = (1,−2,−1, 0)T ,
which are created by local operators exp(ip · φw

r ) with p1 =
(1, 0, 1, 1)T and p2 = (0, 1, 0, 0)T , respectively. If we create
l1 at r and l2 at r + ez, 2 quasiparticles on the intermediate
vertical strip are pair annihilated, leaving dipoles of 1 or 3
quasiparticles at adjacent parallel strips along the y axis [see
Fig. 17(c)]. With the mobility along the x axis, these dipoles
coherently move in the [001] plane. However, a single 1 or
3 quasiparticle is still a lineon moving only along the x axis.
Therefore, we can construct two string operators associated
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FIG. 18. Sets of string operators for the fermionic U (1)4 model
with lineons and planons on a torus. They are associated with planons
in (a) the [001] plane and (b) the [010] plane and with dipole planons
in (c) the [001] plane and (d) the [010] plane.

with a 1-1 dipole along the y axis and a 1 lineon along the x
axis on each [001] plane,

X dp[001]
z =

Ly∏
y=1

exp
[
i
(
φ1

(y,z),R(x0) + φ2
(y,z),R(x0)

+φ2
(y,z),L (x0) + φ1

(y,z+1),R(x0)
)]

, (193a)

Zdp[001]
z = exp

[
− i

4

∫ Lx

0
dx ∂x�

−
(y0,z),L (x)

]
, (193b)

for arbitrary x0 and y0 [see Fig. 18(c)]. They obey the gener-
alized Pauli algebra

Zdp[001]
z X dp[001]

z = eπ i/2X dp[001]
z Zdp[001]

z . (194)

Similarly, we can construct a pair of 1-1 dipoles moving
along the z axis by binding l3 = (0, 1, 2,−1)T at r and l2 =
(−2, 1, 0,−1)T at r + ey [see Fig. 17(d)], which move in the
[010] plane when combined with the mobility along the x axis.
We can then find two string operators on each [010] plane,

X dp[010]
y =

Ly∏
y=1

exp
[−i

(
φ2

(y,z),R(x0) + φ1
(y+1,z),R(x0)

+φ1
(y+1,z),L (x0) + φ2

(y+1,z),L (x0)
)]

, (195a)

Zdp[010]
y = exp

[
− i

4

∫ Lx

0
dx ∂x�

+
(y,z0 ),L(x)

]
, (195b)

for arbitrary x0 and z0 [see Fig. 18(d)], which also obey the
generalized Pauli algebra

Zdp[010]
y X dp[010]

y = eπ i/2X dp[010]
y Zdp[010]

y . (196)

Here, we note that these string operators do not form mu-
tually commuting pairs of the (generalized) Pauli operators. It
is even impossible to choose them to form commuting pairs
by taking appropriate linear combinations because the string
operators defined within the yz plane are not independent
from each other. If we suppose that the string operators are
all independent and form commuting pairs, they could span
a Hilbert space of dimension 2Ly+Lz · 4Ly+Lz . However, this is
not the case and they are subject to the constraints(

X dp[001]
z

)2 ∼ X [001]
z X [001]

z+1 , (197a)(
X dp[010]

y

)2 ∼ X [010]
y X [010]

y+1 , (197b)

Lz∏
z=1

X dp[001]
z ∼

Lz∏
z=1

X [001]
z

Ly∏
y=1

X [010]
y , (197c)

Ly∏
y=1

X dp[010]
y ∼

Ly∏
y=1

X [010]
y

Lz∏
z=1

X [001]
z . (197d)

We note that these identifications are valid only in the
subspace of degenerate ground states and hold up to mul-
tiplications of operators creating or annihilating pairs of
local bosonic excitations 4, which trivially act on the ground
state. The first two constraints imply that two dipoles of 1
quasiparticles in the same plane fuse into two planons of 2
quasiparticles in the adjacent planes and reduce the dimen-
sion by factor of 2Ly+Lz . The last two constraints imply that
only Ly + Lz − 2 dipole string operators are independent and
further reduce the dimension by factor of 22. Overall, these
constraints reduce the dimension of the Hilbert space spanned
by the string operators by factor of 2Ly+Lz+2, leading to the
ground-state degeneracy

GSD = 22 · 4Ly+Lz−2. (198)

This violates a strict subextensivity of log GSD by a nega-
tive additive constant and proves that the present model is
a nontrivial foliated fracton model, which cannot be under-
stood as decoupled stacks of 2D topological orders. Fully
commuting pairs of the generalized Pauli operators spanning
the ground-state manifold are given, for example, by X dp[001]

z

and Zdp[001]
z with z = 1, . . . , Lz − 1, X dp[010]

y and Zdp[010]
y with

y = 1, . . . , Ly − 1, X [001]
Lz

and Z [001]
Lz

, and X [010]
Ly

and Z [010]
Ly

.
We can also construct a similar coupled-wire model from

a bosonic gapped interface between the U (1)8 topological
orders. In that model, one can also convert lineon excitations
into a planon in the [001] or [010] plane by fusing two of
them or by taking a dipole of them. The explicit construction
is presented in Appendix B 2.

C. TQFT-type model

We here provide 3D coupled-wire models for TQFT-type
topological orders, which can be viewed as 3D cellular topo-
logical states based on the U (1)4 or U (1)9 topological orders.
The former model provides a bosonic Z2 gauge theory with
a fermionic Z2 charge and a loop-like excitation with mutual
π statistics, whereas the latter provides a fermionic Z3 gauge
theory with a Z3 charge and a loop-like excitation with mu-
tual 2π/3 statistics. In both cases, the coupled-wire models
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possess the ground-state degeneracy growing with the number
of wires due to local loop excitations. We can then induce
the condensation of the local loop excitations by adding local
perturbations, which yield the desired TQFT-type topological
orders of 3D discrete gauge theories only with finite degener-
acy on a torus. Since the phenomenology of excitations in the
U (1)9 model is a natural extension of the U (1)4 model, we
leave detailed analysis for the U (1)9 model in Appendix B 3.

1. Bosonic U (1)4 model

We consider a 3D cellular topological state built out of the
U (1)4 topological orders, each of which is described by the
K matrix K0 = 4. On the square grid, each interface possesses
four gapless edge modes corresponding to the K matrix

Ke =

⎛⎜⎜⎝
4

4
−4

−4

⎞⎟⎟⎠. (199)

We consider a gapped interface obtained by condensing a set
of quasiparticles generated by M = {ma} with

m1 = (1, 1, 3, 3)T ,

m2 = (2, 2, 0, 0)T ,

m3 = (2, 0, 2, 0)T ,

(200)

which are all bosonic quasiparticles with s = −2, 1, and 0,
respectively. Hence, the corresponding gapped interface is
bosonic. In order to construct a gapping potential, we add
two extra bosonic wires at each interface and consider the
extended K matrix Kew = Ke ⊕ Kw with Kw = X ⊕ X . With
the choice of matrices,

U =

⎛⎜⎜⎝
1 −1 −1 1
1 1 −1 −1
1 −1 1 −1
1 1 1 1

⎞⎟⎟⎠, W =

⎛⎜⎜⎝
−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠,

(201)

we find a set of integer vectors {�w,α},
�w,1 = (−1, 1, 1,−1)T ,

�w,2 = (−1, 1,−1, 1)T ,

�w,3 = (1, 1,−1,−1)T ,

�w,4 = (1, 1, 1, 1)T . (202)

By introducing bosonic fields φw
r = (ϕ1

r , 2θ1
r , ϕ2

r , 2θ2
r )T cor-

responding to two-component bosonic wires, which obey the
commutation relations[

θσ
r (x), ϕσ ′

r′ (x′)
] = iπδr,r′δσ,σ ′�(x − x′), (203)[

θσ
r (x), θσ ′

r′ (x′)
] = [

ϕσ
r (x), ϕσ ′

r′ (x′)
] = 0. (204)

we find the tunneling Hamiltonian of the form (167) with

�±
r,R = ϕ1

r + 2θ1
r ± (

ϕ2
r + 2θ2

r

)
,

�±
r,L = ϕ1

r − 2θ1
r ± (

ϕ2
r − 2θ2

r

)
. (205)

FIG. 19. (a) Elementary excitations created by local operators in
the bosonic U (1)4 model. (b) Quasiparticles 1 and 3 form a loop-like
excitation in the yz plane, while (c) fermionic quasiparticles 2 can
freely move in the yz plane.

This model is actually a variant of the 3D coupled-
wire model considered in Ref. [110]. As demonstrated in
Ref. [110], it has a 3D point-like emergent fermion excita-
tion and a loop-like excitation with the mutual π statistics.
Elementary excitations created by local operators are given
by the subset M of the Lagrangian subgroup and are shown
in Fig. 19(a). One of them is l = (1, 1,−1,−1)T , which
creates 1 and 3 quasiparticles with s = 1/8 and −1/8, re-
spectively, over all strips surrounding the interface r. The
corresponding local operator is given by exp(ip · φw

r ) with
p = (−1, 0, 0, 0)T . While single 1 or 3 quasiparticles behave
as lineons along the x axis, they cannot move individually
in the yz plane. However, by acting these local operators
successively over a membrane in the yz plane, they can form
a loop-like excitation, which costs an energy proportional to
the length of the boundary of the membrane [see Fig. 19(b)].
When such a membrane fully covers a yz plane of an Lx ×
Ly × Lz torus, excitations are completely canceled and we
come back to the ground state. Correspondingly, we can define
a pair of a membrane operator in the yz plane and a rigid string
operator along the x axis,

X mem =
∏

r∈ZLy ×ZLz

exp
[−iϕ1

r (x0)
]
, (206a)

Zmem = exp

[
− i

4

∫ Lx

0
dx ∂x�

−
r0,L

(x)

]
, (206b)

where the choice of x0 and r0 is arbitrary. They are illustrated
in Fig. 20(a). They obey the generalized Pauli algebra

ZmemX mem = eπ i/2X memZmem. (207)

The other types of elementary excitations are pairs
of 2 quasiparticles, which have s = 1/2 and are thus
fermions, such as l = (2, 0,−2, 0)T and (2,−2, 0, 0)T . These
fermionic quasiparticles are created between arbitrary two
strips surrounding the interface r and are thus fully mobile
in the yz plane [see Fig. 19(c)]. With the mobility along the
x axis, they can move along an arbitrary 1D path in the 3D
space. We may then construct three kinds of string operators
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FIG. 20. Sets of membrane and string operators for the bosonic
U (1)4 model on a torus. They are associated with (a) loop-like
excitations of quasiparticles 1 and 3 in the yz plane and fermionic
point-like excitations of quasiparticles 2 in (b) the [001] plane and
(c) the [010] plane and (d) along plaquette loops.

defined in the [001] and [010] planes and on square plaquettes.
On each [001] plane labeled by z = 1, . . . , Lz, we find a string
operator moving a fermionic quasiparticle along the y axis and
that moving a 1 lineon along the x axis,

X [001]
z =

Ly∏
y=1

exp
[−i

(
ϕ1

(y,z)(x0) − ϕ2
(y,z)(x0)

)]
, (208a)

Z [001]
z = exp

[
− i

4

∫ Lx

0
dx ∂x�

−
(y0,z),L (x)

]
, (208b)

for arbitrary x0 and y0 [see Fig. 20(b)]. On each [010] plane
labeled by y = 1, . . . , Ly, we find a string operator moving a
fermionic quasiparticle along the z axis and that moving a 1
lineon along the x axis,

X [010]
y =

Lz∏
z=1

exp
[−i

(
ϕ1

(y,z)(x0) + ϕ2
(y,z)(x0)

)]
, (209a)

Z [010]
y = exp

[
− i

4

∫ Lx

0
dx ∂x�

+
(y,z0 ),L(x)

]
, (209b)

for arbitrary x0 and z0 [see Fig. 20(c)]. Finally, on each square
plaquette labeled by its left bottom corner r, we find a string
operator moving a fermionic quasiparticle along the plaquette
loop and that moving a 1 lineon along the x axis,

X plaq
r = exp

[−i
(
ϕ2

r (x0) + 2θ2
r (x0)

−ϕ1
r+ey

(x0) − 2θ2
r+ey

(x0)

−ϕ2
r+ey+ez

(x0) + 2θ2
r+ey+ez

(x0)

+ϕ1
r+ez

(x0) − 2θ2
r+ez

(x0)
)]

, (210a)

Zplaq
r = exp

[
− i

4

∫ Lx

0
dx ∂x�

−
r+ey,L

(x)

]
, (210b)

where the choice of x0 is arbitrary [see Fig. 20(d)]. They obey
the Pauli algebra

Z [001]
z X [001]

z = −X [001]
z Z [001]

z , (211)

Z [010]
y X [010]

y = −X [010]
y Z [010]

y , (212)

Zplaq
r X plaq

r = −X plaq
r Zplaq

r . (213)

