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Machine-learning-assisted determination of electronic correlations from magnetic resonance
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In the presence of strong electronic spin correlations, the hyperfine interaction imparts long-range coupling
between nuclear spins. Efficient protocols for the extraction of such complex information about electron
correlations via magnetic response are not well known. Here we study how machine learning can extract material
parameters and help interpret magnetic response experiments. A low-dimensional representation that classifies
the strength and range of the interaction is discovered by unsupervised learning. Supervised learning generates
models that predict the spatial extent of electronic correlations and the total interaction strength. Our work
demonstrates the utility of artificial intelligence in the development of new probes of quantum systems, with
applications to experimental studies of strongly correlated materials.
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I. INTRODUCTION

Quantum phases of electronic matter, such as superconduc-
tors and spin liquids, have promising applications, but they are
challenging to study due to their fragile nature [1,2]. Luckily,
the hyperfine interaction offers a nonintrusive coupling of the
electronic spin structure to nuclear spins, providing an alter-
nate probing mechanism of the electronic phase. As nuclear
magnetic resonance (NMR) probes the nuclear spins with
low-frequency pulses relative to typical electronic energies,
measurement of the nuclear magnetization should not disturb
the electronic ground state a priori. Most NMR techniques in
correlated systems measure how short-range electronic spin
susceptibility changes the spin dynamics through dephasing,
energy dissipation, or spectral (Knight) shifts (e.g., T2, T1, and
K) [3–11].

Measurement of decay processes has its limitations, how-
ever. Magnetic relaxation becomes difficult to measure in a
number of different situations: in frustrated materials with
a highly degenerate energy spectra, if repeated measure-
ments heat the sample, or if the magnetic resonance echo
fails to satisfy time-reversal symmetry [12–15]. Some of
these confounding features have been recently reproduced by
large-scale simulations of thousands of nuclear spins with
long-range interactions [16]. As the details of the nuclear
interaction are inherited from the electronic spin susceptibil-
ity, aspects of the electronic spin-spin correlations that were
previously inaccessible to NMR can be estimated after ap-
propriate analysis. The most successful approach required a
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careful sweep of pulse angles to capture the anisotropy of the
electronic spin-spin correlations. But no diagnostic tool was
developed to distinguish between exponential (short-range)
or power-law (long-range) decay of the interaction strength
in space, although it was noted that the two types of decay
produced different magnetization responses.

Here we revisit large lattice simulations of interacting nu-
clear spins and ask a direct question: How much information
about the electronic correlations can be extracted from a
single NMR experiment on an unknown material? Although
we will consider only traditional spin-echo protocols at ideal
pulsing, this work develops a framework for testing the effi-
cacy of magnetic probes of electronic features. After applying
standard machine-learning techniques to a large dataset of
time-series simulations [17–19], if the initial parameters are
predicted at a rate better than random guessing, then one
can surmise that some amount of information is obtained by
the proposed experiment. Moreover, a guide for interpreting
real measurements is developed from feature ranking of the
simulated data [20,21]. In this case, we compare the “au-
tomatically” generated approach to the previous analytical
treatment [16] and highlight improvements that the data-
driven approach provides.

In Fig. 1, we provide a conceptual outline of this method-
ology, illustrating both an interacting spin system and the
inverse problem of material discovery. Our work is or-
ganized as follows: In Sec. II, we discuss the methods
employed for simulations and learning the electronic sus-
ceptibility. In Sec. III, we use machine learning applications
to see what information about the material is accessible
from the echo measurements and generate predictive mod-
els. Finally, in Sec. IV, we discuss the results in the greater
context of magnetic measurements of strongly correlated
systems.
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FIG. 1. A schematic for material discovery via NMR. Top: A
magnetic resonance experiment in a fixed field B0 allows for the
controlled evolution of many nuclei, with interactions between spins
mediated by the electron susceptibility χ . This susceptibility is some-
times strongly polarized along either the out-of-plane (αz) or in-plane
(αxy) spin axes. Bottom: Magnetization time-series data is generated
by spin-echo simulations, represented by the map Msim : χ → Mxy,
and a machine learning (ML) model is trained to predict the parame-
ters of χ from them.

II. METHODS

A. NMR simulations

The combined nuclei-electron system can be understood
by considering a Hamiltonian of the form

H = He + Hn + Hhf , (1)

where He and Hn are the Hamiltonians of the electrons and
nuclei, respectively, and Hhf is the interaction between the
two species, mediated by the hyperfine interaction. As we are
interested in just the nuclear time dynamics (NMR probes do
not operate at frequencies relevant to electrons), we integrate
out the degrees of freedom associated with the electrons to
obtain a Hamiltonian that consists of just the nuclei and an
electron-mediated nuclear-nuclear interaction. We then apply
a mean-field approximation to the nuclear spins, replacing
direct spin-spin interactions with a mean magnetization on
each nuclei Mi, to arrive at [16]

Hmf (i) = −νiI
z
i −

∑
d=x,y,z

αd Id
i Md

i , (2)

where the nuclei are labeled by index i, Id
i is the spin operator

along the d axis for nuclei i, and νi are the (Zeeman) pre-
cession frequencies of the nuclei. The second term represents
the mean-field interaction, with αd the effective electron-
mediated coupling strength along nuclear spin axis d . Our
goal is to extract the parameters of this Hamiltonian solely
from the shape of the total in-plane magnetization curve dur-
ing a spin-echo pulse sequence. In our simulations, the echos
occur at a time t = 2τ = 200 µs, as shown in Fig. 2(a). The
spin-echo protocol consists of polarizing the nuclear spins
along the z direction, applying an in-plane 90◦ magnetic pulse
at t = 0 and then applying a refocusing 180◦ magnetic pulse
at t = τ .

