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Multiscale network renormalization: Scale-invariance without geometry

Elena Garuccio ,1 Margherita Lalli ,2 and Diego Garlaschelli 1,2,3

1Instituut-Lorentz for Theoretical Physics, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, the Netherlands
2IMT School for Advanced Studies, Piazza S. Francesco 19, 55100 Lucca, Italy

3INdAM-GNAMPA Istituto Nazionale di Alta Matematica, Italy

(Received 18 November 2021; revised 26 February 2023; accepted 8 August 2023; published 31 October 2023)

Systems with lattice geometry can be renormalized exploiting their coordinates in metric space, which
naturally define the coarse-grained nodes. By contrast, complex networks defy the usual techniques, due to their
small-world character and lack of explicit geometric embedding. Current network renormalization approaches
require strong assumptions (e.g., community structure, hyperbolicity, scale-free topology), thus remaining
incompatible with generic graphs and ordinary lattices. Here we introduce a graph renormalization scheme valid
for any hierarchy of heterogeneous coarse-grainings, thereby allowing for the definition of “block-nodes” across
multiple scales. This approach identifies a class of scale-invariant networks characterized by a necessary and
specific dependence on additive hidden variables attached to nodes, plus optional dyadic factors. If the hidden
variables are annealed, they lead to realistic scale-free networks with assortativity and finite local clustering, even
in the sparse regime and in the absence of geometry. If they are quenched, they can guide the renormalization
of real-world networks with node attributes and distance-dependence or communities. As an application, we
derive an accurate multiscale model of the International Trade Network applicable across arbitrary geographic
partitions. These results highlight a deep conceptual distinction between scale-free and scale-invariant networks,
and they provide a geometry-free route to renormalization.
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I. INTRODUCTION

Several societal challenges, including the development
of more resilient economies, the containment of infectious
diseases, the security of critical infrastructures, and the preser-
vation of biodiversity, require a thorough understanding of
the network structure connecting the units of the underlying
complex systems [1–3]. One of the obstacles systemati-
cally encountered in the analysis and modeling of real-world
networks is the simultaneous presence of structures at multi-
ple interacting scales. For instance, socioeconomic networks
are organized hierarchically across several levels, from sin-
gle individuals up to groups, firms, countries, and whole
geographical regions. Besides the interactions taking place
horizontally within the same hierarchical level (e.g., social ties
among individuals or international trade relationships among
countries), there are important cross-level (e.g., individual-
firm, firm-country, country-region) interactions that require a
multiscale description. Establishing a consistent representa-
tion of a graph at multiple scales is in fact a long-standing
problem whose solution would enable considerable progress
in the description, modeling, and control of real-world com-
plex systems.
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In the language of statistical physics, achieving a proper
multiscale description of a network requires the intro-
duction of a renormalization scheme whereby a network
can be coarse-grained iteratively by partitioning nodes into
“block-nodes” either horizontally, i.e., at homogeneous lev-
els of the hierarchy, or across hierarchical levels, thus
allowing block-nodes to contain possibly very different num-
bers of nodes. The traditional block-renormalization scheme
(whereby equally sized blocks of neighboring nodes in a
regular lattice are replaced by identical block-nodes, leading
to a reduced lattice with the same geometry) is feasible for
geometrically embedded networks where the coordinates of
nodes naturally induce a definition of block-nodes of equal
size. However, this traditional scheme becomes ill-defined
in arbitrary graphs where node coordinates are not nec-
essarily defined, and particularly problematic in real-world
networks with broad degree distribution (which makes the
neighborhoods of nodes very heterogeneous in size and not
good candidates as block-nodes) and small-world property
(which limits the iterability of coarse-graining based on
shortest paths). Several renormalization schemes for complex
networks have been proposed to deal with these inherent
complications [4–16]. For instance, in analogy with fractal
analysis, a box-covering technique defining block-nodes as
certain sets of neighboring nodes has been defined [4–7]. Al-
ternative coarse-graining schemes have been proposed based
on the identification of communities [8] or motifs [9]. Another
notable approach is the geometric embedding of networks
in a hidden Euclidean [10] or hyperbolic [11–13] metric
space, followed by the coarse-graining of nearby nodes.
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Hyperbolically embedded graphs have many realistic prop-
erties, including scale-free degree distributions and large
clustering, that are preserved upon geometric renormaliza-
tion [13]. Other methods are based on the preservation of
certain spectral properties of the original network via the
identification of (approximate) equivalence classes of struc-
turally similar nodes [14,15]. A notable recent contribution
is a diffusion-based coarse-graining scheme, which detects
spatiotemporal scales in heterogeneous networks via the
Laplacian operator for graphs [16].

Although progress has been made, the above approaches
have not yet focused on the problem of looking for the most
general graph model that remains consistent across different
coarse-graining of the same network, i.e., that keeps describ-
ing the same system coherently (possibly with renormalized
parameters) at all scales. In other words, once they find rele-
vant aggregation levels, the available methods are in general
not able to provide a random graph model of the system
that remains consistent across those coarse-grainings. More-
over, the available approaches require the existence of specific
topological properties (e.g., community structure [8,9], hyper-
bolicity [11–13], scale-freeness [4–7], approximate structural
equivalence [14,15], nontrivial Laplacian susceptibility [16])
and are therefore irreducible to the ordinary renormalization
scheme defined for simpler lattices or (random) Euclidean
graphs, which, on the other hand, are obvious examples of
scale-invariant networks. Additionally, the requirement that
the renormalization scheme can act flexibly across hierarchi-
cal levels in a multiscale fashion is not explicitly enforced in
any of the available methods.

Here we propose a general graph renormalization scheme
based on a random network model that remains invariant
across all scales, for any desired (horizontal or vertical) parti-
tion of nodes into block-nodes. In a certain “quenched” setting,
the model can guide the renormalization of generic graphs,
from regular lattices to realistic complex networks with node
attributes and (optionally, but not necessarily) dyadic prop-
erties such as distances and/or community structure. In a
different “annealed” setting, it can generate realistic scale-
free networks spontaneously, simply as the natural result of
the requirement of scale-invariance, without fine-tuning and
without geometry.

The rest of the paper is organized as follows. In Sec. II
we introduce the graph renormalization framework, identify
the resulting scale-invariant network model, discuss several
theoretical properties of the resulting networks, and highlight
the differences with respect to the main existing models. In
Sec. III we consider the quenched setting, where the model pa-
rameters are considered fixed and identifiable with empirical
features, and we show an application leading to a remarkably
consistent one-parameter model of the International Trade
Network that we validate across arbitrary geographic parti-
tions. In Sec. IV we consider the annealed setting, where the
model parameters are themselves regarded as random vari-
ables subject to a scale-invariance requirement, and we show
how this leads spontaneously to a model of networks with
interesting realistic features, including the scale-free property
and a finite local clustering even in the sparse regime and in
the absence of any notion of metric distance. In Sec. V we
offer some concluding remarks. Finally, in the Appendixes we

FIG. 1. Schematic example of the graph coarse-graining and
induced ensembles. Nodes of an �-graph A(�) (left) are grouped
together, via a given partition ��, to form the block-nodes of the
coarse-grained (� + 1)-graph A(�+1) (right). Note that, in general,
block-nodes can contain different numbers of nodes. A link between
two block-nodes (or a self-loop at a single block-node) is drawn
whenever a link is present between any pair of constituent nodes. Dif-
ferent realizations of the �-graph are mapped onto realizations of the
(� + 1)-graph via ��. Multiple realizations of the �-graph may end
up in the same realization of the (� + 1)-graph. The scale-invariant
requirement is obtained by viewing the realizations of the �-graph as
the outcome of a random graph generating process with probability
P�(A(�), ��), where �� is a set of parameters, and imposing that the
induced probability P�+1(A(�+1), ��+1) at the next level has the same
functional form as P�(A(�), ��), with renormalized parameters ��+1.

provide important technical details that support various results
discussed in the main text.

II. GRAPH RENORMALIZATION AND
SCALE-INVARIANT NETWORK MODEL

Let us consider a binary undirected graph with N0 “fun-
damental” nodes (labeled as i0 = 1, N0) and its N0 × N0

adjacency matrix A(0) with entries a(0)
i0, j0

= 1 if the nodes i0
and j0 are connected, and a(0)

i0, j0
= 0 otherwise. We do not

allow for multiple edges, but we do allow for self-loops,
i.e., each diagonal entry can take values a(0)

i0,i0
= 0, 1. We

want to aggregate the N0 nodes into N1 < N0 block-nodes
(labeled as i1 = 1, N1) forming a nonoverlapping partition �0

of the original N0 nodes, and connect two block-nodes if at
least one link is present between the nodes across the two
blocks, as illustrated in Fig. 1. Therefore the coarse-grained
graph is described by the N1 × N1 adjacency matrix A(1) with
entries a(1)

i1, j1
= 1 −∏

i0∈i1

∏
j0∈ j1

(1 − a(0)
i0, j0

), where i0 ∈ i1 de-
notes that the chosen partition �0 maps the original node
i0 onto the block-node i1, i.e., i1 = �0(i0). Note that we do
not require i1 �= j1, as we keep allowing for self-loops as
we coarse-grain (a self-loop at a block-node represents the
existence of at least one link or self-loop in the subgraph
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FIG. 2. Horizontal vs multiscale renormalization. Left: the
desired hierarchy of coarse-grainings can be represented as a dendro-
gram where the 0-nodes are the bottom “leaves” and the �-nodes are
the “branches” cut out by a horizontal line placed at a suitable height.
Right: if the dendrogram is cut at different heights, one obtains a
multiscale renormalization scheme with block-nodes defined across
multiple hierarchical levels. This is ultimately another partition of the
0-nodes and is therefore readily implemented in our approach, which
is designed to work for any partition.

connecting the original “internal” nodes). In general, i0 is not
the only node mapped to i1, i.e., �0 is surjective. We call
A(0) the 0-graph and A(1) the 1-graph. Similarly, we call the
N0 nodes the 0-nodes and the N1 block-nodes the 1-nodes.
Iterating the coarse-graining � times produces a hierarchy
of “blocks of blocks,” with the partition �� leading to an
(� + 1)-graph with N�+1 (� + 1)-nodes and adjacency matrix
A(�+1) with entries

a(�+1)
i�+1, j�+1

= 1 −
∏

i�∈i�+1

∏
j�∈ j�+1

(
1 − a(�)

i�, j�

)
(1)

where i� and j� are �-nodes, while i�+1 = ��(i�) and j�+1 =
��( j�) are (� + 1)-nodes.

The hierarchy {��}��0 of desired partitions can be uniquely
parametrized in terms of a dendrogram as shown in Fig. 2.
Our first objective is the identification of a random graph
model that can be renormalized under any partition obtained
from {��}��0 via either a “horizontal” (left panel of Fig. 2)
or a “multiscale” (right panel of Fig. 2) cut of the den-
drogram. Note that, since any “multiscale” coarse-graining
is ultimately another partition of the same 0-nodes, we can
equivalently produce it “horizontally” as well, but on a
certain modified hierarchy {�′

�}��0 obtained from {��}��0.
Therefore, requiring that the model is scale-invariant for
any specified hierarchy of partitions automatically allows for
multiscale coarse-grainings as well. To enforce this require-
ment, we fix some {��}��0 and regard the initial 0-graph
A(0) not as deterministic, but as generated by a random
process with some probability P0(A(0),�0) normalized so
that

∑
A(0)∈GN0

P0(A(0),�0) = 1, where �0 denotes all pa-
rameters of the model (including N0) and GN denotes the
set of all binary undirected graphs with N nodes. A given
partition �0 will in general map multiple 0-graphs {A(0)}
onto the same coarse-grained 1-graph A(1), and the notation

{A(0)} �0−→ A(1) will denote such surjective mapping. There-
fore, P0(A(0),�0) will induce a random process at the next
level (see Fig. 1), generating each possible 1-graph A(1) with
probability

∑
{A(0)}

�0−→A(1)
P0(A(0),�0), where the sum runs

over all 0-graphs that are projected onto A(1) by �0. Iter-
ating � times, we induce a process generating the �-graph

A(�) with probability
∑

{A(0)}
��−1 ···�0−−−−−→A(�)

P0(A(0),�0), where

��−1 · · ·�0 is the composition of the � partitions {�m}�−1
m=0

and ultimately represents a partition of the original 0-nodes.
We now enforce a scale-invariant random graph model that,

for any level �, can generate the possible �-graphs in two
equivalent ways: either hierarchically, i.e., by first generating
the 0-graphs with probability P0(A(0),�0) and then coarse-
graining them � times via the partitions {�k}�−1

k=0, or directly,
i.e., with a certain probability P�(A(�),��) that depends on �

only through a set �� of renormalized parameters that should
be obtained from �0 using ��−1 · · ·�0. This scale-invariance
requirement demands that, apart from the different dimen-
sionality of their domains, P0(·, ·) and P�(·, ·) have the same
functional form [which we denote as P(·, ·) by removing the
level-dependence from the notation] and behave such that, for
any pair �, m (with � > m),

P(A(�),��) =
∑

{A(m)}
��−1 ···�m−−−−−→A(�)

P(A(m),�m), (2)

where the renormalized parameters �� are obtained only from
�m, given ��−1 · · · �m. We look for the general solution in
the case of random graphs with independent links, where
P(A(�),��) factorizes as

N�∏
i�=1

i�∏
j�=1

[
pi�, j� (��)

]a(�)
i�, j�
[
1 − pi�, j� (��)

]1−a(�)
i�, j� , (3)

where pi�, j� (��) is the probability that two �-nodes i� and
j� are linked. In this case, it is natural to require that ��

contains (besides N�) an overall constant δ� (which will set
the global link density), a set of local (node-specific) “fitness”
parameters {xi�}N�

i�=1 (which will distribute the total number of
links heterogeneously among nodes), and an (optional) set of
dyadic (pair-specific) parameters {di�, j�}N�

i�, j�=1 (which include,
when i� = j�, the “self-interaction” of a node with itself). We
can therefore use the notation pi�, j� (��) = pi�, j� (δ�) where we
keep only δ� explicit in the argument of pi�, j� , because the
dependence on the other variables xi� , x j� , di�, j� is already im-
plicitly denoted by the subscripts i�, j� (indeed, pi�, j� depends
on i� and j� only through xi� , x j� , di�, j� ).

