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Unraveling spin dynamics from charge fluctuations
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The use of single electron spins in quantum dots as qubits requires detailed knowledge about the processes
involved in their initialization and operation as well as their relaxation and decoherence. In optical schemes for
such spin qubits, spin-flip Raman as well as Auger processes play an important role, in addition to environment-
induced spin relaxation. In this paper, we demonstrate how to quantitatively access all the spin-related processes
in one go by monitoring the charge fluctuations of the quantum dot. For this, we employ resonance fluorescence
and analyze the charge fluctuations in terms of waiting-time distributions and full counting statistics character-
ized by factorial cumulants.
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I. INTRODUCTION

The spin of a single electron in a quantum dot is a potential
candidate for a quantum bit (qubit) in quantum-computation
schemes [1–4]. Elementary operations on the spin state can be
realized electrically in lithography-defined quantum dots by
fast control of the exchange interaction [5]. In self-assembled
quantum dots, the optical transitions can be used to initialize
and control the spin by an induced laser field [6–11] and
connect the stationary spin qubit with the flying photon qubit
by a spin-photon interface [12,13]. These optical transitions
include spin-flip Raman scattering, a process in which the
quantum-dot spin is reversed by optically exciting a trion, a
many-body state consisting of two electrons and a hole, as
an intermediate state. Spin-flip Raman scattering [14], thus,
provides a possibility of optical spin pumping from the ground
to the excited spin state [15,16].

The design of protocols for spin-qubit operations requires
an accurate knowledge of all the rates of the processes that
affect the quantum-dot spin, as well as their dependence on
control parameters such as the strength of a static magnetic
field or the intensity of an applied laser field. In this paper,
we study a single electron in a self-assembled InAs quantum
dot in an applied magnetic field and subject to a laser field,
see Fig. 1(a) [17,18]. The quantum-dot charge state is tuned
by a gate voltage in such a way that the quantum dot is
predominantly singly occupied to define a spin qubit [19].

There are four relevant processes that affect the spin dy-
namics in our system. The first one is spin relaxation [20].
It is the consequence of the coupling of the electron spin
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to mobile electrons in the back contact [blue in Fig. 1(a)]
via cotunneling [15], nuclear spins in the quantum dot by
hyperfine interaction [21–24], and/or phonons by spin-orbit
interaction [25]. Second, a laser properly tuned to a trion
resonance, see Fig. 1(b), allows for optical spin pumping,
referred to as spin-flip Raman process [14–17]. While in this
process, the decay of the trion state is accompanied with the
emission of a photon, there is another decay channel for the
trion, in which the energy gained from the recombination
of the electron-hole pair is carried away by knocking the
remaining electron out of the quantum dot into states high
in the conduction band, from where it can relax down into
the back contact (white arrow). This third process is called
Auger recombination and has only recently been recognized
as a relevant transition in a single self-assembled quantum dot
[19,20,26,27]. The Auger recombination we consider here is
nonradiative (in contrast to Ref. [27]) and leaves the quantum
dot in the empty state. Thereby, not only the quantum-dot
charge but also its spin has gone. Both the rates for spin-flip
Raman and for Auger processes depend on the intensity of the
laser driving the trion transition. Finally, the fourth process
is tunneling of an electron from the back contact into the
quantum dot (black arrow). This tunneling process also affects
the spin dynamics, although only indirectly in combination
with the Auger process [17].

How can one measure these four rates? A seemingly natu-
ral strategy would be to determine these four rates separately
in a pump-probe manner. After preparing the corresponding
initial states at a well-defined time, one measures the decay
into the corresponding final state as a function of time. Such
an approach, however, requires the possibility to properly
identify and discriminate the different quantum-dot states in a
sophisticated optical experiment [20]. Furthermore, more than
one of the four processes are, in general, present at the same
time, which makes it difficult to disentangle the individual
contributions.

The main purpose of this paper is to suggest an alternative
way of determining the four spin-related rates. It differs from
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FIG. 1. (a) Self-assembled InAs quantum dot in an applied mag-
netic field (purple) and subject to a laser field (orange) that resonantly
drives a trion. Charge fluctuations into the back contact (blue) are
possible via tunneling (black) and the Auger process (white). (b) A
laser field drives a trion transition in the quantum dot between |↑, 0〉
and |↑↓,⇑〉. The single-electron (red) and single-hole (blue) excita-
tion energies are indicated. The shaded-orange background indicates
that the trion is an interacting many-body state.

the strategy outlined above in several respects. First, even
though we aim at addressing the spin dynamics we only detect
the charge dynamics of the quantum dot. This makes the
requirement to directly discriminate between different spin
states dispensable. Second, although we want to address dy-
namics, we can restrict ourselves to perform a steady-state
measurement but keep the time information by recording the
full time trace of individual quantum jumps (tunneling-in and
Auger events). Since tunneling is a stochastic phenomenon,
the charge state strongly fluctuates in time. The individual
quantum jumps are, however, not independent of each other,
which opens the possibility to determine the desired quantities
from the analysis of the charge fluctuations. Third, by analyz-
ing the charge fluctuations we can, as we will show below,
address all four rates in one go. To achieve this, the analysis
of waiting times [28–31] as well as the full counting statistics
[32–36] in terms of so-called factorial cumulants [37–50] will
be used.

This paper is organized as follows. In Sec. II, we describe
the quantum-dot states and the transitions between them.

Then, in Sec. III, we use waiting-time distributions and full
counting statistics to determine all the transition rates that
fully describe the dynamics of the system. All this can be done
by statistically analyzing a single telegraph signal stream.
Besides the charge fluctuations due to the Auger process and
electron tunneling, we can infer the internal spin dynamics of
the system due to spin relaxation and optical spin pumping.
Finally, in Sec. IV, we conclude our findings.

II. QUANTUM-DOT STATES AND TRANSITIONS

The self-assembled InAs quantum dot studied here is the
same as in Ref. [17]. We use time-resolved resonance fluores-
cence on a single quantum dot [18,51–53], where the quantum
dot layer is embedded in a p-i-n diode structure with a highly
n-doped layer as the charge reservoir and a highly p-doped
layer as the epitaxial top gate [54]. The gate voltage is tuned
such that only two charge states of the quantum dot play a
role. The quantum dot can either be charge neutral or charged
with one extra electron of spin up or down, residing in a
conduction-band state. An applied laser field drives the quan-
tum dot into a trion state, but it also gives rise to both spin-flip
Raman scattering and Auger recombination. In addition to this
trion laser, we apply another one with a frequency adjusted to
the exciton resonance, which we refer to as the exciton laser.
While the trion laser generates the spin dynamics we want to
study, the exciton laser (which was not included in Ref. [17])
is used to measure the charge dynamics.