Note that the αd depend on both the hyperfine interac-
tion tensor and the electronic susceptibility tensor. Md

i is the
effective local magnetic field felt by nuclei i along axis d due

FIG. 2. Overview of the spin-echo dataset. (a) The echo responses over all 15 000 simulations. The refocused echo due to spin realignment
is observed at t = τ = 200 µs. The region around the echo, t = [167, 233] µs, is highlighted as an “Area of Interest” that will serve as a
truncated dataset alongside the full time series. (b) Absolute value of the three magnetization kernels K : Gaussian (pink) with ξ = 8, power
(brown) with p = 1.47, and RKKY (green) with γ = 13. (c) Time-domain echo responses for the Gaussian, power-law, and RKKY radial
kernel forms. (d) Time-domain responses within the area of interest. (e) Spin-echo responses in frequency domain, relative to the resonance
frequency.
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to the mean-field interaction. The overall strength of the elec-
tronic susceptibility is encoded by the α variables, while the
spatial structure of the susceptibility enters into the formula
for Md

i . The effective local magnetization for a nucleus at site
ri is defined as the sum

Mi = 1

κ

∑
j

K (ri j ) 〈I j〉 , (3)

with K the “kernel” for the interaction that encodes the spatial
structure of the electronic spin correlations, ri j ≡ r j − ri the
distance to nuclei j, and κ = ∑

j K (r0 j ) is a normalization
constant. We also introduce an effective length scale for the
kernel, L, given by the weighted average of r:

L = 1

κ

∑
j

r0 jK (r0 j ). (4)

We study three forms of K . First, a short-range Gaus-
sian that depends on a correlation length ξ , K (r) = e−(r/ξ )2

,
motivated by the susceptibility expected from a gapped spin
excitation. Second, a long-range form given by a power p,
K (r) = r−p, motivated by a gapless spin excitation. Finally,
the RKKY form expected from electron-mediated spin-spin
interactions in a simple metal which is also dependent on
a length γ , K (x) = x−4(x cos x − sin x) for x = 2(r/γ ). In
Fig. 2(b), the three functional forms for K are plotted using
parameters that yield similar length scales for comparison.
We note that the Gaussian form decays rapidly, while the
alternating sign in the tail of the RKKY form leads to an
effective cancellation of any net magnetization far away from
the nuclei. In contrast, the power law has a characteristic
long-range tail. One of the most important parameters to ex-
tract in this model is the total effective interaction of the net
magnetization on a single nuclear spin. This is given by an
integral of the interaction α over the entire lattice, which we
call the “weight” W . As we have already normalized K , this
is simply given by

W = αx + αy + αz. (5)

The time-dependent magnetization M(t ) is then obtained
by averaging over all nuclei in a large interacting two-
dimensional (2D) lattice. The time dynamics of the spins are
calculated from Eq. (2) using a massively parallel GPU code
[16]. The code implements discretized time propagation of a
density matrix following the Lindbladian formulation of quan-
tum dynamics. We performed calculations on a 100 × 100
square lattice of spin- 1

2 nuclei, with a time step dt = 160 ns,
delay time τ = 100 µs, and with precession frequencies νi

sampled randomly from a Lorentzian distribution with a full
width at half maximum linewidth of 8 kHz. We sampled αd

and the kernel-specific variables {ξ, p, γ } such that the kernel
integral W lies in the range [0.1,0.3] MHz. This range of
W is chosen to avoid echos that have no interaction-induced
features (W < 0.1) and cases where the echos are completely
dephased (e.g., decay to zero) at our chosen τ value (W >

0.3). Specifically, αz and αx = αy were sampled randomly in
a range of [0.01,0.1] MHz, ξ ∈ [8, 32], p ∈ [1, 3], and γ ∈
[13, 52]. A random sample was simulated if the associated W
was in the range [0.1,0.3]; otherwise, that random parameter
selection was discarded and a new selection was generated.

TABLE I. F1 scores of different standard models applied to
the problem of classifying the nuclear interaction as a long-range
(power-law) or short-range (non-power-law) functional. Sr. No is the
internal index for that model.

Sr.No Algorithm F1 score

1 Logistic regression 0.795
2 K-nearest neighbors 0.793
3 Support vector support (SVM) 0.796
4 Kernel SVM 0.69
5 SGD classifier 0.79
6 Decision tree 0.756
7 Random forests 0.82

This process was looped until three datasets consisting of
5000 samples each were obtained for the three kernel types
(15 000 simulations in total). Although the database shows
uniform distributions of αd and W , the L distributions were
nonuniform and kernel-type dependent due to the different
ways in which each uniformly sampled length-scale parameter
enters into their respective kernel form [see Fig. 5(b)]. For
additional details of the simulation and spin-echo protocol,
see Appendix A.