As we show in the Appendix A, if the graph probability
factorizes as in Eq. (3) and the fitness x is assumed to be
additive upon coarse-graining of nodes, then there is a unique
solution to Eq. (2), given by the connection probability

pi�, j� (δ) =
{

1 − e−δ xi� x j� f (di�, j� ) if i� �= j�,

1 − e− δ
2 x2

i�
f (di�,i� ) if i� = j�,

(4)

where δ > 0, xi� � 0 for all i�, f is an arbitrary positive
function, and the following renormalization rules apply:

δ�+1 ≡ δ� ≡ δ, (5)

xi�+1 ≡
∑

i�∈i�+1

xi� , (6)

f
(
di�+1, j�+1

) ≡
∑

i�∈i�+1

∑
j�∈ j�+1

xi�x j� f
(
di�, j�

)
∑

i�∈i�+1
xi�

∑
j�∈ j�+1

x j�

, (7)
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i.e., δ is scale-invariant, x is node-additive, and f renormalizes
as a specific fitness-weighted average. If the fitness is assumed
to have a different renormalization rule (e.g., multiplicative
rather than additive), then a corresponding modified solution
is obtained (e.g., with x replaced by log x). So, up to a re-
definition of the fitness that makes the latter additive, the
solution above is general. Note that Eq. (7) applies also to the
“diagonal” terms with i�+1 = j�+1, in which case it represents
the renormalized self-interaction of node i�+1 with itself, de-
termining the probability of the presence of the corresponding
self-loop.

Equations (4)–(7) are our key result. One of their re-
markable consequences is that, while the dependence of the
connection probability pi�, j� (δ) on the dyadic factor di�, j�
can be switched off entirely without destroying the scale-
invariant properties of the model [e.g., by taking f to be a
constant function, whereby Eq. (7) is automatically fulfilled],
the dependence on the node-specific factors xi� x j� cannot be
switched off, unless the model is made deterministic by for-
mally requiring that f (di�, j� ) takes only the two values f = 0
[implying pi�, j� (δ) = 0] or f = +∞ [implying pi�, j� (δ) = 1].
We consider examples of both situations below. Therefore, the
dependence on dyadic factors (including geometric distances)
is optional, while that on node-specific factors is necessary.
This is a general result following only from the enforcement
of scale-invariance. More specific results are discussed below.

A. Scale-invariance of graph probability and partition function

Equations (4)–(7) have been derived using the scale-
invariant requirement imposed in Eq. (2), under the assump-
tion of edge independence stated in Eq. (3). Indeed, inserting
Eq. (4) back into Eq. (3), we obtain the scale-invariant graph
probability explicitly as

P(A(�), δ)

=
N�∏

i�=1

i�∏
j�=1

[
1 − pi�, j� (δ)

][ pi�, j� (δ)

1 − pi�, j� (δ)

]a(�)
i�, j�

=
N�∏

i�=1

[e
δ
2 x2

i�
f (di�,i� )−1]a(�)

i�,i�

e
δ
2 x2

i�
f (di�,i� )

i�−1∏
j�=1

[eδxi� x j� f (di�, j� )−1]a(�)
i�, j�

eδxi� x j� f (di�, j� )

=
∏N�

i�=1[e
δ
2 x2

i�
f (di�,i� )−1]a(�)

i�,i�
∏i�−1

j�=1[eδxi� x j� f (di�, j� )−1]a(�)
i�, j�

Q−1(δ)
,

(8)

where we have introduced the quantity

Q(δ) ≡
N�∏

i�=1

e− δ
2 x2

i�
f (di�,i� )

i�−1∏
j�=1

e−δxi� x j� f (di�, j� )

=
N�∏

i�=1

N�∏
j�=1

e− δ
2 xi� x j� f (di�, j� )

= e− δ
2

∑N�
i�=1

∑N�
j�=1 xi� x j� f (di�, j� )

= e− δ
2 x2

i∞ f (di∞ ,i∞ )

= 1 − pi∞,i∞ (δ), (9)

with

xi∞ ≡
N�∑

i�=1

xi� , (10)

f (di∞,i∞ ) ≡
N�∑

i�=1

N�∑
j�=1

xi�x j� f (di�, j� )

x2
i∞

(11)

representing the total fitness of all nodes and the fitness-
weighted average of f over all pairs of nodes, respectively.
Note that our notation above suggests that xi∞ and f (di∞,i∞ )
can be interpreted as the fitness and self-interaction of the
supernode i∞ representing the only coarse-grained node re-
maining after applying an infinite sequence of partitions, or
equivalently after applying the trivial partition �∞ that places
all nodes in the same supernode i∞ (such that N∞ = 1).
Indeed, when applied to such a supernode, Eqs. (6) and
(7) produce exactly the values xi∞ and f (di∞,i∞ ) defined in
Eqs. (10) and (11), respectively. These quantities are obvi-
ously scale-invariant in the sense that they can be calculated
from the values taken by x and f (d ) at any hierarchical level
�. Therefore, Q(δ) is a constant term that depends neither
on the realized �-graph A(�) nor, due to Eq. (7), on the hi-
erarchical level � being considered. Consequently, as desired,
P(A(�), δ) depends on � only through the parameters {xi�}N�

i�=1

and {di�, j�}N�

i�, j�=1, which renormalize as stated in Eqs. (6) and
(7). Note that pi∞,i∞ (δ) in Eq. (9) represents the probability
of a self-loop at the supernode i∞, i.e., the probability of
having at least one link in the graph at any hierarchical level,
so Q(δ) = 1 − pi∞,i∞ (δ) formally represents the probability of
having zero links in the network.

We can recast the above result in a way that has an ex-
plicit connection with the usual renormalization framework
in statistical physics [17,18]. To do so, we rewrite the graph
probability in Eq. (8) in terms of an effective Hamiltonian H(�)

eff
and a resulting partition function Z (�):

P(A(�), δ) = e−H(�)
eff (A(�),δ)

Z (�)(δ)
, (12)

where we have defined

H(�)
eff (A(�), δ) ≡ −

N�∑
i�=1

i�∑
j�=1

ai�, j� log

[
pi�, j� (δ)

1 − pi�, j� (δ)

]

= −
N�∑

i�=1

[
ai�,i� log (e

δ
2 xi� xi� f (di�,i� ) − 1)

+
i�−1∑
j�=1

ai�, j� log (eδxi� x j� f (di�, j� ) − 1)

]

(13)

and

Z (�)(δ) ≡
∑
A(�)

e−H(�)
eff (A(�),δ). (14)

Note that, while Eq. (12) is formally identical to the expres-
sion for graph probabilities in the exponential random graphs
(ERGs) approach [19–23], in our case it does not exhibit a
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sufficient statistic, i.e., the Hamiltonian in Eq. (13) cannot be
written as a simpler function of graph properties, and, to be
evaluated, it requires the knowledge of the entire adjacency
matrix of the graph. A straightforward calculation yields

Z (�)(δ) =
∑
A(�)

N�∏
i�=1

i�∏
j�=1

[
pi�, j� (δ)

1 − pi�, j� (δ)

]a(�)
i�, j�

=
N�∏

i�=1

i�∏
j�=1

1∑
ai�, j� =0

[
pi�, j� (δ)

1 − pi�, j� (δ)

]a(�)
i�, j�

=
N�∏

i�=1

i�∏
j�=1

1

1 − pi�, j� (δ)

= 1

1 − pi∞,i∞ (δ)

= Q−1(δ). (15)

As noticed above, Q only depends on δ, which is invariant
under renormalization. We can therefore drop the superscript
and denote the partition function as Z (δ). Indeed, since the ef-
fective Hamiltonian H(�)

eff has the same form given in Eq. (13)
independently of the resolution level �, recalculating Z (m)(δ)
from Eq. (14) for any other coarse-graining level m �= � and
number Nm of nodes would return exactly the same value:

Z (m)(δ) = Z (�)(δ) ≡ Z (δ) = Q−1(δ), ∀ �, m. (16)

This means that, akin to Kadanoff’s construction [17], the
partition function is invariant along the renormalization flow.
Clearly, this property follows crucially from the functional
form of the connection probability pi�, j� (δ) in Eq. (4) and
of the induced graph probability in Eq. (8): any other func-
tional form, including those considered in ERGs [19–23],
would in general not lead to an invariant partition function.
On the other hand, precisely because of this invariance, in
our model here the effective Hamiltonian for a realization
(say, A(m)) of the graph at a coarse-grained level m can be
evaluated exactly without knowing the microscopic details of
any finer-grained version A(�) (with � < m) of the same real-
ized graph A(m). This is not possible in ERGs, and it reveals
that the topology of A(m) represents in some sense already a
sort of sufficient statistic for the model, since the probability
of A(m) can be estimated without explicitly summing over
the compatible topologies of any finer version of the same
network, i.e., over the realizations {A(�)} (with � < m) such

that A(�) �m−1···��−−−−−→ A(m) for some sequence �m−1 · · · �� of
partitions.

B. Node-specific fitness

The connection probability pi�, j� increases as xi� and/or x j�
increase. Therefore, as in the fitness model (FM) [24] and in
the inhomogeneous random graph model (IRGM) [25], xi� can
be viewed as a hidden variable or “fitness” that characterizes
the intrinsic tendency of the �-node i� to form connections.
Here, the fitness is defined across multiple hierarchical levels,
and scale-invariance ensures that it is also an additive quantity
summing up to the value in Eq. (6) when �-nodes are merged
onto an (� + 1)-node. This ensures that the total fitness xi∞

defined in Eq. (10) is preserved by the renormalization. For in-
stance, if one starts with xi0 = 1 for all i0, then xi� will simply
count how many 0-nodes are found within the �-node i�, and
xi∞ = N0. More interesting outcomes are obtained by using
heterogeneous distributions of the fitness, as we illustrate in
detail later. We will consider both the “quenched” case where
the fitness is fixed and possibly identified with some empirical
quantity (thereby allowing for the renormalization of real-
world networks irrespective of their scale-free behavior), and
then an opposite “annealed” scenario that spontaneously leads
to scale-invariant and scale-free networks with a density-
dependent cutoff (thereby providing a generic mechanism for
the emergence of scale-free networks from scale-invariance,
without geometry).

C. Dyadic properties

Unlike the fitness, di�, j� is a dyadic factor (such as dis-
tance, similarity, comembership in the same community, etc.)
associated with the node pair (i�, j�). Although we are free
to do otherwise, we may regard di�, j� as a distance, in which
case it may make sense to assume that f is a decreasing
function, ensuring that more distant nodes are less likely to
be connected. It is easy to realize that, if di0, j0 is an ultramet-
ric distance (i.e., such that the “stronger” triangle inequality
di0, j0 � max{di0,k0 , d j0,k0} holds for every triple i0, j0, k0 of
0-nodes [26]) and is consistent with the hierarchy of coarse-
grainings (i.e., such that all distances can be represented as
the heights of the branching points of the dendrogram shown
in Fig. 2), then di�, j� = di0, j0 and hence f (di�, j� ) = f (di0, j0 )
whenever the 0-nodes i0 and i0 map onto the �-nodes i�
and j�, respectively, i.e., whenever i� = ��−1 · · · �0(i0) and
j� = ��−1 · · ·�0( j0). In such a case, Eq. (7) reduces to
f (di�+1, j�+1 ) = f (di�, j� ) with i�+1 = ��(i�) and j�+1 = ��( j�),
showing that if the distances among the 0-nodes are ultramet-
ric on the dendrogram induced by the hierarchy of partitions,
they decouple from the hidden variables and remain invari-
ant across the entire coarse-graining process, just like the
global parameter δ. Reversing the point of view, we may
equivalently say that, given an ultrametric distance among the
0-nodes, any hierarchy of partitions induced by the associated
dendrogram keeps the distances scale-invariant. In weaker
form, this also means that one may use di0, j0 to specify the
dendrogram parametrizing the desired hierarchy of partitions
that will keep the distances scale-invariant. The hierarchy may
coincide with, e.g., a nested community structure that one may
want to impose. In any case, we stress that, although ultra-
metricity is an attractive property (especially in the annealed
scenario that we introduce later), we do not require it as a
necessary condition in general.

D. Recovering the lattice case

We can now discuss a simple but important extreme case,
where the graph is constructed only as a function of dis-
tance and our approach reduces to the traditional scheme for
renormalizing regular lattices. For instance, assume that the
0-nodes have coordinates at the sites of a two-dimensional
grid with lattice spacing τ0 and that di0, j0 is the Euclidean
distance between these coordinates. If we set f ≡ +∞ if
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di�, j� � 2�τ0 and f ≡ 0 otherwise, then the 0-graph will deter-
ministically be the grid itself and the �-graph will be the usual
renormalized lattice with spacing τ� = 2�τ0 obtained through
an appropriate partition ��−1 that maps each square block
of four nearest (� − 1)-nodes onto a single �-node sitting at
the center of the square. In this case, each vertical line of
the dendrogram of hierarchical partitions branches regularly
into four “daughter” lines, and τ� = 2�τ0 is the height of the
branching points splitting (� + 1)-nodes into �-nodes. The
renormalized distances di�, j� can be mapped exactly to this
dendrogram, thereby retrieving the standard lattice renormal-
ization scheme as a special case of our approach. Importantly,
other network renormalization schemes are incompatible with
this key limiting case because they require specific topologies
such as scale-free degree distributions [4,5], community struc-
ture [8,14], or hyperbolic distances [11–13] that are obviously
absent in regular grids.

