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High-fidelity Raman matterwave control by composite biased rotations
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Precise control of hyperfine matterwaves via Raman excitations is instrumental to a class of atom-based
quantum technology. We investigate the Raman matterwave control technique for alkaline-like atoms in an
intermediate regime characterized by the single-photon detuning where a choice can be made to balance the
Raman excitation power efficiency with the control speed, excited-state adiabatic elimination, and spontaneous-
emission suppression requirements. Within the regime, rotations of atomic spinors by the Raman coupling are
biased by substantial light shifts. Taking advantage of the fixed bias angle, we show that composite biased
rotations can be optimized to enable precise ensemble spinor matterwave control within nanoseconds, even for
multiple Zeeman pseudospins defined on the hyperfine ground states and when the laser illumination is strongly
inhomogeneous. Our scheme fills a technical gap in light pulse atom interferometry for achieving high-speed
Raman spinor matterwave control with moderate laser power.
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I. INTRODUCTION

From inertial and gravity sensing [1–4] to quantum sim-
ulation [5,6] and computation [7–12], atom interferometric
sensing of spin- and spatial-dependent interaction is highly
useful for atom-based quantum technology. Operating the
interferometry technique in the quantum regime [13–16] re-
quires high-fidelity coherent control of spinor matterwaves.
However, for generic reasons associated with phase-space
density limitations, atomic wave function, and ballistic expan-
sion, as well as the imperfect optical field collimation itself, a
free-space matterwave can hardly be sufficiently localized in
space to be immune to inhomogeneous optical field broaden-
ing. To this end, the composite pulse (CP) technique originally
developed in nuclear magnetic resonance (NMR) [17–21] be-
comes particularly useful for realizing error-resilient “spinor
matterwave gates” with light in order to achieve ultrahigh-
control fidelity. However, a prerequisite for achieving the goal
is to rapidly manipulate the isolated pseudospins defined on
pairs of atomic levels before any decoherence occurs, and
even before the atoms move.

Pioneering efforts toward precise control of two-level
atomic “spinor” matterwaves based on two-photon Raman
excitations were made during the development of light
pulse atom interferometry [22–25] and ion-based quantum
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information processing [9,26]. As in Fig. 1(a), here the atomic
pseudospin is defined on a pair of ground-state hyperfine
levels split by ωHF in frequency, referred to as |↓〉, |↑〉. The
k1,2 optical pulses with duration τc, Rabi frequencies �1,2, and
optical frequency difference ω1 − ω2 = ωHF resonantly drive
the spin-flip while transferring the h̄kR photon momentum to
the spinor matterwave (kR = k1 − k2). For short enough τc so
that the atomic motion is negligible, the spinor matterwave
can be uniformly controlled by a Raman coupling �R on
the Bloch sphere [Fig. 1(c)] for realizing, e.g., matterwave
splitters and mirrors [27]. To perfect the Raman matterwave
controls, the two-level atomic spinors need to be isolated from
multilevel excitations and spontaneous emission. To manipu-
late macroscopic samples, the control needs to be designed
in a manner insensitive to the laser intensity inhomogeneity
[24,25,28–30]. To this end, an important parameter for the
Raman control is the single-photon detuning �. To ensure a
laser-intensity-independent two-photon detuning δ, highly im-
portant for precision measurements, a moderate single-photon
detuning � < ωHF is typically chosen to nullify the differen-
tial Stark shift [31]. But this choice of � fundamentally limits
the control fidelity associated with spontaneous emission.
Furthermore, associated with the excited-state-elimination re-
quirements [32], the moderate � also limits the available
Raman control speed for mitigating low-frequency noises,
including those due to the atomic motion [30,33,34]. Sepa-
rately, for Raman control of microscopically confined ions,
a THz-level � comparable to the fine-structure splitting ωF

can be chosen to minimize the Stark shifts [35]. However,
since �R ∝ 1/�, the technique can hardly be applied to
macroscopic samples without either substantially sacrificing
the operation speed or requiring enormous laser power.

In this work, we report the systematic development
of a method to construct fast Raman control of spinor
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FIG. 1. Comparison between the resonant Raman controls in
the MR (a),(c) and BR (b),(d) regime. (a),(b) The level diagrams.
(c),(d) Bloch sphere representation of the optical Raman control
under the two-level approximation. The radial array of light arrows
denotes available rotation axes n for the generalized Raman Rabi
vectors ��R = (�R cos ϕ, �R sin ϕ, δ). For (c) with δ = 0 (MR, with
I1/I2 adjusted according to Ref. [31]), the axes are on the equator.
For (d) the axes are biased by θb = tan−1(δ/|�R|) (BR, with the
I1/I2 ratio set as unity here). Gray curved lines represent typical spin
trajectories during a π rotation in the two cases. (e) Minimal gate
infidelities I for the rotation Rx (π ) vs � with numerical simulation
on the 87Rb D1 line (Appendix A, with ωhfs,e = 0). Four lines in blue
(MR) and green (BR) from light to deep represent minimal achiev-
able errors at ωHFτc/π = 20, 50, 100, 200, respectively. The dashed
line denotes the long-time limit, which is evaluated by increasing τc