If we suppose that all these membrane and string operators
are independent from each other and form mutually commut-
ing pairs of the (generalized) Pauli operators, they could span
a Hilbert space of the dimension 4 · 2Ly+Lz+LyLz . However, they
cannot form mutually commuting pairs since the membrane
and string operators defined within the yz plane are not inde-
pendent from each other but are subject to the constraints

(X mem)2 ∼
Ly∏

y=1

X [010]
y

Lz∏
z=1

X [001]
z , (214a)

X [001]
z X [001]

z+1 ∼
Ly∏

y=1

X plaq
(y,z) , (214b)

X [010]
y X [010]

y+1 ∼
Lz∏

z=1

X plaq
(y,z) , (214c)

∏
r∈ZLy ×ZLz

X plaq
r ∼ 1. (214d)

We note that these identifications hold up to multiplications
of operators creating local bosonic excitations 4 and thus
are valid only in the subspace of degenerate ground states.
The first constraint implies that fusing two loop-like excita-
tions yield a collection of point-like fermion excitations. The
second and third constraints indicate that the string opera-
tors along the y or z axis are deformable to each other by
multiplying local fermionic loops. These constraints reduce
the dimension of the Hilbert space by factor of 22 · 2Ly+Lz−2,
leading to the ground-state degeneracy

GSD = 4 · 2LyLz . (215)

Here, the logarithm of GSD is proportional to the number
of quantum wires or interfaces, due to degeneracy originated
from local fermionic loop excitations on square plaquettes.
As discussed in Ref. [110], this degeneracy can be lifted by
adding the local fermionic loop operators in Eq. (210a) as a
perturbation,

V ′
w = −g′

∫
dx

∑
r∈Z2

[
X plaq

r (x) + (
X plaq

r (x)
)†]

, (216)

which energetically prefers states with the eigenvalues of
X plaq

r being +1 and thus induces the condensation of local
fermionic loops. Hence, we consider a subspace of the de-
generate ground states with X plaq

r = +1. This subspace is still
spanned by the membrane and nonlocal string operators in
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FIG. 21. After the condensation of local fermionic loops, the
bosonic U (1)4 models has (a) a point-like fermion excitation fully
mobile in the 3D space and (b) a loop-like excitation fully de-
formable in the 3D space. The latter now costs energy proportional
to its length along the x axis since the eigenvalues of local plaquette
loop operators X plaq

r in the gray regions are flipped.

Eqs. (206), (208), and (209) and now has dimension 4 · 2Ly+Lz .
The constraints in Eq. (214) then become

(X mem)2 ∼
Ly∏

y=1

X [010]
y

Lz∏
z=1

X [001]
z , (217a)

X [001]
z X [001]

z+1 ∼ 1, (217b)

X [010]
y X [010]

y+1 ∼ 1. (217c)

Taking these constraints into account, the ground-state degen-
eracy after the condensation of fermionic loops becomes

GSD′ = 23. (218)

The system-size-independent constant degeneracy implies
that the resulting ground state has a TQFT-type topological
order, which is described by a bosonic 3D Z2 gauge theory
with a Z2 fermionic charge. This can be understood as follows.
The condensation of fermionic loops makes different paths
connecting two point-like fermion excitations indistinguish-
able, as desired for point-like excitations in 3D TQFT-type
topological orders [see Fig. 21(a)]. At the same time, it also
gives energetic constraints to lineon excitations along the x
axis. As indicated from Eq. (213), a string operator transfer-
ring a 1 lineon along the x axis anticommutes with a plaquette
loop operator X plaq

r for any x when the strip on which the
lineon moves is shared by the square plaquette. Therefore,
single 1 lineons along the x axis are confined in the presence
of the additional interaction V ′

w, as creation of a pair of them
costs an energy proportional to their separation. However, the
square of a lineon string operator, which transfers a fermionic
2 quasiparticle along the x axis, commutes with any X plaq

r and
thus 3D fermion excitations are still deconfined. Furthermore,
a product of two lineon string operators on different strips
commute with X plaq

r when the two strips are shared by the
square plaquette. When a product of lineon string operators is
constructed such that the corresponding strips form a closed
membrane, it commutes with all plaquette loop operators
X plaq

r . An open membrane consisting of finite-segment lineon
operators costs an energy proportional to the length of its
boundary and thus creates a loop-like excitation. Combined

FIG. 22. (a) Braiding process for the bosonic U (1)4 model be-
tween a point-like fermionic excitation and a loop-like excitation
after the condensation of local fermionic loops, yielding the mutual
π statistics. There are three membrane operators on a torus in the
(b) yz, (c) xz, and (d) xy planes and the associated string operators.

with a finite fraction of the membrane operator defined in
Eq. (206a) for the yz plane, we can create loop-like excitations
fully deformable in the 3D space [see Fig. 21(b)], which have
the mutual π statistics with the 3D fermionic excitation [see
Fig. 22(a)]. A distinguished feature of our model from the
ordinary 3D Z2 gauge theory is that fusing two loop-like exci-
tations yields not the ground state but a collection of point-like
fermion excitations.

Accordingly, we can find three membrane operators in the
yz, xz, and xy planes,

X ′
1 =

∏
r∈ZLy ×ZLz

exp
[−iϕ1

r (x0)
]
, (219a)

X ′
2 =

Lz∏
z=1

exp

[
− i

4

∫ Lx

0
dx ∂x�

−
(y0,z),L(x)

]
, (219b)

X ′
3 =

Ly∏
y=1

exp

[
− i

4

∫ Lx

0
dx ∂x�

+
(y,z0 ),L(x)

]
, (219c)

respectively, and three fermion string operators along the x, y,
and z axes,

Z ′
1 = exp

[
− i

2

∫ Lx

0
dx ∂x�

−
(y0,z0 ),L(x)

]
, (220a)

Z ′
2 =

Ly∏
y=1

exp
[−i

(
ϕ1

(y,z0 )(x0) − ϕ2
(y,z0 )(x0)

)]
, (220b)

Z ′
3 =

Lz∏
z=1

exp
[−i

(
ϕ1

(y0,z)(x0) + ϕ2
(y0,z)(x0)

)]
, (220c)
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respectively, where the choice of x0, y0, and z0 is arbitrary
in each expression. They are illustrated in Figs. 22(b)–22(d).
These operators obey the Pauli algebra

Z ′
jX

′
j = −X ′

jZ
′
j, (221)

for j = 1, 2, 3. These membrane and string operators span
the 23-dimensional ground-state manifold on a torus after the
condensation of local fermionic loops.

D. Hybrid of TQFT-type and foliated type-I planon models

We here present a coupled-wire model that exhibits a hy-
brid of 3D TQFT-type topological order with point-like and
loop-like excitations and foliated type-I fracton order with
planons. Interestingly, planon excitations, which on one hand
characterize type-I fracton order, have nontrivial braiding
statistics with 3D loop-like excitations, which on the other
hand characterize TQFT-type topological order. This indicates
that the model cannot be regarded as a decoupled stack of a
TQFT-type topological order and a foliated type-I fracton or-
der. Such nontrivial interplay between topological and fracton
orders has also been investigated in Refs. [128,129].

1. Bosonic U (1)8 model

We consider a 3D cellular topological state built out of the
U (1)8 topological orders. On the square grid, each interface
possesses four gapless edge modes described by the K matrix

Ke =

⎛⎜⎜⎝
8

8
−8

−8

⎞⎟⎟⎠. (222)

We consider a gapped interface obtained by condensing a set
of quasiparticles generated by M = {ma} with

m1 = (1, 1, 7, 7)T ,

m2 = (2, 0, 6, 0)T ,

m3 = (4, 4, 0, 0)T ,

(223)

which are all bosonic quasiparticles with s = −1, −2, and
2, respectively. Hence, the corresponding gapped interface is
bosonic. In order to construct a gapping potential, we add
two extra bosonic wires at each interface and consider the
extended K matrix Kew = Ke ⊕ Kw with Kw = X ⊕ X . With
the choice of matrices,

U =

⎛⎜⎜⎝
−1 1 2 −2
−1 −1 2 2
1 −1 2 −2
1 1 2 2

⎞⎟⎟⎠, W =

⎛⎜⎜⎝
−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

⎞⎟⎟⎠,

(224)

we find a set of integer vectors {�w,α},
�w,1 = (2,−1,−2, 1)T ,

�w,2 = (2,−1, 2,−1)T ,

�w,3 = (2, 1,−2,−1)T ,

�w,4 = (2, 1, 2, 1)T . (225)

FIG. 23. (a) Elementary excitations created by local operators in
the bosonic U (1)8 model for a hybrid of TQFT-type topological order
and a foliated fracton order. (b) Quasiparticles 1 and 7 form a loop-
like excitation in the yz plane. Semionic quasiparticles 2 and 6 can
move along (c) the y axis or (d) the z axis. (e) Bosonic quasiparticles
4 can move freely in the yz plane.

By introducing bosonic fields φw
r = (ϕ1

r , 2θ1
r , ϕ2

r , 2θ2
r )T cor-

responding to two-component bosonic wires, which obey the
commutation relations in Eq. (203), we find the tunneling
Hamiltonian of the form (167) with

�±
r,R = ϕ1

r + 4θ1
r ± (

ϕ2
r + 4θ2

r

)
,

�±
r,L = ϕ1

r − 4θ1
r ± (

ϕ2
r − 4θ2

r

)
. (226)

This model hosts a hybrid of a TQFT-type topological
order with 3D mobile point-like and loop-like excitations and
a foliated type-I fracton order with planons in the [001] and
[010] planes. There are three types of elementary excitations
as shown in Fig. 23(a). The first one is represented by l =
(1, 1,−1,−1)T , which creates 1 and 7 quasiparticles with
s = 1/16 and −1/16, respectively, on all four strips surround-
ing the interface r. The corresponding local operator is given
by exp(ip · φw

r ) with p = (0,−1, 0, 0)T . While single 1 or 7
quasiparticles are just lineons along the x axis, they can form a
loop-like excitations in the yz plane by successively applying
these local operators over a membrane [see Fig. 23(b)]. On an
Lx × Ly × Lz torus, we can find a pair of a membrane operator
in the yz plane and a lineon string operator along the x axis,

X mem =
∏

r∈ZLy ×ZLz

exp
[−i2θ1

r (x0)
]
, (227a)

Zmem = exp

[
− i

8

∫ Lx

0
dx ∂x�

−
r0,L

(x)

]
, (227b)

for arbitrary x0 and r0 [see Fig. 24(a)]. They obey the general-
ized Pauli algebra

ZmemX mem = eπ i/4X memZmem. (228)

The second type of elementary excitations is repre-
sented by l = (2, 0,−2, 0)T or (0, 2, 0,−2)T , which creates
a pair of 2 and 6 quasiparticles with s = 1/4 and −1/4,
respectively. These semionic quasiparticles can be trans-
ferred along the y or z axis by local operators exp(ip ·
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FIG. 24. Sets of membrane and string operators for the bosonic
U (1)8 model on a torus. They are associated with (a) loop-like exci-
tations of quasiparticles 1 and 7 in the yz plane, planons of semionic
quasiparticles 2 and 6 in (b) the [001] plane and (c) the [010] plane,
and (d) 3D point-like excitations of bosonic quasiparticles 4 along
plaquette loops.

