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Evolution of entanglement entropy in strongly correlated bosons in an optical lattice
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We investigate the time evolution of the second-order Rényi entropy (RE) for bosons in a one-dimensional
optical lattice following a sudden quench of the hopping amplitude J . Specifically, we examine systems that are
quenched into the strongly correlated Mott-insulating (MI) regime with J/U � 1 (U denotes the strength of the
on-site repulsive interaction) from the MI limit with J = 0. In this regime, the low-energy excited states can be
effectively described by fermionic quasiparticles known as doublons and holons. They are excited in entangled
pairs through the quench dynamics. By developing an effective theory, we derive a direct relation between
the RE and correlation functions associated with doublons and holons. This relation allows us to analytically
calculate the RE and obtain a physical picture for the RE, both in the ground state and during time evolution
through the quench dynamics, in terms of doublon-holon pairs. In particular, we show that the RE is proportional
to the population of doublon-holon pairs that span the boundary of the subsystem. Our quasiparticle picture
introduces some remarkable features that are absent in previous studies on the dynamics of entanglement entropy
in free-fermion models. It provides with valuable insights into the dynamics of entanglement entropy in strongly-
correlated systems.
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I. INTRODUCTION

Entanglement is one of the most intriguing concepts of
quantum mechanics. It describes nonlocal correlations incom-
patible with local realism [1], which is clearly demonstrated
by the violation of the Bell inequality [2]. Entanglement is
also a key to understanding quantum many-body systems in
diverse fields. It is considered, for example, to be the origin
of thermalization in an isolated quantum many-body system
[3–8] and the Hawking radiation from black holes [9,10]. In
particular, entanglement plays a central role in strongly corre-
lated systems. The investigation of entanglement in strongly
correlated systems is promised to give us deep insights into
fundamental aspects of emergent phenomena, such as quan-
tum phase transition and topological order [11–15].

Entanglement between quantum objects can be quantified
by entanglement entropy. It has been a major subject of the-
oretical investigation in quantum field theory, as well as in
strongly correlated systems. Dynamics of entanglement en-
tropy in integrable systems have been intensively investigated
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since the pioneering work by Calabrese and Cardy [16]. They
proposed a clear physical picture for the dynamics of entan-
glement entropy in terms of quasiparticles. Specifically, the
long-time dynamics of entanglement entropy can be under-
stood as a result of excitation and propagation of entangled
quasiparticle pairs. This quasiparticle picture has been con-
firmed numerically and analytically in a number of papers
[17–28].

Despite recent developments of experimental techniques,
measuring entanglement entropy remains challenging in
condensed-matter systems. A great advance has been recently
made, however, in the system of ultracold bosonic atoms in an
optical lattice. The second-order Rényi entropy (RE), which
is one of the measures of entanglement entropy, has been
successfully probed by preparing two independent copies of
the same state, letting them interfere, and counting the number
parity of atoms in one of the copies by an atomic gas micro-
scope [29,30]. The time evolution of the RE after a sudden
quench of atomic hopping has been observed in the superfluid
(SF) regime by using this technique [31]. In the strongly
correlated Mott insulating (MI) regime, on the other hand,
spreading of correlations after a quantum quench has been
studied theoretically and experimentally [32–34]. However,
quench dynamics of entanglement entropy has not been well
investigated in this regime.

In this paper, motivated by the current status of theory and
experiment, we study the quench dynamics of entanglement
entropy of bosons in a one-dimensional optical lattice. Our
main focus is on the quench dynamics of the RE in the
strongly correlated Mott insulating regime. The low-energy
dynamics in this regime can be effectively described by
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fermionic quasiparticles known as a doublon and a holon,
which correspond to an excess particle and a hole on top
of the unit filling, respectively [32]. We develop an effective
theory to derive an analytical expression for the time evolution
of the RE after a quench of atomic hopping. Furthermore,
we derive a direct relation between the RE and correlation
functions for doublons and holons, which enables us to obtain
a physical picture for the dynamics of the RE in terms of
doublon-holon pairs. We find that the obtained quasiparticle
picture is consistent with the one proposed by Calabrese and
Cardy in the space-time scaling limit. Moreover, it exhibits
remarkable features in both the short- and long-time scales
that are absent in their picture.

The organization of the paper is as follows: In Sec. II,
we explain the model and setup for the quench dynamics of
bosons in an optical lattice and introduce the RE. In Sec. III,
we introduce the effective theory in the strongly correlated MI
regime. In Sec. IV, we introduce the formalism to calculate the
RE and study the RE for the ground state. In Sec. V, we study
the time evolution of the RE after a quench. In Sec. VI, we
discuss the physical picture for the time evolution of the RE.
In Sec. VII, we extend the analysis to study the nth-order RE.
In Sec. VIII, we examine the validity of the effective theory.
We finally summarize the paper in Sec. IX. We set h̄ = 1 and
the lattice constant unity throughout this paper.

II. MODEL AND SETUP

We consider bosons in a one-dimensional (1D) optical
lattice at zero temperature. When the lattice potential is deep
enough, the system is well described by the Bose-Hubbard
model (BHM) [35–37]

Ĥ = −J
∑

j

(b̂†
j b̂ j+1 + H.c.) + U

2

∑
j

n̂ j (n̂ j − 1), (1)

where b̂ j (b̂†
j) denotes the annihilation (creation) operator of

a boson on the jth site and n̂ j = b̂†
j b̂ j the number operator on

the jth site. J denotes the hopping amplitude between nearest-
neighbor sites and U > 0 the strength of the on-site repulsive
interaction. We assume the periodic boundary condition.

The BHM (1) exhibits a quantum phase transition between
the SF and MI phases [38–44]: When the total number of
bosons N is commensurate with the number of total sites L,
the ground state is a SF state for small U/J , while it is a
MI state for large U/J . The SF-MI phase transition of the
Kosterlitz-Thouless type occurs at U/J � 3.28 for unit filling
(N/L = 1) [41–44]. The ground state is a SF state when N is
incommensurate with L regardless of the value of U/J .

We suppose that the whole system consists of subsystems
A and B. The RE for subsystem A is defined as [45]

SA = − ln
[
trA

(
ρ̂2

A

)]
, (2)

where ρ̂A = trB(ρ̂) is the reduced density matrix for subsys-
tem A and ρ̂ is the density matrix for the whole system. trA(B)

stands for trace over subsystem A (B). trA(ρ̂2
A) quantifies the

purity of the state ρ̂A [46]: trA(ρ̂2
A) = 1 if ρ̂A is a pure state,

while trA(ρ̂2
A) < 1 if it is a mixed state. When subsystems A

and B have no entanglement, ρ̂A describes a pure state and we

obtain SA = 0. When subsystems A and B are entangled, ρ̂A

describes a mixed state and we obtain SA > 0.
We follow the quench protocol of the experiments [30–32].

Namely, atoms are initially localized one in each of the lattice
sites. At the initial time (t = 0), tunneling of atoms is abruptly
switched on by lowering the lattice depth and the state of the
whole system |ψ (t )〉 evolves following the Hamiltonian (1) as
|ψ (t )〉 = e−iĤt |ψ0〉, where |ψ0〉 is the initial state at t = 0.