to 1000π/ωHF. The features near �/ωHF = 2 are due to multiphoton
resonances. Notice here that the simple N = 2 double pulse scheme
requires θb < 45◦, corresponding to �/ωHF > 1.618 for I1/I2 = 1
(Appendix C). Part (f) gives the bias angle θb in the (e) simulation.

matterwaves in an unconventional regime of single-photon
detuning �. Our work is motivated by the observation that
between the conventional choices of � for light pulse atom
interferometry and trapped-ion quantum information process-
ing, ωHF < � � ωF, the typically unfavored nonzero Stark
shift to the two-photon detuning δ is proportional to the

Raman Rabi frequency �R. The Raman controls are therefore
rotations of atomic spins on the Bloch sphere with the axes
biased by a fixed angle θb from the equator [Fig. 1(d)]. The
proportionality ensures simple composite strategies [36–38]
for driving universal qubit gates for the spinor matterwave
within nanoseconds where atomic motional effects including
the two-photon Doppler shifts become negligible [28,29,33].
Furthermore, since within this biased rotation (BR) regime
the errors in the detuning δ and intensity I are perfectly
correlated, a simple SU(2) optimization strategy can be ap-
plied to achieve precise ensemble control [18,19] of large
alkali samples, even with a focused, nonuniform laser beam.
Unbounded by traditional choices of single-photon detuning
� [31,35], our scheme conveniently supports the adjustable
balance of Raman excitation optical power efficiency with
the requirements of the control speed and/or the suppression
of excited-state dynamics for coherently transferring a large
amount of photon recoil momenta to specific samples in a
spin-dependent manner [5,6,22,39], and for achieving precise
spinor matterwave control in quantum-enhanced atom inter-
ferometric applications [13–16].

II. BIASED ROTATION

We consider the Fig. 1(a) Raman configuration. The trav-
eling pulses with electric field envelopes E1,2ei(k1,2·r+φ1,2 ) and
duration τc drive the |↑〉 − |e〉 and |↓〉 − |e〉 Rabi couplings
�1,2 (solid double arrows), as well as the �′

1,2 (dashed double
arrows) with the ground states interchanged. With a large
single-photon detuning � 
 1/τc, the excited levels |e〉 can
be adiabatically eliminated from the ground-state dynamics
[32]. While both �1,2,�

′
1,2 are proportional to E1,2, efficient

|↓〉 ↔ |↑〉 Raman matterwave coupling can only be induced
by �1,2 when ωHF 
 1/τc, since the counter-rotating Raman
transitions induced by �′

1,2 are energetically suppressed by
the hyperfine splitting. An effective Hamiltonian to describe
the ground-state spinor can be written as

H = − 1
2 h̄δσz + 1

2 h̄|�R|(σx cos ϕ + σy sin ϕ). (1)

Here σx,y,z are Pauli matrices. The Raman Rabi coupling
�R = �∗

1�2/2�, with phase ϕ = φ2 − φ1, can be designed
by shaping the pulse envelopes E1,2. The δ = δ↑ − δ↓ in
Eq. (1) is the two-photon detuning by the Stark shifts,

δ = |�1|2
4�

+ |�′
2|2

4(� − ωHF)
− |�2|2

4�
− |�′

1|2
4(� + ωHF)

. (2)

For short enough τc [40] and with spatially uniform in-
tensities I1,2 = |E1,2|2 [41], the delocalized spinor matterwave
|ψ (r)〉 = ψ↓(r)|↓〉 + ψ↑(r)eikR ·r|↑〉 can be uniformly con-
trolled with a single set of (δ,�R ) parameters by Eq. (1).
Practically, to achieve ultraprecise matterwave control with a
precision similar to that for internal spins [42–44], particularly
for large samples with inhomogeneous I1,2 [see Fig. 2(a),
inset], the spinor matterwave control must be achieved in an
intensity-insensitive manner. In particular, the dependence of
δ on I1,2 can be suppressed at moderate � < ωHF, which we
refer to as a “magic ratio” (MR) regime [Figs. 1(a) and 1(c)],
by tuning the I1/I2 ratio [31].