φw
r ) with p = (0,−1, 0, 1)T and (0,−1, 0,−1)T , respectively

[see Figs. 23(c) and 23(d)]. With the mobility along the x axis,
they behave as planons in the [001] or [010] planes. On each
[001] plane labeled by z = 1, . . . , Lz, we find a pair of a string
operator moving a semionic quasiparticle along the y axis and
that moving a 1 lineon along the x axis,

X [001]
z =

Ly∏
y=1

exp
[−i

(
2θ1

(y,z)(x0) − 2θ2
(y,z)(x0)

)]
, (229a)

Z [001]
z = exp

[
− i

8

∫ Lx

0
dx ∂x�

−
(y0,z),L(x)

]
, (229b)

for arbitrary x0 and y0 [see Fig. 24(b)]. On each [010] plane
labeled by y = 1, . . . , Ly, we find a pair of a string operator
moving a semionic quasiparticle along the z axis and that
moving a 1 lineon along the x axis,

X [010]
y =

Lz∏
z=1

exp
[−i

(
2θ1

(y,z)(x0) + 2θ2
(y,z)(x0)

)]
, (230a)

Z [010]
y = exp

[
− i

8

∫ Lx

0
dx ∂x�

+
(y,z0 ),L(x)

]
, (230b)

for arbitrary x0 and z0 [see Fig. 24(c)]. They obey the general-
ized Pauli algebra

Z [001]
z X [001]

z = eπ i/2X [001]
z Z [001]

z , (231)

Z [010]
y X [010]

y = eπ i/2X [010]
y Z [010]

y . (232)

The third type of elementary excitations is represented by
l = (4,−4, 0, 0)T or (0, 0, 4,−4)T , which create a pair of

4 quasiparticles. These bosonic quasiparticles can be trans-
ferred along a diagonal line in the yz plane by local operators
exp(ip · φw

r ) with p = (0, 0,−1, 2)T or (0, 0,−1,−2)T . As
fusion of two planons in the [001] or [010] plane yields a
4 quasiparticle moving in the respective plane, the bosonic
quasiparticles can move in any direction in the yz plane [see
Fig. 23(e)]. Further combined with the mobility along the x
axis, they behave as point-like boson excitations fully mobile
in the 3D space. Thus, on each square plaquette labeled by
its left bottom corner r, we find a pair of a string operator
moving a bosonic 4 quasiparticle along the plaquette loop and
that moving a 1 lineon along the x axis,

X plaq
r = exp

[−i
(
ϕ2

r (x0) + 4θ2
r (x0)

− 4θ1
r+ey

(x0) − ϕ2
r+ey

(x0)

+ϕ2
r+ey+ez

(x0) − 4θ2
r+ey+ez

(x0)

+ 4θ1
r+ez

(x0) − ϕ1
r+ez

(x0)
)]

, (233a)

Zplaq
r = exp

[
− i

8

∫ Lx

0
dx ∂x�

−
r+ey

(x)

]
, (233b)

for arbitrary x0 [see Fig. 24(d)]. They obey the Pauli algebra

Zplaq
r X plaq

r = −X plaq
r Zplaq

r . (234)

If we suppose that all membrane and string operators are
independent from each other and form commuting pairs of
the (generalized) Pauli operators, they could span a Hilbert
space of the dimension 8 · 4Ly+Lz · 2LyLz . However, they are not
actually independent and are subject to the constraints

(X mem)2 ∼
Ly∏

y=1

X [010]
y

Lz∏
z=1

X [001]
z , (235a)

(
X [001]

z X [001]
z+1

)2 ∼
Ly∏

y=1

X plaq
(y,z) , (235b)

(
X [010]

y X [010]
y+1

)2 ∼
Lz∏

z=1

X plaq
(y,z) , (235c)

∏
r∈ZLy ×ZLz

X plaq
r ∼ 1. (235d)

These identifications hold up to multiplications of operators
creating local bosonic excitations 8 and thus are valid only
in the subspace of degenerate ground states. Here, the first
constraint implies that fusing two loop-like excitations yields
a collection of planon excitations. The second and third con-
straints imply that fusing two planon excitations yield 3D
point-like boson excitations. These constraints reduce the di-
mension of the Hilbert space spanned by the membrane and
string operators by factor of 2 · 4 · 4Ly+Lz−2, leading to the
ground-state degeneracy

GSD = 4 · 2LyLz+Ly+Lz . (236)

As in the previous models for 3D TQFT-type topologi-
cal orders, the ground-state degeneracy of this model grows
exponentially with the number of quantum wires or inter-
faces due to the presence of local bosonic loop excitations
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on square plaquettes. The degeneracy can be lifted by adding
the local plaquette loop operators defined in Eq. (233a) as
a perturbation of the form (216). The perturbation induces
the condensation of the local bosonic loops and selects si-
multaneous eigenstates of the bosonic loop operators X plaq

r
with the eigenvalues +1 as a new ground state. The subspace
of the new ground state is spanned by the membrane and
string operators in Eqs. (227), (229), and (230), which are now
subject to the constraints

(X mem)2 ∼
Ly∏

y=1

X [010]
y

Lz∏
z=1

X [001]
z , (237a)

(
X [001]

z X [001]
z+1

)2 ∼ 1, (237b)(
X [010]

y X [010]
y+1

)2 ∼ 1. (237c)

We thus find the ground-state degeneracy

GSD′ = 23 · 2Ly+Lz , (238)

after the condensation of the local bosonic loops.
Here, the factor 23 indicates a 3D TQFT-type topological

order, whereas the factor 2Ly+Lz indicates planon excitations
in each [001] and [010] plane. This can be understood as
follows. In the condensate of the bosonic loops, 4 quasipar-
ticles behave as genuine 3D point-like boson excitations as
different paths connecting two point-like excitations become
indistinguishable. Meanwhile, single 1 or 7 lineons along the
x axis are confined due to the anticommuting properties be-
tween the corresponding string operators and plaquette loop
operators X plaq

r in Eq. (234). One way to find deconfined
lineon excitations is to fuse two elementary lineons to obtain 2
or 6 lineons. Since the corresponding string operator (Zplaq

r )2

commute with any X plaq
r , they are still deconfined along the

x axis. Combined with the mobility in the yz plane, 2 and
6 quasiparticles behave as planon excitations in the [001] or
[010] plane. These planons exhibit the semionic statistics on
each plane. Another way to find deconfined excitations along
the x axis is to consider an appropriate product of 1 or 7
lineon string operators forming a closed membrane such that
it commutes with all X plaq

r . Combined with the membrane
operator defined in Eq. (227) for the yz plane, it leads to loop-
like excitations consisting of 1 and 7 quasiparticles, which
are fully deformable in the 3D space. They have the mutual
π statistics with 3D point-like boson excitations originated
from 4 quasiparticles. Therefore, our model might be seen
to have both TQFT-type topological order of a 3D Z2 gauge
theory with a Z2 bosonic charge and foliated fracton order
with planon excitations in the [001] and [010] plane.

Correspondingly, on a torus, we can construct three mem-
brane operators in the yz, xz, and xy planes,

X mem
1

′ =
∏

r∈ZLy ×ZLz

exp
[−i2θ1

r (x0)
]
, (239a)

X mem
2

′ =
Lz∏

z=1

exp

[
− i

8

∫ Lx

0
dx ∂x�

−
(y0,z),L(x)

]
, (239b)

FIG. 25. Sets of membrane and string operators for the bosonic
U (1)8 model on a torus after the condensation of local bosonic loops.
There are three membrane operators in the (a) yz, (b) xz, and (c)
xy planes and the associated string operators. There are also planon
string operators in the (d) [001] and (e) [010] planes.

X mem
3

′ =
Ly∏

y=1

exp

[
− i

8

∫ Lx

0
dx ∂x�

+
(y,z0 ),L(x)

]
, (239c)

respectively, and three boson string operators along the x, y,
and z axes,

Zmem
1

′ = exp

[
− i

2

∫ Lx

0
dx ∂x�

−
(y0,z0 ),L(x)

]
, (240a)

Zmem
2

′ =
Ly∏

y=1

exp
[−i

(
4θ1

(y,z0 )(x0) − 4θ2
(y,z0 )(x0)

)]
, (240b)

Zmem
3

′ =
Lz∏

z=1

exp
[−i

(
4θ1

(y0,z)(x0) + 4θ2
(y0,z)(x0)

)]
, (240c)

respectively, where the choice of x0, y0, and z0 is arbitrary in
each expression [see Figs. 25(a)–25(c)]. On each [001] plane,
we can construct two string operators along the y and x axes,

X [001]
z

′ =
Ly∏

y=1

exp
[−i

(
2θ1

(y,z)(x0) − 2θ2
(y,z)(x0)

)]
, (241a)

Z [001]
z

′ = exp

[
− i

4

∫ Lx

0
dx ∂x�

−
(y0,z),L (x)

]
, (241b)

for arbitrary x0 and y0 [see Fig. 25(d)], whereas on each [010]
plane, we can construct two string operators along the z and x
axes,

X [010]
y

′ =
Lz∏

z=1

exp
[−i

(
2θ1

(y,z)(x0) + 2θ2
(y,z)(x0)

)]
, (242a)

Z [010]
y

′ = exp

[
− i

4

∫
dx ∂x�

+
(y,z0 ),L(x)

]
, (242b)
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FIG. 26. (a) Braiding process between a loop-like excitation and
a 3D point-like bosonic excitation yields the mutual π statistics,
whereas (b) that between a loop-like excitation and a planon exci-
tation yields the mutual π/2 statistics.

for arbitrary x0 and z0 [see Fig. 25(e)]. These membrane and
string operators obey the Pauli algebra

Zmem
j

′X mem
j

′ = −X mem
j

′Zmem
j

′
, (243a)

Z [001]
z

′
X [001]

z
′ = −X [001]

z
′
Z [001]

z
′
, (243b)

Z [010]
y

′
X [010]

y
′ = −X [010]

y Z [010]
y

′
, (243c)

for j = 1, 2, 3, y = 1, . . . , Ly, and z = 1, . . . , Lz.
However, it is obvious that these operators are not indepen-

dent from each other and do not form mutually commuting
pairs of the Pauli operators. This is the origin of an intriguing
property of the present model: it cannot be written as a de-
coupled stack of a 3D bosonic Z2 gauge theory and a foliated
fracton model with planons. As it can be seen from the explicit
forms of the membrane and string operators, fusing two loop-
like excitations yields a collection of planon excitations, while
fusing two planon excitations yields a 3D point-like boson
excitation. Since a 3D point-like excitation has the mutual
statistics of π with loop-like excitations [see Fig. 26(a)], this
indicates that a planon excitation has the mutual statistics of
π/2 with loop-like excitations intersecting the corresponding
plane [see Fig. 26(b)]. This is also evident from the general-
ized Pauli algebra

Z [001]
z

′
X mem

1
′ = eπ i/2X mem

1
′Z [001]

z
′
, (244a)

Z [010]
y

′
X mem

1
′ = eπ i/2X mem

1
′Z [010]

y
′
, (244b)

X [001]
z

′
X mem

2
′ = eπ i/2X mem

2
′X [001]

z
′
, (244c)

X [010]
y

′
X mem

3
′ = eπ i/2X mem

3
′X [010]

y
′
. (244d)

Thus, this coupled-wire model provides a nontrivial hybrid
between a 3D TQFT-type topological order and a foliated
type-I fracton order.

E. Fractal type-I fracton models with lineons

The cellular topological states and the corresponding
coupled-wire models constructed so far admit a pair of quasi-
particles created by local operators in the yz plane. Combined
with the mobility along the x axis, those quasiparticles behave
as planons in foliated type-I fracton orders or 3D point-like
excitations in TQFT-type topological orders. In this subsec-
tion, we consider cellular topological states that do not exhibit

any pairs of quasiparticles such that quasiparticles cannot
move in the yz plane in isolation. In order to illustrate such
a restricted mobility of quasiparticles, we specifically focus
on two models: one is defined on a square grid of the U (1)7

topological orders, and the other is defined on a triangular
grid of the U (1)3 topological orders. We expect that these
cellular topological states belong to a family of fractal type-I
fracton models with lineons, for which the Sierpinski fractal
spin liquid is a prototypical example [16,18].

1. Fermionic U (1)7 model on square grid

We first consider a 3D cellular topological state built out
of the U (1)7 topological orders. On the square grid, each
interface possesses four gapless edge modes described by the
K matrix

Ke =

⎛⎜⎜⎝
7

7
−7

−7

⎞⎟⎟⎠. (245)

We consider a gapped interface obtained by condensing a set
of quasiparticles generated by M = {ma} with

m1 = (1, 0, 2, 2)T ,

m2 = (0, 1, 2, 5)T ,
(246)

where m1 is a fermionic quasiparticle with s = −1/2 whereas
m2 is a bosonic quasiparticle with s = −2. As the U (1)7 topo-
logical order is fermionic, the corresponding gapped interface
is also fermionic. In order to construct a gapping potential, we
add two extra fermionic wires at each interface and consider
the extended K matrix Kew = Ke ⊕ Kw with Kw = Z ⊕ Z .
With the choice of matrices,

U =

⎛⎜⎜⎜⎜⎝
1 −2 2 −2

0 1 −2 −2

2 −2 0 −1

2 1 1 0

⎞⎟⎟⎟⎟⎠,

(247)

W =

⎛⎜⎜⎜⎜⎝
0 0 −1 0

0 0 0 −1

−1 0 0 −1

0 −1 0 0

⎞⎟⎟⎟⎟⎠,

we find a set of integer vectors {�w,α},

�w,1 = (1, 2, 0,−2)T ,

�w,2 = (0,−2,−1,−2)T ,

�w,3 = (2, 0,−2,−1)T ,

�w,4 = (2, 1, 2, 0)T . (248)

By introducing bosonic fields φw
r = (φ1

r,R, φ1
r,L, φ2

r,R, φ2
r,L )T

corresponding to two-component fermionic wires, which obey
the commutation relations in Eq. (165), we find the tunneling
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FIG. 27. (a) Elementary excitations created by local opera-
tors in the fermionic U (1)7 model. Loop-like excitations can be
formed (b) by l = (1, 2, −1, −2)T and (c) by combinations of l1 =
(2, 2, 1, 0)T and l2 = (−1, 0, −2, −2). The black solid lines indicate
repeated patterns of quasiparticles.