The initial state can be written as

|ψ0〉 =
L∏

j=1

b̂†
j |0〉 j, (3)

where |ν〉 j (ν = 0, 1, 2, . . . ) denotes the Fock state with ν

atoms on the jth site. It corresponds to the ground state of
the MI limit (J/U = 0). Since the initial state (3) is a product
state, SA = 0 at t = 0. SA grows in time after the quench
as tunneling of bosons creates entanglement between the
subsystems.

III. EFFECTIVE THEORY IN THE
STRONGLY-CORRELATED MOTT INSULATING REGIME

We assume that the lattice potential is slightly lowered and
the value of J/U is set in the strongly correlated MI regime
(J/U � 1) at t > 0. The low-energy excited states in this
regime can be described in terms of doublons and holons
[32,47]. Such a weak perturbation associated with the quench
involves only the low-energy excited states. As a result, the
time evolution of the system after the quench is considered
to be well described by the effective theory based on the
doublon-holon description.

Introducing the fermionic doublon and holon annihilation
(creation) operators, d̂ j (d̂†

j ) and ĥ j (ĥ†
j ), respectively, the

Hamiltonian (1) is approximately mapped to [32,47]

Ĥ = P̂Ĥeff P̂, (4)

where Ĥeff is the Hamiltonian of the effective theory given by

Ĥeff = − J
∑

j

[2d̂†
j d̂ j+1 + ĥ†

j+1ĥ j

+
√

2(d̂†
j ĥ†

j+1 − ĥ j d̂ j+1) + H.c.]

+ U

2

∑
j

(d̂†
j d̂ j + ĥ†

j ĥ j ), (5)

and P̂ = ∏
j (1 − d̂†

j d̂ j ĥ
†
j ĥ j ) is the projection operator, which

eliminates double occupancy of a doublon and a holon on
the same site. The derivation of Eqs. (4) and (5) is given in
Appendix A.

The projection operator P̂ can be safely neglected in
weakly excited states of the strongly correlated MI regime
since the system can be considered as a dilute gas of doublons
and holons and the possibility of their occupation on the same
site is quite low.

By the Fourier transform, Ĥeff can be written as

Ĥeff =
∑

k

[ fd,kd̂†
k d̂k − fh,kĥ−kĥ†

−k

− igk (d̂†
k ĥ†

−k − ĥ−kd̂k )], (6)
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where fd,k = U/2 − 4J cos(k), fh,k = U/2 − 2J cos(k), and
gk = 2

√
2J sin(k). Doublon and holon have energy gap

fd,k=0 = U/2 − 4J and fh,k=0 = U/2 − 2J , respectively.
Note that the initial state |ψ0〉 in Eq. (3) corresponds to the
vacuum state of d̂ j and ĥ j .

The quadratic Hamiltonian Ĥeff can be diagonalized by the
Bogoliubov transformation(

γ̂d,k

γ̂
†
h,−k

)
=

(
uk −ivk

−ivk uk

)(
d̂k

ĥ†
−k

)
, (7)

where γ̂d,k and γ̂h,k denote the annihilation operators of quasi-
particles, which we refer to as “bogolons” hereafter. uk and vk

are given by

uk =

√√√√√√1

2

⎛
⎜⎝1 + fd,k + fh,k√

( fd,k + fh,k )2 + 4g2
k

⎞
⎟⎠

= 1 + O[(J/U )2], (8)

vk = sgn(k)

√√√√√√1

2

⎛
⎜⎝1 − fd,k + fh,k√

( fd,k + fh,k )2 + 4g2
k

⎞
⎟⎠

= 2
√

2(J/U ) sin(k) + O[(J/U )2], (9)

where we expand uk and vk in terms of J/U for later use.
Substituting Eq. (7) into Eq. (6), Ĥeff is diagonalized as

Ĥeff =
∑

k

(εd,k γ̂
†
d,k γ̂d,k + εh,k γ̂

†
h,−k γ̂h,−k ), (10)

where the dispersions of bogolons are given by

εd,k = −J cos(k) + 1

2

√
[U − 6J cos(k)]2 + 32J2 sin2(k),

(11)

εh,k = J cos(k) + 1

2

√
[U − 6J cos(k)]2 + 32J2 sin2(k).

(12)

They have energy gap εd,k=0 = U/2 − 4J and εh,k=0 =
U/2 − 2J . The ground state |vac〉 that satisfies γ̂d,k|vac〉 =
γ̂h,k|vac〉 = 0 can be written as [48]

|vac〉 =
∏

k

[uk + ivkd̂†
k ĥ†

−k]|ψ0〉. (13)

It implies that doublon-holon pairs are condensed in the
ground state from its similarity with the BCS wave function
[49].

The time-evolving state after the quench is given as

|ψ (t )〉 = e−iĤeff t |ψ0〉
=

∏
k

[uk − ivke−i(εd,k+εh,k )t γ̂
†
d,k γ̂

†
h,−k]|vac〉, (14)

where we used |ψ0〉 = ∏
k[uk − ivk γ̂

†
d,k γ̂

†
h,−k]|vac〉, which can

be obtained from d̂k|ψ0〉 = ĥk|ψ0〉 = 0. It shows that pairs of
bogolons are excited by the quench. Equation (14) will be
used to calculate the time evolution of the RE.

In terms of d̂k and ĥk , Eq. (14) can be written as

|ψ (t )〉 =
∏

k

[
u2

k + v2
k e−i(εd,k+εh,k )t

+ iukvk (1 − e−i(εd,k+εh,k )t )d̂†
k ĥ†

−k

]|ψ0〉. (15)

Equation (15) indicates that doublons and holons are excited
in pairs. The numbers of doublons and holons should be
thus equal,

∑L
j=1〈ψ (t )|d̂†

j d̂ j |ψ (t )〉 = ∑L
j=1〈ψ (t )|ĥ†

j ĥ j |ψ (t )〉.
Using this relation, the total number of original bosons is
conserved as

L∑
i=1

〈ψ (t )|n̂i|ψ (t )〉 = N +
L∑

i=1

〈ψ (t )|(d̂†
i d̂i − ĥ†

i ĥi )|ψ (t )〉

= N, (16)

where N is the total number of original bosons at t = 0. Note
that the number of doublons (holons) itself is not conserved
because they are excited from the vacuum state |ψ0〉.

IV. RÉNYI ENTROPY FOR THE GROUND STATE

Let us first calculate the RE for the ground state Eq. (13)
before studying its time evolution. For a Gaussian state, which
includes the ground state and a thermal state of a quadratic
Hamiltonian, the RE can be conveniently evaluated using
single-particle correlation functions [50]. We first adopt the
formalism to our system in Sec. IV A, and apply it to the
ground state in Sec. IV B.