B. Machine learning

We have used a combination of supervised and unsu-
pervised learning techniques to look for patterns within the
simulated time-dependent magnetization that reflect the ma-
terial properties. We employed two unsupervised learning
techniques that perform dimensionality reduction, princi-
pal component analysis (PCA) and variational autoencoders
(VAEs). Without any reference to the initial material param-
eters, PCA identifies which subspace of the time-series basis
provides the best metric for distinguishing the response curves
[22]. VAEs offer a more sophisticated, nonlinear approach to
identifying important subspaces but are more computational
expensive and prone to overfitting [23]. Essentially, the VAE
is trained to reproduce echo responses, and the center of
the network yields a two-dimensional representation for each
echo, called a latent space. One can also pick a point in this
two-dimensional latent space and then use just the decoder
side of the VAE to simulate how the magnetization response
depends on the discovered latent space.

Within a supervised setting, our primary dataset was used
to train models to predict one of five characteristic properties
of each curve: the strength of the interaction along the plane
(αx = αy), the strength perpendicular to the plane (αz), the
form of the radial kernel (Gaussian, power law, or RKKY),
the integral of the interaction over the entire lattice (W ), and
the average length scale of the interaction over the lattice
(L), a dimensionless quantity. Models built for each predictor
take the average magnetization time series from a spin-echo
protocol as input and predict the property of interest.

For both supervised and unsupervised learning, each echo
in the dataset is normalized such that each time series only
contains values between (0,1). Since we are most interested in
characterizing the behavior near the peak of the echo, we also
consider a truncated dataset which contains only the magnetic
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FIG. 3. Results of unsupervised learning with variational autoencoders. (a) The full echo response dataset, plotted in the coordinates of
latent axis 1 (LA1) and latent axis 2 (LA2) obtained by the VAE. Each of the three columns show the same two-dimensional latent space, but
with different material properties chosen for the color scale. These three properties are the kernel type (1, Gaussian; 2, power; 3, RKKY), the
total integral of the kernel W , and the characteristic length scale of the system L. (b) Absolute magnetization responses |M(t )| generated by
sampling the latent space along latent axis 2 (LA2). The sampled points are (x, 0), with x equally spaced between −2.5 and 2.5. [(c) and (d)]
Same as in (a) and (b) but for a VAE trained on the truncated area of interest instead of the full time domain. The latent space sampling in (d) is
now performed along a vertical slice, (0, x) in the latent axis coordinates. The colors of the curves in (b) and (d) correspond to the average
value of W at each selected x value, following the colorbar used in the W column of (a) and (c).

response near the spin-echo [t ∈ [ 4
3τ, 7

3τ ], labeled “Area of
Interest” in Fig. 2(a)]. The rapid decay of magnetization at
the very start of the simulation is known as the free induction
decay.

To interpret the results of our supervised classification and
regression models, we use two different featurization tech-
niques. The first is the straightforward choice: Simply use the
evenly spaced magnetization values M(t ) within the full or
truncated time domain. Pointwise feature ranking will reveal
which time contributes the most information to the model
prediction. However, it would remain unclear if the magne-
tization’s magnitude, slope, or curvature drives predictions.
This motivates the other choice: multiscale polynomial featur-
ization [24]. We partition the region of interest into n equally
sized sections with n = 3, 5, or 10 and fit the magnetization
to a cubic-polynomial in each section:

M(x) ∼ c0 + c1x + c2x2 + c3x3. (6)

The variable x ≡ t − tc is introduced to center the time axis
at the middle of the section (tc), and the coefficients of the
polynomial ci in each section act as the new feature set. The
coefficients track the local constant, linear, quadratic, and cu-
bic behaviors of the average magnetization in each section and
feature ranking highlights which of these is most critical for
characterization.

III. RESULTS

A. Unsupervised learning

We begin with unsupervised dimensionality reduction.
Such techniques are unlikely to provide any regression
capability but can generate useful classifiers for material pa-
rameters. More importantly, if they find structure in the output

which corresponds to a material parameter, then it can help
guide traditional analysis of the physical system.

The VAE successfully finds a useful (classifying) low-
dimensional space while the PCA fails. Although three
clusters were returned by a K-nearest neighbors algorithm
after PCA, these clusters showed no clear correspondence to
any of the material parameters (Appendix B 1). When applied
to the full time-domain dataset, the two-dimensional latent-
space generated by the VAE contains features that correspond
to the total interaction strength W , the interaction range L, and
the kernel type [Fig. 3(a)]. The unsupervised technique has
organized simulations by increasing W along its first latent
space axis (LA1). This is in agreement with the results of
Ref. [16], where W was noted as the most important material
parameter in determining the echo shape. Both the kernel type
and the length scale L were also roughly organized within the
two-dimensional space. Smaller L values were grouped in a U
shape near the point (0,2), along with many of the power-law
kernel types. This is partially because the sampled parameters
for the power-law kernel type lead to distribution of L which
was lower than the other two types, shown later in Fig. 5(b).
Similar results are obtained after applying the VAE to only the
windowed area of interest near the echo, but now the variable
W is ordered along LA2 instead [Fig. 3(c)].