Hamiltonian of the form (167) with

�+
r,R = 2φ1

r,R − φ1
r,L + 2φ2

r,R,

�−
r,R = 2φ1

r,R − 2φ2
r,R + φ2

r,L,

�+
r,L = 2φ1

r,L − φ2
r,R + 2φ2

r,L,

�−
r,L = φ1

r,R − 2φ1
r,L + 2φ2

r,L. (249)

Elementary excitations created by local operators are given
by the subset M of the Lagrangian subgroup and are shown in
Fig. 27(a). They are triplets of quasiparticles and any choice
of their linear combinations cannot be reduced to a pair of
quasiparticles. Hence, single quasiparticles do not behave as
point-like excitations in the yz plane, while they are lineons
mobile along the x axis. Furthermore, there seem no dipole
or multipole excitations mobile in the yz plane. The simplest
excitations take the form of loop and can be constructed from
l = (1, 2,−1,−2)T , which is created by exp(ip · φw

r ) with
p = (−1, 0, 0,−1)T . As shown in Fig. 27(b), successive ap-
plication of this operator over a membrane creates a loop-like
excitation in the yz plane. It can fully cover the yz plane on
a torus with Lx × Ly × Lz such that all quasiparticles are pair
annihilated. We can thus define the set of a membrane operator
and a string operator transferring a lineon 1 along the x axis,

X mem
1 =

∏
r∈ZLy ×ZLz

exp
[−i

(
φ1

r,R(x0) + φ2
r,L(x0)

)]
, (250a)

Zmem
1 = exp

[
− i

7

∫
dx ∂x�

−
r0,L

(x)

]
, (250b)

for arbitrary x0 and r0, which obey the generalized Pauli
algebra

Zmem
1 X mem

1 = e2π i/7X mem
1 Zmem

1 . (251)

Hence, on a torus with any system size, the ground state is at
least sevenfold degenerate.

However, this is just a lower bound and the ground-
state degeneracy actually increases nonmonotonically with
the system size. For example, let us consider excitations
l1 = (2, 2, 1, 0)T and l2 = (−1, 0,−2,−2)T , which can be
created by exp(ip · φw

r ) with p1 = (0, 0, 0,−1)T and p2 =
(−1, 0, 0, 0)T , respectively. As shown in Fig. 27(c), combina-
tions of these excitations can also form loop-like excitations,

but the distribution of quasiparticles are more sparse than the
previous one. They can fully cover the yz plane on a torus
only when both Ly and Lz are even. We thus find the set of a
membrane and a string operator,

X mem
2 =

∏
r∈ZLy ×ZLz

y+z∈2Z

exp
[−i

(
φ2

r,L(x0) + φ1
r+ey,R(x0)

)]
,

(252a)

Zmem
2 = exp

[
−4i

7

∫
dx ∂x�

+
r0,L

(x)

]
, (252b)

for arbitrary x0 and r0 = (y0, z0) such that y0 + z0 ∈ 2Z. They
obey the same algebra as Eq. (251). We can construct another
pair of generalized Pauli operators by translating X mem

2 and
Zmem

2 by one site

X mem
3 =

∏
r∈ZLy ×ZLz

y+z∈2Z+1

exp
[−i

(
φ2

r,L(x0) + φ1
r+ey,R(x0)

)]
, (253a)

Zmem
3 = exp

[
−4i

7

∫
dx ∂x�

+
r0,L

(x)

]
, (253b)

for arbitrary x0 and r0 = (y0, z0) such that y0 + z0 ∈ 2Z + 1.
Thanks to the sparse nature of the membrane operators, the
lineon string operator Zmem

3 does not intersect a strip for
X mem

2 on which quasiparticles are created and annihilated, and
similarly for Zmem

2 and X mem
3 . These two mutually commuting

Pauli operators indicate that the ground state on a torus with
even Ly and Lz is at least 72-fold degenerate.

As in the case of certain 3D fracton models [18], quasi-
particle properties of this coupled-wire model within the yz
plane are in fact described by a 2D classical spin model. Let
us consider a square lattice each of whose vertex r is occupied
by two qudits with seven states each. The whole Hilbert space
is spanned by generalized Pauli operators σ x

r, j and σ z
r, j for

j = 1, 2, which obey the algebra(
σ x

r, j

)7 = (
σ z

r, j

)7 = 1, (254a)

σ x
r, jσ

z
r′, j′ = exp(2π iδr,r′δ j, j′/7)σ z

r′, j′σ
x
r, j . (254b)

These two qudits correspond to the two components of quan-
tum wires at each interface. The tunneling terms between
neighboring wires are then mimicked by a classical seven-
state Potts-like Hamiltonian

HU (1)7

Potts = −J
∑
r∈Z2

[(
σ z

r,1

)2(
σ z

r,2

)2
σ z

r+ey,1

+ (
σ z

r,1

)2(
σ z

r,2

)5
σ z

r+ez,2
+ H.c.

]
. (255)

Since the Hamiltonian contains σ z
r, j only, each term can be

simultaneously diagonalized. The ground state is obtained
by setting the eigenvalues of all terms to be +1. Excited
states are then obtained by acting σ x

r, j on the ground state,
which changes the eigenvalues of interaction terms containing
(σ z

r, j )
m to e−2πmi/7. As a result, the action of σ x

r, j creates ex-
citations with energy J cos[2π (m j )k/7] on links surrounding
the vertex r, where m j are integer vectors defined in Eq. (246)
and k = 1, 2, 3, 4 correspond to the left, bottom, right, and
top link with respect to r. Thus, this classical model has the
same patterns of excitations as those of quasiparticles for the
coupled-wire model in the yz plane.
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FIG. 28. (a) Propagation of excitations in the fermionic U (1)7

model in the [01̄1̄] direction can be mapped to a cellular automaton.
Here, excitations on two inequivalent links are labeled by integers
ai, j and bi, j and occupy each square cell. Excitation patterns are
generated by the automaton dynamics up to the depth (b) i = 200 and
(c) i = 1400. Nontrivial excitations 1, 2, 3, 4, 5, and 6 (mod 7) are
colored by red, magenta, purple, blue, cyan, and green, respectively,
whereas trivial excitations 0 (mod 7) are left blank.

Dynamics of excitations in this classical model is most eas-
ily understood by noting that placing excitations on two links
attached to a single vertex completely fixes excitations on the
other two links attached to the same vertex. This implies that
the propagation of excitations in a diagonal direction on the
square lattice is given by a cellular automaton. Let us denote
excitations on two inequivalent links by integers ai, j and bi, j

and assign a square cell to each link as shown in Fig. 28(a).
The propagation of excitations in the [01̄1̄] direction is given
by the recursion relation

(
ai+1, j

bi+1, j

)
= −

(
5ai, j−1 + 2bi, j−1

2ai, j + 2bi, j

)
mod 7, (256)

which describes time evolution of a linear cellular automa-
ton on a square lattice that is

√
2 times smaller than and

rotated by 45 degrees from the original one. In Figs. 28(b)
and 28(c), we show the propagation of excitations up to the
depth i = 200 and i = 1400, respectively, for the initial con-

FIG. 29. Ground-state degeneracy of the fermionic U (1)7 model
on a torus with Ly = Lz ≡ L.

dition (a1,1, b1,1) = (4, 1) and (a1, j, b1, j ) = (0, 0) for j 	= 1.
Disregarding the species of nontrivial excitations, i.e., the
colors in Figs. 28(b) and 28(c), excitations appear to spread
over a fractal lattice, which is composed of 46 copies made
by shrinking itself by a factor of 1/7, with the Hausdorff
dimension log 46/ log 7 ∼ 1.968. This implies the presence
of fractal operators transferring quasiparticle excitations far
apart from each other as expected for fractal type-I fracton
models.

We have also numerically computed the ground-state de-
generacy of the classical model (255) on a torus with Ly =
Lz ≡ L. As shown in Fig. 29, the degeneracy increases non-
monotonically with the linear size L and exhibits a self-similar
structure with a scale factor of seven, as observed in the
Haah’s cubic code [154]. Therefore, we conjecture that the
cellular topological state built out of the U (1)7 topological
order on the square grid and the corresponding coupled-wire
model are classified into fractal type-I fracton order with
lineons.

2. Fermionic U (1)3 model on triangular grid

We then consider a 3D cellular topological state built
out of the U (1)3 topological orders. On the triangular
grid, each interface possesses six gapless edge modes φe

r =
(φe

r,1, . . . , φ
e
r,6)T as assigned in Fig. 30(a). These bosonic
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FIG. 30. (a) Each interface of the cellular topological state on the
triangular grid has six gapless edge modes φe

r . (b) The corresponding
coupled-wire model has tunneling terms written in terms of �σ

r,R/L as
given in Eq. (261).

fields correspond to the K matrix

Ke =

⎛⎜⎜⎜⎜⎜⎜⎝
3

3
3

−3
−3

−3

⎞⎟⎟⎟⎟⎟⎟⎠. (257)

We consider a gapped interface obtained by condensing a set
of quasiparticles generated by M = {ma} with

m1 = (1, 0, 2, 0, 1, 2)T ,

m2 = (0, 1, 2, 0, 2, 1)T ,

m3 = (0, 0, 0, 1, 1, 1)T ,

(258)

where m1 and m2 are bosonic quasiparticles with s = 0
whereas m3 is a fermionic quasiparticle with s = −1/2.
As the U (1)3 topological order is fermionic, the corre-
sponding gapped interface is also fermionic. In order to
construct a gapping potential, we add three extra fermionic
wires at each interface and consider the extended K matrix
Kew = Ke ⊕ Kw with Kw = Z ⊕ Z ⊕ Z . With the choice of
matrices,

U =

⎛⎜⎜⎜⎜⎜⎜⎝
0 −1 −1 1 −1 1
0 1 0 −1 1 1
0 0 1 0 0 1
1 0 1 −1 −1 0
1 1 0 1 0 0
1 −1 −1 0 1 0

⎞⎟⎟⎟⎟⎟⎟⎠,

(259)

W =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 0 0 −1
1 0 0 0 −1 0

−1 1 0 0 0 0
0 1 1 1 −1 0
0 1 0 1 0 0

−1 −1 −1 −1 1 0

⎞⎟⎟⎟⎟⎟⎟⎠,

we find a set of integer vectors {�w,α},

�w,1 = (1, 1,−1, 2, 0, 0)T ,

�w,2 = (1, 0,−1, 1, 0, 2)T ,

�w,3 = (1, 2,−1, 0, 0, 1)T ,

�w,4 = (2, 1,−1, 1, 1, 1)T ,

�w,5 = (−1,−1, 2,−1, 1,−1)T ,

�w,6 = (−1, 0,−1, 0, 1, 0)T . (260)

We then introduce bosonic fields φw
r = (φ1

r,R, φ1
r,L, φ2

r,R,

φ2
r,L, φ3

r,R, φ3
r,L )T corresponding to three-component fermionic

wires, which obey the commutation relations in Eq. (165).
As schematically shown in Fig. 30(b), we find the tunneling
Hamiltonian

Vw = −g
∫

dx
∑
r∈Z2

[
cos

(
�1

r,L + �1
r+ey,R

)
+ cos

(
�2

r,R + �2
r+ez,L

) + cos
(
�3

r,R + �3
r+ey−ez,L

)]
,

(261)

where

�σ
r,R = �T

w,3+σ Kwφw
r ,

�σ
r,L = �T

w,σ Kwφw
r . (262)

The explicit forms of these bosonic fields are given by

�1
r,R = 2φ1

r,R − φ1
r,L − φ2

r,R − φ2
r,L + φ3

r,R − φ3
r,L,

�2
r,R = −φ1

r,R + φ1
r,L + 2φ2

r,R + φ2
r,L + φ3

r,R + φ3
r,L,

�3
r,R = −φ1

r,R − φ2
r,R + φ3

r,R,

�1
r,L = φ1

r,R − φ1
r,L − φ2

r,R − 2φ2
r,L,

�2
r,L = φ1

r,R − φ2
r,R − φ2

r,L − 2φ3
r,L,

�3
r,L = φ1

r,R − 2φ1
r,L − φ2

r,R − φ3
r,L. (263)

Similarly to the fermionic U (1)7 model discussed above,
elementary excitations created by local operators do not ad-
mit pairs of quasiparticles but only triplets or quadruplets as
shown in Fig. 31(a). Therefore, single quasiparticles cannot
move in the yz plane but only along the x axis. There also seem
no dipole or multipole excitations that lead to planon or 3D
point-like excitations. The simplest excitations in the yz plane
will be loop-like excitations created by successively apply-
ing local operators exp(ip · φw

r ) with p = (1, 0, 0,−1, 0, 0)T

or (0,−1,−1, 0, 0, 0)T , which are associated with the ex-
citations l = (−1, 0, 1, 1, 0,−1)T or (0, 1,−1, 0,−1, 1)T ,
respectively, over a membrane as illustrated in Fig. 31(b). On
an Lx × Ly × Lz torus, we can construct the corresponding
membrane operators in the yz plane and the string operators
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FIG. 31. (a) Elementary excitations in the fermionic U (1)3

model on the triangular grid. Membrane operators in the yz plane
are shown for a torus with (b) Ly = Lz = 2 and (c) Ly = Lz = 3.

along the x axis,

X mem
1 =

∏
r∈ZLy ×ZLz

exp
[
i
(
φ1

r,R(x0) − φ2
r,L(x0)

)]
, (264a)

X mem
2 =

∏
r∈ZLy ×ZLz

exp
[−i

(
φ1

r,L(x0) + φ2
r,R(x0)

)]
, (264b)

Zmem
1 = exp

[
i

3

∫ Lx

0
dx ∂x�

1
r0,R(x)

]
, (264c)

Zmem
2 = exp

[
− i

3

∫ Lx

0
dx ∂x�

2
r0,L(x)

]
, (264d)

for arbitrary x0 and r0, which form mutually commuting pairs
of the generalized Pauli operators

Zmem
j X mem

j = e2π i/3X mem
j Zmem

j . (265)

These operators can be defined on a torus with arbitrary linear
sizes and indicate that the ground state is at least 32-fold
degenerate. However, we can further construct membrane op-
erators with more sparse distributions of quasiparticles, which
might be seen as a signature of fractal type-I fracton order. As
an example, we show membrane operators that lead to 36-fold
degenerate ground states with their translations on a torus with
Ly = Lz ∈ 3Z in Fig. 31(c).