E. Relation to other network models

In the opposite, more interesting extreme, the dependence
on the dyadic factors can switched off. For instance, if we set
f ≡ 1, Eq. (4) reduces to

pi�, j� (δ) =
{

1 − e−δ xi� x j� if i� �= j�,

1 − e− δ
2 x2

i� if i� = j�.
(17)

Depending on whether the fitness is considered to be
quenched or annealed (a distinction that we will study in
detail below), this model can also be viewed as a unique
specification of the FM [24] or of the IRGM [25,27], re-
spectively. In particular, the specific form of the connection
probability in Eq. (17) has been studied in previous works
[28–30]. However, both our quenched (deterministic fitness)
and annealed (random fitness) approaches will take a different
route with respect to those previous studies. Indeed, the latter
did not discuss the model in any coarse-graining setting and,
importantly, considered a fitness (under the different names of
“weight” [28], “capacity” [29], or “sociability” [30]) assumed
to be a random variable drawn from distributions with finite
mean, whereas our fitness is either deterministic (and taken to
be some fixed value measured from real data) or random but
with infinite mean (the infinite-mean case being irreducible to
the finite-mean one), as we shall discuss later.

It is important to notice that, in the “sparse” and/or
“bounded” case, i.e., for δ 	 x−2

max and xmax < +∞, where
xmax is the maximum realized (in the quenched case) or ex-
pected (in the annealed case) value of the fitness, Eq. (17)
reduces to pi�, j� (δ) ≈ δxi�x j� , which includes the Chung-Lu
[31] or “sparse” configuration model (CM) [pi, j ≈ δxix j with
xi = ki and δ = (2L)−1, where ki is the degree of node i, and
L is the total number of links]. Indeed, it is possible to prove
the asymptotic equivalence (or a weaker form of asymptotic
contiguity) of these models under certain assumptions on the
expected network sparsity and on the moments of the distribu-
tion of the hidden variables [27]. Similarly, in the same limit
Eq. (4) reduces to pi�, j� (δ) ≈ δxi�x j� f (di�, j� ), which includes
the sparse degree-corrected stochastic block-model (dcSBM)
[32] (pi, j ≈ δxix jBi, j , where B is a block matrix) and the
hyperbolic model (HM) [11,12] (where xi is a “hidden degree”

related to the radial coordinate of node i, and di, j is related
to the angular separation between nodes i and j). The CM,
dcSBM, and HM are among the most popular network models
and find diverse applications including community detection
[33], pattern recognition [23], and network reconstruction
[34]. They are examples of more general maximum-entropy
random graph ensembles [23], which are obtained by max-
imizing the entropy under constraints on certain expected
structural properties [20–22,35]. To generate scale-free net-
works with power-law degree distribution, the CM and the
dcSBM are usually constructed by drawing the fitness from
a power-law distribution with the same exponent [36] of the
target degree distribution (and equivalently in the HM, where
the desired fitness distribution is realized via suitably sprin-
kling points in hyperbolic space). In the sparse regime, the
fitness distribution and the degree distribution are therefore
(asymptotically) identical. In the dense regime, the degree
distribution still has the same power-law regime as the fitness
distribution, but it additionally features a size-dependent up-
per cutoff, corresponding to the largest degrees approaching
their maximum value [36].

However, Eq. (17) is in general not equivalent to the
aforementioned models, for at least two reasons. First, in the
quenched case, even if we start from a sufficiently sparse
0-graph for which these models are consistent with Eq. (4),
successive coarse-grainings will unavoidably increase xmax

and bring the network to the dense regime where the CM,
dcSBM, and HM are described by their “full” probabil-
ity pi, j = δxix jBi, j/(1 + δxix jBi, j ) [11,12,21,36]. Since the
difference between the values of pi, j in Eq. (4) and the cor-
responding ones in the dcSBM or HM, and similarly between
those in Eq. (17) and the corresponding ones in the CM, are
now of finite order, these models are no longer equivalent
[27] in the dense regime. Second, in the annealed case, we
will find that all moments of the distribution of the hidden
variables in our approach necessarily diverge. Remarkably,
this property breaks the equivalence of the different models
even in the sparse case, as the conditions on the moments of
the fitness distribution required for equivalence and contiguity
[27] no longer hold. As we show later, notable and useful
consequences of this inequivalence are a nonlinear depen-
dence of the degree on the fitness (hence different exponents of
the fitness and degree distributions) and a nonvanishing local
clustering coefficient even in the sparse regime.

The above considerations indicate that the multiscale
model is in general not equivalent to the CM and the dcSBM,
which are not scale-invariant. Similar considerations ap-
ply to the traditional (non-degree-corrected) SBM [37] (for
which pi, j = Bi, j) and to growing network models based on
preferential attachment (PA) [38]. In the latter, nodes enter
sequentially into the network, and the time at which a node
enters determines its expected topological properties. There is
no straightforward way to coarse-grain these models by defin-
ing block-nodes (possibly across different hierarchical levels)
that respect the different expected properties of the nodes they
contain. The above considerations show that scale-invariant
networks are consistent with a unique specification of the FM,
possibly enhanced by dyadic factors, while they are incompat-
ible with the CM, (dc)SBM, and PA models. The connection
to the Erdős-Rényi (ER) model [39] (for which pi, j = p for
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all i, j) is considered later in this paper, in Sec. IV D. As for
the HM, while the renormalization scheme proposed in [13]
does address the consistency of the graph probability across
scales, the connection probability remains congruent with the
hidden metric space (i.e., it retains the same functional form
across coarse-grainings) only if the density of links is kept
sufficiently low, such that multiedges can be neglected. To
maintain this condition enforced across multiple agglomera-
tion levels, the HM requires a progressive pruning of links,
making the scheme different from the one considered here.
Also, it is important to realize that, since distance-dependence
has been switched off, our model in Eq. (17) can be renor-
malized exactly for any possible choice of coarse-grainings.
This shows that network renormalization does not require
any notion of geometry (whether hyperbolic or not) or spatial
embedding.

F. Scale-free versus scale-invariant networks

The above discussion sheds new light on the distinction be-
tween scale-free networks (i.e., graphs with power-law tails in
the degree distribution, as usually appear in the CM, dcSBM,
and PA models) and scale-invariant networks (i.e., graphs
designed to remain consistent under agglomeration as defined
here).

The early renormalization approaches reminiscent of frac-
tal analysis [4–7] relied on the idea that real-world networks
can be interpreted as scale-invariant, precisely because of their
scale-free property. However the degrees, even when power-
law distributed, cannot be renormalized exactly because they
are neither preserved nor additively transformed upon renor-
malization. The non-scale-invariance of the CM, (dc)SBM,
and PA models originates precisely from the fact that their
defining quantities are the node degrees. Unlike fractals, the
self-similarity of scale-free networks applies to a topological
property (the degree), not to a metric one. The absence of an
embedding metric space, which would provide an “ambient”
dimensionality to harbor fractality in the first place (e.g., to
allow for the Hausdorff-Besicovitch dimension to be strictly
larger than the intrinsic topological dimension of the fractal),
is also the reason why arbitrary networks cannot be easily
renormalized using metric coordinates.

In general, scale-invariance as intended here is not due to
the scale-free property, but to the compatibility with Eq. (4).
As mentioned above, in the quenched case, and only if δ is
small enough and the fitness is not too broadly distributed
(so that xmax < +∞), there may be a sparse regime where
Eq. (17) reduces to pi�, j� ≈ δxi� , x j� with ki� = xi� , so that
degrees are approximately additive. However, it should be
noted that, even in the latter case, degrees are rigorously
additive only if each (� + 1)-node is obtained as a set of
�-nodes that have no mutual connection among themselves.
This prescription is completely opposite to the more natural
scheme of merging nodes that are tightly connected, e.g.,
because they are in the same community [8] or motif [9]. If
mutually connected nodes are mapped onto the same block-
node, the degree of the latter is strictly smaller than the sum
of the degrees of the original nodes. We may say that the
coarse-graining of a network is usually designed in such a
way that the additivity of degrees is maximally violated. In

fact, this problem affects by construction all renormalization
approaches based on community structure or dense motifs. In
any case, the sparse regime is destined to vanish into the dense
one through the action of renormalization itself, eventually
breaking the approximate additivity of degrees and produc-
ing an unavoidable upper cutoff in the degree distribution.
Moreover, we will show that in the annealed case the propor-
tionality between fitness and degree does not hold, even in
the sparse regime. In that case, scale-invariant networks have
degrees that are intrinsically nonadditive throughout the entire
spectrum of network density.

Indeed, previous renormalization approaches based on the
scale-free property encountered various problems, including
a lack of generality, irreducibility to the ordinary renormal-
ization scheme in the special case of lattices, and limited
iterability in small-world networks with short path lengths. By
contrast, the model proposed here can be renormalized exactly
throughout the entire spectrum of network density because it
is designed via a fitness that remains additive (and globally
conserved at any hierarchical level) upon coarse grainings of
nodes.

III. QUENCHED FITNESS

In the quenched case, the fitness of each 0-node i0 is
assigned a fixed value xi0 and the only randomness resides
in the construction of the random graph ensemble, given the
fitness values. For instance, when modeling real-world net-
works, the observed nodes can be identified with the 0-nodes,
and xi0 can be taken to be the value of some measurable
additive empirical quantity attached to the 0-node i0. Then,
after choosing a hierarchy of partitions and consistently with
Eq. (6), the fitness xi�+1 of each (� + 1)-node i�+1 (with � > 0)
is calculated iteratively by summing the fitness of all the
�-nodes mapped onto i�+1. For each pair (i0, j0) of 0-nodes,
a distance di0, j0 may also be specified (and possibly mea-
sured from empirical data as well) and used to determine
f (di0, j0 ). Consistently, the quantity f (di�+1, j�+1 ) between each
pair (i�+1, j�+1) of (� + 1)-nodes is calculated via Eq. (7).
Together, fitness and distance determine the probability (4)
of connection between nodes at all scales. Clearly, once f is
specified, the only free parameter is δ, controlling the overall
density of the random network. When considering real-world
networks for which fitness and distance can be measured from
empirical data separately from the network structure, we may
use the quenched model in order to check whether Eq. (4)
reproduces the observed topological properties of the 0-graph
itself and, if this is the case, to provide a testable multiscale
model of the renormalized network at any higher level of
aggregation.

A. The International Trade Network

To illustrate this procedure, we consider the empirical In-
ternational Trade Network (ITN), using the BACI-Comtrade
data set [40], which reports the international trade flows (im-
ports and exports) between all pairs of world countries. We
show the results for the year 2011; we have obtained similar
results for the other years available in the database. We select
this particular network because previous research has clarified
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that the topology of the ITN is strongly dictated by the gross
domestic product (GDP) of countries [41–44]. Moreover, the
economics literature has extensively shown that both GDP
and geographical distance are key determinants of interna-
tional trade, leading to the so-called “Gravity Model” of trade
[45,46]. The additivity of the GDP (i.e., the aggregate GDP
of two countries is the sum of their GDPs) makes the ITN a
perfect candidate for our analysis, and it allows us to introduce
a novel renormalization scheme for this important economic
network across arbitrary levels of geographical aggregation.
In particular, our aim is twofold. On the one hand, we want
to introduce a multiscale model of the ITN derived from
first principles, i.e., using the unique combination of GDP
and geographical distances dictated by Eq. (4), rather than
arbitrary or data-driven combinations. On the other hand, we
want to check whether the empirical topology of the ITN is
consistent with the multiscale model not only at the country
level at which it is usually studied (here, the 0-graph), but also
across different hierarchical levels using the renormalization
rules in Eqs. (6) and (7).

First, we define the multiscale model of the ITN. We iden-
tify each 0-node i0 with a specific country for which there
are GDP data available from the World Bank [47] in the
considered year. This results in N0 = 183 0-nodes (see the
Appendix B). Then, we set the fitness xi0 of each 0-node equal
to the empirical value of the GDP: xi0 = GDPi0 , i0 = 1, N0.
For each pair (i0, j0) of countries, we also set the distance
di0, j0 equal to the empirical geographical distance between
the corresponding countries, using the BACI-CEPII GeoDist
[48,49] database that reports population-averaged intercoun-
try distances (see the Appendix B). Next, we use these dis-
tances to induce a hierarchy of partitions {��}��0 that define
the possible coarse-grainings of the ITN. Technically, this is
done by merging geographically close countries into “block-
countries” following a single-linkage hierarchical clustering
algorithm based on the GeoDist distances {di0, j0}N0

i0, j0=1. The
output of this algorithm is a dendrogram (shown in the
Appendix B) like the one in Fig. 2, where the leaves are
the original countries (0-nodes), the branching points are the
block-countries, and the height of each branching point rep-
resents the ultrametric geographical distance between pairs of
countries across the corresponding two branches (the ultra-
metric distances {d<

i0, j0}N0
i0, j0=1 obtained via the single-linkage

clustering are known as subdominant ultrametric distances
and ensure the smallest possible distortion among all possi-
ble ultrametric distances approximating the original metric
distances “from below” [26]). Cutting the dendrogram at a
fixed height h� defines the hierarchical level � and identifies
a unique partition �� of countries into a certain number N� of
“�-countries.” This partition can be regarded as a multiscale
aggregation of countries into groups of varying size, following
from actual geographical closeness rather than preimposed
regional or political criteria. Cutting the dendogram at mul-
tiple heights {h�}��0 (with h0 = 0) identifies a set {�} of
hierarchical levels, a geography-induced hierarchy {��}��0

of partitions, and a corresponding sequence {N�}��0 of num-
bers of block-countries. We considered 18 hierarchical levels
(from � = 0 to 17), such that the number of block-countries
is N� = 183 for � = 0 and N� = 180 − 10� for � = 1, 17. For
each of these levels, the additivity of GDP ensures that Eq. (6)

holds as a definition for the empirical aggregate GDP of
block-countries:

GDPi�+1 ≡
∑

i�∈i�+1

GDPi� . (18)

We then fix the function f in Eq. (4) as f (d ) = d−1, so that
the renormalized geographical distances equal

d−1
i�+1, j�+1

≡
∑

i�∈i�+1

∑
j�∈ j�+1

GDPi� GDP j� d−1
i�, j�∑

i�∈i�+1
GDPi�

∑
j�∈ j�+1

GDP j�

, (19)

which is the GDP-averaged equivalent of the population-
averaged distances commonly used in geography and in
the GeoDist database itself [48] (see the Appendix B). In
this way, di�+1, j�+1 represents a sort of distance between the
“barycenters” of the block-countries i�+1 and j�+1, where the
barycenter of each (� + 1)-country is defined via the internal
GDP distribution across the constituent �-countries. Note that,
if we used the subdominant ultrametric distances {d<

i0, j0}N0
i0, j0=1

produced by the single-linkage clustering algorithm rather
than the original distances {di0, j0}N0

i0, j0=1, then Eq. (19) would
reduce to d<

i�+1, j�+1
= d<

i�, j� (no effect of renormalization on
ultrametric distances) as discussed in Sec. II C. However, to
remain coherent with the GeoDist averaging approach, we
use the original distances {di0, j0}N0

i0, j0=1. Putting all the above
ingredients together, we arrive at the following multiscale
model for the ITN:

pi�, j� (δ) =
{

1 − e−δ GDPi� GDP j� /di�, j� if i� �= j�,

1 − e− δ
2 GDP2

i�
/di�,i� if i� = j�,

(20)

where δ is the only free parameter and where the renormaliza-
tion rules are given by Eqs. (18) and (19).