We ran specific points in the latent space through the de-
coder network, generating characteristic M(t ) curves in each
case. As the first axis of the latent space (LA1) corresponded
more to W than the second (LA2), we sample the points (x, 0)
with x ∈ [−2.5, 2.5] in the latent space. The echo responses
at low LA1 (corresponding to small W ) exhibit a clean echo
peak while those at large LA1 (large W ) show a suppressed
peak at the echo pulse and significant ringing after time τ

(180◦ pulse) and 2τ (echo). This again follows the intuition
developed in the previous analytical work and proves that
unsupervised learning can generate scientifically significant
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FIG. 4. Classification of the interaction’s kernel form. Power (P) vs nonpower (NP), which correspond respectively to the long-range
and short-range interaction kernels. (a) The total number of features vs F1 scores of the classification models for both pointwise (PT) and
polynomial (PF) featurization. Error bars show the standard deviation in F1 scores from 10 random forests trained on the same data with
different initial seeds. CV, fivefold cross-validation F1 score; OOB, out-of-bag sample scores. (b) Confusion matrix for a random forest model
trained on all 400 PT features. (c) Confusion matrix for a random forest model trained on all 76 PF features. (d) Echo responses obtained from
the short-range (NP, Gaussian, and RKKY, in blue) and long-range (P, power law, in green) kernels. (e) Feature importance obtained from the
Gini impurity for each PT model. The marker type and color indicates the number of features used in the training (blue denotes more features
and green denotes fewer features). (f) Top 10 ranked features from the full (76 element) polynomial featurization. The color of the bar indicates
the coefficient order. The bar location and width corresponds to the time window that was used for the polynomial fit.

interpretations of magnetic resonance measurements. These
insights are gained effectively “for free,” requiring only a
suitably sampled dataset and access to basic machine learning
software. In situations with more material parameters, or for
protocols with multiple pulse durations and axes, it can be
challenging to make analytic progress due to the complicated
nature of the resulting Hamiltonians. Unsupervised learning
can immediately check which key material parameters control
physical observables and yield the representative features of
the response curves as that parameter is varied.

B. Classification of the spatial extent of interactions

The main shortcoming of the previous analytical work was
an inability to predict if a material had short-range (exponen-
tial) or long-range (power-law) decay in the nuclear coupling
[16]. By comparing simulations across the three different
kernel forms with similar interaction weights W , subtle dif-
ferences in the resulting M(t ) curves were noticed. But for
a randomly sampled material, distinguishing between kernel
forms seemed impossible. Note that this classification of short
vs long range should not be confused with the value of L.
Rather, short vs long describes if the interaction is exponen-
tially localized or not.

Here we utilize random forest models to generate a clas-
sification model for the spatial extent of the interactions:
short-range vs long-range. Since the dataset is imbalanced,
we partition it into a training and test set and oversample
the training set’s minority class (short-range, e.g., power law)
[25]. By oversampling only the training data, none of the
information in the test data is double counted, avoiding the
introduction of synthetic observations. While our models were
unable to distinguish between the RKKY and Gaussian ker-
nel, classification of power-law vs non-power-law interactions
showed significantly better performance than random guess-
ing [Figs. 4(b) and 4(c)]. Such a classification is important, as

a power-law decay indicates that the susceptibility arises from
a gapless spin system, while an exponential decay suggest
the presence of a gap in the excitation spectra. Although the
RKKY type interaction arises from spin interactions in a metal
(gapless), its oscillating power-law tail on average contributes
zero total magnetization. In the mean-field simulations, this
makes it act more similarly to the exponentially localized
(Gaussian) interaction, but using a full many-body method
may change this.

For classifying non-power-law data, the two featurization
methods (pointwise vs polynomial) yield nearly identical
confusion matrices, but the correlation between the two
models’ decisions were not checked. The predictions of non-
power-law simulations are nearly perfect, with very few false
positives (top row of the confusion matrices). However, for
power-law simulations the decisions are only slightly better
than random guessing, with a false-positive rate just above 0.4
(lower row of the confusion matrices).

We contrast the performance between the pointwise and
polynomial featurization schemes as a function of the num-
ber of retained features [Fig. 4(a)]. To identify the essential
features of the classification model, we train successive clas-
sification models that only have access to features above the
median feature importance of the previous model. This allows
us to create a sequence of successively simpler models. We
continue this process for both featurization models until only
two features remains, but because the pointwise data start
with more features than the polynomial model the pairings
are not of identical feature count. The models trained on
pointwise features perform slightly better within each pair but
also retain roughly 30% more features than the polynomial
model. Although the test scores for the two featurizations
are quite similar despite this discrepancy, the fivefold cross-
validation scores are significantly worse for the polynomial
featurization (PF), hinting at severe overfitting. When we re-
strict the models to using only the two most important features

043098-5



ANANTHA RAO et al. PHYSICAL REVIEW RESEARCH 5, 043098 (2023)

obtained by this scheme, the polynomial model performs
slightly better.

