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Correlation-induced sensitivity and non-Hermitian skin effect of quasiparticles
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Non-Hermitian (NH) Hamiltonians have been shown to exhibit unique signatures, including the NH skin
effect and an exponential spectral sensitivity with respect to boundary conditions. Here, we investigate as to
what extent these remarkable phenomena, recently predicted and observed in a broad range of settings, may also
occur in closed correlated fermionic systems that are governed by a Hermitian many-body Hamiltonian. There,
an effectively NH quasiparticle description naturally arises in the Green’s function formalism due to interparticle
scattering that represents an inherent source of dissipation. As a concrete platform we construct an extended
interacting Su-Schrieffer-Heeger (SSH) model subject to varying boundary conditions, which we analyze using
exact diagonalization and nonequilibrium Green’s function methods. That way, we clearly identify the presence
of the aforementioned NH phenomena in the quasiparticle properties of this Hermitian model system.
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I. INTRODUCTION

Leveraging the concept of effective non-Hermitian (NH)
Hamiltonians, a number of intriguing phenomena unique
to dissipative systems have been recently experimentally
discovered and explained with theory in a wide range of
physical settings [1–12]. This prominently includes NH
topological properties such as the winding of generalized
energy eigenvalues in the complex plane [4,13] entailing
the NH skin effect, i.e., the accumulation of a macroscopic
number of eigenstates at the boundary [14–19], as well as the
anomalous sensitivity of surface zero modes with respect to
boundary conditions [6,20–25].

In most physical scenarios, NH Hamiltonians are used as
a conceptually simple tool to effectively model a system-
environment coupling [10,26], e.g., as an approximation to a
quantum master equation. There, complex energy eigenvalues
account for decay into a bath and the amplification from
gain in an optically active system, respectively [10,25,27].
However, even in closed quantum many-body systems, quasi-
particle excitations may exhibit effective dissipation due to
their scattering off other degrees of freedom within the consid-
ered system [28–32]. The imaginary part of the quasiparticle
energies, as described by the self-energy � entering the
Green’s function (GF), then models their lifetime, and non-
trivial matrix structures of � have been found to give rise
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to interesting NH spectral properties such as exceptional
points [33–39].

In this work, we study the NH boundary sensitivity
of quasiparticles in a closed quantum many-body system,
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FIG. 1. (a) Illustration of the tight-binding Hamiltonian H0

[Eq. (5)] with parameters t1, t2 and two-body interaction V [Eq. (7)]
with sublattice-specific interaction strengths UAA,UBB in a two-leg
ladder geometry, with sublattice A (B) as the red upper (blue lower)
leg. (b) Illustration of the broken ring geometry with generalized
boundary condition parameter � ∈ [0, 1], where � = 0 (� = 1) cor-
responds to open (periodic) boundary conditions. (c) Schematic
illustration of our present program, where the path of solid arrows
is followed to demonstrate its (qualitative) commutation with the
beaten dashed path.
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demonstrating the occurrence of both a NH skin effect and
the striking sensitivity of a topological edge mode with re-
spect to small changes in the boundary conditions, despite
the Hermitian nature of the governing many-body Hamil-
tonian. To this end, we construct and solve a model for a
one-dimensional chain of correlated fermions with sublattice-
dependent interactions and varying boundary conditions [see
Figs. 1(a)–1(b) for an illustration] at finite temperature. In
the framework of full exact diagonalization (ED), we extract
the NH quasiparticle Hamiltonian directly from the Källén-
Lehmann representation of the retarded GF, and analyze its
NH skin effect. In addition, to access bigger system sizes,
we compute the GF within the conserving second Born ap-
proximation (SBA), thus finding numerical evidence for a
sensitivity of the lowest lying quasiparticle mode with re-
spect to boundary conditions that scales exponentially in
system size. Our results corroborate the picture that quasi-
particles behave qualitatively similarly to excitations of an
effective NH tight-binding model, even when it comes to
changes in the boundary conditions of the underlying many-
body Hamiltonian [cf. commuting diagram in Fig. 1(c)],
which implies genuinely NH spectral and spatial distribution
properties [25,38,40,41].