Now that we have defined our multiscale model of the ITN,
we build the corresponding instances of the real network at the
chosen 18 levels of aggregation. To this end, we construct the
empirical 0-graph Ã(0) by drawing an undirected link between
each pair of countries that have a positive trade relationship
in either direction in the BACI-Comtrade data set (see the
Appendix B). Then, we use the distance-induced partitions
{��}��0 defined above in order to construct the �-graph ac-
cording to Eq. (1) for each level �. This procedure creates
a sequence {Ã(�)}��0 of empirical coarse-grained versions of
the ITN, each one representing the existence of trade among
�-countries.

We can now test the multiscale model defined by Eq. (20)
against the real data {Ã(�)}��0. Preliminarily, we calibrate the
model by setting δ to the unique value δ̃ that produces the
same link density D0 as the real ITN, i.e., such that the ex-
pected number of links in the 0-graph (that is a monotonically
increasing function of δ) equals the empirical value observed
in Ã(0) (see the Appendix C). After this single parameter
choice, all the probabilities in Eq. (20) are uniquely deter-
mined at all hierarchial levels, and we can test the model
by comparing the empirical and expected value of various
topological properties of the ITN at different coarse-grainings.
In particular, for each level � we consider the link density D�

(including possible self-loops) and, for each �-node i�, the
degree ki� , the average nearest-neighbor degree knn

i� [36], and
the local clustering coefficient ci� [50] (see the Appendix C for
all definitions).
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FIG. 3. Prediction of global topological properties of the renormalized ITN across the full spectrum of geographical aggregation using
the multiscale model. The panels show the agreement between the empirical and expected values of the link density D� including possible
self-loops (left), node-averaged rescaled average nearest-neighbor degree k̄nn

� /(N� − 1) (middle), and node-averaged local clustering coefficient
c̄� (right) as functions of the number N� of �-countries, for all the 18 hierarchical levels considered (� = 0, 17).

As a first global test of the model, in Fig. 3 we plot, for each
hierarchical level (� = 0, 17), the link density D�, the normal-
ized overall average nearest-neighbor degree k̄nn

� /(N� − 1),
and the overall local clustering coefficient c̄� as a function of
the number N� of �-nodes (the bar over a quantity denoting an
average over all �-nodes). Note that all these global quantities
are normalized on the same interval [0,1], irrespective of �.
We see that the model remains in accordance with the em-
pirical values for a wide range of hierarchical levels. This is
remarkable, given that the model has only one free parameter
(δ), which was calibrated uniquely to match the density D0 of
the 0-graph, while the agreement holds for the other quantities
as well, and across multiple levels. This consistency across
scales is evidence of the desirable property of projectivity
[51]. Interestingly, all the rescaled quantities remain roughly
constant as the level increases (i.e., as N� decreases). In line
with our previous discussion about the nonequivalence be-
tween Eq. (4) and the CM and dcSBM, the large values of
density confirm that our model is necessarily different from
the model that would be obtained by inserting the GDP into
the equations for the CM or dcSBM.

As an even more stringent test of the model, in Fig. 4 we
confirm the prediction that the local topological properties
of the individual (block-)countries, and in particular ki� , knn

i� ,
and ci� , should depend strongly on the empirical value of
GDPi� , in a way that is governed by Eq. (20) at all levels.
As shown in the figure, the model predictions are confirmed
by the empirical data. It is remarkable that the agreement
between observations and model expectations holds locally at
the level of individual nodes and across all hierarchical levels,
despite the fact that, as already noted, the single parameter
δ was used to match only the density of the 0-graph, which
is a global property defined at a single hierarchical level. As
a final consistency check, and further evidence of projectivity,
we also confirmed that results similar to those shown in Figs. 3
and 4 are retrieved if δ is initially fixed in order to match the
empirical density of Ã(�) for any other given level � > 0 (not
shown).

All the above results confirm that there is a profound
difference between scale-invariant and scale-free networks:
the ITN is definitely not a scale-free network (its degree
distribution is not power-law [41–44], and in any case it
could be turned into virtually any distribution via an ad hoc

coarse-graining), yet its structure turns out to be remarkably
scale-invariant.

IV. ANNEALED FITNESS

In the annealed case, we regard not only the graph struc-
ture, but also the fitness as a random variable. At the zeroth
level, this means that, for all i0 = 1, N0, the value xi0 is
drawn from from a certain probability density function (PDF)
ρi0 (x,�i0 ) with positive support, where �i0 denotes all pa-
rameters of the PDF. As for the randomness in the topology,
we impose that the randomness in the fitness, induced from
{xi0}N0

i0=1 to {xi�}N�

i�=1 at all higher levels � > 0 by the additivity
property in Eq. (6), should be scale-invariant. This means that
we should be able to produce the possible values of xi� with
exactly the same probability by proceeding along two equiv-
alent ways: hierarchically by sampling each value xi0 from
its PDF ρi0 (x,�i0 ) and summing up these values for all the
0-nodes that are mapped onto i� by the partition ��−1 · · · �0,
or directly by drawing xi� from a certain PDF ρi� (x,�i� ) that
should have the same functional form of ρi0 (x,�i0 ) and a set
of renormalized parameters �i� obtainable from {�i0}N0

i0=1 only
through the knowledge of ��−1 · · ·�0. In other words, the
fitness values can be virtually resampled at each scale � from a
universal distribution with scale-invariant functional form and
possibly scale-dependent parameters.

The above requirement is equivalent to imposing that
ρi� (x,�i� ) belongs to the family of α-stable distributions
[52], which are characterized by the four parameters �i� ≡
(αi� , βi� , γi� , μi� ), where βi� ∈ [−1, 1], μi� ∈ R, and γi� > 0
control the skewness, location, and scale of ρi� (x,�i� ), re-
spectively, while αi� ≡ α ∈ (0, 2] is the (invariant) stability
parameter, equal to the exponent asymptotically character-
izing (if α < 2) the power-law tails of the distribution, i.e.,
ρi� (x,�i� ) ∝ |x|−1−α for x large. For α = 2, ρi� (x,�i� ) is
instead Gaussian. The Gaussian (α = 2), Cauchy (α = 1,
βi� = 0), and Lévy (α = 1/2, βi� = 1) distributions are the
only α-stable distributions known in closed form. Despite this
limitation, the characteristic function (CF)

ϕi� (t,�i� ) ≡
∫ +∞

−∞
eitx ρi�

(
x,�i�

)
dx (21)
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FIG. 4. Prediction of local topological properties of the renormalized ITN across the full spectrum of geographical aggregation using the
multiscale model. Top panels (a)–(c): empirical (blue) and expected (red) degree ki� vs ln(GDPi� ) for all N� nodes, for three representative
hierarchical levels (�1 = 0, �2 = 8, �3 = 13) such that N�1 = 183 (left), N�2 = 100 (center), and N�3 = 50 (right). Middle panels (d)–(f):
empirical (blue) and expected (red) average nearest-neighbor degree knn

i�
vs ln(GDPi� ) for all N� nodes, for the same three hierarchical levels.

Bottom panels (g)–(i): empirical (blue) and expected (red) local clustering coefficient ci� vs ln(GDPi� ) for all N� nodes, for the same three
hierarchical levels.

of a general α-stable distribution is completely known [52]:

ϕi�

(
t,�i�

) =
{

eitμi� −|γi� t |α[1−iβi� sgn(t ) tan πα
2 ] if α �= 1,

eitμi� −|γi� t |[1+iβi�
2
π

sgn(t ) ln |t |] if α = 1.

A key feature of α-stable distributions is that, under the
additive rule stated in Eq. (6), the parameters renormalize as

αi�+1 ≡ α, (22)

βi�+1 ≡
∑

i�∈i�+1
βi�γ

α
i�∑

i�∈i�+1
γ α

i�

, (23)

γ α
i�+1

≡
∑

i�∈i�+1

γ α
i� , (24)

μi�+1 ≡
∑

i�∈i�+1

μi� . (25)

When 0 < α < 1 and βi� = 1, the support of α-stable distri-
butions is [μi� ,+∞). To ensure non-negative fitness values
at all scales � � 0 (as required in the connection probability

pi�, j� ), we therefore start from � = 0 and set 0 < α < 1 and
βi0 = 1, μi0 = 0 for all i0 = 1, N0. Note that we might set
μi0 > 0 as well, but in that case Eq. (25) would imply an
increase of μi� with �, while we do not want to progressively
restrict the possible values of the fitness as � increases; in other
words, we want to keep the support of the fitness distribution
scale-invariant. With this choice, Eqs. (22)–(25) imply that, at
all higher levels,

αi�+1 ≡ α ∈ (0, 1), βi�+1 ≡ 1, γ α
i�+1

≡
∑

i�∈i�+1

γ α
i� , μi�+1 ≡ 0,

showing that α, β, and μ are scale-invariant, while γ α is node-
additive.

The above scaling rules, combined with the form of
ϕi� (t,�i� ) given above, finally lead to the scale-invariant CF
of the fitness, for all α ∈ (0, 1) and for all γi� > 0:

ϕi�

(
t, α, γi�

) = e−|γi� t |α[1−i sgn(t ) tan πα
2 ]. (26)
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This choice corresponds to the so-called class of one-sided
stable distributions [53–57]. For this particular class it is also
known that, up to a scale transformation reabsorbed in the
value of γα ≡ [cos(απ/2)]1/α , the Laplace transform (LT)
λi� (t, α, γα ) of the PDF ρi� (x, α, γα ) equals

λi� (t, α, γα ) ≡
∫ +∞

0
e−txρi� (x, α, γα )dx = e−tα

, (27)

which is a stretched exponential [53–57]. Importantly, the
requirement α ∈ (0, 1) implies that all moments of the fit-
ness distribution diverge (including the mean). As anticipated
above, this in turn implies that the models in Eqs. (4) and (17),
even in the sparse case, are not equivalent to the dcSBM and
CM, respectively, as the conditions for equivalence [27] break
down. This shows that the annealed versions of the dcSBM
and the CM are not scale-invariant, even in the sparse regime.
To work with an explicit scale-invariant PDF of the fitness,
we can use the only stable distribution known in closed form
within the above constraints, i.e., the Lévy distribution for
which α = 1/2:

ρi� (x, 1/2, γi� ) =
√

γi�

2π

e−γi� /(2x)

x3/2
(x > 0), (28)

where we have restored the arbitrary parameter γi� > 0, which
is the only remaining free parameter and is subject to the
renormalization rule given by Eq. (24).

In summary, in the annealed scenario, at any hierarchical
level � the fitness of each �-node is a random variable de-
scribed by the CF ϕi� (t, α, γi� ) in Eq. (26) or equivalently
by the LT λi� (t, α, γα ) in Eq. (27). If α = 1/2, the PDF is
known explicitly from Eq. (28) and such that ρi� (x, 1/2, γi� ) ∝
x−3/2 for x large, while for general α ∈ (0, 1) we know that
ρi� (x, α, γi� ) ∝ x−1−α for x large, even if the explicit form
is not known. Given a realization of these fitness values,
the network is generated with probability P(A(�), δ) given by
Eq. (8), i.e., by connecting pairs of �-nodes with connection
probability pi�, j� (δ) given by Eq. (4). This construction is
entirely self-consistent across all hierarchical levels, i.e., the
�-graph can either be built bottom-up, starting from level 0
and coarse-graining the 0-graph up to level �, or directly at
the �th level by sampling the fitness at that level and gen-
erating the resulting �-graph immediately. Note that, up to
this point, the connection probability pi�, j� can still depend
on the distances di�, j� as long as the latter are ultrametric
on the histogram of desired coarse grainings and therefore
decoupled from the fitness, as discussed previously [if the
distances between 0-nodes are not ultrametric, Eq. (7) would
make the renormalized distances fitness-dependent and hence
random in the annealed case].

In the rest of this section, we provide a series of ana-
lytical results for the case α = 1/2 (which corresponds to
the only stable distribution known in closed form in the
range of interest for α) and various numerical results for
other values of α ∈ (0, 1). In a companion paper [58], we
provide more rigorous mathematical proofs for all values
of α ∈ (0, 1) by replacing the α-stable distribution for the
fitness with a Pareto distribution with the same tail expo-
nent −1 − α in order to make the problem more analytically

tractable. Whenever relevant, we refer to those results in what
follows.