The two most critical time-value features are the magni-
tude of the magnetization at the echo pulse (2τ = 200 µs)
and the magnitude in the postecho shoulder at approximately
210 µs. For classifying the range of the interaction, the relative
size of the echo’s decay (the value at 2τ ) to the intensity of
the postecho refocusing (shoulder) encodes key information
about the range of the interaction. The polynomial featuriza-
tion ranking in Fig. 4(f) shows that the slope and curvature at
the echo pulse being the most important, with the mean values
near the echo ranked as the fourth and fifth most important
instead. Overall, this is fairly consistent with the theoretical
understanding of gained from study of the mean-field model
[16]. Short-range interactions led to more strongly suppressed
echoes and reduced postecho ringing, which are encoded in
the slope and curvature near the echo and the postecho shoul-
der. Nevertheless, we are now armed with a model that can
make predictions instead of relying on pure intuition.

As mentioned previously, the most common error in our
classifier were false positives for the power-law radial ker-
nel [Figs. 4(b) and 4(c)]. Motivated by the latent structure
identified by the VAE, we also train separate models for
different ranges of the total interaction strength W . That is,
we can refine the classification models by first using a robust
prediction of W , as W and the radial-decay type both play a
role in determining the shape of M(t ). We train three families
of random forest models, each constrained only to consider
simulations that have W in the range [0.1, 0.17], [0.17, 0.23],
or [0.23, 0.3], all in units of MHz. With this approach, the
false-positive error rate is reduced to about 0.2 for both
the pointwise and polynomial featurization (Appendix C 5),
which is half the error rate when not using a W filter. As the
total interaction strength W explains a large amount of the
M(t ) variations, using W screening leads to better classifica-
tion models of the other physical parameters.

C. Prediction of the effective interaction strength

Finally, we now discuss models that take the M(t ) curves
as input and return predictions of the value of the material’s
interaction parameters, with results shown in Fig. 5(e). The
prediction of αx and W are very accurate, with R2 values of
approximately 0.9 and 0.8, respectively. This further justifies
W ’s use as a screening step before using a kernel-type classi-
fier. The models were unable to make good predictions of the
out-of-plane coupling prefactor (αz). This is not surprising, as
our dataset consists of only simulations where the interaction-
free magnetization lies entirely in-plane (due to the 90◦–180◦
pulsing sequence). When there is no out-of-plane magnetiza-
tion, the αz term does not affect the spin dynamics [Eq. (2)].
What the poor training of αz confirms is that, even with sig-
nificant in-plane interactions (αx = αy), the out-of-plane net
magnetization remains very small, and therefore the value of
αz has little effect on resulting spin echo. As one third of the
value of W is obtained from αz, this explains the slightly worse
performance of learning W compared to learning αx directly.

To check for any cross-correlation between the kernel type
and the four studied parameters of Fig. 5, we also ran the
regression models after partitioning the dataset based on the
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FIG. 5. Results of regression from random forest models. [(a)–
(d)] Distribution of the simulation parameters present in our
randomly sampled database, grouped by kernel type. (e) The out-
of-bag (OOB) score and test set scores for regression models of
the parameters W , L, αx = αy, and αz trained on different datasets.
The first set of four columns in each panel are R2 scores for models
trained on the complete dataset (C), the second set are trained on a
dataset with only power-law simulations (P), and the third are trained
on a dataset with only non-power-law simulations (NP). For each
dataset, the first two columns are for a model trained on pointwise
features while the last two columns are for a model trained on
polynomial features. MAE denotes mean absolute error.

range of interaction (power “P” vs nonpower “NP”). As be-
fore, we oversample the minority class (P) in the training set
due to the mismatch in dataset sizes (5000 vs 10 000). The
overall performance does not change significantly [Fig. 5(e)],
as predictions slightly improve for the model trained on only
short-range interactions (nonpower, NP) but worsen for those
trained on long-range (power, P) model. Of the four trained
parameters, only L shows significant deviation between the
P and NP datasets. The model successfully predicts L for the
power-law simulations but performs poorly on the non-power-
law simulations. However, the analytic approach provided no
method for the accurate prediction of L [16]. To see an R2

value above 0.8, even when restricted to just power-law simu-
lations, is a large improvement gained by the use of machine
learning.

To extract physical intuition for the proposed regression
schemes, we also analyze the feature ranking for each predic-
tor variable in Appendix C 6. We find that the most important
features for predicting W are the average value (c0) in the
pre-echo region (t < 2τ ) and the slope and curvature of the
magnetization right at the echo pulse (c1, c2). We also find
that the relative feature importance changes when considering
just the power-law or non-power-law decays. It indicates that
short-range and long-range interactions affect the magneti-
zation response in different ways, even at similar W . This
encourages further development of better pulse sequences for
studying materials with large electronic spin susceptibility,
as even an unrefined spin-echo protocol is already capturing
some scale-dependent behaviors.