A. Hamiltonian

To include all relevant states of the quantum dot, we use
the model Hamiltonian

HS =
∑

σ

εe,σ e†
σ eσ +

∑
τ

εh,τ h†
τ hτ + Ueene,↑ne,↓

+ Uhhnh,⇑nh,⇓ − Ueh(ne,↑ + ne,↓)(nh,⇑ + nh,⇓), (1)

where e†
σ and eσ describe the creation and annihilation op-

erators of spin-1/2 electrons with σ ∈ {↑,↓}. In addition,
h†

τ and hτ create and annihilate heavy holes with angular
momentum 3/2 and z component ±3/2, which we write (fol-
lowing Ref. [15]) as τ ∈ {⇑,⇓}. The associated light holes
with z component ±1/2 are typically several tens of meV
higher in energy and can be neglected [55]. Thus, the eigen-
states of the quantum system can be labeled by |χe, χh〉 with
χe ∈ {0,↑,↓,↑↓} and χh ∈ {0,⇑,⇓,⇑⇓} denoting zero, sin-
gle, or double occupation of the quantum dot with electron
and holes, respectively.

The first two terms of the Hamiltonian HS describe the
single-particle energies εe,↓ > εe,↑ > 0 and εh,⇑ > εh,⇓ > 0
to add a single electron and hole to the system, see Fig. 1(b),
where we choose the dashed line as the reference for zero
energy. A static magnetic field of B = 4 T in the Faraday
configuration (in growth direction, parallel to the laser beam)
lifts the degeneracy of the spin states, giving rise to Zeeman
splittings �e = εe,↓−εe,↑ > 0 and �h = εh,⇑−εh,⇓ > 0. They
are related to the magnetic field B via �e/h = |ge/hµBB| with
the Bohr magneton µB and g factors of about ge = −0.8 and
gh = 0.2 [14,17]. For technical reasons, the direction of the
magnetic field is fixed in our setup. We remark, however, that
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FIG. 2. Quantum dot (right) tunnel coupled to an electron reser-
voir (left). The electrochemical potential μ is tuned to favor the
occupation of a single electron with spin σ ∈ {↑,↓} in the quantum
dot. Thus, tunneling out is exponentially suppressed compared to
tunneling in, γ0σ � γσ0.

the model and the analysis does not qualitatively change for
the Voigt configuration (magnetic field perpendicular to the
laser beam), that is often used in spin manipulation by ultrafast
optical pulses [7–9]. There, optical spin pumping via spin-flip
Raman scattering (see Sec. II C 2) is strongly enhanced due
to mixing of spin states, which enables a high-fidelity spin
initialization.

The remaining three terms model many-body interactions.
When either two electrons or two holes occupy the quantum
dot, the repulsive Coulomb interaction with charging energy
Uee > 0 and Uhh > 0 must be paid, respectively. In contrast,
electrons and holes attract each other, which gives rise to an
energy gain Ueh > 0.

As indicated in Fig. 2, the quantum dot is tunnel cou-
pled to an electron reservoir (red), which is characterized by
the temperature T and the electrochemical potential μ. The
system is tuned such that μ−εe,σ 	 kBT and εe,σ +Uee−μ

	 kBT . Thus, in thermodynamic equilibrium, the quantum
dot is exclusively occupied by one electron. Tunneling in of
a second electron is prohibited by a strong Coulomb repul-
sion Uee between the electrons. Out of equilibrium, however,
the empty quantum-dot state becomes available by driving
the trion resonance and employing an Auger recombination
process, as discussed below. Whenever the quantum dot is
empty, electrons with spin σ can tunnel into the system with
rate γσ0. As a consequence of detailed balance, γ0σ /γσ0 =
e−(μ−εe,σ )/(kBT ) � 1, the reciprocal process, tunneling out of
an electron with spin σ with rate γ0σ , is exponentially sup-
pressed and, therefore, negligible.

In addition to tunneling, the trion laser resonantly drives an
optical transition whenever the system is in the energetically
lower spin-up state |↑, 0〉, see Fig. 1(b). The optical excita-
tion lifts an electron across the band gap, creating in total
two electrons and a hole in an interacting many-body state
called trion (indicated by the shaded orange region). For a
dipole transition, the selection rules only allow for a change of

angular momentum by ±1. The trion resonance is, therefore,
described by

|↑, 0〉 = |↑〉 ↔ |T〉 = |↑↓,⇑〉, (2)

with angular momentum change of +1 and excitation fre-
quency ωT = ET−E↑ = εe,↓ + εh,⇑ − 2Ueh + Uee. We note
here that in principle, there is another trion resonance, de-
scribed by |↓, 0〉 ↔ |↑↓,⇓〉 with angular momentum change
−1 and excitation frequency ωT + (ge − gh)µBB. As a con-
sequence of ge − gh < 0, the excitation frequency for this
second transition is smaller than the first one introduced
above. Due to their difference in frequency, we refer to them
as red (lower frequency) and blue (higher frequency) trion,
respectively [17]. The small linewidth of the trion laser allows
us to tune it such that only the blue trion transition is driven
and the red trion does not play any role.

Not relevant for the spin dynamics but important for the
charge-detection scheme we use in our experiment is a second
(exciton) laser that drives the transition

|0, 0〉 = |0〉 ↔ |X〉 = |↓,⇑〉 (3)

with angular momentum change of +1 and excitation fre-
quency ωX = εe,↓ + εh,⇑ − Ueh. Similarly to the trions, there
are also two excitons. In addition to the blue exciton intro-
duced above, there is a red exciton, described by |0〉 ↔ |↑,⇓〉
with angular momentum change −1 and excitation frequency
ωX + (ge − gh)µBB. We tune, however, the exciton laser such
that only the blue exciton is driven. We comment that in
general, there is also a fine structure splitting of the bright
excitons even in the absence of a magnetic field, B = 0,
when the quantum dot deviates from a perfectly circular
shape [55]. For simplicity, we neglect this splitting in the
Hamiltonian.