A. Rényi entropy for a Gaussian state

We consider a Gaussian state of doublons and holons |φ〉
with which any correlation function of d̂ j and ĥ j factorizes
according to the prescriptions of Wick’s theorem. The reduced
density matrix of |φ〉 can be formally written as [50]

ρ̂A = trB(|φ〉〈φ|) = e−ĤA

trA(e−ĤA )
. (17)

The entanglement Hamiltonian ĤA has a quadratic form of d̂ j

and ĥ j ( j ∈ A), because Wick’s theorem also holds for corre-
lation functions concerning degree of freedom in A. Thus, it
can be diagonalized as

ĤA =
2LA∑
α=1

ωA
α n̂A

α , (18)

where ωA
α and n̂A

α are the spectrum and the number operator
for the eigenmode α. LA is the size of subsystem A. Note
that the number of the eigenmodes 2LA corresponds to the
total number of degrees of freedom in subsystem A. Once
the entanglement Hamiltonian is diagonalized in the form of
Eqs. (18), the RE can be obtained as

SA = −
2LA∑
α=1

ln
[
(1 − fα )2 + f 2

α

]
, (19)

where fα = trA(ρ̂An̂A
α ) = 1/[exp(ωA

α ) + 1] is the occupation
number of the eigenmode α.
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We still need to determine ωα or fα . To obtain fα , we
consider a matrix of single-particle correlation functions

M =

⎛
⎜⎜⎝

I − C∗
d,d −C∗

d,h Fd,d Fd,h

−C∗
h,d I − C∗

h,h Fh,d Fh,h

−F ∗
d,d −F ∗

d,h Cd,d Cd,h

−F ∗
h,d −F ∗

h,h Ch,d Ch,h

⎞
⎟⎟⎠. (20)

Here, Cσ,σ ′ and Fσ,σ ′ (σ, σ ′ = d, h) are LA × LA matrices of
normal and anomalous correlation functions, respectively, that
have matrix elements

(Cσ,σ ′ )i, j = 〈φ|ĉ†
i,σ ĉ j,σ ′ |φ〉, (21)

(Fσ,σ ′ )i, j = 〈φ|ĉi,σ ĉ j,σ ′ |φ〉, (22)

where we denote ĉi,d = d̂i and ĉi,h = ĥi. fα can be obtained
by diagonalizing M thanks to the relation [50]

M = UA

(
diag(1 − fα ) 0

0 diag( fα )

)
U −1

A , (23)

where UA is a unitary matrix.

B. Rényi entropy for the ground state

We calculate the RE for the ground state Eq. (13) employ-
ing the formalism in Sec. IV A. Evaluating the single-particle
correlation functions in Eqs. (21) and (22) with |vac〉, we ob-
tain Cd,h = Ch,d = 0, Fd,d = Fh,h = 0, (Cd,d )i, j = (Ch,h)i, j =
Ci, j , and (Fd,h)i, j = (Fh,d )i, j = Fi, j , where

Ci, j = 〈vac|d̂†
i d̂ j |vac〉 = 〈vac|ĥ†

i ĥ j |vac〉

= 1

L

∑
k

v2
k eik(i− j), (24)

Fi, j = 〈vac|d̂iĥ j |vac〉 = 〈vac|ĥid̂ j |vac〉

= i

L

∑
k

ukvkeik(i− j). (25)

From uk = O(1) and vk = O(J/U ) in Eqs. (8) and (9),
we obtain Ci, j = O[(J/U )2] and Fi, j = O(J/U ), because the
summations over k in Eqs. (24) and (25) do not change the
order of J/U .

Using matrix C and F , the matrix of the single-particle
correlation functions M in Eq. (20) can be simplified as

M =

⎛
⎜⎜⎝

I − C 0 0 F
0 I − C F 0
0 −F ∗ C 0

−F ∗ 0 0 C

⎞
⎟⎟⎠. (26)

Here, F is antisymmetric, i.e., Fi, j = −Fj,i, due to the an-
ticommutation relation {d̂i, ĥ j} = 0. Note that this property
holds for any state with which the average is taken.

We derive a formula that directly relates the RE and the
single-particle correlation functions. From Eq. (26), we obtain

tr(M2) = 2LA − 4tr(C) + 4‖F‖2
F + O[(J/U )4], (27)

where ‖O‖F =
√∑

i, j |Oi, j |2 denotes the Frobenius norm. In

deriving Eq. (27), we use C = O[(J/U )2] and tr(FF ∗) =

−‖F‖2
F, which is obtained from Fi, j = −Fj,i. On the other

hand, using Eq. (23), we obtain

tr(M2) = 2LA − 2
2LA∑
α=1

(
fα − f 2

α

)
. (28)

Comparing Eqs. (27) and (28), we obtain a relation between
fα and the correlation functions as

2LA∑
α=1

(
fα − f 2

α

) = 2
[
tr(C) − ‖F‖2

F

] + O[(J/U )4]. (29)

The first term of the right-hand side in Eq. (29) is of the order
of (J/U )2 because C = O[(J/U )2] and F = O(J/U ). Since
fα − f 2

α � 0, we obtain fα − f 2
α = O[(J/U )2] from Eq. (29).

Expanding Eq. (19) by fα − f 2
α and using Eq. (29), the RE can

be obtained in a concise form

SA = 4
[
tr(C) − ‖F‖2

F

] + O[(J/U )4]. (30)

Remarkably, Eq. (30) allows us to gain a clear quasiparticle
picture for the RE, which we will discuss in Sec. VI.

In deriving the above formula, we use only C = O[(J/U )2]
and F = O(J/U ) in addition to the relation Fi, j = −Fj,i,
which holds for any state. As long as these conditions are
satisfied, therefore, Eq. (30) holds for any Gaussian state,
regardless of the explicit forms of C and F . We will take
advantage of this fact to calculate the RE for the time-evolving
state.

In the limit L → ∞, replacing the summations over k with
integrals [

∑
k → (L/2π )

∫ π

−π
dk] in Eqs. (24) and (25), we

obtain

Ci,i =4(J/U )2 + O[(J/U )4], (31)

Fi, j = ∓
√

2(J/U )δi, j±1 + O[(J/U )2]. (32)

Substituting Eqs. (31) and (32) into Eq. (30), the RE is
obtained as

SA = 16(J/U )2 + O[(J/U )3]. (33)

The above expression clearly shows that SA is independent of
subsystem size LA and therefore follows the area-law scaling,
which is a characteristic feature of a gapped ground state of a
short-range Hamiltonian [51]. The ground state |vac〉 indeed
satisfies this condition.

Figure 1 shows a comparison of Eq. (33) with the numer-
ical results obtained by the matrix-product-state technique.
They agree well with each other. To obtain the numeri-
cal results, we calculate the ground-state wave function of
the BHM (1) by imaginary-time evolution using the infinite
time-evolving block-decimation (iTEBD) algorithm [52] and
evaluate the RE with it. In the numerical calculations using
the iTEBD algorithm throughout this paper, we implement
it keeping the Schmidt coefficients larger than 10−7, setting
the dimension of the local Hilbert space being 5, and using
the second-order Suzuki-Trotter decomposition with time step
t = 0.01/U .

V. TIME EVOLUTION OF THE RÉNYI ENTROPY

In this section, we study the time evolution of the RE.
We calculate the RE for a single site (LA = 1) in Sec. V A
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FIG. 1. RE for the ground state |vac〉. The analytic results in
Eq. (33) are indicated by the horizontal solid lines. The symbols
indicate the numerical data of the iTEBD calculation.

by directly evaluating the reduced density matrix. We further
calculate the RE for LA � 1 in Sec. V B using the formalism
in Sec. IV.