IV. CONCLUSION

We have used data-driven approaches to understand the
effects of strong electronic spin correlations on nuclear spin

043098-6



MACHINE-LEARNING-ASSISTED DETERMINATION … PHYSICAL REVIEW RESEARCH 5, 043098 (2023)

dynamics. By applying machine learning methods to these
spin-echo simulations, an effective probe of some spin sus-
ceptibility properties were developed. Unsupervised learning
and feature-ranking of classification models provided insight
into which physical parameters best describe the interact-
ing system. The difficult task of classifying the time series
based on the radial kernel was performed adequately by our
random-forest models, with better performance achieved after
sectioning the data into three bins of interaction magnitude W ,
yielding an F1 score of 0.9.

From a broader perspective, we have demonstrated that
machine learning can be used to develop inference techniques
when applied to magnetic resonance experiments. Developing
combined theoretical and experimental tools in this manner
can improve of our understanding of real materials not only
by providing better traditional probes but also probes designed
on real-time feedback between measurement and a machine-
learning model [26–28]. A simple experiment could be run
to estimate the total interaction strength W , and then a more
complicated sequence that is tailored for the resulting W could
be run to extract accurate information about the effective
interaction length scale L and its normalized strength αi.

Revisiting this problem with a deep learning algorithm
may provide better predictions of L and αi but requires a
much larger dataset. On the other hand, designing specific
pulse sequences which can access different aspects of the
spin dynamics may lead to a larger improvement in our
predictions. The development of highly specialized pulse se-
quences in order to capture the symmetry of certain physical
parameters is a well developed field for on-site or nearest-
neighbor interactions [29–31]. Similar protocols for systems
with long-range nuclear coupling are unexplored. Reinforce-
ment learning could possibly be leveraged to develop such
sequences.

The adoption of machine learning as an interpretable
method to analyze and infer the properties of complex ma-
terials is an ongoing task. As evidenced by our work, it can
decode some of the wealth of information obtainable from
magnetic resonance experiments.
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APPENDIX A: SIMULATION OF NUCLEAR SPINS

To achieve a spin echo in our simulations, all spins begin
in alignment along the z axis, and at time t = 0 an Ix pulse
rotates the spins about the x axis by an angle θ . At time t = τ ,
an Iy pulse rotates them by 2θ about the y axis. When θ = 90◦,
the second pulse inverts the spins and further time propagation
begins to cancel any accumulated phases from the variations
in each spin’s resonant frequency ν. This forms a spin echo
at t = 2τ . We simulate this process on a 100 × 100 lattice of

FIG. 6. PCA and K-means results. [(a)–(c)] The 2D PCA of the
centered echo-response dataset. Each plot is colored based on the
(a) total kernel integral W , (b) average length scale L, or (c) the
type of radial kernel K . There is no discernible difference or pattern
amongst the principal components. (d) K-means clustering reveals
that the optimum number of clusters in the echo-response must be
three from the sum of squared error (SSE) scree plot (e) Magnetiza-
tion curves for all simulations in the two clusters, which correspond
to low (high) kernel integrals W .

spin-1/2 interacting nuclei [16] for different values of (αx =
αy, αz, K, lK ). αi is the strength of the interaction along axis
i = {x, y, z}, K is the type of radial kernel and lK is a parameter
that defines the form of the specified kernel (with lK either ξ ,
p, or γ ).

To preprocess the simulated data before usage by a ma-
chine learning algorithm, each echo-response time series is
normalized such that all values of net magnetization lie be-
tween (0,1). Since we are interested in the behavior of such
systems at the echo pulse, we also generate a dataset which
consists of only a narrow time window (of width 67 µs) around
the echo pulse (centered at t = 200 µs).

APPENDIX B: UNSUPERVISED LEARNING

1. Principal component analysis

PCA is a dimensionality reduction technique that generates
a low-dimensional representation of a large dataset by finding
the uncorrelated variables that maximize variance. The task
of identifying these new variables can be mapped to an eigen-
value problem where the principal components (eigenvectors)
and their contribution to the dataset can be obtained from
singular value decomposition of the (centered) data matrix.
We used the scikit-learn package to perform PCA on our
datasets. Figure 6 depicts a 2D PCA of the echo-response data.

2. K-means clustering

K-means clustering is an unsupervised learning technique
often used to identify distinct, nonoverlapping clusters in a
dataset. The primary objective is to minimize the variation
within each “cluster,” which is the mean distance between
every (vectorized) datapoint assigned to that cluster. This is
achieved by minimizing the objective function:

D(K, X ) =minimize
C1,...,Ck

[
K∑

k=1

1

|Ck|
Pk∑

i=1

(xi − μk )2

]
, (B1)
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where K is the number of clusters, x ∈ CK ⊂ X are one of
the Pk elements of the kth cluster, and μk is the mean value
of the kth cluster. Here, we first specify the desired number
of clusters K , and then the K-means algorithm assigns each
observation to exactly one of the K clusters.