We remark here in passing that for the quantum dot un-
der consideration, the (blue) trion frequency turns out to be
smaller than the (blue) exciton frequency ωX > ωT. This state-
ment is equivalent to the fact that the electron-hole attraction
is larger than the electron-electron repulsion, Ueh > Uee.

To summarize, there are five relevant quantum-dot states,
as illustrated in Fig. 3(a). Two of them, |0〉 and |X〉, are charge
neutral. The remaining three, |↑〉, |↓〉, and |T〉 carry one neg-
ative elementary charge. These are the states being involved
in spin-qubit operations. Since it is difficult to access the
spin degree of freedom directly, we use the transition to/from
the charge neutral state to monitor charge fluctuations, from
which we unravel the spin dynamics sketched in Fig. 3(a).
To capture the full dynamics of the system, we need to
specify all the transitions between the different quantum-dot
states.

B. Laser-independent transitions

There are two transitions that occur already in the absence
of laser fields.

1. Tunneling

First, there is tunneling between quantum dot and back
contact. For the gate voltage chosen in this experiment, tunnel-
ing of an electron with spin σ ∈ {↑,↓} from the back contact

043103-3



ERIC KLEINHERBERS et al. PHYSICAL REVIEW RESEARCH 5, 043103 (2023)

0

↓

↑
γ↑T

ΩT
γ↑0

γ↓0
ΩX

γ0X

γ↑↓

γA

γR

γ↓↑X

T

0

↓

↑
Γ↑↓ Γ↓↑

Γin

Γin

ΓR

ΓA

(a) (b)

FIG. 3. Relevant states and transitions for the quantum-dot system. (a) Full system and (b) effective three-state system.

to the quantum dot occurs with rate γσ0, while the opposite
process is exponentially suppressed. As a consequence, in the
absence of laser driving, the quantum dot would exclusively
be occupied with a single electron. In principle, the finite
Zeeman splitting between εe,↓ and εe,↑ implies different rates
for γ↓0 and γ↑0, since γσ0 is proportional to the Fermi function
[e(εe,σ −μ)/(kBT ) + 1]−1 that accounts for the occupation of the
electronic state in the reservoir [43]. But, since we operate in
the regime μ−εe,σ 	 kBT , the Fermi function is 1 for both
spin orientations and, hence, γ↓0 = γ↑0 = γσ0.

2. Spin relaxation

The spin of the quantum-dot electron can relax with rate
γ↑↓ from the excited state |↓〉 to the ground state |↑〉. The
inverse process is also possible but partially suppressed by the
Boltzmann factor, γ↓↑ = e−�e/(kBT )γ↑↓, which involves the ra-
tio of the Zeeman energy �e and temperature. Our experiment
is performed at temperature T = 4.2 K in a magnetic field of
B = 4 T, which yields γ↓↑ = 0.6 γ↑↓. Possible mechanisms to
change the electron spin are hyperfine interaction with the
surrounding nuclear spins, tunnel coupling to the electron
reservoir, and coupling to phonons mediated by spin-orbit
interaction. For high magnetic fields (>2 T) the latter process
is the dominant one [15,56].

C. Trion-laser driven transitions

We now consider the transitions induced by the trion laser.

1. Trion excitation

The trion laser coherently drives a (blue) trion transition,
|↑〉 ↔ |T〉. This is indicated with an orange arrow 	T in
Fig. 3(a). The respective coupling strength is given by the
Rabi frequency 	T, which can be tuned by the laser inten-
sity IT ∝ 	2

T (while keeping the laser frequency ωT constant).
In addition to coherent driving, which includes both photon
absorption and stimulated emission, the excited trion state |T〉
can decay back to the state |↑〉 by spontaneous emission of a
photon at the rate γ↑T [black arrow γ↑T in Fig. 3(a)].

2. Spin-flip Raman scattering

The trion can not only relax back to the state |↑〉 it was
excited from. There is another decay channel, namely towards
the state |↓〉. This process is referred to as spontaneous spin-
flip Raman scattering since it flips the spin of the quantum-dot
electron and the frequency ωT − �e of the emitted photon is
reduced by the Zeeman energy �e from the frequency ωT of
the absorbed photon [57,58]. Spin-flip Raman scattering leads
to optical spin pumping [59], which can even give rise to a
population inversion of the spin states.

Phenomenologically, the process is described by the relax-
ation rate γR from the trion to spin-down state, see Fig. 3(a),
which is energetically higher than the spin-up state. The rate
is much smaller than the spin-conserved spontaneous decay,
γR � γ↑T. This is a consequence of the fact that the spin-flip
decay process, |↑↓,⇑〉 → |↓〉, which changes the z compo-
nent of the angular momentum by −2, is forbidden by the
optical selection rules. Thus, an additional process is needed
to flip the spin [60]. We review two commonly-known relevant
mechanisms [15,61]. For small magnetic fields, the predomi-
nant mechanism is the hyperfine interaction with the nuclear
spins, which can be described by an effective fluctuating
magnetic field called Overhauser field [62]. Its transversal
component B⊥ (perpendicular to the externally applied mag-
netic field B) mixes the spin states |↑〉 and |↓〉 leading to
the effective eigenstate |↓, 0〉mix ∼ |↓, 0〉 + αe|↑, 0〉, where
αe ∼ B⊥/B with |αe| � 1 describes the mixing. Due to the
admixture, the optical selection rules are relaxed and an effec-
tive spin-flip process |↑↓,⇑〉 → |↓, 0〉mix is allowed because
|↑↓,⇑〉 → αe|↑, 0〉 changes the z component of the angu-
lar momentum by −1 only. Therefore, the spin-flip Raman
scattering process becomes possible with a rate given by
γR ∼ |αe|2γ↑T.

For large magnetic fields, the dominant mechanism is
due to mixing between heavy and light holes [15,60]. In
particular, the effective heavy-hole state participating in the
optical transition has a small contribution from the spin-
up light hole, |0,⇑〉mix ∼ |0,⇑〉 + αh|0,↑〉, where |αh| � 1.
Again, the optical selection rules are relaxed and the transi-
tion |↑↓,⇑〉mix → |↓, 0〉 is allowed since αh|↑↓,↑〉 → |↓, 0〉
changes the z component of the angular momentum by −1.
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Hence, the heavy-hole/light-hole mixing enables the spin-flip
Raman scattering with the rate γR ∼ |αh|2γ↑T.