The remainder of this article is structured as follows. The
Green’s function formalism underlying the definition of an ef-
fective NH quasiparticle Hamiltonian is discussed in Sec. II A,
together with a brief synopsis of the numerical methods used
to compute the GF. In Sec. II B, a microscopic model is con-
structed so as to mimic a topological NH tight-binding model
at the quasiparticle level. This model is analyzed in Sec. III,
demonstrating how the effective NH Hamiltonian responds to
varying boundary conditions of the many-body Hamiltonian.
A concluding discussion is presented in Sec. IV. In this work,
we use the natural units h̄ = kB = 1.

II. METHODS AND MODEL BUILDING

A. From Green’s functions to non-Hermitian Hamiltonians

In correlated quantum many-body systems, many im-
portant physical aspects such as response properties and
elementary excitations are encoded in correlation functions
[42]. In particular, equilibrium quasiparticle properties in-
cluding the spectral functions and key susceptibilities are
described by the single-particle (or two-point) retarded
Green’s function (rGF). In this framework, the notion of an
independent particle described by a noninteracting Hermitian
Hamiltonian may be replaced by a quasiparticle governed by
an effective NH Hamiltonian Heff [28,32,37,38,41,43]. There,
the NH character reflects the finite lifetime of quasiparticles
due to interparticle scattering [43]. In the real-space and time
domain, the rGF is defined as

GR
m,n(t ) = −iθ (t )〈{cm(0), c†

n(t )}〉, (1)

where c(t ), [c†(t ′)] is the annihilation (creation) operator in
the Heisenberg picture, m, n are indices referring to both
spatial and internal (e.g., sublattice) degrees of freedom, and
〈...〉 is the thermal average in the grand canonical ensemble
with respect to the full many-body Hamiltonian H. Fourier
transforming to the frequency domain with respect to t , the

frequency-dependant effective NH Hamiltonian Heff (ω) and
self-energy �(ω) are introduced as

GR(ω) = lim
η→0+

(ω + iη − Heff (ω))−1 , (2)

Heff (ω) = H0 + �(ω), (3)

where matrix indices have been dropped for brevity. We focus
on quasiparticle excitations close to the Fermi energy (ω = 0)
and their NH topological properties. To obtain a frequency-
independent effective NH Hamiltonian, we approximate the
self-energy by its value � = �(0) at the Fermi energy. Gen-
erally speaking, since the poles of the rGF [see Eq. (2)] lie in
the lower half of the complex plane, the eigenvalues of Heff

can only have nonpositive imaginary parts, corresponding to
negative inverse of lifetimes. We now outline how the rGF is
practically computed in our present analysis.

Exact Diagonalization. For finite chains of modest size, the
many-body Hamiltonian H = H0 + V with noninteracting
part H0 and interaction potential V can be fully diagonalized
by solving H|Eμ〉 = Eμ|Eμ〉. The diagonalization algorithms
used in our simulations are provided by the Python library
NumPy [44]. Then, the rGF can be computed within the
Källén-Lehmann representation [45] in the grand canonical
ensemble as

Gm,n(ω) =
η→0+

∑
μ,ν

e−Eμ/T

Z

[
〈Eμ|cm|Eν〉〈Eν |c†

n|Eμ〉
ω + iη + Eμ − Eν

+ 〈Eν |cm|Eμ〉〈Eμ|c†
n|Eν〉

ω + iη + Eν − Eμ

]
, (4)

where Z = ∑
μ e−Eμ/T is the partition function, and the

chemical potential has been set to 0 so that the favored con-
figurations are the ones closest to half-filling.Numerically, the
limit η → 0+ of the regularization parameter must be approx-
imated, thus setting a limit to the resolution in frequency (or
energy). While conferring to the finite size rGF a character-
istic spiky spectral structure, the choice of a small but finite
regularization parameter only affects quantitatively, but not
qualitatively, the results presented in this work. To retrieve the
effective Hamiltonian Eq. (3), the limit η → 0 is withheld, and
effectively frequency is treated as a complex parameter with a
small but finite imaginary part. Where ED results are shown,
we use η = 0.015.