A. Rényi entropy for a single site

The reduced density matrix for subsystem A can be written
in the basis of the Fock states of doublons and holons |nd , nh〉 j

(nd , nh = 0, 1) as

ρ̂A =
∑

τ,τ ′∈{(0,0),(1,0),(0,1),(1,1)}
rτ,τ ′ |τ 〉 j〈τ ′| j, (34)

where nd (nh) denotes the number of doublon (holon) on the
jth site. The matrix elements are given as

rτ,τ ′ = trA[ρ̂A|τ ′〉 j〈τ | j] = tr[ρ̂|τ ′〉 j〈τ | j ⊗ 1̂ j̄]

= 〈ψ (t )|[|τ ′〉 j〈τ | j ⊗ 1̂ j̄]|ψ (t )〉, (35)

where 1̂ j̄ denotes the identity operator for all the sites other
than j.

The matrix elements can be calculated as

ρ̂A = [1 − 2r(t ) + r(t )2]|0, 0〉 j〈0, 0| j

+ [r(t ) − r(t )2](|1, 0〉 j〈1, 0| j + |0, 1〉 j〈0, 1| j )

+ r(t )2|1, 1〉 j〈1, 1| j, (36)

where r(t ) = 〈ψ (t )|d̂†
j d̂ j |ψ (t )〉 = 〈ψ (t )|ĥ†

j ĥ j |ψ (t )〉 repre-
sents the number of doublon (holon) per site

r(t ) = 2

L

∑
k

u2
kv

2
k {1 − cos [(εd,k + εh,k )t]}. (37)

The calculation of matrix elements rτ,τ ′ is straightforward
once we express the operators |τ 〉 j〈τ ′| j in terms of the creation
and annihilation operators of doublons and holons. The detail
of the calculation is given in Appendix B.

Substituting Eq. (36) into Eq. (2) and noting that r(t ) =
O[(J/U )2], we find that the RE is proportional to the
number of doublon (holon) per site in the leading order
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FIG. 2. Time evolution of the RE for a single site (LA = 1).
Equation (40) is plotted as the solid lines. The horizontal lines
indicate the asymptotic values SA(t → ∞) = 32(J/U )2. The dotted
lines indicate the numerical results of the iTEBD calculations. The
inset shows the Fourier transform S̄A(ω) in Eq. (43) for J/U = 0.01.

of J/U as

SA = − ln{[1 − 2r(t ) + r(t )2]2 + 2[r(t ) − r(t )2]2 + r(t )4}
= 4r(t ) + O[(J/U )4]. (38)

To figure out why the RE is proportional to the number of
doublon (holon) per site, we expand the wave function (14) to
the first order of J/U as

|ψ (t )〉 =|ψ0〉 + 2i(J/U )
∑

k

sin(k)[1 − e−i(εd,k+εh,k )t ]

× d̂†
k ĥ†

−k + ĥ†
k d̂†

−k√
2

|ψ0〉 + O[(J/U )2]. (39)

The second term illustrates that all the doublons and holons
are excited in entangled pairs [32]. Recalling that the RE
quantifies entanglement between subsystems A and B, en-
tangled doublon-holon pairs spanning the boundary between
subsystems A and B should contribute to the RE. Since the
number of doublons (holons) of subsystem A (site j) is equal
to that of doublon-holon pairs spanning subsystems A and B,
the RE is naturally proportional to the number of doublons
(holons).

In the limit L → ∞, evaluating the summation in Eq. (37)
by replacing it with an integral, we obtain

SA(t ) = 32(J/U )2

[
1 − J1(6Jt )

3Jt
cos(Ut )

]
+ O[(J/U )4],

(40)
where Jn(x) (n = 0, 1, 2, · · · ) is the Bessel function of the
first kind. The density of doublon-holon pairs is indeed r(t ) =
SA(t )/4.

Figure 2 shows the RE in Eq. (40) as a function of time. The
RE rapidly oscillates soon after the quench and converges af-
ter a while. The constant value after the convergence increases
as J/U increases. Equation (40) indicates that the frequency of
the oscillation is equivalent to U , and SA converges in the time
scale of O(1/J ) because J1(6Jt )/(Jt ) = O[(Jt )−3/2] � 1 for
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Jt � 1. The constant after the convergence is given as

lim
t→∞ SA(t ) = 32(J/U )2 + O[(J/U )4]. (41)

Figure 2 shows that Eqs. (40) and (41) agree well with the RE
calculated by the iTEBD algorithm.

The Fourier transform of Eq. (40) is given as

S̄A(ω) =
∫ ∞

−∞
dt SA(t )eiωt (42)

= − 32J

3U 2

√
1 −

(
U − ω

6J

)2

θ (6J − |ω − U |)

+ O[(J3/U 4)], (43)

where θ (x) is the step function. We assume that the frequency
ω is positive to eliminate the contribution from the time-
independent term in Eq. (40). We also assume for simplicity
that SA(t ) = SA(−t ) for t < 0. The detail of the derivation of
Eq. (43) is given in Appendix C. S̄A(ω) has a peak at ω = U
and its width is ω = 12J , as shown in the inset of Fig. 2.
The rapid oscillations with the frequency U are induced by
excited bogolons in Eq. (14). Their excitation energy can be
approximated as εd,k + εh,k � U − 6J cos(k) for J/U � 1.
The peak position ω = U corresponds to the center of the
energy band, while the peak width 12J corresponds to its
bandwidth.

B. Rényi entropy for LA � 1

The reduced density matrix for the time-evolving state
|ψ (t )〉 under the quadratic Hamiltonian Ĥeff can be formally
written in the form of a thermal state as

ρ̂A = trB(|ψ (t )〉〈ψ (t )|) = e−ĤA

trA(e−ĤA )
, (44)

where ĤA(t ) can be written as a quadratic form of d̂ j and ĥ j

( j ∈ A), because the Bloch-De Dominicis theorem holds for
the correlation functions evaluated by ρ̂A (see Appendix D).
It means that the time-evolving state is also a Gaussian state,
and hence the RE can be calculated using the formalism in
Sec. IV A.

Evaluating the single-particle correlation functions in
Eqs. (21) and (22) with |ψ (t )〉, we obtain Cd,h = Ch,d =
0, Fd,d = Fh,h = 0, (Cd,d )i, j = (Ch,h)i, j = Ci, j , and (Fd,h)i, j =
(Fh,d )i, j = Fi, j , where

Ci, j =〈ψ (t )|d̂†
i d̂ j |ψ (t )〉 = 〈ψ (t )|ĥ†

i ĥ j |ψ (t )〉,

= 2

L

∑
k

u2
kv

2
k {1 − cos[(εd,k + εh,k )t]}eik(i− j), (45)

Fi, j =〈ψ (t )|d̂iĥ j |ψ (t )〉 = 〈ψ (t )|ĥid̂ j |ψ (t )〉,

= i

L

∑
k

ukvkeik(i− j)

× [
v2

k (1 − ei(εd,k+εh,k )t ) − u2
k (1 − e−i(εd,k+εh,k )t )

]
. (46)

Note that Ci,i = r(t ) and Fi,i = 0. We find Ci, j = O[(J/U )2]
and Fi, j = O(J/U ) from Eqs. (45) and (46). Thus, the RE for
the time-evolving state |ψ (t )〉 can be written in the same form
as Eq. (30).