A. From semigroup to group

Notably, a unique property of the annealed case is that
the renormalization procedure defines not only a semigroup
proceeding bottom-up from the 0-graph to higher levels as in
usual schemes, but also a group: it can proceed top-down as
well, by resolving the 0-graph into a graph with any number
of nodes bigger than N0, indefinitely and in a scale-invariant
manner. This possibility is ensured by the fact that stable dis-
tributions are infinitely divisible, i.e., they can be expressed as
the probability distribution of the sum of an arbitrary number
of i.i.d. random variables from the same family. This prop-
erty implies that we can disaggregate each �-node (including
�= 0) with fitness xi� into any desired number of (� − 1)-
nodes, each with its own fitness.

This possibility allows us to perform the fine-graining of
the network, in a way that is conceptually similar to, but
physically different from, the upscaling approach in Ref. [59]
(which assumes a geometric embedding of nodes). We can
therefore attach no particular meaning to the level � = 0 and
consider any “negative” level m < 0 (stretching all the way
down to m = −∞) as well, provided that the (ultrametric) dis-
tances between all pairs of m-nodes are given and consistent
with the higher-level ones, i.e., such that f (di�, j� ) = f (dim, jm )
whenever i� = ��−1 · · ·�m(im) and j� = ��−1 · · · �m( jm) for
all � > m. Clearly, this requirement is always ensured in two
notable cases: (i) if distances are ultrametric and the asso-
ciated dendrogram is used to define which m-nodes branch
into which (m − 1)-nodes as we go deeper in the hierarchy of
partitions; (ii) in the distance-free case, f ≡ 1. We consider
the latter an instructive example and discuss it explicitly in
the rest of this section.

Note that, in general, we may start from � = 0 and assign
each 0-node i0 a different value of γi0 , then specify a hierarchy
of coarse-grainings (and even fine-grainings) and calculate the
corresponding values of γi� for all �-nodes and the resulting
properties of the network for all � �= 0. This leaves a lot of
flexibility, in principle allowing us to tailor the resulting prop-
erties of the network to any degree of heterogeneity. However,
to avoid making ad hoc assumptions, we put ourselves in
the simplest situation where distances are switched off [i.e.,
f ≡ 1, so that the model is governed by Eq. (17) and is
entirely nongeometric], all 0-nodes are statistically equivalent
(i.e., γi0 ≡ γ0 for all i0 = 1, N0), and the dendrogram of coarse
grainings is b�-regular: at each level �, the N� �-nodes are
merged into a number

N�+1 = N�

b�

= · · · = N0∏�
m=0 bm

(29)

of (� + 1)-nodes, each formed by exactly b� �-nodes. Note
that this is the most homogeneous choice, as it preserves the
statistical equivalence of all the N� �-nodes at every hierarchi-
cal level, i.e., γi� ≡ γ� for all i� = 1, N�, where

γ�+1 = b�
1/αγ� = · · · =

�∏
m=0

b1/α
m γ0 =

(
N0

N�+1

)1/α

γ0 (30)
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FIG. 5. Fitness distribution in the annealed scale-invariant
model. The points show the cumulative distribution of the node
fitness x across five different hierarchical levels (� = 0, 1, 2, 3, 4),
for a single realization from an α-stable distribution with parameter
choice α = 1/2, N0 = 104, b = 2. The solid lines are the correspond-
ing analytical α-stable cumulative distributions obtained integrating
Eq. (31) with γ�+1 = b1/αγ�, α = 1/2, and b = 2. The dashed line is a
power-law with exponent −1/2, confirming that the noncumulative
fitness distribution has power-law tails with exponent −3/2. Note
that there is no upper cutoff to this tail, despite the increasing network
density for higher hierarchical levels, because the fitness of a node
has no bounds.

(with α = 1/2 here), as ensured by Eq. (24). This means that,
for any �, the fitness values {xi�}N�

�=1 are i.i.d. with common
distribution

ρ�(x, 1/2, γ�) =
√

γ�

2π

e−γ�/(2x)

x3/2
(x > 0), (31)

effectively reducing a multivariate problem to a univariate
one. The resulting probability of generating a graph at a given
hierarchical level � does not depend on the labeling of nodes,
i.e., it is unchanged upon permutations of the nodes’ labels.
This property is known as exchangeability [63,64] and is
considered to be a desirable property of random graph models
[51,65]. In general, it is a property of all graphons, i.e., dense
limits of random graph sequences [64,66,67].

The above prescriptions make the model similar to an
annealed version of the FM [24] or equivalently to the class
of (rank-1) IRGM [25], with two special requirements: (i)
here the fitness is defined at all hierarchical levels simul-
taneously, and (ii) the connection probability can only take
the scale-invariant form given by Eq. (17). Note that the fit-
ness distribution depends on the hierarchical level � through
the parameter γ�, which, as is clear from Eq. (30), cannot
decrease since N� cannot increase. This implies an overall
shift towards larger values of the fitness as nodes are coarse-
grained. For instance, if we take b� = b (the branching ratio is
level-independent), then Eq. (30) implies γ� = b�/αγ0 = b2�γ0

and the corresponding behavior of the fitness distribution is
illustrated in Fig. 5. Irrespective of the rightward shift, the
tail of the fitness distribution is always a pure power-law
proportional to x−1−α , independently of �. We will adopt the

choice b� = b throughout the rest of the paper, although all
the results that we obtain for a fixed hierarchical level � hold
true irrespective of this choice and are therefore general (the
choice of a level-independent b only affects how the calculated
quantities change across hierarchical levels).

As a side remark, we note that the fine-graining procedure,
if iterated indefinitely, will keep sparsifying the network until
it breaks up into multiple disconnected components, and ul-
timately isolated nodes (dust). In the companion paper [58],
we provide some rigorous results about the connectivity of
the graph and the possible associated phase transitions as a
function of the model parameters.

In what follows, we are interested in characterizing the
topological properties of the resulting network. Since the
fitness is annealed, the expected local topological properties
involving each node i�, when averaged over the randomness
of the fitness, will be identical. However, what interests us is
deriving typical structural patterns relating, irrespective of the
particular realization of the fitness (and hence surviving after
averaging over such realizations), the correlation between dif-
ferent local properties of nodes. For instance, we are interested
in the expected degree k�(x) of an �-node whose realized fit-
ness is x at level � (note that all �-nodes with the same value x
of the realized fitness are statistically equivalent in the random
realizations of network, so the expected degree only depends
on x). In this way, we necessarily lose the identity of the node
(since each �-node i� is assigned different values of the fitness
xi� in different realizations) but we keep the structural rela-
tionship between degree and fitness. We can therefore drop
the subscript i� accompanying any local topological property
(such as ki� , knn

i� , ci� ) and replace it with the dependence of the
expected value of that property on the realized fitness x.

In the rest of this section, we will use Eq. (28) to provide
a complete analytical characterization of the annealed model
when α = 1/2, although we will also retrieve similar results
for all α ∈ (0, 1) partially analytically (see the Appendixes D
and E) and through numerical sampling of the fitness, using
the suitable procedures [60–62]. Further progress is possible
by replacing the α-stable PDF with a pure Pareto one with the
same tail exponent −1 − α [58].

B. Scale-free networks from scale-invariance

We have clarified that scale-free and scale-invariant net-
works are distinct concepts. In what follows, we show how
the annealed scale-invariant model can spontaneously lead to
scale-free networks, thus connecting the two concepts and
providing a nontrivial recipe for generating scale-freeness
purely from scale invariance.

As we show in the Appendix D, for α = 1/2 the expected
degree k�(x) of an �-node with fitness x is exactly calculated
as

k�(x) = (N� − 1)(1 − e−√
2δγ�x ). (32)

It is convenient to rescale the degree k� by N� − 1, thereby
defining the reduced degree

κ� ≡ k�

N� − 1
∈ [0, 1], (33)
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FIG. 6. Reduced degree as a function of fitness in the annealed
scale-invariant model. The circles represent the reduced degree κ� of
each �-node as a function of the corresponding fitness x in numerical
simulations of the model across five different hierarchical levels
(� = 0, 1, 2, 3, 4), for the parameter choice α = 1/2, N0 = 104,
b= 2. The solid lines are the expected theoretical relationship κ�(x)
obtained via Eq. (34) for the same parameter values. The dashed
line is proportional to the square root of the fitness, emphasizing
the behavior κ�(x) ≈ √

2δγ�x of the (reduced) degree of nodes with
small fitness. For generic α ∈ (0, 1), the (reduced) degree of nodes
with small fitness is proportional to xα .

whose range is independent of � and whose node-averaged
value κ̄� coincides with the network density excluding self-
loops (see the Appendix C). Clearly, Eq. (32) is equivalent to

κ�(x) = 1 − e−√
2δγ�x, (34)

an exact calculation that is confirmed by numerical sim-
ulations, as shown in Fig. 6. Note that, for x sufficiently
small, Eq. (32) is approximated by k�(x) ≈ (N� − 1)

√
2δγ�x

[or equivalently κ�(x) ≈ √
2δγ�x], i.e., the expected degree of

nodes with small fitness is proportional to the square root of
the fitness, not the fitness itself (this scaling is also confirmed
in Fig. 6). For general α ∈ (0, 1), it is possible to show (see the
Appendix E) that, if λ�(t, α, γ�) denotes the LT of ρ�(x, α, γ�)
as in Eq. (27), then Eq. (34) generalizes to

κ�(x) = 1 − λ�(δx, α, γ�), (35)

which, for x sufficiently small, is approximated by κ�(x) ∝
xα . This result beautifully illustrates the aforementioned key
difference between the annealed scale-invariant model and the
CM: even for very small values of the fitness, Eq. (17) does
not reduce to pi�, j� (δ) ≈ δxi�x j� and the expected degree is not
proportional to the fitness. This is due to the divergence of all
moments of the fitness in the annealed case, which implies
maxi�{xi�} = +∞ and makes the regime δ 	 (maxi�{xi�})−2

(usually assumed in the sparse CM) impossible, irrespective
of the hierarchical level �.

As a related result, again proven in the Appendix D, for
α = 1/2 the expected degree distribution induced by Eqs. (17)

FIG. 7. Degree distribution in the annealed scale-invariant
model. Cumulative degree distribution (fraction of nodes with re-
duced degree � κ) across five different hierarchical levels (� =
0, 1, 2, 3, 4) for the parameter choice α = 1/2, N0 = 104, b = 2.
The circles represent a single realization of the network, while the
solid lines correspond to the theoretical prediction given by Eq. (37).
The dashed line is a power-law with exponent −1, corresponding to
a power-law Q�(κ ) ∝ κ−2 for the noncumulative distribution. This
exponent is universal for all α ∈ (0, 1) and different from the expo-
nent −1 − α of the corresponding noncumulative fitness distribution.
Another difference is the presence of an upper cutoff C�(κ ) (due to
the fact that κ cannot exceed 1) becoming stronger as the hierarchical
level increases.

and (31) can be exactly calculated as

P�(k) =
2γ�

√
δ
π

exp
[ −δγ 2

�

ln2(1− k
N�−1 )

]
(N� − 1 − k) ln2

(
1 − k

N�−1

) (36)

for k � 0, and P�(k) = 0 otherwise. The degree distribution
above shows a twofold dependence on the hierarchical level
�, as there are two contrasting tendencies as � increases. On
the one hand, the number of nodes N� decreases, hence the
possible range of values [1, N� − 1] for the degree k shrinks:
this implies a tendency for the degree to decrease. On the other
hand, the ongoing coarse-graining is such that, on average,
�-nodes acquire more and more links as � increases: this
implies a tendency for the degree to increase. We can remove
the effect of the first tendency by considering the probability
distribution Q�(κ ) for the reduced degree κ�, which is easily
calculated from P�(k) as

Q�(κ ) = P�[(N� − 1)κ]

1/(N� − 1)
=

2γ�

√
δ
π

exp
[ −δγ 2

�

ln2 (1−κ )

]
(1 − κ ) ln2 (1 − κ )

. (37)

We see that the distribution has a residual dependence on the
level � through the parameter γ�. As a consequence, the re-
duced degree distributions obtained for different hierarchical
levels do not collapse upon each other, as confirmed in Fig. 7
using the same parameter choice as above. This is purely
the effect of the second tendency. Indeed we see that, as �

increases, there is a more and more pronounced accumulation
of values of the reduced degree κ� close to the maximum value
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1. This is a saturation effect cutting off the tail of the degree
distribution.

Importantly, for values of the degree that are sufficiently
lower than the upper cutoff, the distribution has a universal
power-law trend proportional to κ−2 for all values of α ∈
(0, 1) (hence without requiring a fine-tuning of α to a specific
value in that interval). Indeed, one can show analytically (see
the Appendix E) that the right tail of the reduced degree
distribution behaves as

Q�(κ ) ≈ κ−2C�(κ ), (38)

where C�(κ ) is a cutoff function with a peak at values of κ that
increase towards 1 as � increases. The cutoff function captures
stronger and stronger finite-size effects as the network size
shrinks under the effect of coarse-graining. In the companion
paper [58], we identify the specific scaling for the model
parameters for which the cutoff function disappears and the
degree distribution is rigorously proven to have a power-law
tail with universal exponent equal to −2, irrespective of the
value of α. Note that, in the opposite direction (decreasing �),
one can always reach the sparse regime through fine-graining,
i.e., by subdividing each �-node into multiple (� − 1)-nodes
and so on. In such a regime, the effect of the cutoff function
practically vanishes and the network is essentially scale-free
with universal degree exponent −2.