Second Born approximation. To access longer chains we
use the nonequlibrium Green’s function approach in conserv-
ing second Born approximation (SBA) [46–50], where the
limiting factor is that only chains with weak to moderate
interaction strengths can be solved to satisfactory accuracy
[50–53]. In this framework, we numerically compute the equi-
librium rGF in real time [see Eq. (1) and Appendix A] by
solving the Kadanoff-Baym equations of motion, building on
the software package NESSi [50]. For sufficiently long times,
the amplitude of the rGF is damped by the interaction-induced
dissipation, thus allowing us to converge the Fourier transform
to frequency space in order to extract the effective NH Hamil-
tonian Eq. (3).
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B. Microscopic lattice model

We now construct a microscopic model for a Hermitian
many-body Hamiltonian H that yields a topologically non-
trivial quasiparticle spectrum at the effective NH Hamiltonian
level [see Eq. (3)]. In particular, we find it interesting to
investigate whether quasiparticles can exhibit a similarly dra-
matic response to changes in the boundary conditions of H as
excitations in NH topological tight-binding models are known
to exhibit. To this end we now define the different kinds of
boundary conditions used in this work.

(i) Periodic boundary wconditions (PBC) are used to
model translationally invariant chains with a finite number of
sites.

(ii) Open boundary conditions (OBC) are present if the
hopping of the first and last site is suppressed, so the system
physically appears as a line with two ends [see Fig. 1(b) with
� = 0].

(iii) Generalized boundary conditions (GBC) interpolate
between OBC and PBC with a parameter � ∈ [0, 1] and can
be thought of as an imperfect ring [see Fig. 1(b)]. For systems
with an integer number of unit cells (even number of sites
for the bipartite lattice considered below), � = 1 amounts to
PBC.

We then proceed in two steps. First, we discuss an effective
NH tight-binding model that has the conceptually simplest
anti-Hermitian part enabling the aforementioned NH topo-
logical features. The Hermitian part of this NH toy model is
then adopted as the noninteracting part H0 of our microscopic
model. Second, a two-body scattering term V is constructed
that may induce a self-energy mimicking the anti-Hermitian
part of the toy model. This results in the full Hermitian Hamil-
tonian H = H0 + V .

Target NH tight-binding model. To set the stage, we
briefly discuss a NH generalization of the celebrated Su-
Schrieffer-Heeger (SSH) model [24,54,55] as an archetype
of a topological NH tight-binding model that we aim at
mimicking further below with the quasiparticle excitations
of a Hermitian many-body model. The Hermitian part of the
Hamiltonian is given by

H0 =
∑

j

t1c†
jσxc j +

∑
j

t2
2

c†
j (σx + iσz )c j+1 + H.c., (5)

where c j = (c j,A, c j,B)T is the annihilation operator in unit
cell j, which has a two-spinor structure in AB-sublattice space,
where the standard Pauli matrices σx, σz act.

The anti-Hermitian part is assumed to be of the form

HAH = −i
∑

j

c†
j (γzσz + γ0σ0)c j, (6)

where γ0, γz � 0 and the causality constraints of the rGF
amount to γ0 � γz. Even though the γ0 term is a simple ver-
tical shift of the eigenenergies in the complex plane, it is thus
of fundamental importance for the physical interpretation in
terms of quasiparticles with a finite life-time. For γz �= 0, the
system exhibits topologically nontrivial properties including a
spectral winding around the base point Eb = −iγ0 for periodic
boundary conditions (PBC) [4,55], the NH skin effect for open
boundary conditions (OBC) [40], and an exponential sensi-
tivity of a spectrally isolated mode with respect to boundary

conditions [24]. We will discuss these intriguing phenom-
ena in more detail when analyzing their occurrence one by
one in the quasiparticle spectrum of our microscopic model
in Sec. III.

Sublattice-dependent interaction. From Eq. (6), we note
that the anti-Hermitian part of our targeted NH tight-binding
model is diagonal in real space. While HAH is independent of
the unit cell (translation invariance), it does depend on sublat-
tice for finite γz, i.e., in any topologically nontrivial scenario.
Quite intuitively, a contribution of this form to the self-energy
may emerge from a sublattice-dependent interaction poten-
tial, which physically corresponds to different scattering rates
within particles on A sites as compared to particles on B
sites, and thus a sublattice-dependent quasiparticle lifetime
[37,39]. While momentum transfer in scattering processes
may give rise to a more complicated momentum-dependent
profile of the scattering rates, the local self-energy is still
expected to have the largest magnitude in a finite temperature
system. Guided by this intuition, in the following we solve
a microscopic many-body model defined by adding to the
free Hermitian Hamiltonian H0 [see Eq. (5)] the sublattice-
dependent two-body interaction