In the limit L → ∞, evaluating the summation in Eq. (46),
we obtain

Fi,i+n =
√

2(J/U )(δn,1 − δn,−1)

+
√

2(J/U )in+1e−iUt n
Jn(6Jt )

3Jt
+ O[(J/U )2], (47)

‖F‖2
F = 4(J/U )2(LA − 1)

+ 4(J/U )2

{
LA∑

n=0

(LA − n)n2

(Jn(6Jt )

3Jt

)2

−2(LA − 1)
J1(6Jt )

3Jt
cos(Ut )

}
+ O[(J/U )3]. (48)

Ci,i = r(t ) is given in Eq. (37). Using Eq. (30), we obtain the
RE for LA � 1 as

SA(t ) =16

(
J

U

)2

(LA + 1) − 32

(
J

U

)2

cos(Ut )
J1(6Jt )

3Jt

− 16

(
J

U

)2 LA∑
n=0

(LA − n)n2

(Jn(6Jt )

3Jt

)2

+ O[(J/U )3]. (49)

Setting LA = 1, the above equation indeed reduces to Eq. (40).
Figures 3(a) and 3(b) show SA(t ) in Eq. (49) as functions

of time in the short-time scale for a small subsystem [Jt, LA =
O(1)] and long-time scale for a large subsystem (Jt, LA � 1),
respectively. In the former, the numerical results of the iTEBD
calculations agree well with Eq. (49), as shown in Fig. 3(a).
Analogous to Fig. 2, SA(t ) exhibits rapid oscillations with
the frequency U and converges in the time scale of O(1/J ).
Meanwhile, in Fig. 3(b), we find that SA(t ) linearly increases
for 6Jt < LA and is saturated to a constant proportional to the
size of the subsystem LA for 6Jt > LA. The RE after a long
time thus obeys the volume-law scaling. We can confirm these
behaviors analytically in the asymptotic forms of Eq. (49) as

SA �
⎧⎨
⎩

256J3

πU 2 t, (1 � Jt � LA),

16J2(LA+1)
U 2 − 2L4

A
81πJU 2t3 , (1 � LA � Jt ).

(50)

The second asymptotic form indicates that the RE approaches
to a constant with a correction of order O(L4

A/t3). Note that
the oscillations with frequency U can be seen in the short-
time scale even for a large subsystem, as shown in the inset of
Fig. 3(b).

VI. QUASIPARTICLE PICTURE

In this section, we discuss how the RE in the ground state
and the time-evolving state can be understood in terms of
doublon-holon pairs. First of all, recall that the RE for both
|vac〉 and |ψ (t )〉 is expressed as

SA � 2
[
2tr(C) − 2‖F‖2

F

]
, (51)

where we neglect O[(J/U )4]. The above expression can be
understood as follows: 2tr(C) = ∑

j∈A(〈n̂ jd〉 + 〈n̂ jh〉) repre-
sents the total number of doublons and holons in subsystem
A, which is equal to the sum of the number of doublon-
holon pairs spanning the boundary of subsystem A and twice
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FIG. 3. Time evolution of the RE for LA � 1. We set J/U =
0.01. Equation (49) is plotted as the solid lines. (a) REs for LA =
2, 4, and 6 in the short-time scale. The numerical results of the
iTEBD algorithm are indicated by the dotted lines. The dashed lines
indicate 16(J/U )2(LA + 1). (b) REs for LA = 400, 500, and 600 in
the long-time scale. The dotted and dashed lines indicate the asymp-
totic forms of the RE in Eq. (50). The inset shows a magnification in
the short-time scale for LA = 400.

the number of doublon-holon pairs within subsystem A [see
Fig. 4(a)]. Meanwhile, ‖F‖2

F can be written as

‖F‖2
F =

∑
i, j∈A

〈ĥ†
j d̂

†
i d̂iĥ j〉. (52)

Here, we neglect a correction of O[(J/U )4]. 2‖F‖2
F is equal to

twice the number of pairs within subsystem A [see Fig. 4(b)].
2tr(C) − 2‖F‖2

F is thus equal to the number of doublon-holon
pairs spanning the boundary of A [see Fig. 4(c)]. Equa-
tion (51) indicates that they are responsible for entanglement
between subsystems A and B, which is consistent with the fact
that the doublon-holon pairs are entangled.

The area-law scaling of the ground state can be indeed
understood within this quasiparticle picture. Given that Fi, j is
nonzero only when |i − j| = ±1 in Eq. (32), doublon-holon
pairs spread between nearest-neighbor sites in the ground
state. It turns out that only the pairs adjacent to the boundary
can straddle the boundary and the number of such pairs does
not depend on the size of the subsystem LA. Hence, the RE
obeys the area-law scaling.

As for the time evolution of the RE, it can be understood
by studying the anomalous correlation function. Figure 5(a)
shows |〈ψ (t )|dihi+n|ψ (t )〉|2 = |Fi,i+n(t )|2 as a function of n.
The propagating peaks in the figure correspond to those of

x

A BB

LA

x

A BB

LA

x

A BB

LA

(a)

(b)

(c)

2tr(C)

2||F ||2F

2tr(C) − 2||F ||2F

FIG. 4. Schematic drawings describe the physical image of
(a) tr(C), (b) ‖F‖2, and (c) tr(C) − ‖F‖2. Each two dots connected
by a dotted line represents an entangled pair of a doublon and a holon.

the Bessel function Jn(6Jt ) (1 � n � LA − 1) in Eq. (47).
Each of them describes a wave packet of entangled doublon-
holon pairs induced by the quench. The most dominant peak
of Jn(6Jt ) at n � 6Jt represents pairs emitted at the initial
time t = 0. The subdominant propagating peaks represent
pairs emitted at t > 0. All the peaks propagate with the same
velocity vpair = 6J , which coincides with the maximum group
velocity of a doublon-holon pair with opposite momenta given
by

vpair = max
k

[∂k (εd,k + εh,−k )] � 6J. (53)

This propagation speed of doublon-holon pairs has been ex-
perimentally confirmed by measuring correlation functions
[32,33]. These pairs decay in time as shown in Fig. 5(a) due
to the factor 3Jt in the denominator of the second term of
Eq. (47).

To understand the characteristic features of the long-time
dynamics, namely, the linear growth for 6Jt < LA and the
following saturation for 6Jt > LA, we focus on the matrix
|Fi, j (t )|2, which is visualized in Fig. 5(b). One finds that, when
6Jt < LA, the contribution of pairs emitted at t = 0 decreases
as the size of pairs grows. It leads to the linear growth of SA(t )
for 6Jt < LA. When 6Jt > LA, pairs emitted at t = 0 spread
beyond the subsystem size and their contribution to ‖F‖2

F
vanishes. This results in the saturation of SA. The smooth
transition from the linear growth to the saturation of SA is

043102-7



SHION YAMASHIKA et al. PHYSICAL REVIEW RESEARCH 5, 043102 (2023)

0

20

40

60

80

j

0 20 40 60 80

i
0 20 40 60 80

i

0

20

40

60

80

j

0.00000

0.00003

0.00006

0.00009

0.00012

0.00015

(a)

(a)

0 10 20 30 40 50 60

n

0.000000

0.000025

0.000050

0.000075

0.000100

0.000125

0.000150

0.000175

0.000200

|F
i,
i+

n
|2

Ut = 200

Ut = 400

Ut = 600

Ut = 800

(a)

(b)

Ut = 200 Ut = 600

Ut = 1000 Ut = 1500

6Jt

6Jt 6Jt

1

1

11
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subsystem size LA = 100.

due to the contribution of the subdominant peaks, i.e., pairs
emitted at t > 0.