3. Auger recombination

The trion-laser field does not only influence the quantum-
dot spin via spin-flip Raman scattering, it also affects the
charge dynamics via Auger recombination. The Auger effect,
known from atomic physics, describes the nonradiative decay
of an excited atom in which the excitation energy is used to
eject one or more electrons from the atom instead of emitting
a photon. A similar effect has been found in colloidal quan-
tum dots [63] and, more recently, in self-assembled quantum
dots [26]. In a bulk semiconductor, the Auger effect is sup-
pressed because the particles involved must exactly satisfy the
constraints imposed by energy and momentum conservation.
However, due to quantum confinement and the resulting mo-
mentum uncertainty, these constraints are relaxed in quantum
dots and the Auger effect can have a significant impact. For
example, it can reduce the photon emission [64].

Here, the Auger process is realized as an alternative decay
channel of the trion state. Instead of spontaneously emitting
a photon, the trion can decay nonradiatively by transferring
the recombination energy ωT of the electron and hole to the
second electron, which is knocked out of the quantum dot into
the back contact. The respective transition rate is denoted as
γA [see also Fig. 3(a)].

With each Auger process, an electron is ejected from the
quantum dot, leaving it in the empty state |0〉. Only after a
certain time, a new electron of spin σ tunnels in at the rate
γσ0 via the back contact, where σ ∈ {↑,↓}, see Fig. 3(a).
Without Auger recombination, the quantum dot would be, for
the chosen gate voltage, always singly occupied and no charge
fluctuations would occur.

D. Exciton-laser driven transition

We monitor as a function of time the quantum-dot charge
by using an optical readout scheme based on the excitation
of excitons [19,26,53]. The latter are generated by a second
(exciton) laser with fixed laser intensity IX (and thus fixed
Rabi frequency 	X). The laser frequency is tuned to the (blue)
exciton resonance, |0〉 ↔ |X〉. In addition to coherent driving
by the laser field, the exciton |X〉 can decay back to the state
|0〉 by spontaneous emission of a photon at the rate γ0X. We
note that in principle, the trion transition can also be used for
an optical readout. However, for this quantum dot, the photon
yield of the trion transition is too low.

E. Effective three-state model

The optical transitions described by 	X,	T, γ0X, γ↑T (as
well as γA, γR) are much faster than the remaining transitions.
This allows us to effectively eliminate the exciton and trion
state from the dynamics, see Fig. 3(b), by subsuming state
|X〉 into |0〉 and state |T〉 into |↑〉. To be consistent, we use
effective transition rates, which depend, in general, on the
laser intensities. For weak driving of the exciton resonance,
	X � γ0X, as is the case in our experiment, the charge-neutral
dot is almost always in state |0〉 and not in state |X〉, and the
rate for tunneling in needs not be renormalized [53]. The same

holds true for the spin-flip relaxation from the ground to the
excited spin state, since also the trion transition is only weakly
driven.

The situation is different for spin-flip Raman and Auger
processes. They are only possible when the charged quantum
dot is in the trion state. Therefore, the spin-flip Raman and
Auger rates need to be multiplied with the degree of satura-
tion nT of the trion state, i.e., the probability to be in state
|T〉, normalized by the sum of the probabilities for |↑〉 and
|T〉. For weak driving, this degree of saturation is given by
nT = 	2

T/γ 2
↑T � 1.

This leads to the four effective rates

�in = γσ0, �↑↓ = γ↑↓, �A = nTγA, �R = nTγR, (4)

together with the inverse spin-relaxation rate �↓↑ =
e−�e/(kBT )�↑↓, see Fig. 3(b). Note that we implicitly assumed
spin-independent tunneling rates, γ↑0 = γ↓0, which is justified
for μ − εe 	 kBT ensured by the chosen gate voltage, see
Fig. 2. The relative size of the four rates in Eq. (4) depends
on the different microscopic details of the underlying pro-
cesses and is therefore, a priori, unknown. It is the aim of
our analysis to determine them. On the other hand, Eq. (4)
predicts how the rates depend on the trion laser intensity in the
weak-driving regime. An increase of the trion laser intensity is
simply taken into account by multiplying the spin-flip Raman
and the Auger rates with the same factor (the degree of satura-
tion nT of the trion) while keeping all other rates unchanged.

III. CHARGE FLUCTUATIONS

The charge of the quantum dot is monitored in real time
with the help of the exciton laser. It drives an exciton transi-
tion, |0〉 ↔ |X〉, whenever the quantum dot is charge neutral,
see Fig. 3(a). The emitted fluorescence photons are detected
by a single-photon detector as a function of time. We count
the number of photons n that are emitted within the binning
time of �t = 30 µs. An example of the resulting time trace is
shown as a green line in Fig. 4(a). Whenever the quantum dot
is charge neutral, a large number of fluorescence photons are
emitted. Once an electron tunnels into the quantum dot, the
exciton can no longer be excited, and the fluorescence signal
drops to almost zero. Almost, because the fluorescence of the
trion transition gives a small but (for our purpose) negligible
contribution.

In Fig. 4(b), we show the histograms of the detected flu-
orescence photons emitted from the quantum dot for four
different trion laser intensities, IT = λI0 with λ = 0.1, 0.2, 1,
and 20, where I0 = 1.6 × 10−5µW/µm2 is some arbitrarily
chosen reference intensity. They all clearly display a bimodal
distribution. There is a broad peak around n = 17 and a very
narrow one at n = 0. The area covered by the broad peak
indicates the probability to find the quantum dot empty, while
the area of the narrow peak indicates the probability of an
occupied quantum dot. With increasing trion laser intensity
IT ∝ 	2

T, also the Rabi driving frequency 	T and, thus, the
degree of trion saturation nT = 	2

T/γ 2
↑T increases, which leads

to an increased Auger recombination rate �A = nTγA. As a
consequence, the probability to find the system in the empty
(fluorescent) state increases [65]. This is reflected by a larger
area of the broad peak. Since the photon count distributions
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(a)

(b) (c)

FIG. 4. (a) Telegraph signal (gray dashed line) of electron occupation derived from photon counts n (green line) with a threshold nth = 4.
(b) Histogram of fluorescence photons with increasing trion laser intensity IT. (c) Full counting statistics PN (t ) for three different time intervals
t = 7.5 ms (gray), t = 25 ms (orange), and t = 96 ms (red). The photon binning time in (a)–(c) is �t = 30 µs.

are normalized to 1, the increase of the broad peak is accom-
panied by a decrease of the height of the narrow peak.