V =
∑

α

∑
j

Uαα

(
n j,α − 1

2

)(
n j+1,α − 1

2

)
, (7)

where α = A, B and n j,α = c†
j,αc j,α denotes the number oper-

ator on sublattice α in unit cell j. Without loss of generality,
in the following we assume UAA > UBB to induce a stag-
gered scattering rate corresponding to a finite γz in Eq. (6).
Our full model described by the Hamiltonian H = H0 + V
is illustrated in Fig. 1(a). This model preserves the unitary
particle-hole symmetry C, i.e., CHC−1 = H which is defined
by its action

Cci,AC−1 = −c†
i,A, Cci,BC−1 = c†

i,B (8)

on the field operators and along with its linearity [56]. Note
that this symmetry also imposes constraints on the the quasi-
particle spectra via the self-energy, as will be discussed in
Sec. III [cf. Eqs. (10)–(11)].

III. NUMERICAL RESULTS FOR GENERALIZED
BOUNDARY CONDITIONS

We now discuss our numerical results for the rGF of
the model described by H = H0 + V [see Eqs. (5) and (7)]
obtained in the framework of full exact diagonalization
and conserving second Born approximation, respectively
(cf. Sec. II A). Our goal is to analyze as to what extent in-
triguing NH topological phenomena hosted by the NH tight
binding model H0 + HAH [see Eqs. (5) and (6)] can be found
in the quasiparticle behavior [as governed by Eq. (3)] of our
microscopic many-body model. Specifically, solving for the
rGF at finite temperature T and with generalized boundary
conditions � ∈ [0, 1] [see Fig. 1(b)], we will study the follow-
ing three related properties: The spectral winding of complex
quasiparticle energies (Sec. III A), the non-Hermitian skin
effect (Sec. III B), and the exponentially enhanced sensitivity
of a spectrally isolated mode (Sec. III C).
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A. Spectral Winding

We start by considering a translation-invariant system with
PBC, such that lattice momentum k is a good quantum number
of Heff . In this scenario, a topologically non-trivial quasi-
particle spectrum is characterized by the winding number [4]

ν =
∮ π

−π

dk

2π i
∂k log det[Heff (k) − Eb] (9)

around a fixed base point Eb in the complex energy plane. A
non-vanishing ν in system with PBC has been identified as
a prerequisite for the NH skin effect [17] and the exponen-
tially enhanced boundary sensitivity [24] to be investigated
further below. For finite systems with L unit cells, we com-
pute ν using a straightforward discretized version of Eq. (9),
i.e ν = 1

2π

∑
n(arg det[Heff (kn+1) − Eb] − arg det[Heff (kn) −

Eb]) with kn = 2πn/L; n = 0, 1, . . . , L − 1. We note that
Heff inherits the particle-hole symmetry of H [cf. Eq. (8)].
Specifically, from the basic definition of the rGF as a correla-
tion function of field operators [see Eq. (1)], the particle-hole
symmetry (8) can be shown to act on the effective NH Heff (k)
as [57–59]

σzHeff (k)σz = −H∗
eff (−k) (10)

which has the immediate implication

{Ek} PH←→ {−E∗
−k}. (11)

on the complex energy eigenvalues, i.e. the imaginary axis is
a symmetry axis of the spectrum. This behavior is confirmed
by our numerical data (see the left panel in Fig. 2(a) for ED
and Fig. 2(b) for SBA data, respectively). These spectra also
show a clear point gap that we characterize via the associated
winding number. A system is considered to possess a point
gap if its spectrum does not cross a base point Eb [40,58]. In
particular, spectra that form loops in the complex plane show a
point gap with a base point anywhere within the area defined
by the loop.This NH topological signature is highlighted in
the corresponding right panels, showing how a phase is accu-
mulated when following Eq. (9). While only the larger system
sizes treated within SBA render the spectrum a smooth curve
in the complex plane, the ED data clearly indicates a quali-
tatively similar winding behavior already in small systems of
L = 14 sites. From this data, we are able to conclude that,
while the self-energies obtained with both methods contain
additional k-dependent terms beyond the simple ansatz in
Eq. (6), the basic intuition of a local self-energy modeled by
a finite γz is sufficient to correctly anticipate the topological
winding protected by a point gap. An example of the full
numerically obtained structure of the self-energy is presented
in Appendix B and shown in Fig. 7 in the case of OBC.