In this work, instead of minimizing the dependence of δ on
I1,2 [26,31,35], we focus on Raman spinor matterwave control
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FIG. 2. (a) Performance of an Rx (π ) gate with CP-BR (b = 0.3, � = 3.6ωHF, green) and CP-MR (b = 0.0, � = 0.5ωHF, blue). The
infidelity I averaged over εA/A = ±50% is plotted vs mA. The dashed lines give the Eq. (5) spontaneous-emission limit. The solid lines with
points give I according to SU(2) calculations superimposed on the spontaneous-emission loss. The circle symbols give I according to full-level
87Rb D-line simulation, with the SU(2)-optimized {ϕ j}opt and edge-smoothed |�R(t )|, τc = (mA + π/2 − 1)τπ , with τπ = 100/ωHF = 7.4 ns.
The top insets give typical I vs εA/A, before the ensemble average, by the optimal pulse with a phase profile {ϕ j}opt [before the |�R(t )| edge-
smoothing], with mA = 2.5 (i) and mA = 4 (ii). The solid lines and circle symbols correspond are from two-level and full-level simulations,
respectively. (b) I vs subpulse number N , evaluated with the two-level model, with other parameters by (a,i) and (a,ii). (c) I vs amplitude
error range εM, evaluated with the two-level model, with other parameters by (a,i) and (a,ii) denoted by small diamond and square symbols,
respectively. The lower and upper dotted lines denote the spontaneous-emission limit of (i) and (ii), respectively. Here, during both optimization
and evaluation, amplitude deviation uniformly samples εA ∈ (−εM, εM)A for each data point.

within ωHF < � � ωF so the two-photon shift δ is substan-
tial. Correspondingly, the spin rotation axes as in Fig. 1(d) are
biased from the equator of the Bloch sphere by

θb = tan−1(δ/|�R|). (3)

Although the θb-bias appears inconvenient, for matterwave
Raman control with uniform I1,2, the bias is easily compen-
sated for by simple composite pulses [36–38]. The simplest
idea of double-pulse [36] BR is illustrated in Fig. 1(d). Here,
as long as θb < π/4, then a double-pulse Raman control
can be synthesized for Rx(π ), a π -rotation of spin along
the x-axis. The first subpulse with Raman “Rabi vector”
��R = (|�R| cos ϕ, |�R| sin ϕ, δ) transports the state vector to
the equator during 0 < t < τc/2. The second subpulse, with
ϕ → ϕ + π realized by introducing a relative π phase-jump
between E1,2 [Fig. 1(b)], completes the spin inversion during
τc/2 < t < τc.

To illustrate the BR advantages in real atoms, in Fig. 1(e)
we compare the performance of the exemplary Rx(π ) rotation
(U = −iσx) on the 87Rb D1 line (Fig. 4) [45] in the MR
regime (� < ωHF, with suitable I1/I2 to nullify δ [31]) with
those achievable in the BR regime (� > ωHF with a fixed
I1/I2 = 1). The gate fidelity is defined as

F = 1

6

6∑
j=1

|〈ψ j |U †Ũ |ψ j〉|2. (4)

Here U is the target operator in the {|↑〉, |↓〉} = {|↑0〉, |↓0〉}
spin-space, defined on the 87Rb 5S1/2 clock transition (Fig. 4)
for now. The Ũ = P̂σ T̂ e−i/h̄

∫ τc
0 Heff dt P̂σ is the actual D1 evolu-

tion operator projected to the spin space (P̂σ is the projection
operator), evaluated by integrating the Schrödinger equa-
tion with the non-Hermitian Hamiltonian Heff = H0 − i �̂

2 .
The H0 describes the full vectorial laser-atom interaction,
while �̂ describes the spontaneous emission from |e〉, detailed
in Appendix A. The gate fidelity is obtained by averaging a set
of {|ψ j〉, j = 1, . . . , 6} initial states, which are the three pairs
of eigenstates for σx,y,z [46]. A large F ensures high-quality
SU(2) rotation independent of the initial atomic states, which
is key to performing coherent spinor matterwave control.

We emphasize that the Eq. (1) Hamiltonian is obtained
by adiabatically eliminating excited levels |e〉 [32] and ig-
noring the counter-rotating �′

1,2 Raman terms, both requiring
the optical fields to vary as slowly as possible. To maintain
the associated approximations, the optical pulses with du-
ration τc are “sine-shaped” (Appendix A) to minimize the
impact of nonadiabatic |e〉 excitations and counter-rotating
couplings. To simplify the analysis, in the Fig. 1(e) example
only, the excited-state hyperfine splitting ωhfs,e is set to zero
to fully suppress the leakages of atomic population among
the Zeeman sublevels for the linearly polarized pulses [30,47]
(Appendix A). The infidelity I = 1 − F degrades at short τc,
since the shorter τc is associated with a stronger spectra com-
ponent to excite |e〉. By increasing τc to 100π/ωHF and for,
e.g., � > 2.5ωHF, nonadiabatic excitations to |e〉, including
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those associated with multiphoton resonances, are effectively
suppressed. In this |e〉-elimination limit where the hyperfine
rotating-wave approximation is also well-satisfied, the gate
dynamics follows the Eq. (1) SU(2) model [Figs. 1(c) and
1(d)] with the infidelity I reaching a minimal spontaneous-
emission error Isp associated with the dressed ground states,