To quantitatively study the charge fluctuations, we trans-
form the binned photon stream (green line) into a binary signal
of the electron occupation (gray dashed line) by introduc-
ing a threshold of nth = 4, see Fig. 4(a). Hence, for n � nth

the quantum dot is assumed to be occupied and for n > nth

empty. The obtained random telegraph signal then contains
the full information about the charge dynamics. In particular,
we have access to the distribution of waiting times for an
empty quantum dot to be filled and vice versa. We also obtain
the full counting statistics describing the probability PN (t ) that
N electrons have been ejected from the quantum dot in a time
interval t , see Fig. 4(c).

We note here that in our measurement scheme the binning
time �t can be chosen after having measured the full time
trace of all individual photon counts. This opens the pos-
sibility to optimize a posteriori the choice of �t such that
errors due to detector imperfections are suppressed [66]. If the
binning time is chosen too small then the narrow and the broad
peaks in the photon counting statistics overlap, which implies
that false transitions are indicated by the detector although no
tunneling event has occurred. If, on the other hand, the binning
time is chosen too large then fast sequences of tunneling-in
and -out events may be overlooked by the detector. While it
is possible to model these sources of error theoretically [46],
it is more convenient to choose, if possible, �t such that they
are negligible.

The dynamics of the system can be modelled by the rate
equation

ρ̇ = Lρ =
⎛
⎝−2�in 0 �A

�in −�↑↓ �R + �↓↑
�in �↑↓ −�A − �R − �↓↑

⎞
⎠ρ, (5)

for the density matrix ρ = (ρ0, ρ↓, ρ↑) written as a supervec-
tor in Liouville space. Here, ρi is the probability for finding
the quantum dot in state i ∈ {0,↓,↑}. Off-diagonal elements
of the density matrix are irrelevant for our system. The density
matrix ρst for the stationary limit is determined by Lρst = 0.
While the superoperator L referred to as Liouvillian describes
the full dynamics of the system, the processes of an electron
tunneling into or out of the quantum dot are covered by the
jump operators

Jin =
⎛
⎝ 0 0 0

�in 0 0
�in 0 0

⎞
⎠ and Jout =

⎛
⎝0 0 �A

0 0 0
0 0 0

⎞
⎠, (6)

respectively. The internal transitions within the singly-charged
quantum dot, spin relaxation and spin-flip Raman scattering,
are described by the remaining part of the Liouvillian, L −
Jin − Jout.

We analyze the charge fluctuations with two, seemingly
complementary, approaches. First, we employ waiting-time
distributions. They address, by construction, short-time be-
havior. Second, we analyze the full-counting statistics of

043103-6



UNRAVELING SPIN DYNAMICS FROM CHARGE … PHYSICAL REVIEW RESEARCH 5, 043103 (2023)

FIG. 5. Waiting-time distributions wemp(τ ) (blue) and wocc(τ )
(red) showing how long the quantum dot (QD) is empty and oc-
cupied, respectively. The parameters are �t = 30 µs, nth = 4, and
IT = I0.

charge transfer with factorial cumulants, a technique that is
more often used to capture the long-time behavior. In prin-
ciple, either approach could be used to extract the desired
rates. Here, we chose to determine all rates by fitting the
waiting-time distributions and then use the comparison with
the full counting statistics as a consistency check.

A. Waiting-time distributions

One tool to characterize the measured charge fluctua-
tions are waiting-time distributions [28,29,31,36]. We define
wocc(τ ) [with normalization

∫ ∞
0 dτw occ(τ ) = 1] as the distri-

bution of waiting times τ that describe how long the quantum
dot is occupied (indicated by the absence of fluorescence)
before it is emptied by an Auger recombination. This is mea-
sured as the time distance between a tunneling-in event and
an Auger process. Similarly, wemp(τ ) describes the (normal-
ized) distribution of how long the quantum dot stays empty
(indicated by fluorescence) until an electron tunnels in, which
corresponds to the waiting time between Auger and tunneling-
in process.

In some sense, waiting-time distributions resemble the idea
of a pump-probe measurement. Starting from a well-defined
initial (charge) state, one probes as a function of time how this
state decays into another (charge) state. Technically, however,
the time at which the system is prepared in the initial state
is not given by some external stimulus but randomly chosen
by the system itself. This analogy nicely elucidates why we
are able to extract nonequilibrium information although the
experiment is performed in a steady-state situation.

The experimental result for the waiting times is displayed
in Fig. 5 for a given trion laser intensity IT = I0. We find a
bi-exponential behavior

wocc(τ ) = a�1e−�1τ + (1 − a)�2e−�2τ , (7)

with rates �1 = 4.32 ms−1 and �2 = 0.33 ms−1 for the
waiting-time distribution of an occupied quantum dot (red)
and the weighting factor a = 0.27. For the empty quantum

dot (blue), we get a mono-exponential decay

wemp(τ ) = �3e−�3τ , (8)

with rate �3 = 0.65 ms−1. The mono-exponential decay in-
dicates that there is only one transition rate for filling up
an empty quantum dot, while the bi-exponential behavior
has its origin in the internal spin dynamics that complicates
the possibilities to empty the quantum dot: In addition to
an immediate ejection of an up-spin electron via an Auger
process, a spin-down electron can leave the quantum dot in a
two-step process by first relaxing to spin up and then ejection
by the Auger effect. As a result, the spin dynamics, either
due to spin relaxation �↑↓ and �↓↑ or due to optical spin-flip
Raman scattering �R, does not change the quantum-dot charge
directly, but it does affect the charge dynamics indirectly.