The result for a K-means cluster with varying K for our
dataset is given in Fig. 6(d). We find that K = 3 gives the
last useful clustering, as increasing beyond that gives lit-
tle improvement in the objective. In Fig. 6(e) we show the
typical magnetization curves for the two clusters for the opti-
mized K = 2 case, showing clear differences between cluster
1 (large W ) and cluster 2 (small W ).

3. Variational autoencoders

VAEs [23] are generative models based on layered neural
networks. Assume our dataset can be described as a set of
independent and identically distributed data points, X = {x(i)}
with x(i) ∈ Rn. Further, assume these data are sampled from
a distribution with Gaussian distributed latent variables z and
model parameters θ , pθ [x(i)|z]. Then, finding the exact pos-
terior density pθ [z|x(i)], e.g., solving the inverse problem of
obtaining latent variables from elements of the dataset, is often
an intractable problem. VAEs approximate the true posterior
distribution with a tractable approximate model qφ[z|x(i)],
with parameters φ, and provide an efficient procedure to sam-
ple efficiently from pθ [x(i)|z]. In practice, a VAE is a network
composed of three main components. An encoder (1) projects
the input into a latent space (2), and then a decoder (3) at-
tempts to reconstruct the input from the latent representation.
After the network is trained, one can sample according to the
original distribution by dropping the encoder and sampling
the latent space directly. The model is trained by minimizing
(over θ and φ) the cost function:

Jθ,φ,x(i) = − Ez∼qφ (z|x((i) ){log pθ [x(i)|z]}
+ βDKL{qφ[z|x(i)]||pθ (z)}. (B2)

The first term, the reconstruction loss consists of the ex-
pected negative log-likelihood of the ith data point and favors
choices of (θ, φ) that lead to accurate reconstructions of
the input. The second term, the regularization loss D, is the
Kullback-Leibler divergence between the encoder’s distribu-
tion qφ[z|x(i)] and the Gaussian prior on z. A full treatment and
derivations of the variational objective are given in Ref. [23].

In our setup, we use a β-VAE, where β 
= 1 is an additional
weight (prefactor) assigned to the KL-divergence term in the
loss function. This modifies the relative importance of the
reconstruction and regularization losses. Such β tuning has
been useful in identifying latent structures in highly nonlinear
datasets [32]. In our simulations, we use β = 2. In addition, to
prevent overfitting, we partition the dataset into training and
a validation sets and train until the reconstruction loss on the
validation set stops improving for seven epochs. Two different
VAE models are trained for the full echo-response and the
time-window echo-response data.

For the full echo-response data, the encoder has
the following number of nodes in successive layers:
(1882, 512, 128, 16, (2, 2)) where (2,2) is the latent space
containing the results of the encoder. The regularization term

constrains this space to represent the mean and log-variance
of a multivariate standardized Gaussian. The decoder has the
reversed architecture, (2, 16, 128, 512, 1882), with the input
to the decoder sampled from the encoder’s resulting latent
space via the reparametrization trick [23]. All layers in both
the encoder and decoder uses a LReLU (nonlinear leaky recti-
fied linear units) activation function with the leak set to 0.01,
except for the final layer which uses a sigmoid activation
function.

The architecture for the echo-window data is similar, with
an encoder of shape (400, 128, 32, 16, (2, 2)), a decoder of
shape (2, 16, 32, 128, 400), and using the same activation
functions.

APPENDIX C: SUPERVISED LEARNING

1. Random forest

A random forest model is an ensemble technique that uti-
lizes multiple decision trees to learn a dependent variable.
For classification, the dependent variable is determined via a
majority vote from multiple trees each trained on randomly
chosen (“bootstrapped”) samples and features from the train-
ing dataset. This method of averaging over many decision
trees reduces overfitting errors from a single model applied
to the entire training dataset.

Within a random forest classification model, each tree is
generated by iterative branching of yes-no decisions, known
as a binary tree. Eventually, the branching process terminates,
and each end node is assigned a specific category (in our case,
kernel type K). Ideally, each branch would put all members
of the same category into the same child node. This goal is
formulated as an optimization problem by minimizing the
Gini impurity of each node via modification of the binary
decision parameters. The Gini impurity for a dataset with C
categories is defined as

1 −
C∑

j=1

p2
j, (C1)

where p j represents the fraction of data which is of category
j. If the resulting dataset is entirely of one type (often called a
“pure” node), for example, p1 = 0 and p2 = 1, then the Gini
impurity will be zero. But if the dataset is exactly mixed, p1 =
p2 = 0.5, then the Gini impurity will be 0.5.

For regression, our training criteria is instead the mean-
squared error,

MSE = 1

N

N∑
j=1

[yi − f (xi )]
2, (C2)

where yi represents the label associated with the ith input xi

and f represents the regression model. Then each parameter
of a tree is optimized via a gradient descent algorithm to
minimize the error.