Isp = ηA�/�. (5)

Here A = ∫ τc

0 |�R|dτ is the Raman pulse area for completing
Rx(π ). The factor η of order unity depends on the detuning
� and the choice of I1/I2 ratio. For example, in Fig. 1(e)
this spontaneous-emission limit is given by the dashed lines
(except the 1 < �/ωHF < 1.618 interval where the simple
two-pulse BR fails at I1/I2 = 1). For this fictitious 87Rb
example, the Fig. 1(e) results clearly demonstrate the BR
advantages, with F > 99.8% achievable at τc = 100π/ωHF

and � > 2.5ωHF, which cannot be reached in the traditional
MR regime even in the long-τc limit. We note that this BR-
to-MR advantage is more pronounced with increased �/ωHF

ratio in lighter alkalis, and when ωhfs,e is included, as will be
discussed with Fig. 2 on more sophisticated CP with intensity-
error resilience.

III. COMPOSITE-BR WITH DESIGNED ROBUSTNESS

Practically, as illustrated in the inset of Fig. 2(a), the op-
tical Raman control of large samples is prone to �R ∝ √

I1I2

amplitude errors associated with intensity inhomogeneity. For
the pulsed controls, the amplitude error is characterized by a
distribution of deviation {εA} from the designed Raman pulse
area A. Separately, the two-photon detuning δ in Eq. (1) can
also be broadened [31], such as by the two-photon Doppler
shift if the atomic sample has substantial velocity distribution
along kR [29,34,48]. The common resolution to suppressing
the errors associated with the (εA, εδ ) deviations relies on
ensemble optimal control techniques [18,19], which can be
implemented with composite pulses [17,20,29,48].

Here, with τc ∼ 100π/ωHF within tens of nanoseconds for
typical alkalis, the errors induced by the two-photon Doppler
shifts (denoted as δoff , to be discussed later) are typically
negligible in cold atomic samples [24,25,30] and collimated
atomic beams [22]. The Stark-shifted δ = b|�R| is propor-
tional to |�R| with the bias ratio b = tanθb. At a fixed I1/I2

and for a fixed pair of atomic levels to form the {|↑〉, |↓〉}
pseudospin [Figs. 4 and 3(a)], then the εδ and εA errors are
perfectly correlated to support a simpler CP-BR strategy. To
optimize the robustness of CP-BR, we split an A-area Raman
pulse into N equiangular subpulses [21] with Raman phases
ϕ j . The full evolution operator

Ũ (N )(A, b; {ϕ j}) =
N∏
j

Ũ (A/N, b; ϕ j ) (6)

becomes a product (multiply from left) of the single-pulse
propagators Ũj = Ũ (A/N, b; ϕ j ). We then optimize the fi-
delity averaged over the list of {εA} deviation of interest for
realizing a certain operation U ,

F (A, b; {ϕ j}) = 〈F (N )(A + εA, b; {ϕ j})〉{εA}. (7)

FIG. 3. CP-BR for Rx (π ) to address multiple hyperfine atomic
spins. (a) The level diagram marks {|↑m〉, |↓m〉} subspins defined
on the 87Rb ground-state hyperfine manifold. (b) The optimal phase
profiles {ϕ j}opt with A = 4π [for (c) and (e)] and 5.5π [for (d) and
(f)] [N = 80, before the |�R(t )| edge-smoothing, see Appendix A].
(c),(d) Performance of the ensemble optimized CP-BR in the pa-
rameter space I(A + εA, b) vs (εA/A, b), with A = 4π, 5.5π ,
respectively. The red and orange bars suggest the range of (εA/A, b)
for the ensemble control of m = 0 and ±1 subspins, respectively.
Dashed green lines label the 1% level. The corresponding color bar is
shown on the top of (c). (e),(f) I vs εI/I for m = 0 (red) and m = ±1
(orange) subspins. The solid lines and circle symbols are from the
two-level and full-model simulations, respectively. Among them, the
optimization in (c) and (e) only averages εA along the red bar (m = 0
with b = 0.3) while the optimization in (d) and (f) averages {εA, b}
combinations along both the red (m = 0 with b = 0.3) and orange
(m = ±1 with b = 0.35) bars.