As anticipated, the universal exponent −2 for the degree
distribution is different from the tail exponent −1 − α ∈
(−2,−1) for the underlying fitness distribution ρ�(x), as a
consequence of the divergence of all moments of the latter
and the related nonlinear dependence between degree and
fitness, even for small fitness values. Interestingly, a mecha-
nism producing the universal exponent −2 has been advocated
previously [12], for instance on the basis of the fact that
that exponent describes the random geometric graphs cor-
responding to the asymptotically de Sitter spacetime of our
accelerating universe and to its large-scale Lorentzian geom-
etry [68,69]. More generally, the degree tail exponent −2 lies
at the edge of the empirical range of exponents observed for
the vast majority of networks, which are found in the interval
(−3,−2] [22]. This empirical range of exponents is incom-
patible with the hypothesis that the degree itself is drawn
from an α-stable distribution with tail exponent −1 − α (this
is presumably why stable distributions have not been used
in the literature to describe empirical degree distributions).
In our model, however, the fitness does follow an α-stable
distribution as a consequence of the requirement of scale-
invariance of the network, and at the same time the degree
distribution has a different, realistic exponent. This remark
further illustrates a consequence of the fact that, as we already
mentioned, the degree itself cannot be renormalized exactly
and in full generality, while the fitness can.

C. Assortativity and clustering without geometry

We now show that the model leads to realistic disassortativ-
ity and clustering patterns, including a nonvanishing average
local clustering coefficient even in the sparse regime. The
latter is a remarkable result, given the difficulty of generating
sparse clustered networks in models with independent edges
and no dependence on geometry.

FIG. 8. Local and global clustering coefficient as a function of
density along the renormalization flow. The average local (clocal

� )
and global (cglobal

� ) clustering coefficients are shown as a function of
the network density (excluding self-loops) κ̄� for different coarse-
grainings of the scale-invariant model with α = 1/2, N0 = 104,
b= 2. Triangles refer to a single realization of the (coarse-grained)
network, while the solid lines show the expected values. The dashed
line is a reference corresponding to a density 1/N0 = 10−4.

In Fig. 8 we show, as a function of the link den-
sity (or equivalently the average reduced degree κ̄�),
the node-averaged local clustering coefficient clocal

� ≡ c̄� =∑N�

i�=1 ci�/N� and the global clustering coefficient cglobal
� ≡

��/�� obtained for different hierarchical levels. The latter
is defined as the ratio of the overall number �� of realized
triangles (each counted three times) to the number �� of
wedges, i.e., potential triangles [70–73] (see the Appendix C).
Various studies have shown that, apart from cases where the
network is sufficiently homogeneous [70], the average lo-
cal and global clustering coefficients can be quite different
[71–74]. In particular, an empirically widespread property
of real networks is their “large” overall local clustering, de-
fined as a nonvanishing (strictly positive) node-averaged local
clustering coefficient even in the sparse regime where the net-
work density κ̄� (without self-loops), and possibly the global
clustering coefficient, vanishes as the number of nodes
increases [50].

In our model, we can easily assess the behavior of both
clustering coefficients as a function of the density κ̄�, whose
expected value can be analytically calculated for α = 1/2
(see the Appendix D) as

〈κ̄�〉 = 1 − γ�

√
δ

2π
G3,0

0,3

( ·
−1/2, 0, 0

∣∣δγ 2
� /4

)
, (39)

where Gm,n
p,q

( a1,...,ap

b1,...,bq

∣∣z) denotes the Meijer-G function, which is

an increasing function of the combination δγ 2
� (therefore the

network density increases as the level � increases). We recall
that, in the annealed scenario considered here, we are simul-
taneously generating graphs at all scales � = −∞, . . . ,+∞,
ranging from the fully connected regime (〈κ̄+∞〉 = 1) to the
fully disconnected one (〈κ̄−∞〉 = 0). We can therefore inspect
the expected average local clustering coefficient clocal

� and the
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FIG. 9. Local assortativity and clustering properties. Average nearest-neighbor degree knn
i (left) and local clustering coefficient ci (right)

vs degree ki in the annealed scale-invariant model across different hierarchical levels, for the parameter choice α = 1/2, N0 = 104, b = 2.

expected global clustering coefficient cglobal
� as a function of

the network density κ̄�. From Fig. 8 we see that, remark-
ably, cglobal

� decreases as the density decreases (that is, as the
level � decreases), while clocal

� retains finite values. This is in
qualitative accordance with the empirical results for various
real-world networks [72]. In particular we find that, even
for the particular hierarchical level(s) �∗ corresponding to
the sparse regime 〈κ̄�∗ 〉 ∝ 1/N�∗ , clocal

�∗ remains finite despite
the asymptotic vanishing of the network density. In random
graph models, a nonvanishing local clustering coefficient and
a vanishing global clustering coefficient in the sparse regime
were found also in the CM [75] (in the limit where the tail
exponent of the degree distribution approaches the value −2
found here), in a class of “windmill” graphs [72] and in the
hyperbolic geometric model [73,74]. In real-world networks,
a typical tendency of the global clustering coefficient to be sig-
nificantly smaller than the average local clustering coefficient
(and even vanishing) has also been documented [72]. In the
companion paper [58], a rigorous study of the expected value
of the numbers �� of triangles and �� of wedges (representing
the expected value of the numerator and denominator of the
global clustering coefficient, respectively) is provided.

We finally consider the average nearest-neighbor degree
knn

i� [36] and local clustering coefficient ci� [50] as a function
of the degree ki� of each �-node. These quantities are plotted
in Fig. 9 for α = 1/2. The plots show decreasing trends for
both knn

i� and ci� as ki� increases. Together with the pres-
ence of a power-law degree distribution with a cutoff, these
properties are widespread in real-world networks [22,36,50].
It is remarkable that all the realistic topological properties
exhibited by the annealed model are generated solely from the
requirement of scale-invariance.

D. Erdős-Rényi graphs as degenerate scale-invariant graphs

In retrospect, we note here that the ER model [39] is
equivalent to a particular specification of our annealed model
where, at each hierarchical level �, the PDF of the fitness is a
delta function ρ�(x) = δ(x − x�), so that all �-nodes have the

same (deterministic) fitness x� and the connection probability
has therefore the same value p� = 1 − exp (−δx2

� ) for all pairs
of �-nodes. The δ distribution can indeed be thought of as a
degenerate stable distribution under the process that homoge-
neously coarse-grains the graph: when b �-nodes (each with
the same value x� of the fitness) are merged into an (� + 1)-
node to produce the next level � + 1, all such (� + 1)-nodes
will have fitness equal to x�+1 = bx�, hence still characterized
by a δ-like PDF given by ρ�+1(x) = δ(x − x�+1), and the
model will remain an ER graph with renormalized connection
probability p�+1 = 1 − exp (−δb2x2

� ). Clearly, a deterministic
fitness also makes the annealed version of the model identical
to the quenched version with the corresponding choice of the
fitness.

In this sense, our annealed scale-invariant model and the
ER model can both be interpreted as deriving from the same
principle of scale-invariance under coarse-graining in ho-
mogeneous blocks (and additive fitness), the key difference
being that our model allows for heterogeneous (nondetermin-
istic) values of the fitness and therefore necessarily replaces
the δ distribution with a one-sided α-stable one. In other
words, as soon as heterogeneity is introduced for the fitness,
the scale-invariant requirement immediately leads from com-
pletely homogeneous ER graphs to complex networks with
realistic topologies. This notable result suggests that scale-
invariance and heterogeneity, taken together, might represent
an effective, parsimonious mechanism for explaining several
properties of real-world networks.

V. CONCLUSIONS

We proposed a renormalization scheme based on the
identification of a scale-invariant random graph model. The
functional form of the probability for two nodes to be
connected is independent on the hierarchical level being con-
sidered. At each level, the model can generate any network
in two possible ways, with exactly the same probability: ei-
ther hierarchically, by generating the finest-grained network
and then coarse-graining it via progressive nonoverlapping
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(but otherwise arbitrary) partitions, or directly, using appro-
priately renormalized parameters. These parameters include
a global scale-invariant density parameter, a necessary set of
hidden “fitness” variables attached to each (block-)node, and,
if useful, a set of dyadic factors representing distances or com-
munities. It turns out that the model possesses scale-invariance
without postulating the existence of node coordinates in an
underlying metric space.

If the fitness values are treated as quenched, the model can
guide the renormalization of real-world graphs. In this case,
the parameters of the model can be identified with empirical
quantities attached to nodes and dyads. In our application to
the ITN, we found that a one-parameter fit of the model to
the observed network density is enough to accurately repli-
cate many local topological properties of individual nodes,
even across several hierarchical levels of resolution (which
is related to the desirable property of projectivity [51]). This
result exemplifies the deep a priori conceptual distinction
between scale-free networks (in the sense of power-law degree
distributions, which are absent in the ITN) and scale-invariant
networks (in the sense of the network formation mechanisms
being consistent across scales, as found in the ITN) high-
lighted by the model.

If the fitness values are annealed, the model naturally
leads to one-sided Lévy-stable fitness distributions, which
are characterized by a tail exponent −1 − α ∈ (−2,−1). The
properties of stability and infinite divisibility of these distri-
butions allow for the definition of a proper renormalization
group in both forward (coarse-graining) and backward (fine-
graining) directions. At the same time, the divergence of
all moments of these distributions implies that the multi-
scale model is not asymptotically equivalent to the CM and
dcSBM, showing that those models are not scale-invariant.
The annealed version of the model has also the property
of exchangeability, which means that graph probabilities are
unchanged upon relabeling of nodes. It turns out that the
requirement of scale invariance spontaneously leads to scale-
free networks with degree distribution featuring a universal
power-law decay P(k�) ∝ k−2 (which does not require a fine-
tuning of α) followed by a density-dependent cutoff and with
realistic assortativity and clustering properties, without pos-
tulating mechanisms such as growth, preferential attachment,
or hyperbolic embedding. In particular, in the sparse regime
the model is simultaneously scale-free and locally clustered,
with no need for metric distances producing clustering as a
result of triangular inequalities as postulated in the hyperbolic
model [12].

Importantly, the desirable topological properties generated
by our annealed model differ from those of random graphs
that, while being defined through the same connection proba-
bility as in Eq. (4), are characterized by fitness variables with
finite mean [28–30]. Indeed, those studies did not consider a
scale-invariant random graph setting, and consequently they
did not demand that in the annealed setting the fitness vari-
ables are α-stable random variables, hence with 0 < α < 1
because of the positivity of the fitness. Our results indicate
that many properties that are usually valid in the case α > 1,
or, more generally, in the case of arbitrary fitness with finite
first moment, break down in the infinite-mean regime 0 <

α < 1. Notably, this observation suggests that the infinite-

mean regime considered here is particularly important in order
to capture many properties of real-world networks. Taken
together, scale-invariance and heterogeneity seem to be an
effective mechanism to explain those properties.
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APPENDIX A: DETERMINING THE SCALE-INVARIANT
CONNECTION PROBABILITY

Here we show how the scale-invariance requirement stated
in Eq. (2), for any model with independent links as formu-
lated in Eq. (3), leads to the unique form of the connection
probability given by Eq. (4).

Let us consider a partition �� that maps an �-graph with
N� �-nodes and adjacency matrix A(�) to an (� + 1)-graph
with N�+1 (� + 1)-nodes and adjacency matrix A(�+1). The
relation between the entries of the matrices A(�) and A(�+1)

is given by Eq. (1). Now, for any random graph model with
independent links as stated in Eq. (3), a(�)

i�, j�
is a Bernoulli

random variable equal to 1 with probability p(�)
i�, j�

and equal to

0 with probability 1 − p(�)
i�, j�

. Similarly, a(�+1)
i�+1, j�+1

is a Bernoulli

random variable equal to 1 with probability p(�+1)
i�+1, j�+1

and equal

to 0 with probability 1 − p(�+1)
i�+1, j�+1

. Now, the scale-invariance
requirement in Eq. (2) demands that we should create, with
equal probability, any of the possible realizations of the ad-
jacency matrix A(�+1) either by (i) generating the possible
realizations of the matrix A(�) (using the associated probabili-
ties {p(�)

i�, j�
}) and then aggregating the corresponding �-graphs

into (� + 1)-graphs, or (ii) directly generating all the possible
realizations of the matrix A(�+1) (using the associated prob-
abilities {p(�+1)

i�+1, j�+1
}). Scale-invariance also demands that p(�)

i�, j�
depends on � only through its parameters. Assuming that these
parameters are a combination of global (δ�), node-specific
(xi� , x j� ), and dyadic (di�, j� ) factors, we can write p(�)

i�, j�
(δ�) =

pi�, j� (δ�). Enforcing scale-invariance means finding not only
the functional form of pi�, j� , but also the renormalization rules
connecting δ�, xi� , x j� , di�, j� to their next-level counterparts
δ�+1, xi�+1 , x j�+1 , di�+1, j�+1 .