As in the previous case, the energetics of quasiparticles in
the yz plane can be fully captured by a classical three-state
Potts-like model defined on the triangular lattice. We here put
three qutrits on each site, whose Hilbert spaces are spanned by
generalized Pauli operators τ x

r, j and τ z
r, j for j = 1, 2, 3. They

obey the generalized Pauli algebra(
τ x

r, j

)3 = (
τ z

r, j

)3 = 1, (266a)

τ x
r, jτ

z
r′, j′ = exp(2π iδr,r′δ j, j′/3)τ z

r′, j′τ
x
r, j . (266b)

The Hamiltonian is then given by

HU (1)3

Potts = −J
∑
r∈Z2

[
τ z

r,1τ
z
r+ey,3

+ τ z
r,1

(
τ z

r,2

)2
τ z

r,3τ
z
r+ez,2

+ (
τ z

r,1

)2
τ z

r,2τ
z
r,3

(
τ z

r+ey−ez,1

)2(
τ z

r+ey−ez,2

)2

+ H.c.
]
. (267)

FIG. 32. (a) Propagation of excitations in the fermionic U (1)3

model can be mapped to a cellular automaton on a dice lattice.
Here, excitations on three inequivalent links are labeled by integers
ai, j , bi, j , ci, j and occupy each diamond cell. Excitation patterns are
generated by the automaton dynamics up to the depth (b) i = 60 and
(c) i = 180. Nontrivial excitations 1 and 2 (mod 3) are colored by red
and blue, respectively, whereas trivial excitations 0 (mod 3) are left
blank.

Again, the ground state can be obtained by letting the eigen-
values of all terms be +1 as they commute with each other.
By acting τ x

r, j on the ground state, we can create the same
elementary excitations as those of the above coupled-wire
model in the yz plane. Since placing excitations on three links
attached to a single vertex completely fixes excitations on the
other three links attached to the same vertex, the propagation
of excitations in any of the six directions, [010], [001], [01̄1],
[01̄0], [001̄], or [011̄], is described by a cellular automaton.
Let us denote excitations on three inequivalent links by inte-
gers ai, j , bi, j , and ci, j and assign a diamond cell to each link
to fully cover the yz plane, as shown in Fig. 32(a). For any of
the six directions mentioned above, excitations propagate via
the recursion relation⎛⎜⎝ai+1, j

bi+1, j

ci+1, j

⎞⎟⎠ = −

⎛⎜⎝ai, j−1 + bi, j−1 + 2ci, j−1

2ai−1, j + 2bi−1, j

2ai, j + bi, j + ci, j

⎞⎟⎠ mod 3, (268)

which corresponds to a second-order cellular automaton on
a dice lattice. Starting from an initial state (ai, j, bi, j, ci, j ) =
(0, 0, 0) for j � 1 except with (a1,1, b1,1, c1,1) = (1, 0, 2),
we generate excitation patterns up to the depth i = 60
and i = 180, which are shown in Figs. 32(b) and 32(c),
respectively. Disregarding the species of nontrivial
excitations, excitations appear to spread over a fractal
generated by the Pascal’s triangle modulo three with the
Hausdorff dimension ln 6/ ln 3 ∼ 1.631.

We have also numerically computed the ground-state de-
generacy of the classical three-state Potts model (267) on a

043108-39



YOHEI FUJI AND AKIRA FURUSAKI PHYSICAL REVIEW RESEARCH 5, 043108 (2023)

FIG. 33. Ground-state degeneracy of the fermionic U (1)3 model
on a torus with Ly = Lz ≡ L.

torus with Ly = Lz ≡ L, which is shown in Fig. 33. It increases
nonmonotonically with the linear size L and clearly exhibits a
self-similar structure with a scale factor of three. As in the
case of the U (1)7 fermionic model discussed above, these
features strongly indicate that the fermionic U (1)3 model on
the triangular grid is also classified into fractal type-I fracton
order with lineons.

V. CONCLUSIONS AND OUTLOOK

We have constructed 2D and 3D coupled-wire models
from cellular topological states built out of strips of 2D
Abelian topological orders and their nontrivial gapped in-
terfaces. The resulting models are exactly solvable in the
strong-coupling limit and enable us to analyze universal
features of topological and fracton orders, such as quasi-
particle properties and ground-state degeneracy on a torus.
For the 2D case, we have proposed coupled-wire models
for translation-symmetry-enriched topological orders in ad-
dition to the conventional coupled-wire models for ordinary
2D topological orders. For the 3D case, we have constructed
coupled-wire models describing a variety of topological and
fracton orders, including the conventional 3D (TQFT-type)
topological order, foliated type-I fracton order, fractal type-I
fracton order, and hybrid of topological and foliated type-I
fracton orders. These models host fully chiral gapless surface
states, which can never be gapped by local interactions, under
appropriate surface terminations and thus may not have real-
izations in exactly solvable 3D lattice models that have been
extensively used in the literature.

An interesting future direction is to extend the present
construction of coupled-wire models to cellular topological
states built from 2D non-Abelian topological orders and
their gapped interfaces. For the non-Abelian case, theories
for gapped interfaces have been developed in several works
[144,149,155–159], which might be employed to develop a
systematic way to construct coupled-wire models from gen-
eral inputs of the cellular structure, topological order, and
gapped interface. Although it lacks full generality, we can
also employ the conformal embedding approach developed
in Ref. [110] to construct coupled-wire models. The result-
ing models only involve current-current interactions from the
Wess-Zumino-Witten CFTs and thus are still exactly solvable
in the strong-coupling limit. While it is more complicated
than the Abelian case to analyze quasiparticle statistics and
ground-state degeneracy in this case, several techniques have
been developed in the context of 2D coupled-wire modes
[70,74,111] and may allow us to study universal properties for
non-Abelian generalizations of the 3D coupled-wire models.

An immediate application of the present coupled-wire
approach is to investigate microscopic realizations of 3D
topological and fracton orders in lattice systems beyond the
paradigm of commuting-projector Hamiltonians. As in the 2D
cases, tunneling interactions between quantum wires are often
irrelevant around the fix points of decoupled Luttinger liquids
and are overwhelmed by the instabilities towards conven-
tional symmetry breaking phases. Thus, when this approach
is applied to quasi-1D lattice systems, we generally need fine
tuning of interactions for the desired tunneling terms to win.
On the other hand, for the coupled-wire model considered
in Sec. IV A 1, the tunneling interactions are marginal four-
fermion interactions around the fix points of decoupled 1D
fermionic chains, which might be enhanced by some chiral
interactions involving three spin exchanges or pair hopping
processes. Although the resulting fracton order is by itself
somewhat boring as it only possesses planon excitations, it
is still interesting to consider its lattice model realizations
in order to understand the microscopic mechanism for more
complicated topological and fracton orders.

Another application is to explore effective quantum
field theory descriptions for fracton orders starting from
3D coupled-wire models. This has been achieved for 2D
coupled-wire models to derive effective Chern-Simons
theories for 2D Abelian topological orders [77] by utilizing
nonlocal transformations for bosonic fields, which are
phenomenologically understood as flux attachment and vortex
duality and have been developed in Refs. [98,99,102] (see
also other attempts to derive the Chern-Simons theory from
coupled-wire models [100,101]). Recently, this approach
has been extended to 3D coupled-wire models, which do
not have the cellular structure as studied in this paper, to
derive effective infinite-component Chern-Simons theories
for certain fracton orders [130]. Thus, this approach may
potentially be applied for the present coupled-wire models to
investigate effective gauge theories or response theories for
some foliated and fractal type-I fracton orders.

Finally, our coupled-wire models can also be used to
study entanglement properties of topological or fracton or-
ders; some previous studies can be found, for example, in
Refs. [160–166]. Since our models are sine-Gordon models

043108-40



BRIDGING THREE-DIMENSIONAL COUPLED-WIRE … PHYSICAL REVIEW RESEARCH 5, 043108 (2023)

with many cosine terms, we can perform quadratic expansions
of the cosine terms in the strong-coupling limit to obtain
free boson Hamiltonians. Such quadratic Hamiltonians have
been used to compute topological entanglement entropy or
entanglement spectrum for 2D topological phases and their
interfaces [167–171]. These results might be generalized to
the 3D coupled-wire models constructed in this paper for
topological and fracton orders to study their entanglement
characteristics.
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APPENDIX A: EXPLICIT FORM OF �w

In Sec. II B 1, we have given a way of obtaining a set of
integer vectors {m̃′

I} in Eq. (32), which generates the same
Lagrangian subgroup as L for a bosonic gapped boundary. Let
us define a 4N × 2N matrix

M̃ ′ ≡ (m̃′
1, m̃′

2, . . . , m̃′
2N ), (A1)

and unimodular matrices

XN ≡

⎛⎜⎝X
. . .

X

⎞⎟⎠, ZN ≡

⎛⎜⎝Z
. . .

Z

⎞⎟⎠, (A2)

with N diagonal blocks of the Pauli matrix X or Z . By permut-
ing the columns of M̃ ′, we can define another 4N × 2N matrix
M̃ ′′ that takes the form

M̃ ′′ ≡ M̃ ′Q =
(

U ′
XN ZN Q

)
, (A3)

where U ′ is the 2N × 2N integer matrix given in Eq. (27) and
Q is a 2N × 2N permutation matrix

Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . . 0 0 0 . . . 0
0 0 . . . 0 1 0 . . . 0
0 1 . . . 0 0 0 . . . 0
0 0 . . . 0 0 1 . . . 0
...

...
...

...
...

...

0 0 . . . 1 0 0 . . . 0
0 0 . . . 0 0 0 . . . 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (A4)

By multiplying (W̃ −1)T , the inverse transpose of Eq. (34), we
find

(W̃ −1)T M̃ ′′ =
(

(W −1)T U ′

XN ZN Q

)
=

(
UW

XN ZN Q

)
, (A5)

where we have used Eq. (27) at the last equality. By further
multiplying the inverse of the extended K matrix (35), we find

K̃−1(W̃ −1)T M̃ ′′ =
(

K−1UW

ZN Q

)
=

(
(U −1)T PW

ZN Q

)

=
(

(U −1)T (W −1)T P′

ZN Q

)
, (A6)

where we have used Eqs. (25) and (29) at the last two equal-
ities. We thus find the integer vectors 
̃ = (�̃1, . . . , �̃2N ) in
the form desired in Sec. III B,


̃ ≡ K̃−1(W̃ −1)T M̃ ′′P′W T U T =
(

I2N


w

)
, (A7)

with


w = ZN QP′W T U T . (A8)

Since ZN , Q, P′, and W are unimodular matrices and U is
an integer matrix, 
w is an integer matrix. Using the integer
vectors {m̃I} in Eq. (36), we can also write

�̃I =
2N∑

J=1

(UW P′QT )IJ K̃−1m̃J , (A9)

and thus {�̃I} are linear combinations of {K̃−1m̃I}. Cosine
potentials cos(�̃

T
I K̃φ̃) then should lead to the condensation of

quasiparticles in the Lagrangian subgroup generated by {m̃I}
at the interface.