In addition to the propagating peaks, there is a single lo-
calized peak at n = 1 in Fig. 5(a), which corresponds to the
subdiagonal elements in Fig. 5(b). It results in the second term
in Eq. (49) and its height oscillates with the frequency U .
This localized peak represents doublon-holon pairs with unit
separation spanning the boundary of subsystem A. They are
excited by hopping of a boson to the nearest-neighbor sites.
They repeat creation and annihilation with the frequency U
and eventually decay.

We compare the above quasiparticle picture and the one
proposed by Calabrese and Cardy for quench dynamics of
a general free-fermion model [16] to highlight our original
results. First of all, they proposed a quasiparticle picture for
quench dynamics of a general free-fermion model, which is
only valid in the space-time scaling limit (t, LA → ∞ with
LA/t fixed). In contrast, our picture is derived microscopi-
cally and not restricted within the space-time scaling limit.
In the present paper, the quasiparticle picture is derived not
only in the space-time scaling limit, but also in the short-
time scale and/or small subsystems. We find, for example,
that localized doublon-holon pairs with unit separation yield

rapid oscillation of SA in the short-time dynamics. In addition,
our quasiparticle picture for the ground state is indeed not
included in their picture. Furthermore, our picture has some
remarkable features even in the space-time scaling limit that
are absent in their picture. First, while the dynamics of entan-
glement entropy are described in terms of quasiparticle pairs
emitted only at t = 0 in their picture, we find that doublon-
holon pairs emitted after the initial time also play crucial roles
in the dynamics of the RE. In particular, the smooth transition
from the linear growth to the saturation of SA can be explained
by their presence. In addition, the second asymptotic form of
the RE in Eq. (50) for Jt � LA can be explained by these
pairs emitted at t > 0. Second, we find that the doublon-holon
pairs decay as they propagate. This is also absent in their
picture. Meanwhile, we confirm their predictions in the space-
time scaling limit in our system. Their quasiparticle picture
predicts that the entanglement entropy grows linearly up to
t � LA/2 (in units where the speed of elementary excitations
is unity) and then is saturated to a value proportional to LA

[26]. This is indeed consistent with Fig. 3(b) and Eq. (50).
In closing this section, we remark on the possibility of

experimental verification of our results on the dynamics of
the RE. It may be difficult to experimentally confirm our pre-
dictions on the long-time dynamics of the RE in Fig. 3(b) due
to the limitation of the lifetime of an atomic gas and the finite
size effect. The short-time dynamics of the RE in Fig. 3(a)
may be verified using the experimental setup in Refs. [30,31].

VII. nth-ORDER RÉNYI ENTROPY

We have so far focused on the second-order RE because
it is experimentally accessible. Meanwhile, from a theoret-
ical point of view, it is desirable to extend our analysis to
the nth-order RE. In particular, the first-order RE (von Neu-
mann entanglement entropy) is a fundamental quantity that
characterizes entanglement. In this section, we calculate the
nth-order RE for the ground state |vac〉 and the time-evolving
state |ψ (t )〉.

The nth-order RE for a reduced density matrix ρ̂A is de-
fined as

S(n)
A = 1

1 − n
ln

[
trA

(
ρ̂n

A

)]
. (54)

For a Gaussian state, using Eqs. (17) and (18), it can be written
as

S(n)
A = 1

1 − n

2LA∑
α=1

ln
[

f n
α + (1 − fα )n

]
, (55)

where fα can be obtained from Eq. (23).
Analogous to the second-order RE, we expand f n

α + (1 −
fα )n in terms of fα − f 2

α = O[(J/U )2] for n � 2 as

f n
α + (1 − fα )n = 1 − n( fα − f 2

α ) + O[(J/U )4]. (56)

We can easily verify the above relation by using the fact that
g(n)

α := f n
α + (1 − fα )n satisfies

g(n+2)
α = g(n+1) − (

fα − f 2
α

)
g(n)

α . (57)
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squares represent the numerical results of the iTEBD calculation.

As a result, we obtain the nth-order RE (n � 2)

S(n)
A = n

n − 1

2LA∑
α=1

(
fα − f 2

α

) + O[(J/U )4]. (58)

Using Eq. (29), it is proportional to the second-order RE as

S(n)
A = n

2(n − 1)
S(2)

A + O[(J/U )4]. (59)

We need to calculate S(1)
A numerically, because Eq. (56)

does not hold for n = 1. Taking the limit n → 1 in Eq. (55),
we obtain

S(1)
A = −

2LA∑
α=1

[(1 − fα ) ln(1 − fα ) + fα ln( fα )]. (60)

We evaluate fα by numerically diagonalizing the matrix M
and plugging them into the above equation.

Figure 6 shows the first-order RE for the ground state |vac〉
as a function of LA. S(1)

A is almost independent of LA, which
implies that the first-order RE follows the area-law scaling.
Figure 7 shows the ratio of the first-order RE to the second-
order RE as a function of time. The ratio is almost constant
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FIG. 7. Time evolution of the ratio of the first-order RE to the
second-order one. We set J/U = 0.01. We note that all lines take
almost the same value.
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FIG. 8. (a) Time evolution of the RE for several values of J/U .
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A and SiTEBD
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set LA = 2. (b) Log-log plot of SA vs J/U . The dots and triangles
represent the results for LA = 1 and 2, respectively. The solid and
dashed lines show power-function fits of SA for LA = 1 and 2,
respectively.

in time and shows very little dependence on subsystem size
LA. The RE in arbitrary order n � 1 thus exhibits qualitatively
the same behavior as the second-order RE in the dynamics
as well as in the ground state. Its behavior indeed reflects the
quasiparticle picture described in Sec. VI.

VIII. VALIDITY OF THE EFFECTIVE THEORY

We have studied the RE within the effective theory. The
effective theory (5) is integrable whereas the original BHM (1)
and the effective Hamiltonian with the projection operator (4)
are nonintegrable. This difference may induce deviations in
REs in the region away from the deep MI regime. Therefore,
it is important to clarify how large J/U can be for the effective
theory to be qualitatively valid. To this end, we compare
the REs calculated by the effective theory and the iTEBD
algorithm.