Here F (N )(A + εA, b; {ϕ j}) is evaluated according to Eq. (4),
but with Ũ replaced by Ũ (N )(A + εA, b; {ϕ j}). In this
work, benefitting from the simple Ũ (A/N, b; ϕ j ) expression
[Eq. (C4)], the GRAPE (gradient ascent pulse engineering)
optimization (Appendix D) [49] is performed at the SU(2)
level with Eq. (1) first. The optimal {ϕ j}opt are then transferred
to the full model [Eq. (A1)] to validate the applicability of the
CP-BR to real atoms.

An example of optimal Iopt (A) = 1 − Fopt (A) for Rx(π )
with improved amplitude-error resilience is shown in Fig. 2(a)
versus pulse area number mA = A/π (circle symbols). Here,
for the Eq. (7) optimization, the amplitude deviation uni-
formly samples εA ∈ (−0.5, 0.5)A. The bias ratio is set as
b = 0.0 (MR, with � = 0.5ωHF) and b = 0.3 (BR, with � =
3.6ωHF). As in the Fig. 2(b) examples, we typically find
N/mA > 3 to be enough for CP to reach the optimal perfor-
mance. On the other hand, to help mitigating nonadiabatic
|e〉 excitation, we set large enough N = 80 subpulses so
that the optimal {ϕ j}opt can become quasicontinuous in time.
The phase symmetry in Fig. 2(a,i-ii) is associated with the
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x-rotation [50]. With Eq. (5), we include the minimal Isp into
the SU(2) Iopt, after straightforward light intensity average.

From Fig. 2(a) we observe increasingly efficient suppres-
sion of the average infidelity Iopt (A) with larger pulse area
number mA, which is expected since redundant rotations on
the Bloch sphere can be phased to improve the control robust-
ness [17,20,51–53]. Interestingly, the enhancement to Iopt (A)
with A displays stepwise features near certain integers mA,
which are associated with an increased number of perfected
I (A) within the ±50% εA/A distribution, as shown by the
Fig. 2(a)(i,ii) examples. The features could merit additional
study in the future. Here, we note that increasing the average
A leads to increased Isp to limit the achievable Iopt. For the
particular ensemble control with the required error resilience,
a balance is met at a suitable A0 for Iopt (A0) to reach its
minimum. For the Iopt at the SU(2) level, we already see that
the Rx(π ) gate in the BR regime performs substantially better
when addressing the εA/A = ±50% amplitude distribution,
with BR-Iopt (A0) ≈ 0.5% reached at A0 ≈ 5.5π , as com-
pared to MR-Iopt (A0) ≈ 2% at A0 ≈ 4π , due to the better
suppression of spontaneous emission.

In addition, we vary the amplitude-error range εM as εA ∈
(−εM, εM)A to study the performance of CP-BP optimized
for various degrees of amplitude error resilience. As plotted in
Fig. 2(c), the I with A = 2.5π and 4π reaches their individual
spontaneous-emission limits (points with zero amplitude error
range) with εM = 0.15 and 0.35, respectively. Clearly, if the
control robustness can be compromised, such as in specific
applications with a limited pulse-area broadening, then the
CP-BR pulses with a smaller average pulse area can reach a
better spontaneous-emission limited performance.

We now apply the SU(2)-optimized {ϕ j}opt to the full 87Rb
D1 model. As detailed in Appendix A, to mitigate nonadi-
abatic excitations to the |e〉 states during this step, |�R| ∝√

I1I2 is edge-smoothed from a τc = mAτπ square pulse into a
τc = (mA + 1)τπ sine-shaped pulse (Appendix A), before the
splitting into the N equal-area subpulses to associate with the
quasicontinuous {ϕ j}opt. Since δ ∝ |�R|, the reshaped Raman
pulse retains the full control advantages at the SU(2)-level
by Eq. (1). In light of Fig. 1(e), we set the “π time” τπ =
100π/ωHF for the Fig. 2 simulation, with circle symbols to
represent the associated BR-Iopt and MR-Iopt.

In Fig. 2 we find that the BR-Iopt in the full model
only degrades slightly from that by the two-level model. In
contrast, the full model MR-Iopt (blue circle symbols) de-
grades substantially from the SU(2) prediction. Similar to
Fig. 1(e), part of the degraded performance in both cases
is associated with nonadiabatic |e〉 excitations. In addition,
with the ωhfs,e = 0.12ωHF excited-state hyperfine splitting
for 87Rb [45] restored, the �m = ±2 spin leakage [47]
among the Zeeman sublevels is retained at a ωhfs,e/� level,
during the �m = 0 Raman excitation driven by linearly po-
larized pulses [Eq. (B2)] [30]. Due to the moderate � =
0.5ωHF, the spin leakages more severely affect MR-Iopt. We
note that within nanosecond τc, the spin-leakage among the
Zeeman sublevels cannot be easily suppressed by the tra-
ditional bias-field method that sufficiently lifts the Zeeman
degeneracy [31,54]. A CP-BR-compatible, large enough � 

ωhfs,e is therefore important for isolating the target atomic

spins [Figs. 3(a) and 4] during the fast spinor matterwave
control.