For a fermionic gapped boundary, a set of integer vectors
{m̃′

I} has been given in Eq. (45). Again, we write them in the
matrix form M̃ ′ = (m̃′

1, . . . , m̃′
2N ). By applying a linear trans-

formation for the columns of M̃ ′, we bring it to the following
form:

M̃ ′′ ≡ 1

2
M̃ ′(XN + ZN )Q =

(
U ′

XN Q

)
, (A10)

where XN , ZN , and Q have been defined in Eqs. (A2) and (A4).
We can then find the integer vectors 
̃ = (�̃1, . . . , �̃2N ) of
the form in Eq. (A7) with


w = ZN XN QP′W T U T , (A11)

where K̃ and P′ for the fermionic case are given in Eqs. (46)
and (42). The integer vectors {�̃I} can also be written as

�̃I =
2N∑

J=1

[
1

2
UW P′QT (XN + ZN )

]
IJ

K̃−1m̃J , (A12)

which makes explicit that {�̃I} are linear combinations of
{K̃−1m̃I}.

Once written in the form (A7), it is easy to prove that {�̃I}
is a set of primitive integer vectors, as it has the Smith normal
form,

U

̃V
 =
(

I2N

O

)
, (A13)

where V
 = I2N and

U
 =
(

I2N O
−
w I2N

)
, (A14)

both of which are unimodular matrices.
Let integer vectors �w,I with I = 1, . . . , 2N be the

columns of 
w. For a 2N-dimensional integer vector p, the
vector l defined by

l =

⎛⎜⎜⎜⎝
p · �w,1

p · �w,2

...

p · �w,2N

⎞⎟⎟⎟⎠ (A15)
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becomes an element of the Lagrangian subgroup L. This can
be proven by using the explicit forms of 
w in Eqs. (A8) and
(A11) and the fact that integer vectors uI defined from the
columns of U are elements of the Lagrangian subgroup L. We
then find

p · �w,I =
2N∑

J=1

(p′
JuJ )I , (A16)

where p′ = W P′QT ZN p for the bosonic case and p′ =
W P′QT XN ZN p for the fermionic case. Equation (A15) can be
written as

l =
2N∑

J=1

p′
JuJ . (A17)

Since p′ is an integer vector, it is obvious that l is an element
of L. As the transformation p → p′ is unimodular, any ele-
ment of L will be obtained by properly choosing the integer
vector p through Eq. (A15). This proves that any local vertex
operator exp(ip · φw

r ) defined on a quantum wire creates some
quasiparticle l ∈ L as discussed in the main text.

APPENDIX B: SOME OTHER 3D SQUARE GRID MODELS

1. Bosonic U (1)6 model

We consider a 3D cellular topological state built out of
the U (1)6 topological orders, which can be seen as a bosonic
version of the coupled-wire model constructed in Sec. IV A 2.
It thus provides a foliated type-I fracton phase with only
planons. For an interface described by the K matrix in
Eq. (173), we consider a gapped interface obtained by con-
densing a set of quasiparticles generated by M = {ma} with

m1 = (1, 0, 2, 3)T ,

m2 = (0, 1, 3, 2)T . (B1)

In this case, both m1 and m2 are bosonic quasiparticles
with s = −1 and thus the corresponding gapped interface is
bosonic. In order to construct a gapping potential, we add
two extra bosonic wires at each interface and consider the
extended K matrix Kew = Ke ⊕ Kw with Kw = X ⊕ X . With
the choice of matrices,

U =

⎛⎜⎜⎝
−1 −1 1 2
1 −1 −2 1
1 1 2 1

−1 1 −1 2

⎞⎟⎟⎠, W =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞⎟⎟⎠,

(B2)

we find a set of integer vectors {�w,α},

�w,1 = (−1, 1,−2, 1)T ,

�w,2 = (2,−1,−1, 1)T ,

�w,3 = (−2,−1,−1,−1)T ,

�w,4 = (1, 1,−2,−1)T . (B3)

FIG. 34. (a) Elementary excitations created by local operators
in the bosonic U (1)6 model. (b) Semionic quasiparticle 3 can be
transferred along a diagonal line � in the yz plane. (c) Set of string
operators on a torus in the [011̄] plane.

We introduce bosonic fields φw
r = (ϕ1

r , 2θ1
r , ϕ2

r , 2θ2
r )T corre-

sponding to two-component bosonic wires, which obey the
commutation relations[

θσ
r (x), ϕσ ′

r′ (x′)
] = iπδr,r′δs,s′�(x − x′), (B4)[

θσ
r (x), θσ ′

r′ (x′)
] = [

ϕσ
r (x), ϕσ ′

r′ (x′)
] = 0. (B5)

We then find the tunneling Hamiltonian of the form (167) with

�+
r,R = ϕ1

r + 2θ1
r − ϕ2

r − 4θ2
r ,

�−
r,R = −ϕ1

r − 4θ1
r − ϕ2

r − 2θ2
r ,

�+
r,L = −ϕ1

r + 4θ1
r + ϕ2

r − 2θ2
r ,

�−
r,L = ϕ1

r − 2θ1
r + ϕ2

r − 4θ2
r . (B6)

Similarly to the fermionic U (1)6 model, this model also has
three types of planons but now living in the [010], [001], and
[011̄] planes. Elementary excitations are given by the subset
M of the Lagrangian subgroup and are shown in Fig. 34(a). At
each interface, we can create a pair of semionic quasiparticles
corresponding to l = (3, 0, 0,−3)T or (0, 3,−3, 0)T by ap-
plying a local operator exp(ip · φw

r ) with p = (−1, 0, 0, 2)T

or (1, 0, 0, 1)T , respectively. By creating and annihilating
pairs of semionic quasiparticles by these operators and string
operators along the x axis, we can freely move semionic
quasiparticles in the [011̄] plane [see Fig. 34(b)]. On the
Lx × Ly × Lz torus, we have gcd(Ly, Lz ) such planes. On each
plane P, we can find string operators,

X [011̄]
P =

∏
r∈�

exp
[−i

(
ϕ1

r (x0) − 4θ2
r′ (x0) − ϕ1

r′+ez
(x0)

− 2θ2
r′+ez

(x0)
)]

, (B7a)

Z [011̄]
P = exp

[
− i

2

∫ Lx

0
dx ∂x�

−
r�,L

(x)

]
, (B7b)

where x0 is arbitrary, � is the projection of P onto the yz plane,
and r� is some r ∈ � [see Fig. 34(c)].

We can also create a pair of 2 and 4 quasiparticles corre-
sponding to l = (2, 0,−2, 0)T and (0, 2, 0,−2)T by a local
operator exp(ip · φw

r ) with p = (0, 1, 0, 1)T or (0,−1, 0, 1)T ,
respectively. These quasiparticles become planons moving in
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the [010] or [001] plane. On each [001] plane specified by
z = 1, . . . , Lz, we can find string operators,

X [001]
z =

Ly∏
y=1

exp
[
i
(
2θ1

(y,z)(x0) + 2θ2
(y,z)(x0)

)]
, (B8a)

Z [001]
z = exp

[
− i

3

∫ Lx

0
dx ∂x�

−
(y0,z),L(x)

]
, (B8b)

for arbitrary x0 and y0, while on each [010] plane specified by
y = 1, . . . , Ly, we find

X [010]
y =

Lz∏
z=1

exp
[−i

(
2θ1

(y,z)(x0) − 2θ2
(y,z)(x0)

)]
, (B9a)

Z [010]
y = exp

[
− i

3

∫ Lx

0
dx ∂x�

+
(y,z0 ),L(x)

]
, (B9b)

for arbitrary x0 and z0.
These string operators obey the same algebras as those for

the fermionic U (1)6 model [Eqs. (171), (180), and (182)].
They are independent from each other and form mutually
commuting pairs of the (generalized) Pauli operators. They
thus span the ground-state manifold with degeneracy

GSD = 3Ly+Lz · 2gcd(Ly,Lz ). (B10)

In the present case, the model is microscopically built out of
bosonic degrees of freedom. The semion topological orders
in [011̄] planes might be decoupled, but the U (1)3 topo-
logical orders in [010] and [001] cannot since they are 2D
fermionic topological orders. In this sense, this model cannot
be smoothly deformed into decoupled stacks of 2D topologi-
cal orders in the [011̄], [010], and [001] directions.

2. Bosonic U (1)8 model

Here, we provide another model for foliated type-I fracton
order with both lineons and planons but with different statis-
tics of planons from that in Sec. IV B 1. We consider a 3D
cellular topological state built out of the U (1)8 topological
orders, each of which is described by the K matrix K0 = 8.
On the square grid, each interface possesses four gapless edge
modes corresponding to the K matrix

Ke =

⎛⎜⎜⎝
8

8
−8

−8

⎞⎟⎟⎠. (B11)

We consider a gapped interface obtained by condensing a set
of quasiparticles generated by M = {ma} with

m1 = (1, 0, 7, 4)T ,

m2 = (0, 1, 4, 7)T ,
(B12)

both of which are bosonic quasiparticles with s = −4. Hence,
the corresponding gapped interface is bosonic. In order to
construct a gapping potential, we add two extra bosonic wires
at each interface and consider the extended K matrix Kew =

FIG. 35. (a) Elementary excitations created by local operators in
the bosonic U (1)8 model with lineons and planons. (b) Quasiparticle
2 or 6 can be transferred along the y axis. Dipole of quasiparticles 1
or 7 can also be transferred along (c) the y axis or (d) the z axis.

Ke ⊕ Kw with Kw = X ⊕ X . With the choice of matrices,

U =

⎛⎜⎜⎜⎝
−2 −2 0 1

1 0 2 2

−2 2 0 −1

−1 0 −2 2

⎞⎟⎟⎟⎠, W =

⎛⎜⎜⎜⎝
1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

⎞⎟⎟⎟⎠,

(B13)

we find a set of integer vectors {�w,α},
�w,1 = (−2, 2, 1, 0)T ,

�w,2 = (0,−1, 2,−2)T ,

�w,3 = (2, 2,−1, 0)T ,

�w,4 = (0, 1, 2, 2)T . (B14)

By introducing bosonic fields φw
r = (ϕ1

r , 2θ1
r , ϕ2

r , 2θ2
r )T cor-

responding to two-component bosonic wires, which obey the
commutation relations in Eq. (203), we find the tunneling
Hamiltonian of the form (167) with

�+
r,R = ϕ1

r + 2ϕ2
r + 4θ2

r ,

�−
r,R = 2ϕ1

r + 4θ1
r − 2θ2

r ,

�+
r,L = −ϕ1

r − 2ϕ2
r + 4θ2

r ,

�−
r,L = 2ϕ1

r − 4θ1
r + 2θ2

r . (B15)

In this model, there are planon excitations in the [010]
and [001] planes and also planons made of dipoles of lineon
excitations moving in the same planes. The most elementary
excitations created by local operators take the form of triplets
of quasiparticles, such as l = (1, 0,−1, 4)T or (0, 1, 4,−1)T ,
as shown in Fig. 35(a). Fusion of two identical triplets leads
to a pair of 2 and 6 quasiparticles with s = ±1/4, which
are given by l = (2, 0,−2, 0)T or (0, 2, 0,−2)T up to local
bosonic excitations 8 and are created by exp(ip · φw

r ) with p =
(−1, 0, 0, 0)T or (0, 0, 0,−1)T , respectively. By successively
applying these operators, we can transfer 2 or 6 quasiparticles
along the y or z axis [see Fig. 35(b)]. With the mobility along
the x axis, these quasiparticles become planons in the [001]
or [010] plane. On each [001] plane labeled by z = 1, . . . , Lz,
we can find a string operator moving a 2 planon along the y
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FIG. 36. Sets of string operators for the bosonic U (1)8 model
with lineons and planons on a torus. They are associated with planons
in (a) the [001] plane and (b) the [010] plane and to dipole planons
in (c) the [001] plane and (d) the [010] plane.

axis and that moving a 1 lineon along the x axis,

X [001]
z =

Ly∏
y=1

exp
[−iϕ1

(y,z)(x0)
]
, (B16a)

Z [001]
z = exp

[
− i

8

∫ Lx

0
dx ∂x�

−
(y0,z),L (x)

]
, (B16b)

for arbitrary x0 and y0 [see Fig. 36(a)], while on each [010]
plane labeled by y = 1, . . . , Ly, we have a string operator
moving a 2 planon along the z axis and that moving a 1 lineon
along the x axis,

X [010]
y =

Lz∏
z=1

exp
[−i2θ2

(y,z)(x0)
]
, (B17a)

Z [010]
y = exp

[
− i

8

∫ Lx

0
dx ∂x�

+
(y,z0 ),L(x)

]
, (B17b)

for arbitrary x0 and z0 [see Fig. 36(b)]. These string operators
obey the generalized Pauli algebra

Z [001]
z X [001]

z = eπ i/2X [001]
z Z [001]

z , (B18)

Z [010]
y X [010]

y = eπ i/2X [010]
y Z [010]

y . (B19)