Figure 8(a) shows a comparison of their time evolution. It
clearly shows that the effective theory overestimates the RE.
Furthermore, the overestimation increases in time during the
linear growth and stops increasing after it. This overestimation
may arise from the approximation in deriving the effective
Hamiltonian (5), in which we ignore the projection operator
and allow unphysical double occupancy of a doublon and
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a holon. This approximation may result in overestimation
of the number of doublon-holon pairs and accordingly the
RE, because doublon-holon pairs are responsible for the RE.
The overestimation of the number of doublon-holon pairs
is expected to increase during the linear growth of the RE,
because doublon-holon pairs keep generating in this period as
we observe in Sec. VI. This may result in the increase of the
overestimation in the linear growth part in Fig. 8(a). Note that
the projection operator introduces nonintegrable effects that
correspond to interactions of bogolons.

Figure 8(a) also shows that the overestimation increases as
J/U increases. To understand it quantitatively, we calculate
time-averaged overestimation

SA = 1

M

M∑
n=1

∣∣Seff
A (nt ) − SiTEBD

A (nt )
∣∣, (61)

where Seff
A and SiTEBD

A denote the RE obtained by the effec-
tive theory and iTEBD calculations, respectively, and M =
tmax/t the number of data points in the interval 0 � t � tmax.
We set Utmax = 20. Figure 8(b) shows a log-log plot of SA

versus J/U . Since the time-averaged overestimation scales as
SA ∝ (J/U )3.2–3.6, the effective theory is valid as long as
(J/U )3 � 1. Since our quasiparticle picture is valid within
the effective theory, it is also valid under the same condition.
This condition is consistent with a previous study based on
the analysis of a density correlation function [47], in which
it is claimed that the effective theory is valid as long as
J/U � 1/8. Note that we confirmed that the power of J/U
is larger than 3 regardless of the values of t and/or tmax.

IX. SUMMARY

In summary, we have investigated the time evolution of the
RE for bosons in a one-dimensional optical lattice when the
system undergoes a quench from the MI limit to the strongly
correlated MI regime. Developing the effective theory, we
have derived a direct relation between the RE and correla-
tion functions associated with doublon and holon excitations.
Using this relation, we have calculated the RE analytically
and obtained a physical picture, both in the ground state and
during time evolution, in terms of entangled doublon-holon
pairs. Our quasiparticle picture for the dynamics of the RE
introduces some features that are absent in previous studies on
the dynamics of entanglement entropy in free-fermion mod-
els. This quasiparticle picture provides valuable insight into
the quench dynamics of strongly correlated quantum many-
body systems.
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APPENDIX A: DERIVATION OF THE EFFECTIVE
HAMILTONIAN

We derive the effective Hamiltonian Eq. (5) from the
BHM in this Appendix. When J/U is sufficiently small, the
system can be mapped to a spin-1 system as it can be effec-
tively described within the truncated Hilbert space spanned
by |0〉 j , |1〉 j , and |2〉 j , where they correspond to the spin-1
states: |2〉 j = |Sz = 1〉 j , |1〉 j = |Sz = 0〉 j , and |0〉 j = |Sz =
−1〉 j [53]. Introducing the spin-1 operators

Ŝ+
j =

√
2(|Sz = 1〉 j〈Sz = 0| j + |Sz = 0〉 j〈Sz = −1| j ),

(A1)

Ŝ−
j =

√
2(|Sz = 0〉 j〈Sz = 1| j + |Sz = −1〉 j〈Sz = 0| j ),

(A2)

Ŝz
j = |Sz = 1〉 j〈Sz = 1| j − |Sz = −1〉 j〈Sz = −1| j, (A3)

the BHM (1) can be written as

Ĥ = − J

2

∑
j

[Ŝ+
j Ŝz

j Ŝ
z
j+1Ŝ−

j+1 + 2Ŝz
j Ŝ

+
j Ŝ−

j+1Ŝz
j+1

−
√

2(Ŝ+
j Ŝz

j Ŝ
−
j+1Ŝz

j+1 + Ŝz
j Ŝ

+
j Ŝz

j+1Ŝ−
j+1) + H.c.]

+ U

2

∑
j

Ŝz
j
2 + U

2

∑
j

Ŝz
j . (A4)

We note that the same mapping was used in Ref. [54] and
our Hamiltonian in Eq. (A4) can be obtained by setting the
average filling n0 = 1 in Eq. (A5) in Ref. [54]. Since

∑
j Ŝz

j =∑
j (n̂ j − 1) = N − L is a constant, we neglect the last term in

Eq. (A4).
We introduce the pseudofermion operators d̄ j and h̄ j by the

generalized Jordan-Wigner transformation [55]

Ŝ+
j =

√
2(d̄†

j + h̄ j )K̂ j, (A5)

Ŝ−
j =

√
2K̂j (d̄ j + h̄†

j ), (A6)

Ŝz
j = n̄ jd − n̄ jh, (A7)

where n̄ jd = d̄†
j d̄ j , n̄ jh = h̄†

j h̄ j , and K̂j = ∏
i< j (1 − 2n̄id )(1 −

2n̄ih) = ∏
i< j (−1)(Ŝz

i )2
is the string operator. The inverse

transformation is given by

d̄ j = 1√
2

K̂ j Ŝ
−
j Ŝz

j, (A8)

h̄ j = − 1√
2

K̂ j Ŝ
+
j Ŝz

j . (A9)

d̄ j and h̄ j are annihilation operators of “particle” and “hole”
excitations, respectively, because d̄ j |1〉 j = h̄ j |1〉 j = 0, |2〉 j =
K̂j d̄

†
j |1〉 j ∝ d̄†

j |1〉 j , and |0〉 j = K̂ j h̄
†
j |1〉 j ∝ h̄†

j |1〉 j . However,
since their multiple occupation on the same site is prohibited
(d̄†

j h̄†
j = 0), they do not obey the fermionic anticommutation

relations. Note that the string operator K̂j becomes a phase
factor that depends on (Ŝz

i )2 (1 � i � j − 1).
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We further introduce the annihilation operators d̂ j and ĥ j

as

d̄ j = (1 − n̂ jh)d̂ j, (A10)

h̄ j = (1 − n̂ jd )ĥ j, (A11)

where n̂ jd = d̂†
j d̂ j and n̂ jh = ĥ†

j ĥ j . They represent fermionic
excitations as they satisfy the usual anticommutation
relations, {d̂i, d̂†

j } = {ĥi, ĥ†
j} = δi, j , {d̂i, d̂ j} = {ĥi, ĥ j} =

{d̂i, ĥ j} = {d̂i, ĥ†
j} = 0. We obtain |0〉 j = |nd = 0, nh = 1〉 j ,

|1〉 j = |nd = 0, nh = 0〉 j , and |2〉 j = |nd = 1, nh = 0〉 j from
Ŝz

j = n̂ jd − n̂ jh. d̂ j and ĥ j thus describe fermionic particle and
hole excitations, respectively. We refer to them as “doublon”
and “holon” in this paper. Note that |1〉 j = |nd = 0, nh = 0〉 j

is the vacuum of d̂ j and ĥ j . |nd = 1, nh = 1〉 j has no
corresponding Fock states of original bosons.

Substituting Eqs. (A5)–(A7) into Eq. (A4), we obtain an
intermediate form of the Hamiltonian

Ĥ = − J
∑

j

[2d̄†
j d̄ j+1 + h̄†

j+1h̄ j

+
√

2(d̄†
j h̄†

j+1 − h̄ j d̄ j+1) + H.c.]