B. Non-Hermitian skin effect

For NH Hamiltonians with ν �= 0 at PBC, it is well known
that the spectrum for OBC may completely change its topol-
ogy, so as to assume an open arc shape in the complex energy
plane that is localized inside the loop defined by the PBC
spectrum [17,60]. Moreover, at OBC a macroscopic number
of right eigenstates may localize at one end of the chain, while
the corresponding left eigenstates will localize at the opposite
end [40]. This is the so-called NH skin effect, the counterpart
of ν �= 0 under OBC [17,60]. While these phenomena have

FIG. 2. (a) Exact diagonalization data (L = 14 sites) and (b) sec-
ond Born approximation data (L = 400 sites) for effective NH
Hamiltonians under periodic boundary conditions (PBC). Left pan-
els: complex spectra with PBC showing a point gap, reference point
Eb = 1 − 0.2i denoted as a red star; the red shaded area contains all
the reference points, where formally ν = 1 holds. Right panels: cor-
responding nontrivial winding of the determinant around the origin,
following Eq. (9), with reference point Eb = 1 − 0.2i. Data obtained
for t2 = −t1 = 1, UAA = 1.5, UBB = 0.1, T = 5. The arrows and the
colors in the right panels show in both cases a counterclockwise
winding corresponding to ν = 1.

been found and explained with theory in the context of a gen-
eralized bulk-boundary correspondence (GBBC) in many NH
tight-binding models (see Ref. [40] for an overview), here we
investigate their occurrence from fully microscopic principles
in the effective NH Hamiltonian derived from the rGF of a
correlated Hermitian many-body model. In other words, in our
analysis the boundary conditions are not modified at the level
of a NH single-particle Hamiltonian but at the microscopic
level of the Hermitian many-body Hamiltonian H. Comple-
mentary to our present work, various aspects of the NH skin
effect in systems involving interactions have recently been
studied [61–66].

In our effective model, using the same parameters and
methods as in the previous section on PBC, in Fig. 3 we
observe both the effect of OBC on the complex energy levels
collapsing to an arc shape and demonstrate the occurrence
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FIG. 3. (a) Spectral collapse under open boundary conditions
(OBC) for SBA data (red, L = 100 sites) and ED data (blue, L = 14
sites), respectively, shown on top of the corresponding PBC data
(grey). The spectra drastically change to an arc shape inside the
shaded area associated with ν = 1. (b) Exponential localization of
the total spectral weight of right eigenstates as a function of the site
index, exemplifying the NH skin effect for SBA data (red, L = 100
sites) and ED data (blue, L = 14 sites). Data obtained for t2 = −t1 =
1, UAA = 1.5, UBB = 0.1, T = 5.

of a NH skin effect for the eigenstates of the effective NH
Hamiltonian. Even though this behavior is compatible with
intuition about the GBBC occurring in NH tight-binding mod-
els, we find it remarkable how the effect of OBC applied to
the Hermitian many-body Hamiltonian H indeed manifests in
the quasiparticle properties according to the principles of NH
topology. Again, the computed OBC self-energies quantita-
tively deviate from the simple toy model in Eq. (6) so as to
include nonlocal terms (see Fig. 7 for an example), but the
presence of these additional perturbations is not capable of
changing the qualitative topological change of the spectrum.
The skin effect and the stark change in the eigenvalues when
the boundary conditions are varied are key ingredients for the
exponential sensitivity analyzed in the following subsection.
We stress that also for OBC, the particle hole symmetry of

H imposes the symmetry {E} PH←→ {−E∗} on the complex
spectrum of Heff .