Another type of planon is formed by dipoles of 1 or 7
quasiparticles with s = ±1/16. Let us consider two triplets of
quasiparticles l1 = (1, 0,−1, 4)T and l2 = (1,−4,−1, 0)T ,
which are created by local operators exp(ip · φw

r ) with p1 =
(0, 0, 1, 1)T and p2 = (−1, 0,−1, 1)T , respectively. If we
create l1 at r and l2 at r + ez, 4 quasiparticles on the interme-
diate vertical strip are pair annihilated, leaving dipoles of 1 or
7 quasiparticles at adjacent parallel strips along the y axis [see
Fig. 35(c)]. With the mobility along the x axis, these dipoles
coherently move in the [001] plane. However, a single 1 or

7 quasiparticle is still a lineon moving only along the x axis.
Therefore, we can construct two string operators associated
with a 1-1 dipole along the y axis and a 1 lineon along the x
axis on each [001] plane,

X dp[001]
z =

Ly∏
y=1

exp
[
i
(
ϕ2

(y,z)(x0) + 2θ2
(y,z)(x0)

−ϕ1
(y,z+1)(x0) − ϕ2

(y,z+1)(x0) + 2θ2
(y,z+1)(x0)

)]
,

(B20a)

Zdp[001]
z = exp

[
− i

8

∫ Lx

0
dx ∂x�

−
(y0,z),L(x)

]
, (B20b)

for arbitrary x0 and y0 [see Fig. 36(c)]. They obey the gener-
alized Pauli algebra

Zdp[001]
z X dp[001]

z = eπ i/4X dp[001]
z Zdp[001]

z . (B21)

Similarly, we can construct a pair of 1-1 dipoles moving
along the z axis by binding l3 = (0, 1, 4,−1)T at r and l2 =
(−4, 1, 0,−1)T at r + ey [see Fig. 35(d)], which then moves
in the [010] plane when combined with the mobility along the
x axis. We can then find two string operators on each [010]
plane,

X dp[010]
y =

Ly∏
y=1

exp
[
i
(
ϕ1

(y,z)(x0) + 2θ1
(y,z)(x0)

− 2θ2
(y,z)(x0) + ϕ1

(y+1,z)(x0) − 2θ1
(y+1,z)(x0)

)]
,

(B22a)

Zdp[010]
y = exp

[
− i

8

∫ Lx

0
dx ∂x�

+
(y,z0 ),L(x)

]
, (B22b)

for arbitrary x0 and z0 [see Fig. 36(d)], which also obey the
generalized Pauli algebra

Zdp[010]
y X dp[010]

y = eπ i/4X dp[010]
y Zdp[010]

y . (B23)

Here, we note that these string operators are not linearly
independent from each other and do not form mutually com-
muting pairs of the (generalized) Pauli operators for the same
reason as in the fermionic U (1)4 model in Sec. IV B 1. If we
suppose that they are all independent and form commuting
pairs, they could span a Hilbert space of dimension 4Ly+Lz ·
8Ly+Lz . However, this is not the case and they are subject to
the constraints,(

X dp[001]
z

)2 ∼ X [001]
z X [001]

z+1 , (B24a)(
X dp[010]

y

)2 ∼ X [010]
y X [010]

y+1 , (B24b)

Lz∏
z=1

X dp[001]
z ∼

Lz∏
z=1

X [001]
z

Ly∏
y=1

(
X [010]

y

)2
, (B24c)

Ly∏
y=1

X dp[010]
y ∼

Ly∏
y=1

X [010]
y

Lz∏
z=1

(
X [001]

z

)2
. (B24d)
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We note that these identifications are valid only in the
subspace of degenerate ground states and hold up to mul-
tiplications of operators creating or annihilating pairs of
local bosonic excitations 8, which trivially act on the ground
state. The first two constraints imply that two dipoles of 1
quasiparticles in the same plane fuse into two planons of 2
quasiparticles in the adjacent planes and reduce the dimen-
sion by factor of 4Ly+Lz . The last two constraints imply that
only Ly + Lz − 2 dipole string operators are independent and
further reduce the dimension by factor of 22. Overall, these
constraints reduce the dimension of the Hilbert space spanned
by the string operators by factor of 4Ly+Lz+1, leading to the
ground-state degeneracy

GSD = 42 · 8Ly+Lz−2. (B25)

This violates a strict subextensivity of log GSD by a nega-
tive additive constant and proves that the present model is
a nontrivial foliated fracton model, which cannot be under-
stood as decoupled stacks of 2D topological orders. Fully
commuting pairs of the generalized Pauli operators spanning
the ground-state manifold are given, for example, by X dp[001]

z

and Zdp[001]
z with z = 1, . . . , Lz − 1, X dp[010]

y and Zdp[010]
y with

y = 1, . . . , Ly − 1, X [001]
Lz

and Z [001]
Lz

, and X [010]
Ly

and Z [010]
Ly

.

3. Fermionic U (1)9 model

We here provide another model for 3D TQFT-type topo-
logical order, which can be seen as a 3D fermionic Z3 gauge
theory with a Z3 charge and a Z3 flux loop obeying nontrivial
braiding statistics. We consider a 3D cellular topological state
built out of the U (1)9 topological orders, each of which is
described by the K matrix K0 = 9. On the square grid, each
interface possesses four gapless edge modes corresponding to
the K matrix

Ke =

⎛⎜⎜⎝
9

9
−9

−9

⎞⎟⎟⎠. (B26)

We consider a gapped interface obtained by condensing a set
of quasiparticles generated by M = {ma} with

m1 = (1, 1, 8, 8)T ,

m2 = (3, 6, 0, 0)T ,

m3 = (3, 0, 6, 0)T ,

(B27)

where m1 is a bosonic quasiparticle with s = −7 whereas m2

and m3 are fermionic quasiparticles with s = 5/2 and −3/2,
respectively. Since U (1)9 is a fermionic topological order,
the corresponding gapped interface is fermionic. In order to
construct a gapping potential, we add two extra fermionic
wires at each interface and consider the extended K ma-
trix Kew = Ke ⊕ Kw with Kw = Z ⊕ Z . With the choice of
matrices,

U =

⎛⎜⎜⎝
1 −1 2 2

−1 2 −1 2
1 −2 −2 1
1 1 1 4

⎞⎟⎟⎠, W =

⎛⎜⎜⎝
1 1 1 0
1 0 1 0
0 1 1 0

−1 −1 −1 1

⎞⎟⎟⎠,

(B28)

FIG. 37. (a) Elementary excitations created by local operators in
the fermionic U (1)9 model. (b) Quasiparticles 1 and 8 form a loop-
like excitation in the yz plane, while (c) quasiparticles 3 and 6 can
freely move in the yz plane.

we find a set of integer vectors {�w,α},

�w,1 = (2, 4,−2, 1)T ,

�w,2 = (2, 1,−2, 4)T ,

�w,3 = (4, 2,−1, 2)T ,

�w,4 = (1, 2,−4, 2)T . (B29)

By introducing bosonic fields φw
r = (φ1

r,R, φ1
r,L, φ2

r,R, φ2
r,L )T

corresponding to two-component fermionic wires, which obey
the commutation relations in Eq. (165), we find the tunneling
Hamiltonian of the form (167) with

�+
r,R = φ1

r,R − 2φ1
r,L − 4φ2

r,R − 2φ2
r,L,

�−
r,R = 4φ1

r,R − 2φ1
r,L − φ2

r,R − 2φ2
r,L,

�+
r,L = 2φ1

r,R − φ1
r,L − 2φ2

r,R − 4φ2
r,L,

�−
r,L = 2φ1

r,R − 4φ1
r,L − 2φ2

r,R − φ2
r,L. (B30)

This model hosts a 3D point-like excitation and a loop-like
excitation with the mutual 2π/3 statistics. Since the present
model microscopically consists of fermions, distinction be-
tween fermion or boson statistics for the point-like excitation
is immaterial as we can add a physical fermion to change its
statistics. Elementary excitations created by local operators
are given by the subset M of the Lagrangian subgroup and
are shown in Fig. 37(a). One of the most elementary exci-
tations is l = (1, 1,−1,−1)T , which is composed of 1 and
8 quasiparticles with s = 1/18 and −1/18, respectively, over
all strips surrounding the interface r and is created by a local
operator exp(ip · φw

r ) with p = (−1, 1, 1, 1)T . While single 1
or 8 quasiparticles only behave as a lineon along the x axis,
they can collectively form a loop-like excitation in the yz plane
by acting these local operators on the interior of the loop [see
Fig. 37(b)]. On an Lx × Ly × Lz torus, we can find a pair of a
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FIG. 38. Sets of membrane and string operators for the fermionic
U (1)9 model on a torus. They are associated with (a) loop-like
excitations of quasiparticles 1 and 8 in the yz plane and point-like
excitations of quasiparticles 3 and 6 in (b) the [001] plane and (c) the
[010] plane and (d) along plaquette loops.

membrane operator in the yz plane and a rigid string operator
along the x axis,

X mem =
∏

r∈ZLy ×ZLz

exp
[−i

(
φ1

r,R(x0) − φ1
r,L(x0)

−φ2
r,R(x0) − φ2

r,L(x0)
)]

, (B31a)

Zmem = exp

[
− i

9

∫ Lx

0
dx ∂x�

−
r0,L

(x)

]
, (B31b)

for arbitrary x0 and r0 [see Fig. 38(a)]. They obey the general-
ized Pauli algebra

ZmemX mem = e2π i/9X memZmem. (B32)

The other types of excitations are pairs of 3 and 6
quasiparticles, which have s = 1/2 and −1/2 and thus are
fermions. However, we note that their fermionic statistics can
be transmuted to the bosonic one by adding a local fermionic
excitation. The corresponding excitations, for example, l =
(3, 0,−3, 0)T and (3,−3, 0, 0)T can be created by local oper-
ators exp(ip · φw

r ) with p = (−2, 2, 1, 1)T and (0, 1, 0,−1)T ,
respectively. These fermionic quasiparticles can be transferred
in arbitrary directions within the yz plane [see Fig. 37(c)].
With the mobility along the x axis, the 3 or 6 quasiparticles
behave as point-like excitations fully mobile in the 3D space.
As in the bosonic U (1)4 model discussed in Sec. IV C 1, we
may then construct three kinds of string operators. On each
[001] plane labeled by z = 1, . . . , Lz, we find a string operator

moving a fermionic quasiparticle along the y axis and that
moving a 1 lineon along the x axis,

X [001]
z =

Ly∏
y=1

exp
[−i

(
2φ1

(y,z),R(x0) − 2φ1
(y,z),L(x0)

−φ2
(y,z),R(x0) − φ2

(y,z),L(x0)
)]

, (B33a)

Z [001]
z = exp

[
− i

9

∫ Lx

0
dx ∂x�

−
(y0,z),L(x)

]
, (B33b)

for arbitrary x0 and y0. On each [010] labeled by y =
1, . . . , Ly, we find a string operator moving a fermionic quasi-
particle along the z axis and that moving a 1 lineon along the
x axis,

X [010]
y =

Lz∏
z=1

exp
[−i

(
φ1

(y,z),R(x0) − φ1
(y,z),L(x0)

− 2φ2
(y,z),R(x0) − 2φ2

(y,z),L(x0)
)]

, (B34a)

Z [010]
y = exp

[
− i

9

∫ Lx

0
dx ∂x�

+
(y,z0 ),L(x)

]
, (B34b)

for arbitrary x0 and z0. On each square plaquette labeled by
its left bottom corner r, we find a string operator moving a
fermionic 3 quasiparticle along the plaquette loop and that
moving a 1 lineon along the x axis,

X plaq
r = exp

[−i
(
φ1

r,R(x0) + φ2
r,R(x0) + φ1

r+ey,R(x0)

− 2φ1
r+ey,L(x0) − 2φ2

r+ey,R(x0) − φ2
r+ey,L(x0)

+φ1
r+ey+ez,L(x0) − φ2

r+ey+ez,L(x0)

− 2φ1
r+ez,R(x0) + φ1

r+ez,L(x0)

+φ2
r+ez,R(x0) + 2φ2

r+ez,L(x0)
)]

, (B35a)

Zplaq
r = exp

[
− i

9

∫ Lx

0
dx ∂x�

−
r+ey,L

(x)

]
, (B35b)

for arbitrary x0. These string operators obey the generalized
Pauli algebra

Z [001]
z X [001]

z = e2π i/3X [001]
z Z [001]

z , (B36)

Z [010]
y X [010]

y = e2π i/3X [010]
y Z [010]

y , (B37)

Zplaq
r X plaq

r = e2π i/3X plaq
r Zplaq

r . (B38)

If we suppose that all these membrane and string opera-
tors are independent from each other and form commuting
pairs of the generalized Pauli operators, they could span a
Hilbert space of the dimension 9 · 3Ly+Lz+LyLz . However, it
is impossible to find such mutually commuting pairs since
the membrane and string operators in the yz plane are not
independent but are subject to the constraints,

(X mem)3 ∼
Ly∏

y=1

X [010]
y

Lz∏
z=1

X [001]
z , (B39a)