+ U

2

∑
j

(d̄†
j d̄ j + h̄†

j h̄ j ). (A12)

In order to take into account the condition d̄†
j h̄†

j = 0, it is

convenient to introduce the projection operator P̂ = ∏
j (1 −

n̂ jd n̂ jh), which eliminates fictitious states |nd = 1, nh = 1〉 j .
Using d̄†

j d̄ j+1 = P̂d̂†
j d̂ j+1P̂ and so on, we obtain the Hamilto-

nian in Eqs. (4) and (5).

APPENDIX B: SINGLE-SITE REDUCED DENSITY
MATRIX FOR THE TIME-EVOLVING STATE

In this Appendix, we derive the reduced density matrix
for a single site Eq. (36). First, we express the operators
|τ 〉 j〈τ ′| j (τ, τ ′ = {(0, 0), (1, 0), (0, 1), (1, 1)}) in terms of the
annihilation and creation operators of doublons and holons.
Diagonal elements of |τ 〉 j〈τ ′| j are given by

|0, 0〉 j〈0, 0| j = (1 − d̂†
j d̂ j )(1 − ĥ†

j ĥ j ), (B1)

|1, 0〉 j〈1, 0| j = d̂†
j d̂ j (1 − ĥ†

j ĥ j ), (B2)

|0, 1〉 j〈0, 1| j = (1 − d̂†
j d̂ j )ĥ

†
j ĥ j, (B3)

|1, 1〉 j〈1, 1| j = d̂†
j d̂ j ĥ

†
j ĥ j . (B4)

Off-diagonal elements are given by

|1, 0〉 j〈0, 0| j = d̂†
j (1 − ĥ j ĥ j ), (B5)

|0, 1〉 j〈0, 0| j = (1 − d̂†
j d̂ j )ĥ

†
j , (B6)

|1, 1〉 j〈0, 0| j = d̂†
j ĥ†

j , (B7)

|0, 1〉 j〈1, 0| j = d̂ j ĥ
†
j , (B8)

|1, 1〉 j〈1, 0| j = d̂†
j d̂ j ĥ

†
j , (B9)

|1, 1〉 j〈0, 1| j = d̂†
j ĥ†

j ĥ j . (B10)

Other off-diagonal elements can be obtained by taking Her-
mitian conjugation of Eqs. (B5)–(B10).

We calculate each element of the reduced density matrix
using Eq. (35). Explicit calculations show that the expecta-
tion values of the off-diagonal elements of |τ 〉 j〈τ ′| j vanish.
For diagonal elements, due to the fact that the time-evolving
state |ψ (t )〉 is a Gaussian state, as discussed in Sec. V B, we
can evaluate correlation functions using the Wick decompo-
sition. Noting that 〈ψ (t )|d̂†

j ĥ†
j |ψ (t )〉 = 〈ψ (t )|d̂ j ĥ j |ψ (t )〉 = 0,

we can express the reduced density matrix in the form of
Eq. (36).

APPENDIX C: DERIVATION OF EQ. (43)

In this Appendix, we derive Eq. (43). Substituting Eq. (40)
into Eq. (42), we obtain

S̄A(ω) � −32(J/U )2
∫ ∞

−∞
dteiωt J1(6Jt )

3Jt
cos(Ut ). (C1)

Here, we have neglected terms of order O[(J/U )4]. We have
also ignored the time-independent terms by assuming ω > 0.
Using the identity

J1(6Jt )

3Jt
= 1

π

∫ π

−π

dke−6iJt cos(k) sin2(k), (C2)

Eq. (C1) can be written as

S̄A(ω) � − 16J2

πU 2

∫ π

−π

dk sin2(k)

×
∑
σ=±

∫ ∞

−∞
dtei[−6J cos(k)+ω+σU ]t

= − 32J2

U 2

∫ π

−π

dk sin2(k)
∑
σ=±

δ(ω + σU − 6J cos(k))

= − 32J

3U 2

∑
σ=±

√
1 −

(
ω + σU

6J

)2

θ (6J − |ω + σU |).

(C3)

From the condition J � U , we ignore the σ = + contribu-
tion. Then, we obtain Eq. (43).

APPENDIX D: DERIVATION OF EQ. (44)

We derive Eq. (44) in this Appendix. The following argu-
ments are based on Ref. [50].

Let us consider a many-body correlation function
〈ψ (t )|âi1 âi2 , ..., âi2n |ψ (t )〉, where âi ∈ {d̂i, ĥi, d̂†

i , ĥ†
i }. In the

Heisenberg picture, it can be written as

〈ψ0|ǎi1 (t )ǎi2 (t )...ǎi2n (t )|ψ0〉, (D1)

where ǎi(t ) = eiHeff t âie−iHeff t . Since Ĥeff is a quadratic Hamil-
tonian of {âi}, ǎi(t ) can be expressed in a linear com-
bination of {âi}. Given that |ψ0〉 is the vacuum state of
d̂i and ĥi, Eq. (D1) can be decomposed into one-body
correlation functions by Wick’s theorem [56]. We thus
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obtain

〈ψ0|ǎi1 (t )ǎi2 (t ), ..., ǎi2n−1 (t )ǎi2n (t )|ψ0〉
=

∑
σ∈P

sgn(σ )〈ψ0|ǎ j1 (t )ǎ j2 (t )|ψ0〉〈ψ0|ǎ j3 (t )ǎ j4 (t )|ψ0〉 . . .

×〈ψ0|ǎ j2n−3 (t )ǎ j2n−2 (t )|ψ0〉〈ψ0|ǎ j2n−1 (t )ǎ j2n (t )|ψ0〉,(D2)

where P is the set of permutations (i1, i2, ..., i2n) →
( j1, j2, ..., j2n) satisfying jk−1 < jk and j1 < j3 < ... <

j2n−1. Returning to the Scrhödinger picture, Eq. (D2) becomes

〈ψ (t )|âi1 âi2 , ..., âi2n−1 âi2n |ψ (t )〉
=

∑
σ∈P

sgn(σ )〈ψ (t )|â j1 â j2 |ψ (t )〉〈ψ (t )|â j3 â j4 |ψ (t )〉 . . .

×〈ψ (t )|â j2n−3 â j2n−2 |ψ (t )〉〈ψ (t )|â j2n−1 â j2n |ψ (t )〉. (D3)

If the many-body correlation function (D1) concerns the de-
grees of freedom in subsystem A, i.e., {i1, i2, ..., i2n} ∈ A, all
the correlation functions in Eq. (D3) can be calculated by the
reduced density matrix for A. In this case, Eq. (D3) can be
written as

trA
(
ρ̂Aâi1 âi2 , ..., âi2n

) =
∑
σ∈P

sgn(σ )trA
(
ρ̂Aâ j1 â j2

)
×trA

(
ρ̂Aâ j3 â j4

)
...trA

(
ρ̂Aâ j2n−1 â j2n

)
. (D4)

Equation (D4) shows that the Bloch-De Dominicis the-
orem [57] can be applied to the correlation functions
evaluated by ρ̂A. It follows that ρ̂A is a thermal state of
a quadratic Hamiltonian of d̂ j and ĥ j ( j ∈ A). We thus
obtain Eq. (44).
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