C. Exponential sensitivity

We now turn to considering our model at generalized
boundary conditions (GBC) that are used to bridge contin-
uously between open (� = 0) and closed (� = 1) boundary
conditions. For systems exhibiting a nonzero spectral winding
number ν, the shift in complex energy due to the activation of
an end-to-end hopping � of an isolated mode within the point

gap has been predicted to scale exponentially with system
size [24]. Given that the quasiparticle spectrum of our model
system exhibits both ν �= 0 and the NH skin effect, we find it
interesting to study whether even this exponential sensitivity
with respect to small changes of � can be identified in our
present context.

As shown in Fig. 1(b), the system under consideration
here has an odd number of sites. Since the Hermitian end-
connecting term

H0,ends = i�c†
N,Ac0,A + h.c. (12)

(� ∈ R) preserves the PH symmetry, the spectrum of Heff

is symmetric around the imaginary axis, implying that at
least one eigenvalue of Heff must be purely imaginary, in-
dependently of the system size. No symmetry-preserving
perturbation or interaction can unpin this mode from the
imaginary axis, similarly to how a chiral-protected zero mode
must always exist in a Hermitian SSH mode with an odd
number of sites. For this reason, we consider this general-
ized imaginary zero mode to be spectrally isolated; itsolves
the eigenproblem Heff (�)|0〉 = −iE�|0〉 with E� > 0. Adapt-
ing the analysis in Ref. [24] to this scenario, the spectrally
isolated eigenvalue is predicted to shift in response to a
change in � as

|E | = |E� − E0| = 0eαL, (13)

where α > 0, i.e., an enhanced sensitivity with increasing
system size, is expected for ν �= 0, while at ν = 0 and the ab-
sence of the NH skin effect, α < 0 represents an exponential
damping of the level shift |E |.

It is also possible to introduce a measure of the total spec-
tral response to the activation of the end-to-end hopping �.
After obtaining the two effective Hamiltonians for zero and
nonzero �, one can solve the eigenvalue problems

Heff (�)
∣∣ψR

j (�)
〉 = Ej,�

∣∣ψR
j (�)

〉
〈
ψL

i (0)
∣∣Heff (� = 0) = 〈

ψL
i (0)

∣∣E∗
i,0. (14)

Since the eigenvalues are complex, there is no direct way to
infer a correspondence between the sets {Ej,�} and {Ei,0}. We
solve this issue by connecting the two sets via maximization
of the biorthogonal overlap |〈ψL

i (0)|ψR
j (�)〉| [6,67]. We can

then define the total spectral shift

|Etot| =
√√√√ L∑

j=1

(Ej,� − Ej,0)2

L
. (15)

To clearly identify an exponential scaling, system sizes be-
yond the scope of full ED are necessary, which is why the data
in this section is exclusively based on SBA. Quite remarkably,
the effective Hamiltonian computed within SBA clearly ex-
hibits the exponential sensitivity described by Eq. (13) (see
Fig. 4). More specifically, the level shift increases exponen-
tially in system size over more than three orders of magnitude,
before leveling off at a value that is comparable to the size of
the point gap of the system along the imaginary axis. This is a
strong piece of evidence that topological principles unique to
NH systems can manifest in the quasiparticles of many-body
systems governed at the microscopic level by a Hermitian
Hamiltonian. Similar to the cases on OBC and PBC, the
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FIG. 4. Energy shift E as a function of the number of sites L in
response to switching on a small end-to-end hopping � = 10−5. The
red points show the shift |E0| of the spectrally isolated in-gap mode
[see Eq. (13)], and an exponential fit (black dashed line) closely
matching our numerical data is plotted as a guide to the eye. The fit
excludes the last three points at L = 91, 95, 101, where the exponen-
tial behavior crosses over to a saturated regime. The blue line shows
the overall energy shift |Etot| of the spectrum per unit length [see
Eq. (15)]. The inset shows the spectra of the effective Hamiltonian
Heff (�) for � = 0 (crosses) and � = 10−5 (circles) for L = 81 sites,
where the in-gap mode is highlighted in red. Data obtained via SBA
for t2 = −t1 = 1, UAA = 1.5, UBB = 0.1, T = 5.

effects on the self-energy of changing � at GBC are richer
than in previously considered NH tight-binding toy models.
However, the qualitative similarity of our microscopic results
to a simple toy model using the NH term Eq. (6) highlights
the topological robustness of the studied phenomena.