X [001]
z X [001]

z+1 ∼
Ly∏

y=1

X plaq
(y,z) , (B39b)
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X [010]
y X [010]

y+1 ∼
Lz∏

z=1

X plaq
(y,z) , (B39c)

∏
r∈ZLy ×ZLz

X plaq
r ∼ 1. (B39d)

These identifications hold up to multiplications of operators
creating local fermionic excitations 9 and thus are valid only
in the subspace of degenerate ground states. These constraints
reduce the dimension of the Hilbert space by factor of 32 ·
3Ly+Lz−2, leading to the ground-state degeneracy

GSD = 9 · 3LyLz . (B40)

As discussed for the bosonic U (1)4 model in Sec. IV C 1,
the degeneracy growing with the number of quantum wires or
interfaces is a consequence of local fermion loop excitations
on square plaquettes. It can be lifted by adding the local pla-
quette loop operators defined in Eq. (B35a) as a perturbation
of the form (216). The perturbation induces the condensation
of the local fermionic loops and selects simultaneous eigen-
states of the fermion loop operators X plaq

r with the eigenvalues
+1 as a new ground state. The subspace of the new ground
state is spanned by the membrane and string operators in
Eqs. (B31), (B33), and (B34), which are now subject to the
constraints

(X mem)3 ∼
Ly∏

y=1

X [010]
y

Lz∏
z=1

X [001]
z , (B41a)

X [001]
z X [001]

z+1 ∼ 1, (B41b)

X [010]
y X [010]

y+1 ∼ 1. (B41c)

We thus find that after the condensation of local fermionic
loops, the ground-state degeneracy becomes a constant,

GSD′ = 33. (B42)

This implies that the ground states is in a 3D fermionic
TQFT-type topological order. From the noncommutativity
between local plaquette loop operators and lineon string op-
erators as given in Eq. (B38), single lineon excitations of 1
or 8 along the x axis are confined in the condensate. As the
cubes of lineon operators commute with all plaquette loop
operators, single 3 or 6 quasiparticles obtained by fusing three
elementary lineons on the same strip behave as deconfined
lineons. With the mobility in the yz plane, they behave as
3D point-like excitations with a Z3 charge. Another type of
deconfined excitations along the x axis can be constructed
by taking appropriate products of lineon string operators on
different strips. For each square plaquette, products of two
lineon string operators moving two 1 lineons coherently be-
tween parallel strips or those moving a pair of 1 and 8 lineons
between orthogonal strips commute with the plaquette loop
operator X plaq

r . When such products of lineon operators form a
closed membrane, they commute with all plaquette operators.
Combining finite fractions of the membrane operator given in
Eq. (B31a) for the yz plane and finite segments of the products
of lineon operators along the x axis, we can construct arbitrary
shapes of closed membrane operators. An open membrane
creates loop-like excitations whose energy is proportional

FIG. 39. (a) Braiding process for the fermionic U (1)9 model
between a point-like fermionic excitation and a loop-like excitation
after the condensation of local fermionic loops, yielding the mutual
2π/3 statistics. There are three membrane operators on a torus in the
(b) yz, (c) xz, and (d) xy planes and the associated string operators.

to the length of its boundary. As these loop-like excitations
consist of 1 and 8 quasiparticles, they have the mutual 2π/3
statistics with 3D point-like excitations originated from 3 or
6 quasiparticles [see Fig. 39(a)]. Thus, our model realizes
a fermionic TQFT-type topological order of a 3D Z3 gauge
theory after the condensation of local loop excitations.

On a torus, we can find three membrane operators in the
yz, xz, and xy planes,

X ′
1 =

∏
r∈ZLy ×ZLz

exp
[−i

(
φ1

r,R(x0) − φ1
r,L(x0)

−φ2
r,R(x0) − φ2

r,L(x0)
)]

, (B43a)

X ′
2 =

Lz∏
z=1

exp

[
− i

9

∫ Lx

0
dx ∂x�

−
(y0,z),L(x)

]
, (B43b)

X ′
3 =

Ly∏
y=1

exp

[
− i

9

∫ Lx

0
dx ∂x�

+
(y,z0 ),L(x)

]
, (B43c)

respectively, and three fermion string operators along in the x,
y, and z axes,

Z ′
1 = exp

[
− i

3

∫ Lx

0
dx ∂x�

−
(y0,z0 ),L(x)

]
, (B44a)

Z ′
2 =

Ly∏
y=1

exp
[−i

(
2φ1

(y,z0 ),R(x0) − 2φ1
(y,z0 ),L(x0)

−φ2
(y,z0 ),R(x0) − φ2

(y,z0 ),L(x0)
)]

, (B44b)
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Z ′
3 =

Lz∏
z=1

exp
[−i

(
φ1

(y0,z),R(x0) − φ1
(y0,z),L(x0)

− 2φ2
(y0,z),R(x0) − 2φ2

(y0,z),L(x0)
)]

, (B44c)

respectively, where the choice of x0, y0, and z0 is arbitrary
in each expression. They are illustrated in Fig. 39(b)–39(d).
These operators obey the generalized Pauli algebra

Z ′
jX

′
j = e2π i/3X ′

jZ
′
j, (B45)

for j = 1, 2, 3. These membrane and string operators form
mutually commuting pairs of the generalized Pauli operators
and thus span the 33-dimensional ground-state manifold on a
torus as expected for a 3D Z3 gauge theory.

APPENDIX C: EQUIVALENT HONEYCOMB
GRID MODELS

Some of cellular topological states constructed in Sec. IV
on the square grid can also be defined on the honeycomb grid
with preserving quasiparticle properties. Such cellular topo-
logical states are the fermionic U (1)2 model in Sec. IV A 1
and the fermionic U (1)6 model in Sec. IV A 2 for foliated
type-I fracton order with only planons, the bosonic U (1)4

model in Sec. IV C 1 for TQFT-type topological order, and the
bosonic U (1)8 model in Sec. IV D 1 for hybrid of fracton and
topological orders. A common feature of these models is that
their constituent gapped interfaces are related to the conformal
embedding [95] for free boson CFTs,

U (1)k × U (1)k ⊃ U (1)2k × U (1)2k . (C1)

While the conformal embedding has been fully utilized in
Ref. [110] for constructing 3D coupled-wire models, we here
discuss their explicit connection with cellular topological
states.

Let us consider a strip of the U (1)k × U (1)k topological
order sandwiched by two strips of the U (1)2k × U (1)2k topo-
logical orders as depicted in Fig. 40(a). At the left interface,
we have two left-moving edge modes φ1,L and φ2,L from
the middle strip and two right-moving edge modes �1,R and
�2,R from the leftmost strip. At the right interface, we have
two right-moving edge modes φ1,R and φ2,R from the middle
strip and two left-moving edge modes �1,L and �2,L from
the rightmost strip. We assume that φ1,R and φ1,L belong to
the same layer and φ2,R and φ2,L too. Collectively denot-
ing the bosonic fields as φe

A = (�1,R,�2,R, φ1,L, φ2,L )T and
φe

B = (φ1,R, φ2,R,�2,L,�1,L )T , we suppose that they obey the
commutation relations[

∂xφ
e
A,α (x), φe

A,β (x′)
] = 2π i

(
KA

e

)
αβ

δ(x − x′), (C2a)[
∂xφ

e
B,α (x), φe

B,β (x′)
] = 2π i

(
KB

e

)
αβ

δ(x − x′), (C2b)

with the K matrices

KA
e =

⎛⎜⎜⎝
2k

2k
−k

−k

⎞⎟⎟⎠, (C3a)

FIG. 40. (a) Interface between four strips of the U (1)2k topo-
logical order separated by a strip of the U (1)k × U (1)k topological
order. (b) Shrinking the middle strip yields a single gapped interface
with an additional quantum wire. Using such gapped interfaces, some
cellular topological states on the square grid (c) can be deformed to
those on the honeycomb grid (d).

KB
e =

⎛⎜⎜⎝
k

k
−2k

−2k

⎞⎟⎟⎠. (C3b)

We can then define two U (1)k currents by jσ,R = eiφσ,R with
conformal spin s = k/2, two U (1)k currents by jσ,L = eiφσ,L

with s = −k/2, two U (1)2k currents by Jσ,R = ei�σ,R with
s = k, and two U (1)2k currents by Jσ,L = ei�σ,L with s =
−k. The conformal embedding (C1) implies that in terms
of the two U (1)k currents, we can construct two U (1)2k

currents J±,R = ei�±,R , where �±,R are nothing but the sym-
metric and antisymmetric linear combinations of the bosonic
fields �±,R = φ1,R ± φ2,R. Similarly, we can construct two
U (1)2k currents J±,L = ei�±,L by �±,L = φ1,L ± φ2,L. There-
fore, current-current interactions with Jσ,R and J±,L naturally
open a gap at the left interface, while those with Jσ,L and J±,R

open a gap at the right interface.
We then consider a process of shrinking the middle strip,

which will leave a quantum wire with two right-moving and
two left-moving bosonic fields between the two strips of
the U (1)2k × U (1)2k topological orders [Fig. 40(b)]. Such
gapped interfaces with additional quantum wires are precisely
those used to construct some of the previous cellular topo-
logical states. Indeed, as seen form Eqs. (168), (205), (177),
and (226), the corresponding tunneling Hamiltonians involve
U (1)2k currents obtained by the symmetric and antisymmetric
combinations of U (1)k currents for k = 1, 2, 3, and 4, respec-
tively. We may thus consider a reverse process of stretching
the quantum wires added at interfaces such that they can be
viewed as strips of the U (1)k × U (1)k topological orders. Ap-
plying this process to the cellular topological states built from
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the U (1)2k topological orders on the square grid [Fig. 40(c)],
we can obtain equivalent cellular topological states built from
both U (1)2k and U (1)k topological orders on the honeycomb
grid without changing the quasiparticle properties of the orig-
inal models [Fig. 40(d)].

We can also interpret these results in terms of the La-
grangian subgroup. By collectively denoting the edge bosonic
fields at an interface between four U (1)2k topological orders
as φe = (�1,R,�2,R,�2,L,�1,L )T , gapped interfaces associ-
ated with the conformal embedding (C1) are specified by the
Lagrangian subgroups generated by {ma} in Eqs. (162), (200),
(174), and (223). Such gapped interfaces can be regarded
as composite gapped interfaces obtained by inserting a strip
of the U (1)k × U (1)k topological order, at which {mA

a } are
condensed at the left interface and {mB

a } are condensed at the
right interface, where

mA
1 = (1, 1, 1, 0)T ,

mA
2 = (1, 2k − 1, 0, 1)T ,

(C4)

and

mB
1 = (1, 0, 1, 1)T ,

mB
2 = (0, 1, 1, 2k − 1)T . (C5)

The former interfaces can be reproduced by pair annihilating
quasiparticles at the middle strip from the composite gapped
interfaces.

It is also straightforward to write down the correspond-
ing coupled-wire Hamiltonians on the honeycomb grid. We
illustrate this for the bosonic U (1)4 model in Sec. IV C 1. Let
us denote two sublattices on the honeycomb grid by A and
B. We then introduce a two-component bosonic wire with
the bosonic fields φw,A

r = (ϕA,1
r , 2θA,1

r , ϕA,2
r , 2θA,2

r )T on the

A sublattice and another two-component bosonic wires with
φw,B

r = (ϕB,1
r , 2θB,1

r , ϕB,2
r , 2θB,2

r )T on the B sublattice. Cor-
responding to the Lagrangian subgroups given by Eqs. (C4)
and (C5), we can find two sets of integer vectors {�A

w,α} and
{�B

w,α} associated with gapping potentials, which are given,
for example, by

�A
w,1 = (1,−1,−1, 1)T ,

�A
w,2 = (1,−1, 1,−1)T ,

(C6)
�A

w,3 = (−1,−1, 0, 0)T ,

�A
w,4 = (0, 0,−1,−1)T ,

�B
w,1 = (1,−1, 0, 0)T ,

�B
w,2 = (0, 0, 1,−1)T ,

�B
w,3 = (−1,−1, 1, 1)T ,

�B
w,4 = (−1,−1,−1,−1)T . (C7)

With Kw = X ⊕ X , we then find a tunneling Hamiltonian

Vhoney
w = −g

∫
dx

∑
r∈Z2

[
cos

(
�

w,A
r,3 + �

w,B
r,1

)
+ cos

(
�

w,A
r,4 + �

w,B
r,2

) + cos
(
�

w,B
r,3 + �

w,A
r+ey,1

)
+ cos

(
�

w,B
r,4 + �

w,A
r+ez,2

)]
, (C8)

where we have defined the bosonic fields

�w,A
r,α = (

�A
w,α

)T
Kwφw,A

r , (C9a)

�w,B
r,α = (

�B
w,α

)T
Kwφw,B

r . (C9b)
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