Finally, we revisit the category of error sources that brings
z-component variations to Raman Rabi vectors. First, we note
that in both the BR and MR regime the detuning δ-error can
be introduced by uncorrelated fluctuation of I1,2 intensities.
Such fluctuations are well-suppressed in the retroreflection
geometry for Raman interferometry [31] where the Raman-kR

direction is controlled, e.g., by optical delays [30,55]. Be-
sides the Stark-shifted δ = b|�R|, there are “bare” offsets δoff

associated with Doppler and Zeeman shifts, as well as any
time-dependent differential phase shifts to E1,2. These offset
introduces error at the δoffτc level. For example, for 87Rb with
τc ∼ 100π/ωHF, we expect CP-BR to maintain F > 99% in
the presence of MHz-level δoff broadening (see Appendix F).
This level of detuning tolerance is sufficient for typical cold
atom and atomic beam experiments.

With the negligible δoff , we consider CP-BR with a spe-
cial kind of designed robustness—parallel control of multiple
spin species with different bias ratios b [30]. This ability
can potentially be useful for precision measurements [56]
and quantum information processing [57,58]. As illustrated
in Fig. 4 with the 87Rb example, for a generic alkaline atom
with I > 1/2 nuclear spin and when addressing {|↑m〉, |↓m〉}
pseudospins defined on the F = I ± 1/2 hyperfine levels
[Fig. 3(a)], with m = mF , both the Raman Rabi frequency
�R,m and the bias ratio bm become m-dependent [30,48].
We consider the linearly polarized composite pulse (Fig. 4)
design to address all the {|↑m〉, |↓m〉} subspins of 87Rb. The
optimization to achieve resilience against laser intensity error
εI/I ∈ (−0.5, 0.5) [Figs. 3(c) and 3(d)] is again performed at
the SU(2) level first to obtain {ϕ j}opt, which is then transferred
to the full model. Figures 3(c) and 3(e) results are optimized
for the m = 0 subspin only, covering εA ∈ (−0.5, 0.5)A with
A = 4π at b = 0.3. In contrast, Figs. 3(d) and 3(f) results are
optimized to balance the performance for all the m = 0,±1
subspins, covering εA ∈ (−0.5, 0.5)A with A = 5.5π at
b = 0.3 (m = 0) and A = 4.7π at b = 0.35 (m = ±1). The
parameter coverages are marked with red (m = 0) and orange
(|m| = 1) lines in the Figs. 3(c) and 3(d) parameter-space
2D plot of I. The optimized phase {ϕ j}opt for the compos-
ite pulses is given in Fig. 3(b). The full model results in
Figs. 3(e) and 3(f) are again with the pulse profile edge-
smoothed at τπ = 100π/ωHF, as those for Fig. 2 (Fig. 4).
According to Fig. 3(f), we find Iopt ≈ 9 × 10−3 for the com-
posite Rx(π ) gate when addressing all the 87Rb subspins with
the ±50% laser intensity distribution. This performance is
only slightly compromised from the single m = 0 subspin
result in Fig. 2(a), where Iopt (5.5π ) ≈ 7 × 10−3 is reached.
We numerically confirm that the fidelity is unaffected by po-
larization impurity of the Raman beams at the 1% level. The
overall performance can be further improved with larger A
by increasing � in proportion to maintain a low spontaneous-
emission level.

IV. DISCUSSION AND OUTLOOK

Unlike microwave controls of quantum systems, which
usually take place within a subwavelength volume with a
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uniform control intensity [42,44,59–62], optical controls are
often far more prone to intensity inhomogeneities [63,64].
Nevertheless, high-fidelity control of macroscopic atomic
samples is achievable by implementing NMR-inspired com-
posite pulses [17–21], at properly chosen frequency ranges
and timescales, where complications associated with multi-
level excitation, spontaneous emission, and the atomic motion
itself can be suppressed.

This work revisits spinor matterwave control techniques
based on Raman excitations. Our work focuses in a regime
of Raman control with � = O(ωHF) that supports high-speed
operation with τc ∼ 100π/ωHF within nanoseconds, only lim-
ited by the ground-state hyperfine splitting. This choice of
� leads to substantial light shift to the two-photon detun-
ing δ. However, we have shown that taking advantage of
perfect correlation between the δ and �R errors, composite
biased rotations can be optimized for precise ensemble spinor
matterwave control, even for multiple Zeeman pseudospins
and when subjected to inhomogeneous laser illumination. We
note that the ability to parallelly control multiple Zeeman
pseudospins in neutral atoms can potentially be useful for
cosensing of magnetic fields [56] during, e.g., inertial sensing
and for ancillary steering of quantum information [57,58].
Related to the underlying geometric robustness [53,65], we
find the optimal CP-BR to be fairly tolerant to the pulse
parameter errors themselves, too (Appendix G). We also no-
tice that beyond error suppression, CP-BR can be designed
to enhance the parameter selectivity [21], such as for im-
proving the spatial resolution when addressing arrays of
samples [66].