Theoretically, the waiting-time distributions can be deter-
mined via [28]

wocc(τ ) = tr[Joute(L−Jin−Jout )τJinρst]

tr[Jinρst]
, (9)

wemp(τ ) = tr[Jine(L−Jin−Jout )τJoutρst]

tr[Joutρst]
, (10)

where the trace tr[Aρ] can be calculated in Liouville space
via (1, 1, 1) · Aρ. After some algebra, we can express the
relaxation rates �1, �2, and �3 as well as the weighting factor
a of the (bi-)exponential decay in terms of the four indepen-
dent transition rates �in, �↑↓, �A, and �R that occur in the
theoretical model. We find the relations

�1 − �2 =
√

(�A−�↑↓)2+�P[�P + 2(�A + �↑↓)],

�1 + �2 = �A + �↑↓ + �P,

�3 = 2�in,

a�1 + (1 − a)�2 = �A

2
, (11)

where we introduced as an abbreviation the total spin-
pumping rate �P = �R + e−�e/(kBT )�↑↓ as the sum of the
spin-flip Raman and the inverse spin-relaxation rate. This
leads to the following transition rates:

�in = 0.32 ms−1, �↑↓ = 0.50 ms−1,

�R = 1.02 ms−1, �A = 2.82 ms−1. (12)

Hence, the Auger recombination has the fastest transition
rate �A, almost three times as large as the spin-flip Raman rate
�R. The latter is, in turn, larger than the spin-relaxation rate,
�R > �↑↓, such that we can infer an inverted spin population.
In fact, the population of the high-energy spin state |↓〉 has the
highest probability

〈0|ρst|0〉 = 40.4%,

〈↓|ρst|↓〉 = 50.3%,

〈↑|ρst|↑〉 = 9.3%. (13)

It is important to notice that fitting the waiting-time distri-
butions provides four numbers only. For this to be sufficient,
a number of assumptions have to be fulfilled since, in general,
a model comprising three states can exhibit six rates in total.
Here, we assume equal rates γ↑0 = γ↓0 for tunneling into the
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two different spin states of the quantum dot. We also make
use of the fact that tunneling out of the dot is energetically
forbidden. Without these assumptions, the problem of extract-
ing all rates out of the waiting-time distributions would be
underdetermined.

B. Factorial cumulants

In addition to waiting times, there is another convenient
tool to address the charge-transfer statistics. The full informa-
tion of the latter is contained in the time-dependent probability
distributions PN (t ) to count N Auger (i.e., ejecting-out) pro-
cesses within a time interval of length t . Alternatively, we
could chose to count the tunneling-in events instead, which
would yield, for the considered model, the same information.
Keeping track of the number N of Auger recombinations, we
extend our rate-equation description to

ρ̇N = (L − Jout)ρN + JoutρN−1, (14)

where ρN is the density matrix with the constraint that N
Auger processes have been counted.

Performing a z-transform ρz = ∑
N zNρN turns the rate

equation into ρ̇z = Lzρz with Lz = L + (z − 1)Jout. The for-
mal solution ρz = eLztρst can be transformed back with the
inverse z-transform to yield

ρN (t ) = 1

N!
∂N

z (eLztρst )|z=0. (15)

Finally, we perform the trace over the quantum-dot states to
arrive at the full counting statistics

PN (t ) = tr[ρN (t )] = 1

N!
∂N

z tr(eLztρst )|z=0. (16)

For each interval length t , there is a distribution of the num-
ber N of Auger events, see Fig. 4(c). Such a discrete distribu-
tion is most conveniently characterized in terms of factorial
cumulants CF,m [37–50], which are the partners of factorial
moments MF,m = 〈N (N − 1) · · · (N − m + 1)〉. The factorial
cumulants can be obtained as derivatives

CF,m = ∂m
z S (z, t )|z=1, (17)

of the cumulant-generating function [40,46]

S (z, t ) = ln
∑

N

zN PN (t ) = ln tr(eLztρst ). (18)

In the second step of Eq. (18), we use Eq. (16) and identify the
Taylor expansion. (To obtain the factorial moments, one just
needs to remove the logarithm from the generating function.)
In the following, we use the first form of Eq. (18) to obtain
the factorial cumulants from the experimental data, while the
second form is more convenient for calculating them from the
model.

We remark that for continuous stochastic variables, one
often makes use of ordinary moments Mm = 〈Nm〉 and ordi-
nary cumulants Cm, instead of factorial ones. The ordinary
cumulants Cm can be obtained by replacing z → ez in the
generating function, and the ordinary moments Mm by ad-
ditionally removing the logarithm. In our case, however, the
stochastic variable is discrete. It is, then, more natural to
use factorial cumulant [45]. In fact, it is easy to show that

FIG. 6. Factorial cumulants CF,m as a function of time. Experi-
mental data (dots) is compared with our theoretical model (lines).
The parameters are �t = 30 µs, nth = 4, and IT = I0.

for a Poissonian distribution, which defines the model of
stochastically-independent discrete events as a reference, all
factorial cumulants of order m � 2 vanish. They have also
the advantage that unwanted features of universal oscillations
[34] of the cumulants as a function of time and/or system
parameters are avoided. Furthermore, factorial cumulants are
better suited to identify correlations between the individual
counted events [37,38,40,42,43]. The most important reason,
however, to use factorial cumulants instead of ordinary ones
is that they are intrinsically resilient to imperfections of the
detector caused by a finite bandwidth or false noise-induced
counting events [46].

In Fig. 6, we show the first four factorial cumulants as a
function of the time interval length t for our model, where the
rates were taken from Eq. (12) of the waiting-time analysis.
We find for all times t a very good agreement between the
experimental data (dots) and theoretical curves (solid lines).
The data for the higher-order factorial cumulants (not shown)
are more noisy but we again find good agreement between
theory and experiment.

We would like to point out that this excellent agreement
in the factorial-cumulants analysis was achieved, even though
the necessary parameters were taken from a complementary
data evaluation, i.e., the waiting-time distribution. While the
latter only takes time intervals with exactly one tunneling-in
and one Auger recombination process into account, the former
covers arbitrarily long time intervals. This not only provides a
valuable benchmark for the statistical evaluation by factorial
cumulants, a technique that has recently gained some popu-
larity [37–50]. It also shows that the model and its underlying
assumptions are well suited to describe the spin and charge
dynamics in the investigated system, as sketched in Fig. 3.

C. Beyond the detector resolution

Both the Auger and the spin-flip Raman rate depend on the
trion occupation probability nT. The latter, in turn, depends
on the trion laser intensity. We repeat the experiment with
different increased laser intensities, IT = I0 → λI0 and λ > 1.
Since IT ∝ 	2

T and also nT ∝ 	2
T for γ↑T 	 	T, we expect

from Eq. (4) that the rates of the optically induced Auger
effect and the spin-flip Raman scattering increase by the same
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factor as the laser intensity

�R → λ�R and �A → λ�A. (19)

All other rates should remain unchanged.