IV. CONCLUSIONS

In summary, we have designed and studied a Her-
mitian one-dimensional many-body system of correlated
fermions, whose quasiparticle description mimics a topo-
logically nontrivial NH tight-binding model. Specifically,
we have investigated several boundary-dependent properties
that, at the single-particle level, are unique to NH systems.
That way we have demonstrated how changing the bound-
ary conditions of the Hermitian many-body Hamiltonian can
indeed have a similar effect on the quasiparticle properties
as directly changing the boundary conditions in an effective
NH tight-binding model, at least as far as NH topologi-
cal properties are concerned. In the schematic language of
Fig. 1(c), we have shown that the dashed and the solid path
of the diagram qualitatively commute for proposed model
systems.

Our findings exemplify, on a fully microscopic basis in the
realm of quantum many-body physics, several intriguing NH
topological phenomena that have been predicted at the level
of effective NH single-particle models, including the NH skin
effect and the exponential sensitivity of spectral properties
with respect to small changes in the boundary conditions.
These insights suggest that experimental signatures of NH
topology can be found in basic spectroscopic experiments
and quantum transport settings probing aspects of the
single-particle Green’s function. A closer analysis of the

experimental accessibility of the predicted signatures and
proposals of platform-specific experimental protocols define
interesting subjects of future work.
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APPENDIX A: SECOND BORN APPROXIMATION

Using the nonequilibrium Green’s functions approach also
allows to efficiently compute the rGF in thermal equilibrium.
Working with a generalized GF with complex time arguments
z, z′ on the Keldysh contour C (Fig. 5), a perturbative approach
in interaction strength using Feynman diagram techniques is
taken. Specifically, the GF is defined as

G(i, α, z; i′, α′, z′)

= −i
Tr

(
TC exp(−i

∫
C dzH (z))ci,α (z)c†

i′,α′ (z′)
)

Tr
(

exp
(−i

∫
C dzH (z)

)) , (A1)

where TC denotes the contour time ordering operator,
∫
C is the

time integral defined on the contour, H (z) is the many-body
Hamiltonian which in our case is constant H (z) = H , and
ci,α (z)(c†

i′,α′ (z′)) are the annihilation (creation) operators in
the contour Heisenberg picture (a detailed introduction can be
found in Refs. [46,47,50]). The GF obeys the Dyson equation,
interpreting the site argument i and sublattice index α as a
combined matrix index of G(z, z′), the Dyson equation can be
written in a compact form, here in the differential formulation

(i∂z − H0(z))G(z, z′)

= 1̂δC (z, z′) +
∫
C

dz̄ �(z, z̄)G(z̄, z′), (A2)

FIG. 5. The Keldysh contour used in our calculations, running
from t0 to the maximal time tmax back to t0 and ends at the imaginary
time t0 − iβ. The complete contour is defined as sum over all time
branches: forward C−, backward C+, and imaginary (Matsubara)
branch CM . Depending on the time arguments, one recovers the
ordinary GF like Matsubara or time-ordered component.
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FIG. 6. Illustration of the self-energy in the second Born approx-
imation �SBA, which includes all diagrams up to second order (up to
two interaction lines). The sum contains the Fock diagram, Hartree
diagram, exchange diagram, and the direct diagram (from upper left
to lower right).

where we have introduced the noninteracting Hamiltonian
H0(z), the delta function on the Keldysh contour δC (z, z′),
and the self-energy �(z, z̄). The self-energy captures all in-
teraction effects and can be written in terms of Feynman
diagrams depending on the GF. In our work we consider
only diagrams up to second order, which defines the sec-
ond Born approximation (SBA) �SBA = �1F + �1H + �2X +
�2D (Fig. 6). Note that Fermi lines in the considered diagrams
represent full SBA rather than free GFs, as is characteristic for
conserving approximations with self-consistently determined
GFs. In other words, the SBA contains the so-called Hartree
(1H), Fock (1F), exchange (2X), and direct(2D) terms. Using
the interaction in real space ṽ(i, α; i′, α′) = (UAδα,Aδα′,A +
UBδα,Bδα′,B)(δi,i′+1 + δi,i′−1) each diagram is written as

�1F(i1, α1, z1; i2, α2, z2)

= −iδC (z2, z1)δi1,i2δα1,α2

∑
i3,α3

ṽ(i1, α1; α3, i3)