So far, we have ignored the common Stark shift δcom =
(δ↑ + δ↓)/2 to the spinor matterwave dynamics [31]. In
the absence of spin-motion separation, i.e., with |ψ↓(r)|2 ∝
|ψ↑(r)|2, then the common Stark shift does not affect
the spinor coherence central to the interferometric mea-
surements. However, after the spin-dependent momentum
transfer, spin-motion separation develops necessarily in an
interferometry sequence for sensing the spatial-dependent in-
teractions, including those due to any spatially varying δcom. A
standard technique to counter the inhomogeneous δcom broad-
ening relies on introducing additional sidebands to the E1,2

pulses with opposite Stark shifts [67], or, by taking advantage
of nanosecond operations, to fire additional phase-trimming
pulses in the time domain [30]. In the former case, the bias
angle θb can be modified by the additional sidebands, which
should be included during the CP-BR optimization.

Previously, high-speed spinor matterwave control at the
nanosecond level was mostly considered for manipulating
microscopically confined ions [7–9,12], typically involving
THz-level single photon detuning � in the case of Raman
excitation. By operating at tens of GHz detuning �, our
proposal has the obvious advantage of reducing the laser
intensity I ∝ � requirement for the Raman control, thereby
supporting rapid control of macroscopic samples even with
milli-Watt level laser power [30]. More generally, the CP-
BR method supports a suitable single-photon detuning � to
balance the optical power efficiency with the requirements on
the control speed and/or the suppression of excited-state dy-
namics. In addition to supporting the quantum-enhanced atom
interferometry technology [13–16] for free-space samples,

the CP-BR method can be particularly useful for tailor-
ing repetitive, large-momentum-transfer-enhanced control of
macroscopic samples moving at high speeds, such as for inter-
ferometric rotation sensing [2] and nanolithography [68] with
lightly collimated, high-flux atomic beams. To this end, we
anticipate further developments of wide-band pulse shaping
techniques [69,70] for generating powerful, arbitrarily sha-
peable nanosecond pulses for spinor matterwave control of
increasingly large atomic samples.
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APPENDIX A: FULL NUMERICAL MODEL

The numerical simulation in this work is based on the full
light-atom interaction Hamiltonian on the D1 line of 87Rb, as
schematically illustrated in Fig. 4, with the 5P1/2 hyperfine
splitting ωhfs,e = 2π × 814.5 MHz [45] adjusted to zero when
necessary.

In Fig. 4, the Zeeman-degenerate hyperfine states are la-
beled as |em〉, |↑m〉, |↓m〉 with magnetic quantum number
m = mF , respectively. We consider counterpropagating laser
pulses, E1,2 = e1,2E1,2ei(k1,2·r−ω1,2t ) + c.c., with perpendicular
linear e1,2 [30], shaped slowly varying amplitudes E1,2(r, t ),
and Raman-resonant carrier frequency difference ω2 − ω1 =
ωHF = 2π × 6.835 GHz [45] to address the ground-state
atom. Following the discussion in the main text, the effective,

FIG. 4. Schematic diagram for the full 87Rb D1 model. We con-
sider counterpropagating k1,2 and linear ⊥ linear polarization, with
the quantization axis along ez [30]. The “edge-smoothed” wave-
forms are highlighted. At � 
 ωhfs,e, the hyperfine dynamics is
decomposed into those within {|↑m〉, |↓m〉} subspins (m = −1, 0, 1),
with suppressed m-changing leakages [Eq. (B2)]. The {|↑〉, |↓〉} =
{|↑0〉, |↓0〉} subspin for Figs. 1(e), 1(f), and 2 is highlighted.
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non-Hermitian Hamiltonian is

Heff (r, t ) = h̄
∑
e,l

(ωe − ωe0 − i�e/2)σ el el

+ h̄
∑

c=↑,↓,m

(ωc − ωg0)σ cmcm

+ h̄

2

∑
c=↑,↓

∑
e,m,l

� j
cmel

(r, t )σ cmel + H.c. (A1)

Here ωe0, ωg0 are decided by the energy of the reference
level in the excited- and ground-state manifolds, respectively,
chosen as the top hyperfine levels in this work. The laser Rabi
frequencies,