1. Moderate laser-intensity increase

First, we increase the trion laser intensity by a factor of
λ = 2 only. In this case, we only change the Auger and
spin-flip Raman rates in the theoretical modeling. The derived
occupation probabilities are now

〈0|ρst|0〉 = 43.6%,

〈↓|ρst|↓〉 = 51.4%,

〈↑|ρst|↑〉 = 5%. (20)

For the experimental determination of waiting times we
still choose �t = 30 µs and nth = 4. However, for the full
counting statistics, we increase the photon binning time
slightly and adjust the threshold accordingly. If we kept a
binning time of �t = 30 µs as before then the overlap of the
narrow and broad peak in the photon counting statistics, see
Fig. 4(b), would start to play a role. This increases the noise
on the photon-count signal, leading to false counts. To avoid
these false counts, we increase the binning time to �t = 50 µs.
This shifts the maximum of the broad peak of the photon
counting statistics to ∼30. For the threshold to discriminate
the empty from the occupied quantum dot, we now choose
nth = 10 in order to avoid too many false (noise-induced)
events.

In Fig. 7 we show the comparison between theory and
experiment for both the waiting-time distributions and the
factorial cumulants. We find fairly good agreement but with
deviations occuring from systematic detection errors of miss-
ing counts as discussed in the following.

2. Strong laser-intensity increase

Increasing the trion laser intensity by a factor of λ = 5
leads to the occupation probabilities

〈0|ρst|0〉 = 45.8%,

〈↓|ρst|↓〉 = 52.1%,

〈↑|ρst|↑〉 = 2.1%, (21)

that is, the spin-up state is almost entirely depleted. More
importantly, a strong inversion of the spin population (factor
25) is found. An even further increase of the laser intensity
to λ = 20 [corresponding to the orange curve in Fig. 4(b)]
changes these probabilities only slightly.

For λ = 5, we again choose for the waiting times �t =
30 µs and nth = 4, while for the full counting statistics we
increase the photon binning time to �t = 100 µs and the
threshold to nth = 30. The resulting waiting-time distributions
and factorial cumulants CF,m as a function of time t are
shown in Figs. 8(a) and 8(b), respectively. We find that the
experimental data (dots) strongly deviates from the theoretical
curves (lines), which were obtained by the simple replacement
Eq. (19). Here, the Auger rate has become so large that it is
comparable to the detector bandwidth

�A�t ∼ 1, (22)

(a)

(b)

FIG. 7. Moderate increase of the trion laser intensity with-
λ = 2. (a) Waiting-time distribution and (b) factorial cumulants CF,m.
Experimental data (dots) is compared with our theoretical model
(lines). For (a), we use �t = 30 µs and nth = 4 and for (b), we use
�t = 50 µs and nth = 10.

so that the time resolution of the detection scheme is now too
limited to keep track of every Auger recombination process
and errors stemming from missing counts can no longer be
ignored. Since it is impossible to find a binning time that
prevents both false and missing counts, we proceed by keep-
ing the long binning time but include the systematic error
due to the limited time resolution into our theory for both the
waiting-time distribution and the factorial cumulants.

Let us start with the full counting statistics of the Auger
recombination processes. We follow Ref. [46] and replace the
continuous time evolution eLzt by a t/�t-fold iteration of the
finite-time propagation

�z =
⎛
⎝1 z z

1 1 1
1 1 1

⎞
⎠ ◦ eL1�t (23)

for a time step �t . Here, ◦ denotes the Hadamard product, i.e.,
an element-wise multiplication between the two matrices. By
construction, we have �z �= eLz�t , which emphasizes that the
counting variable z is only introduced after coarse graining
the time evolution. Thereby, we ensure that during each time
step �t at most one Auger charge transfer is counted, which
effectively simulates missing events on smaller time scales.
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(a) (b)

(c) (d)

FIG. 8. Strong increase of the trion laser intensity with λ = 5. (a) and (c) show the waiting-time distribution (for �t = 30 µs and nth = 4),
(b) and (d) the factorial cumulants CF,m (for �t = 100 µs and nth = 30). Experimental data (dots) is compared with our theoretical model
(lines). The theoretical model used in (a) and (b) is continuous assuming a perfect detector, the one in (c) and (d) is discrete including
systematic errors due to a limited time resolution (solid lines connect discrete values at times n�t with n = 0, 1, . . .) and statistical errors due
to a finite measurement time (shaded background). We find very good agreement between experiment and theory only when taking the limited
time resolution into account in the theoretical description.

With this coarse-grained time evolution, Eq. (18) has to be
replaced by the cumulant-generating function

S (z, t ) = ln tr
(
�z

t/�tρst
)
. (24)

Now we can derive, by again using Eq. (17), the cumulants
CF,m, which include the systematic error due to a limited time
resolution. The comparison between experimental data (dots)
and improved theory (lines) is shown in Fig. 8(d). Again,
a very good agreement is found. We can even theoretically
model the statistical error �CF,m due to a finite measurement
time T of the telegraph signal, indicated by a shaded back-
ground. Its derivation, based on Ref. [46], is presented in the
Appendix A.

For the waiting-time distributions, we proceed in a similar
manner. In this case, we need to introduce the coarse-grained
jump operators

�in =
⎛
⎝0 0 0

1 0 0
1 0 0

⎞
⎠ ◦ eL1�t (25)

and

�out =
⎛
⎝0 1 1

0 0 0
0 0 0

⎞
⎠ ◦ eL1�t . (26)

By defining the full propagator � = eL�t for a time in-
terval �t , we can replace the continuous time evolution
e(L−Jin−Jout )τ in the absence of a charge transfer, see Eqs. (9)
and (10), by a τ/�t-fold iteration of the finite-time propa-
gation �−�in−�out. By also replacing the jump operators
Jin/out by �in/out, this yields the waiting-time distributions

wocc(τ ) = 1

�t

tr[�out(�−�in−�out)τ/�t�inρst]

tr[�inρst]
, (27)

wemp(τ ) = 1

�t

tr[�in(�−�in−�out)τ/�t�outρst]

tr[�outρst]
, (28)

which, summed over the discrete waiting times τ = n�t with
n ∈ 1, 2, . . ., fulfill the normalization

∑
n �t wocc/emp(n�t ) =

1. Once the finite-time resolution is taken into account, the
agreement between theory and experiment is very good, as
shown in Fig. 8(c). Again, we theoretically model the sta-
tistical error �wocc/emp due to a finite measurement time of
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the telegraph signal, indicated by a shaded background. Its
derivation is presented in the Appendix B.