To enforce the scale-invariance requirement, we first con-
sider the case when the connection at the coarse-grained level
� + 1 involves two distinct blocks i�+1 �= j�+1. In this case,
since a link between the pair (i�+1, j�+1) of (� + 1)-nodes
is present if and only if there is at least one link present
between any pair (i�, j�) of �-nodes such that i� ∈ i�+1 and
j� ∈ j�+1, the probability that i�+1 and j�+1 are not connected
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is equal, according to the procedure (ii) described above, to
the probability that none of the pairs of underlying �-nodes is
connected. Since links are independent, this probability equals∏

i�∈i�+1

∏
j�∈ j�+1

[1 − pi�, j� (δ)]. On the other hand, according
to the procedure (i), the same event occurs with probability
1 − pi�+1, j�+1 (δ). Enforcing the equality between the two prob-
abilities leads to the condition

1 − pi�+1, j�+1 (δ) =
∏

i�∈i�+1

∏
j�∈ j�+1

[1 − pi�, j� (δ)]. (A1)

Taking the logarithm of both sides of Eq. (A1), we obtain

ln
[
1 − pi�+1, j�+1 (δ)

] =
∑

i�∈i�+1

∑
j�∈ j�+1

ln
[
1 − pi�, j� (δ)

]
, (A2)

from which we can now derive the scale-invariant form of the
connection probability. Note that Eq. (A1) is consistent with
taking the expected values of both sides of Eq. (1). However,
it cannot be derived directly in that way, because the two
expected values are taken with respect to different probabil-
ity distributions having different support, i.e., P(A(�+1),��)
and P(A(�),��), respectively. Let us first consider the case
in which the connection probability pi�, j� does not depend
on any dyadic factor di�, j� . In this case, the only functional
form of pi�+1, j�+1 compatible with Eq. (A2) for every pair of
(� + 1)-nodes is such that

ln
[
1 − pi�+1, j�+1 (δ)

] = −δ g
(
xi�+1

)
g
(
x j�+1

)
, (A3)

where g(x) is a positive function such that

g
(
xi�+1

) =
∑

i�∈i�+1

g
(
xi�

)
(A4)

and δ is positive and �-independent. Note that the pos-
itivity of δ and g(x) follows from the fact that, since
0� pi�+1, j�+1 (δ)� 1, ln[1 − pi�+1, j�+1 (δ)] has to be nonpositive.
On the other hand, g(x) has to have the same sign for all nodes,
otherwise for some pair of nodes the product g(xi�+1 ) g(x j�+1 )
will be negative. Interpreting g(x) as the impact of the fitness
x on the connection probability, it makes sense to choose the
positive sign for g(x) [and, incidentally, to assume that g(x) is
monotonically increasing with x]. For similar reasons, δ has
to be positive as well. Now, if the quantity x is node-additive
(e.g., because it is identified with some empirical additive
quantity, like the GDP in our model of the ITN), then the
fitness of each (� + 1)-node xi�+1 should be consistently ob-
tained as a sum

∑
i�∈i�+1

xi� over the underlying �-nodes. This
implies that, after reabsorbing any (positive) proportionality
factor into δ, the only possible choice for g(x) in the additive
case is g(x) = x. By contrast, if we do not require x to be node-
additive, we can always invoke the desired monotonicity of
g(x) and redefine x ← g(x) [indeed, there is no a priori reason
why xi� , rather than g(xi� ), should be regarded as the “natu-
ral” node-specific factor affecting the connection probabilities
involving i�]. This makes the redefined fitness x additive by
construction. In summary, by redefining the node-specific fac-
tor x in a way that makes it node-additive, and reabsorbing
any global constant into δ, the only possible functional form
for pi�, j� under the requirement of scale-invariance (and in

absence of dyadic factors) is such that

ln
[
1 − pi�+1, j�+1 (δ)

] = −δ xi�+1 x j�+1 (A5)

for i�+1 �= j�+1, or equivalently

pi�, j� (δ) = 1 − e−δxi� x j� , δ, xi� , x j� > 0, i� �= j�, (A6)

where δ is scale-invariant and xi�+1 = ∑
i�∈i�+1

xi� .
Now we consider the connection probability between a

block i�+1 and itself, i.e., the self-loop at the coarse-grained
level. In this case, to avoid double counting the internal pairs
of nodes, Eq. (A2) should be replaced by the expression

ln
[
1 − pi�+1,i�+1 (δ)

] =
∑

i�∈i�+1

∑
j�∈i�+1, j��i�

ln
[
1 − pi�, j� (δ)

]
. (A7)

Now, by isolating the terms corresponding to self-loops in the
quantity on the right-hand side, we can rewrite the remaining
terms as in Eq. (A5) and obtain

∑
i�∈i�+1

⎡
⎣ ∑

j�∈i�+1, j�<i�

ln
[
1 − pi�, j� (δ)

]+ ln
[
1 − pi�,i� (δ)

]⎤⎦

=
∑

i�∈i�+1

⎡
⎣1

2

∑
j�∈i�+1, j� �=i�

ln
[
1 − pi�, j� (δ)

]+ ln
[
1 − pi�,i� (δ)

]⎤⎦

=
∑

i�∈i�+1

⎡
⎣− δ

2

∑
j�∈i�+1, j� �=i�

xi�x j� + ln
[
1 − pi�,i� (δ)

]⎤⎦. (A8)

As argued above, the only solution for pi�,i� compatible with
the requirement xi�+1 = ∑

i�∈i�+1
xi� involves a function g̃(xi� )

such that g̃(xi�+1 ) = ∑
i�∈i�+1

g̃(xi� ). Now, take g̃(xi� ) = √
η xi�

for some η > 0. Then the requirement in Eq. (A7) finally takes
the form

η
∑

i�∈i�+1

∑
j�∈i�+1

xi�x j� =
∑

i�∈i�+1

⎡
⎣ δ

2

∑
j�∈i�+1, j� �=i�

xi�x j� + ηx2
i�

⎤
⎦, (A9)

where we have used

x2
i�+1

=
⎛
⎝∑

i�∈i�+1

xi�

⎞
⎠

2

=
∑

i�∈i�+1

∑
j�∈i�+1

xi�x j� .

Clearly, the only possible solution for Eq. (A9) is given by
η = δ

2 , yielding

pi�,i� = 1 − e− δ
2 x2

i� , δ, xi� , x j� > 0. (A10)

Taken together, Eqs. (A6) and (A10) coincide with what was
stated in Eq. (4) when f ≡ 1, i.e., with Eq. (17).

If we add dyadic factors, i.e., if we allow pi�, j� to addi-
tionally depend on some positive function f (d ) of the dyadic
quantity d , while at the same time preserving the bilinear
dependence of ln[1 − pi�+1, j�+1 (δ)] on xi� and x j� (i.e., pre-
serving the additivity of the fitness), then Eq. (A5) has to be
generalized to

ln
[
1 − pi�+1, j�+1 (δ)

] = −δ xi�+1 x j�+1 f
(
di�+1, j�+1

)
(A11)
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for i�+1 �= j�+1 and

ln
[
1 − pi�+1,i�+1 (δ)

] = − δ

2
xi�+1 xi�+1 f

(
di�+1,i�+1

)
(A12)

otherwise, where f (di�, j� ) renormalizes as

xi�+1 x j�+1 f
(
di�+1, j�+1

) =
∑

i�∈i�+1

∑
j�∈ j�+1

xi�x j� f
(
di�, j�

)
. (A13)

Equations (A11), (A12), and (A13) coincide with Eqs. (4)
and (7), thus completing our proof. Note that in principle the
constant δ may be entirely reabsorbed into the fitness x (as
mentioned above) or even into the function f (d ), however it
is useful to keep it separate as a single parameter controlling
the overall density of the graph. Also note that if the dyadic
factor d is interpreted as a feature enhancing the connection
probability (e.g., because it represents similarity, correlation,
coaffiliation, etc.), then f (d ) has to be an increasing function.
By contrast, if d suppresses the connection probability (e.g.,
because it represents distance or dissimilarity), then f (d ) has
to be a decreasing function, as in our model of the ITN.

APPENDIX B: GDP, DISTANCE, AND TRADE DATA

In our analysis of the ITN, the fundamental hierarchical
level � = 0 is the one where each 0-node i0 corresponds to
a country in the world and the fitness xi0 corresponds to the
GDP of that country. Similarly, the distance di0, j0 corresponds
to the geographic distance between the two countries i0 and
j0, and a realized link (ai0, j0 = 1) corresponds to the existence
of a trade relation (in either direction) between i0 and j0.

GDP data are taken from the World Bank data set [47]
and are expressed in US dollars. The results reported in the
main body of the paper use data for year 2011. The number of
countries for which GDP data are available in that year is 183.
Note that, unlike the international trade data (see below), the
World Bank GDP data set covers a slightly smaller number
of countries as it does not include very small ones (typically
islands).

Geographic distance data are taken from the BACI-CEPII
GeoDist database [48]. It reports bilateral intercountry dis-
tances measured as population-based averages among the
most populated pairs of cities across each pair of countries.
The database uses the general formula

di0, j0 =
(∑

k∈i0

∑
l∈ j0

POPkPOPl d θ
k,l∑

k∈i0

∑
l∈ j0

POPkPOPl

)1/θ

(B1)

developed by Head and Mayer [49] for calculating the
distance di0, j0 between country i0 and country j0 as a
population-based average of the distances dk,l between pairs
of internal agglomerations (cities, towns, and places) across i0
and j0. The symbol k ∈ i0 denotes that k runs over the agglom-
erations inside country i0, and POPk denotes the demographic
population of agglomeration k. In the GeoDist database, popu-
lation data were taken from the World Gazetteer website [78].
Note that di0,i0 > 0, i.e., the “distance” of a country to itself
is nonzero (therefore it is not a proper metric distance). This
is consistent with the fact that, at higher hierarchical levels,
the distance between a block-node to itself is necessarily
positive as a result of the renormalization rule. The exponent θ

measures the sensitivity of trade flows to bilateral distance. As
noted in the BACI-CEPII GeoDist documentation, selecting
θ = −1 corresponds to the usual coefficient estimated from
gravity models of bilateral trade flows. Such a choice re-
sults in the calculation of di0, j0 as a population-based average
analogous to the GDP-based average used later in our own
renormalization procedure when coarse-graining the network.
The agreement between our model and the ITN data actually
suggests that, for the study of international trade, a better defi-
nition of intercountry distances could presumably be obtained
by replacing POP with GDP in the above formula, to make in-
tercountry distances fully consistent with our GDP-averaged
renormalized distances at higher levels. Unfortunately, GDP
data at the agglomeration level are much more difficult to
obtain than the corresponding population data. For this rea-
son, we used population-averaged distances in our analysis at
level � = 0, and their GDP-averaged renormalized values at
higher levels � > 0. Given the pairwise geographical distances
{di0, j0}N0

i0, j0=1 at level � = 0, we constructed the dendrogram
of nested partitions {��}��0 of world countries (shown in
Fig. 10) using single-linkage hierarchical clustering, which
produces subdominant ultrametric distances {d<

i0, j0}N0
i0, j0=1 as

explained. A straight cut in the dendrogram induces a hierar-
chical level � and a corresponding partition of countries into �-
countries. The renormalized GDPs and distances are then cal-
culated using Eqs. (18) and (19) (using the original distances).

For the construction of the International Trade Network,
we used the BACI-Comtrade data set [40]. The data set reports
the international trade flows between 207 countries for the
years 2008–2011. From the full set of countries, we selected
the 183 countries for which we could find matching GDP
data in the World Bank database (as explained above). In
the BACI-Comtrade data set, trade is disaggregated into 96
commodity classes labeled at a two-digit resolution level and
is expressed in thousands of dollars. The database is the result
of an adjustment procedure [40] which reconciles unbalanced
trade values as reported by importers and exporters. For the
purpose of this study, we first merged the disaggregated data
into a unique aggregate undirected network, where the mone-
tary flows between countries is the total trade (both import and
export) in all the 96 commodities, and then we considered its
binary (i.e., unweighted) projection. Therefore, a binary link
in the 0-graph of the ITN is present if the two countries at its
end points have a positive trade (either import or export) in any
commodity, consistently with similar analyses of the topology
of the ITN constructed from different data sets [41–44]. This
procedure defines the empirical adjacency matrix Ã(0) of the
0-graph of the ITN. The empirical matrices Ã(�) for � > 0 are
obtained via coarse-graining the empirical 0-graph (following
the general procedure illustrated in Fig. 1) using the nested
partitions {��}��0 induced by the dendrogram in Fig. 10.

APPENDIX C: NETWORK PROPERTIES:
EMPIRICAL AND EXPECTED VALUES

Here we define the key topological properties considered
in our analysis and modeling of the ITN. Each such property
is a function Y (A(�) ) of the N� × N� adjacency matrix A(�)

(with entries a(�)
i�, j�

= 0, 1) of the generic �-graph. Note that
this matrix is symmetric and can contain nonzero entries along
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FIG. 10. Dendrogram of world countries from their geographical distances using single-linkage hierarchical clustering. The dendrogram
can be used to produce any desired sequence {��}��0 of geographically nested partitions, via either single-scale (straight) or multiscale
(nonstraight, but monophyletic) “cuts” as explained in Fig. 2. In our analysis, we considered 18 straight cuts at various ultrametric distances
{h�}17

�=0 (with h0 = 0) producing a hierarchy {��}17
�=0 of 18 partitions and a corresponding sequence of block-countries with N0 = 183 and

N� = 180 − 10� for � = 1, 17. For instance, a cut at level � = 13 (dashed line) yields 50 block-countries that correspond to the 50 branches
drawn in different colors.
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the diagonal, representing self-loops. These self-loops may
or may not be present in the 0-graph, but are in any case
eventually generated by the coarse graining procedure if the
nodes mapped onto the same block-node are connected among
themselves. When analyzing the ITN, the relevant matrix A(�)

is the empirical matrix Ã(�) obtained at the hierarchical level
� from the BACI-Comtrade data in year 2011 as described
above. The corresponding empirical value of each topological
property Y of interest will be denoted as Ỹ ≡ Y (Ã(�) ). When
considering the multiscale model, A(�) is instead a random
(symmetric) matrix whose entries {a(�)

i�, j�
} are Bernoulli ran-

dom variables with the expected value〈
a(�)

i�, j�

〉 = pi�, j� (δ)

=
{

1 − e−δ GDPi� GDP j� /di�, j� if i� �= j�,

1 − e− δ
2 GDP2

i�
/di�,i� if i� = j�,

(C1)

where, consistently with the possible presence of self-loops,
we allow for i� = j�. Equation (C2) allows us to calculate the
expected value of several topological properties. For instance,
the total number of �-links (including possible self-loops) at
level � is given by

L�(A(�) ) =
N�∑

i�=1

i�∑
j�=1

a(�)
i�, j�

. (C2)

Before considering other properties, we note that we fix
the only free parameter δ to the unique value δ̃ such that the
expected number

〈L0〉 =
N0∑

i0=1

i0∑
j0=1

pi0, j0 (δ) (C3)

of links of the 0-graph equals the empirical value

L̃0 = L0(Ã(0) ) =
N0∑

i0=1

i0∑
j0=1

ã(0)
i0, j0

= 12 018 (C4)

observed in the ITN in the year 2011. This selects the value
δ̃ = 3.6×10−17(USD)−2, where USD stands for US dollars
(the unit of measure used in GDP data). Having fixed δ̃, we can
generate unbiased realizations {A(�)} of the �-graphs from the
multiscale model at any desired hierarchical level � by sam-
pling �-links independently with probability p̃i�, j� ≡ pi�, j� (δ̃).
By averaging the value Y (A(�) ) of any topological property of
interest over such realizations, we can efficiently estimate the
corresponding expected value

〈Y 〉 ≡
∑

A(�)∈GN�

P(A(�), δ̃)Y (A(�) ), (C5)

where P(A(�), δ) is given by Eq. (8), without actually calcu-
lating the above sum explicitly. If Y (A(�) ) is linear in A(�),
we can even calculate 〈Y 〉 exactly by directly replacing a(�)

i�, j�

with p̃i�, j� in the definition of Y (A(�) ), without sampling any
graph at all. This is indeed the case for the number of links in
Eq. (C2).