2. Performance metrics

To measure the quality of our classification models, we
adopt the F1 score, with results for all trained models given in
Table I. The F1 score can be understood as the harmonic mean
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FIG. 7. Multiscale polynomial featurization. Here we perform polynomial featurization on 4, 5, and 10 equally spaced sections of a sample
echo response. The top row is the full echo, while each subsequent row shows evenly spaced sections of the full echo. The polynomial
fit is given by the dashed red line. The coefficients of the cubic polynomial fit to each section serve as new features for our classification
and regression models. The initial three hundred pointwise features are transformed into 4 × (4 + 5 + 10) = 76 features (i.e., the number of
polynomial parameters times the number of unique sections).

between two common classificiation metrics, the precision
(Pr) and recall (Rc) scores. All three are defined below based
on the relative rates of true positives (TP), false positives (FP),
and false negatives (FN) from the model:

Pr = TP

TP + FP

Rc = TP

TP + FN
(C3)
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FIG. 8. Classification of kernel type based on the total value of
the kernel integral from the time-series data. [(a)–(c)] Confusion
matrices for the results of the models trained on each unique W
range. [(d)–(f)] Feature importance for each model based on Gini
impurity.

F1 = 2 × Pr × Rc

Pr + Rc
.

To assess the quality of our regression models, we use the
R2 score:

R2 = 1 −
∑

i[yi − f (xi )]2∑
i(yi − ȳ)2

, (C4)

where yi are the true values, f (xi ) are the predicted values, and
ȳ is the mean of all values in the training set.

3. Out-of-bag estimation

When optimizing a random forest model, the decision trees
are repeatedly fit to bootstrapped subsets of the observations
such that each “bagged” tree uses around two-thirds of the
total observations [33]. The remaining one-third of the ob-
servations not used to fit a given bagged tree constitute the
out-of-bag (OOB) observations. We then predict the response
for a given observation using each of the trees in which that
observation was OOB. This effectively allows one to treat
each element of the dataset as both a training and testing
element, as the OOB labeling system ensures predictions of
that observation do not use any trees that were trained on
it. In order to obtain a single prediction over many trees,
we average over all predicted responses (regression) or take
a majority vote (classification). After an OOB prediction is
obtained for each element of the dataset, the overall OOB
MSE or classification error is computed. The resulting OOB
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FIG. 9. Classification of kernel type based on the total value of
the kernel integral from the multiscale polynomial featurization of
echo responses. [(a)–(c)] Confusion matrices for the results of the
models trained on each unique W range. [(d)–(f)] The top 10 features
in each model, averaged over 10 iterations with different random
seeds. The most important features are plotted at the top, with the
width of the bar giving the time window of that polynomial fit and
the color giving the power of the coefficient.

error is a valid estimate of the test error, since the response
for each observation is predicted using only the trees that
were not fit using that observation. In our work, we utilize
the oob_score functionality in Sklearn [34].

4. Polynomial featurization

To turn pointwise data into polynomial features, we simply
subdivide the time series into N equal sections and then fit
a cubic polynomial

∑
i cixi in each section. This process is

shown for an example spin-echo simulation in Fig. 7.
Polynomial featurization can provide clearer physical in-

sight into the behavior of complex magnetic responses.
Specifically, the curvature and slope of each feature is cap-
tured in the c2 and c1 terms, while the mean and any nonlinear
or ringing behavior is captured by the c0 and c3 coefficients.
Feature ranking these coefficients reveals the region and shape
of the response that is most important when predicting a
physical property.
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FIG. 10. Feature ranking for W regression models. [(a)–(c)]
The median pointwise feature importances when predicting W us-
ing (a) the complete dataset, (b) a dataset with only long-range
interactions (power), and (c) one with only short-range interac-
tions (nonpower). [(d)–(f)] The top 10 polynomial features for
each model, averaged over 10 iterations with different random
seeds.
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FIG. 11. Feature ranking for L regression models. [(a)–(c)] The
median pointwise feature importances when predicting L using
(a) the complete dataset, (b) a dataset with only long-range in-
teractions (power), and (c) one with only short-range interactions
(nonpower). [(d)–(f)] The top 10 polynomial features for each model,
averaged over 10 iterations with different random seeds.

5. Classification with W screening

In Fig. 8 we present the confusion matrices and rela-
tive feature importance for the power-law classifier models
trained within reduced ranges of the total interaction strength
(W ) value, using the time-series features. In Fig. 9 we
show the same results but now for the polynomial fea-
tures. All models significant improvement by reducing the
false-error rate of power-law simulations (the results for the
non-power-law simulations are similar to the nonscreened
models).

6. Feature importance for regression models

In Fig. 10, we present the relative feature importances
of both the time-series and the polynomial featurizations
for a W regression model. Included are results for the
model trained on the complete dataset (“All Kernels”) as
well as for models trained on only the power-law kernels
(“Long Range”) and the nonpower kernels (“Short Range”).
Figures 11 and 12 show the relative feature importances for
the L and αx regression models, respectively. In all models,
the data near the echo time τ = 200 µs are the most important,
with the pre-echo shoulder near τ = 170 µs also of relevance
in some.
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FIG. 12. Feature ranking for αx regression models. [(a)–(c)] The
median pointwise feature importances when predicting αx = αy us-
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interactions (power), and (c) one with only short-range interac-
tions (nonpower). [(d)–(f)] The top 10 polynomial features for
each model, averaged over 10 iterations with different random
seeds.
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