× G(i1, α1, z3; i3, α3, z+
3 ), (A3)

�1H(i1, α1, z1; i2, α2, z2) = iδC (z2, z1)ṽ(i1, α1; i2, α2)

× G(i1, α1, z1; i2, α2, z+
1 ), (A4)

�2D(i1, α1, z1; i2, α2, z2)

= G(i1, α1, z1; i2, α2, z2)

×
∑
i3,i4

∑
α3,α4

[ṽ(i1, α1; i4, α4)ṽ(i2, α2; i3, α3)

× G(i3, α3, z2; i4, α4, z1)G(i4, α4, z1; i3, α3, z2)], (A5)

�2X(i1, α1, z1; i2, α2, z2)

= −
∑
i3,i4

∑
α3,α4

[ṽ(i1, α1; i3, α3)ṽ(i2, α2; i4, α4)

× G(i3, α3, z1; i2, α2, z2)G(i4, α4, z2; i3, α3, z1)

× G(i1, α1, z1; i4, α4, z2)]. (A6)

For the first order diagrams [Eqs. (A4) and (A3)], the complex
time z+ indicates a point of time which happens infinites-

FIG. 7. Entries of the anti-Hermitian imaginary part of the self-
energy � for different values of the interaction parameters UAA

and UBB (indicated above each panel). A diagonal block corre-
sponding to a bulk unit cell is highlighted in red to guide the eye.
It is possible to observe how the staggered pattern of interaction
(first and second panels) is mirrored in the diagonal entries of the
self-energy, while the absence of any staggering (third panel) is
also inherited by the self-energy. Decomposing the diagonal 2-by-2
blocks on the basis of Pauli matrices one notices that factors of the
form of Eq. (6) are by far dominant, with γz 
 0.1836, −0.1836
and γ0 
 0.1855, 0.1855 on average for the first two panels, while
for the third one γz = 0 within machine error and γ0 = 0.4219.
This figure also shows that the self-energy has a more complex
structure than the simple target model of Eq. (6), since also other (off-
diagonal) entries are nonvanishing (though smaller than the dominant
diagonal terms).

imally later than z in the contour time ordering sense.
Furthermore, the interaction line value ṽ needs to be evaluated
carefully with respect to the boundary conditions. Our ap-
proximation of the self-energy can be derived as a functional
derivative of a symmetric functional �(G) ensuring conserva-
tion of energy and particle number, if the Dyson equation is
solved self-consistently [46].

For practical applications we work in the Keldysh space,
which results by employing the Langreth rules and is a
decomposition of the complex time GF in several compo-
nents depending on which branch the time arguments are
defined. Here, using Matsubara, lesser, retarded, and left-
mixing GFs (see Refs. [46,50] for the definition), the Dyson
equation becomes a set of computationally challenging cou-
pled differential equations which we solve numerically using
the software package NESSi [50].

APPENDIX B: STRUCTURE OF THE SELF-ENERGY

In Sec. II B we hinted at how the staggered interaction
defined in Eq. (7) can give rise to different scattering rates
within the different sublattices. This corresponds to a sizable
imaginary σz term [emergence of finite γz in the notation of
Eq. (6)] on the diagonal blocks of the self-energy matrix,
following the same pattern as the staggered interaction. This
behavior is confirmed by the exact numerical data shown in
Fig. 7, where we can observe how, whenever UAA ≷ UBB,
i.e., in presence of staggered sublattice-dependent interaction
γz ≷ 0, while if the interactions are equal γz vanishes. It is
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possible to decompose the 2-by-2 blocks h on the diagonal of
the self-energy on the basis of Pauli matrices, as h = ∑

i aiσi

via the projection ai = Tr(hσi )/2. The γz, γ0 parameters in
Eq. (6) can be extracted as γz(0) = −Imaz(0). An estimate
of the average value of these parameters is also given
in Fig. 7.

Figure 7 also shows, as claimed in the main text, how the
matrix structure of the self-energy goes beyond the simple
terms of Eq. (6), as those terms appear as diagonal entries,
while the interplay between the hopping Eq. (5) and the in-
teraction Eq. (7) also activates minor off-diagonal scattering
channels in the self-energy.
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