Given any �-graph A(�) (be it the empirical �-graph or
a random realization from the model), the main topological

properties of interest to us are as follows: the link density

D�(A(�) ) ≡ 2L�(A(�) )

N�(N� + 1)
= 2

∑N�

i�=1

∑i�
j�=1 a(�)

i�, j�

N�(N� + 1)
(C6)

(representing the ratio of realized to maximum number of
links, including possible self-loops), the degree

ki� (A(�) ) ≡
∑
j� �=i�

a(�)
i�, j�

(C7)

(counting the number of links of the �-node i�, excluding self-
loops), the rescaled degree

κi� (A(�) ) ≡ 1

N� − 1

∑
j� �=i�

a(�)
i�, j�

(C8)

(which ranges in [0,1], irrespective of the vertex and hi-
erarchical level considered), the average nearest-neighbor
degree [36]

knn
i� (A(�) ) ≡

∑
j� �=i�

∑
k� �= j�

a(�)
i�, j�

a(�)
j�,k�∑

j� �=i�
a(�)

i�, j�

(C9)

(representing the average degree of the neighbors of i�), and
finally the local clustering coefficient [50]

ci� (A(�) ) ≡
∑

j� �=i�

∑
k� �=i�, j�

a(�)
i�, j�

a(�)
j�,k�

a(�)
k�,i�∑

j� �=i�

∑
k� �=i�, j�

a(�)
i�, j�

a(�)
k�,i�

(C10)

(representing the number of triangles into which i� partici-
pates, divided by the maximum realizable number of triangles,
given the value of ki� ). All the above quantities can be aver-
aged over nodes to obtain the following overall properties:

k̄�(A(�) ) ≡ 1

N�

N�∑
i�=1

ki� (A(�) ), (C11)

κ̄�(A(�) ) ≡ 1

N�

N�∑
i�=1

κi� (A(�) ), (C12)

k̄nn
� (A(�) ) ≡ 1

N�

N�∑
i�=1

knn
i� (A(�) ), (C13)

c̄�(A(�) ) ≡ 1

N�

N�∑
i�=1

ci� (A(�) ). (C14)

Note that κ̄�(A(�) ) ∈ [0, 1] in Eq. (C12) coincides with the
link density excluding self-loops, representing an alternative
to the definition of density in Eq. (C6) (where self-loops
are included). Besides the average local clustering coefficient
c̄�(A(�) ), it is possible to define the global clustering coeffi-
cient [71–73]

cglobal
� (A(�) ) ≡ ��(A(�) )

��(A(�) )
, (C15)

where

��(A(�) ) ≡
N�∑

i�=1

∑
j� �=i�

∑
k� �=i�, j�

a(�)
i�, j�

a(�)
j�,k�

a(�)
k�,i�

(C16)
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is the overall number of realized (“closed”) triangles and

��(A(�) ) ≡
N�∑

i�=1

∑
j� �=i�

∑
k� �=i�, j�

a(�)
i�, j�

a(�)
k�,i�

(C17)

is the number of (�-shaped) wedges, i.e., potential (both
“open” and “closed”) triangles (note that each realized trian-
gle is counted three times by both �� and ��).

It is important to stress that, of all the quantities defined in
Eqs. (C6)–(C14) for each �-node (i� = 1, N�) and/or all levels
(� = 0, 17), only the overall density D0 of the 0-graph is repli-
cated by construction via the parameter choice δ = δ̃: indeed,
having enforced 〈L0〉 = L̃0 by equating Eqs. (C3) and (C4)
coincides with having required 〈D0〉 = D̃0. For all the other
properties, including D� for all � > 0, the agreement between
the model and the empirical network is highly nontrivial and
hence remarkable.

APPENDIX D: ANALYTICAL FORM OF THE DEGREE
DISTRIBUTION FOR α = 1/2

Here we derive the functional form of the expected de-
gree distribution in the annealed model with Lévy-distributed
fitness (i.e., α = 1/2) as specified in Eq. (31) and distance-
independent connection probability (i.e., f ≡ 1) as given by
Eq. (17). To this end, for any fixed hierarchical level � we
adapt the procedure outlined in Ref. [24] to compute, for a typ-
ical realization of the fitness values, the distribution P�(k) of
expected (over the realizations of the network) degrees from
the PDF of the fitness ρ�(x) and the connection probability
pi�, j� , written as a function pi�, j� = f (xi� , x j� ) of the fitness of
the nodes involved, where in our case

f (x, y) = 1 − e−δ x y. (D1)

We first notice that, since f (x, y) is an increasing function
of both its arguments, the expected degree 〈ki�〉〈

ki�

〉 = ∑
j� �=i�

pi�, j� =
∑
j� �=i�

f
(
xi� , x j�

)
(D2)

is an increasing function of the fitness xi� . Indeed, any two
�-nodes with the same fitness have the same expected degree,
and �-nodes with higher fitness have a larger expected de-
gree. For a large number N� of �-nodes, the above discrete
sum can be approximated by an integral over the number
(N� − 1)ρ�(y, α, γ�) of �-nodes (except i� itself) with fitness
in a neighborhood of y: if k�(x) denotes the expected degree
of a node with fitness x at level �, we have

k�(x) = (N� − 1)
∫ ∞

0
f (x, y)ρ�(y, α, γ�)dy

= (N� − 1)

(
1 −

∫ ∞

0
e−δxyρ�(y, α, γ�)dy

)
= (N� − 1)[1 − λ�(δx, α, γ�)], (D3)

where λ�(t, α, γ�) denotes the LT of ρ�(x, α, γ�) as in
Eq. (27).

When α = 1/2, the LT can be calculated explicitly as

λ�(δx, 1/2, γ�) =
∫ ∞

0
e−δxy

√
γ�

2π

e−γ�/(2y)

y3/2
dy

= e−√
2δγ�x, (D4)

so that

k�(x) = (N� − 1)(1 − e−√
2δγ�x ), (D5)

proving Eq. (32). Inverting, we find that the fitness x� of an
�-node with expected degree k at level � is

x�(k) = 1

2δγ�

ln2

(
N� − 1

N� − 1 − k

)
, (D6)

which implies

d

dk
x�(k) =

ln
( N�−1

N�−1−k

)
δγ�(N� − 1 − k)

. (D7)

We can use the above expressions in order to obtain the
distribution P�(k) of the expected degrees from the distribu-
tion ρ�(x, α, γ�) of the corresponding fitness. Indeed, starting
from the fundamental equation

P�(k)dk = ρ�(x�(k), α, γ�)dx�(k) (D8)

relating the probability distributions of the two random vari-
ables k and x, and using Eqs. (31), (D6), and (D7), we arrive
at the explicit form of the distribution of expected degrees:

P�(k) = ρ�(x�(k), 1/2, γ�)
d

dk
x�(k)

=
2
√

δγ 2
�

π
exp

[ −δγ 2
�

ln2(
N�−1

N�−1−k )

]
(N� − 1 − k) ln2

( N�−1
N�−1−k

) (D9)

for k � 0, and P�(k) = 0 otherwise. This proves Eq. (36).
We can obtain the expected link density 〈κ̄�〉 (excluding

self-loops) as

〈κ̄�〉 = 1

N� − 1

∫ N�−1

0
P�(k)k dk

=
(

1 − 2

π

∫ ∞

0
e−t2

� −γ�

√
δ/t�dt�

)
, (D10)

where we have changed variables by introducing

t� = γ�

√
δ

ln N�−1
N�−1−k

. (D11)

The integral in Eq. (D10) can be expressed in terms of one
of the Meijer-G functions Gm,n

p,q

( a1,...,ap

b1,...,bq

∣∣z). The resulting ex-
pected density can be written as

〈κ̄�〉 = 1 − γ�

√
δ

2π
G3,0

0,3

( ·
−1/2, 0, 0

∣∣δγ 2
� /4

)
, (D12)

proving Eq. (39).
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FIG. 11. The two factors contributing to the cumulative distribu-
tion of the rescaled degree. Top: lower cutoff function A�(κ ) defined
in Eq. (E2). The function rapidly saturates to A�(κ ) ≈ 1 as the
rescaled degree κ increases. Bottom: tail function B�(κ ) defined in
Eq. (E3). The function behaves as a power law B�(κ ) ≈ κ−2 (red
dashed line) for a wide range of κ and has an �-dependent upper
cutoff corresponding to nodes whose rescaled degree saturates to 1.

APPENDIX E: THE SCALE-FREE RANGE WITH
UNIVERSAL INVERSE SQUARE EXPONENT

We first consider the case α = 1/2 and rewrite the distri-
bution of the reduced degree κ shown in Eq. (37) as

Q�(κ ) = A�(κ )B�(κ ), (E1)

where

A�(κ ) ≡ exp

[ −δγ 2
�

ln2 (1 − κ )

]
, (E2)

B�(κ ) ≡
2
√

δγ 2
� /π

(1 − κ ) ln2 (1 − κ )
. (E3)

The term A�(κ ) is a lower cutoff that rapidly saturates to
1 as κ increases (see Fig. 11). On the other hand, B�(κ )
has an intermediate power-law regime (for values of κ not
too close to 1) and an upper cutoff (for κ closer to 1).
This behavior can be understood by using the expansion of
ln(1 − y) = −∑∞

n=1(−y)n/n = y + R(y) for |y| < 1, where
R(y) ≡ −∑∞

n=2(−y)n/n:

B�(κ ) = 2γ�

√
δ/π

(1 − κ ) ln2(1 − κ )

= 2γ�

√
δ/π

(1 − κ )[κ + R(κ )]2

≈
{

2γ�

√
δ/π

κ2 , κ 	 1
+∞, κ → 1−

≈ κ−2C�(κ ), (E4)

where C�(κ ) is a cutoff function being equal to 2γ�

√
δ/π

for κ 	 1 and diverging when κ → 1−. This is confirmed
in Fig. 11. Putting the pieces together, the right tail of the
reduced degree distribution behaves as

Q�(κ ) ≈ κ−2C�(κ ), (E5)

where C�(κ ) is the cutoff function. This proves our statement
and is confirmed by the numerical simulations in Fig. 7.

Now we can partly extend the above results to the general
case α ∈ (0, 1) using the following argument (an alternative
derivation is provided in Ref. [58]). We note from Eq. (D3)
that, for any α ∈ (0, 1), the expected degree is uniquely de-
termined by the LT of the fitness distribution. Even if the
explicit form of ρ�(x, α, γ�) is not known for α �= 1/2 (apart
from expressions involving integral representations [55–57]),
the LT is known and given by Eq. (27). Using that formula,
thereby selecting without loss of generality the value γα ≡
[cos(απ/2)]1/α , we see that Eq. (D3) can be rewritten as

k�(x) = (N� − 1)[1 − λ�(δx, α, γα )]

= (N� − 1)(1 − e−(δx)α ). (E6)

Indeed, for α = 1/2 and γ1/2 = [cos(π/4)]2 = 1/2, the above
equation reduces exactly to Eq. (D5). In complete analogy
with the case α = 1/2, Eq. (E6) implies that, for small values
of x, the expected degree behaves as

k�(x) ∝ xα (x 	 δ−1), (E7)

while for large values of x there is a saturation k�(x) ≈ N� − 1
(as in Fig. 6) which produces the cutoff in the degree dis-
tribution P�(k). Therefore, in order to establish the behavior
of P�(k) before the cutoff appears (i.e., for k 	 N� − 1), it
is enough to invert Eq. (E7) as x�(k) ∝ k1/α and use it in
Eq. (D8) to obtain

P�(k) = ρ�(x�(k), α, γα )
d

dk
x�(k)

∝ (x�(k))−1−αk−1+1/α

∝ k−1−1/αk−1+1/α

∝ k−2 (k 	 N� − 1), (E8)

where we have used ρ�(x, α, γα ) ∝ x−1−α for large enough x.
As is clear from Eq. (E7), the range of values of x for which
both x�(k) ∝ k1/α and ρ�(x, α, γα ) ∝ x−1−α are valid is larger
when δ is smaller (correspondingly, the effect of the cutoff in
the degree distribution is weaker). So for sparser networks, the
regime P�(k) ∝ k−2 is valid for a larger fraction of the range of
values of k. Correspondingly, the reduced degree distribution
behaves as

Q�(κ ) ∝ κ−2 (κ 	 1) (E9)

and is followed by an upper cutoff for κ � 1. For sparser net-
works, Eq. (E9) is valid for a larger range of values. The above
results confirm Eq. (E5), which was obtained for α = 1/2,
and extend it to the entire range α ∈ (0, 1). In the companion
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paper [58], the universality of the tail exponent −2 of the
degree distribution is rigorously confirmed by replacing the

α-stable PDF of the fitness with a pure Pareto distribution with
the same tail exponent −1 − α.
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