We conclude this section on the impact of a limited detector
resolution by emphasizing that no extra fitting was used to
explain the data for increased trion laser intensities. The rates
were taken from the measurement for laser intensities small
enough such that the limited detector resolution does not play
a role, in combination with Eq. (19). The fact that, after
including the systematic errors in the modeling, we find very
good agreement between theory and experiment, therefore,
serves as a very strong consistency check.

Of course, it would have been possible to extract the rates
directly from the discrete waiting-time distributions Eqs. (27)
and (28). Apart from the fact that the theory that includes
the systematic errors is more complicated than the one for
a perfect detector, the disadvantage of fitting the rates from
the measurement with increased trion laser intensity is a de-
creased accuracy especially of the fast rate. It is, therefore,
advantageous to extract the rates for small trion laser in-
tensities by assuming that systematic errors can be ignored.
Whether or not this assumption is justified can be checked
a posteriori by comparing the fastest rate with the detector
bandwidth.

IV. CONCLUSIONS

We studied the charge and spin dynamics of a self-
assembled InAs quantum dot coupled to a laser field that
drives an optical trion transition. We measured the charge
fluctuations in form of a random telegraph signal by an op-
tical readout scheme. By analyzing the charge fluctuations
using waiting-time distributions and full counting statistics,
we were able to fully describe the dynamics of the quantum
dot. We determined not only the charge dynamics due to the
Auger process and electron tunneling, but we also revealed the
internal spin dynamics due to spin relaxation and optical spin
pumping via spin-flip Raman processes. We showed that the
optical spin pumping leads to a significant population inver-
sion of the spin states and determined the electron tunneling
rate, the Auger rate, the spin-relaxation rate and the rate of
optical spin pumping in one go. Remarkably, these dynamic
properties could be extracted from a steady-state experiment,
where neither the electrical nor the optical parameters needed
to be pulsed or modulated in time. Our evaluation of the
optical random telegraph signal is therefore a nice illustration
of Rolf Landauer’s famous statement that “the noise is the
signal” [67].

Finally, we have shown that both complementary statistical
frameworks used for the data analysis (i.e., waiting-time dis-
tributions and factorial cumulants) are in excellent agreement
with each other and with the experimental data. Even in sit-
uations, where the experimental data is distorted by a limited
time resolution, it can accurately be modeled by the employed
statistical methods.

We conclude with the remark that our scheme to deter-
mine spin-related rates from analyzing charge fluctuations is
quite general in the sense that it is independent on how the
charge occupation is monitored. Here, we did it optically by

fluorescence spectroscopy on the exciton resonance. Another
experimentally well-established method would be to monitor
the charge of the quantum dot by electrostatically coupling it
to a quantum-point contact.
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APPENDIX A: STATISTICAL ERROR
OF FACTORIAL CUMULANTS

The statistical error of the full counting statistics stemming
from the finite time T of the telegraph signal leads to a
variance of the factorial cumulants [in Fig. 8(d) we have T =
335 s]. As shown in the Supplemental Material of Ref. [46], it
can be expressed as

(�CF,m)2 = t

T
∑
k,k′

∂CF,m

∂Mk

∂CF,m

∂Mk′
(Mk+k′ − MkMk′ ), (A1)

in terms of the ordinary moments Mm = 〈Nm〉. To evaluate the
right-hand side of Eq. (A1), we need the functional relation
CF,m = CF,m(M1, . . . , Mm) of the factorial cumulants in terms
of the ordinary moments. This is achieved in two steps. First,
we use the recursion formula [68]

CF,m = MF,m −
m−1∑
k=1

(
m−1

k−1

)
CF,kMF,m−k (A2)

relating factorial cumulants CF,m to factorial moments MF,m =
〈N (N − 1) . . . (N − m + 1)〉. Second, we employ the linear
relation between factorial and ordinary moments [69]

MF,m =
m∑

k=1

s1(m, k)Mk, (A3)

with s1(m, k) being the Stirling numbers of the first kind.
After performing the derivatives in Eq. (A1), we reexpress the
resulting function of ordinary moments in terms of factorial
cumulants. As a final result, we find

(�CF,1)2 = t

T (CF,1 + CF,2) = t

T (〈N2〉 − 〈N〉2), (A4)

(�CF,2)2 = t

T [2(CF,1 + CF,2)2 + 2CF,2 + 4CF,3 + CF,4],

(A5)

for the first two factorial cumulants and similar analytic
expressions for m � 3, which are, however, too long to be pre-
sented here. The first line is the known result from the central
limit theorem describing how the sample mean (formed from
T /t samples) approaches the expectation value. Finally, we
remark that in the long-time limit the variance of all factorial
cumulants acquires a simple form again. One finds the very
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compact expression [46]

(�CF,m)2 � m! t

T (〈N2〉−〈N〉2)m, (A6)

which is proportional to tm+1. This nicely shows how an
increased order m and longer time t give rise to an increased
statistical error.

APPENDIX B: STATISTICAL ERROR OF THE
WAITING-TIME DISTRIBUTION

Due to the finite measurement time T , there is only a
finite number K of measured waiting times [in Fig. 8(c)
we have K = 85 343], which are all of the form τ = n�t
with n ∈ 1, 2, . . .. To experimentally determine the probabil-
ity wocc(m�t )�t that a given (occupied) waiting time τ =
m�t occurs, we calculate relative frequencies by formally
performing the sample mean X̄ = ∑

n Xn/K over the quantity
Xn = δm,n. From the central limit theorem, we know that the

sample mean X̄ deviates from the expectation value 〈X 〉 with

(X̄ − 〈X 〉)2 � 1

K
(〈X 2〉 − 〈X 〉2), (B1)

where the expectation value is given by the exact probability
〈X 〉 = wocc�t and the variance is given by 〈X 2〉−〈X 〉2 =
wocc�t (1 − wocc�t ) with wocc = wocc(m�t ). Thus, the sta-
tistical error of the waiting-time distribution can be estimated
as

�wocc(τ ) = 1

�t
√

K

√
wocc(τ )�t[1 − wocc(τ )�t], (B2)

�wemp(τ ) = 1

�t
√

K

√
wemp(τ )�t[1 − wemp(τ )�t]. (B3)

In Fig. 8(c), we see that the analytical estimates of the statis-
tical error correctly describe the observed fluctuations in the
experimental data.
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