�
j
el ↑m (↓n )(r, t ) ≡ −〈el |d · e jE j (r, t )| ↑m (↓n)〉

h̄
, (A2)

are accordingly written in the ωe0,g0 frame under the rotating-
wave approximation. The d is the atomic electric dipole
operator. The σ ↑mel = |↑m〉〈el |, σ el ↑m = |el〉〈↑m | are the rais-
ing and lowering operators between states | ↑m〉 and |el〉.
Similar σ operators are defined for all the other | ↑m〉, | ↓n〉,
and |el〉 state combinations. In accordance with the discus-
sions in the main text, Eq. (A1) can also be expressed as
Heff = H0 − i�̂/2, with �̂ = �

∑
e,l σ el el , � = 1/(27.7 ns) to

be the D1 linewidth [45].
Numerical evaluations of Ũ and the Eq. (4) gate fidelity

F in the main text follow the Ref. [30] recipe based on the
Eq. (A1) Hamiltonian here. In particular, the radiation damp-
ing is reflected in the decreasing norm of the wave function
|ψ〉 [71]. During the gate fidelity evaluation, since any spon-
taneous emission is associated with complete decoherence,
we only need to consider the non-Hermitian evolution without
any quantum jump [72,73].

In the numerical simulations for Figs. 2 and 3 in the main
text, we smooth the rising and falling edges of the area A
square pulse. For that purpose, the pulse duration is first
elongated from τc = mAτπ to τc = (mA + 1)τπ . Next, the
first and last τπ/2 are reshaped to form the sine-shaped rising
and falling edges (see Fig. 4), thereby slowly ramp up |�R|
from zero to its maximum and back according to sin2(t/τπ ).
Finally, the edge-smoothed pulse is divided into N equal-area
parts to associate with the phase profile {ϕ j} of interest.

APPENDIX B: REDUCTION
TO THE TWO-LEVEL MODEL

We refer readers to Ref. [30] for the reduction from
Eq. (A1) to the Eq. (1) spinor Hamiltonian in the main text
for the spinor {|↑〉 = |↑m〉, |↓〉 = |↓m〉} defined on a pair of
hyperfine Zeeman sublevels (Fig. 4). Here we generally note
that with a slight rotation of the H0 basis and by expressing
(after a hyperfine rotating wave transformation)

Heff = H + V ′ − i�̂/2, (B1)

then the V ′ term includes all the unitary corrections from
the full model, including the m-sensitive light shifts and
couplings. For the linearly polarized e1,2 that only drives
the �m = ±2 leakages among Zeeman sublevels [47], the

leakages are associated with a coupling strength:

�±2 = O

(
ωhfs,e

�

)
�R. (B2)

Therefore, increasing � suppresses the spin leakage. Other
terms in V ′ corrections are at least 1/�2-suppressed too, ex-
cept for the (m-insensitive) δcom common shift as discussed
in Sec. IV. In the large � limit so that the V ′ contribution to
atomic state dynamics vanishes, the decay loss by �̂ is decided
by the linewidth of the instantaneous “dressed” ground states,
as discussed in the main text with Eq. (5).

APPENDIX C: BIASED ROTATION

Following Eq. (A1), we consider a spinor |{|↑〉〉 =
|↑m〉, |↓〉 = |↓m〉} defined on a pair of ground-state hyperfine
Zeeman-sublevels. As depicted in Fig. 1(a), resonant Raman
coupling is induced by �1,2 to coherently couple |↑〉 and |↓〉,
forming an effective spin-1/2 system subjected to the Eq. (1)
Hamiltonian. The two-photon shift by Eq. (2) is δ = δ↑ − δ↓
with

δ↑ = |�1|2
4�

+ |�′
2|2

4(� + ωHF)
,

δ↓ = |�2|2
4�

+ |�′
1|2

4(� − ωHF)
. (C1)

Notice while �1,2,�
′
1,2 ∝ √

I1,2, the relative strengths be-
tween �1,2 and �′

1,2 are determined by the associated dipole
transition matrix elements. Here, we consider the example of
I1 = I2 when driving the spinor defined on the D1 line so that
|�1,2| = |�′

1,2| = �. In this case,

δ = δ↑ − δ↓ = |�|2
4(� + ωHF)

− |�|2
4(� − ωHF)

= − |�|2ωHF

2(� + ωHF)(� − ωHF)
, (C2)

with a bias ratio

b = tan θb = δ

�R
= − �ωHF

(� − ωHF)(� + ωHF)
. (C3)

At an arbitrary pulse area A, the SU(2) evolution is de-
scribed by a propagator

U (A, b, ϕ) = 1 cos
φ̃

2
− i sin

φ̃

2

σx cos ϕ + σy sin ϕ + bσz√
1 + b2

(C4)

with rotation angle φ̃ = √
1 + b2A. As illustrated in Fig. 1(b)

in the main text, due to the finite b, the available rotating axes
n are biased from the equator by a fixed angle θb, for which
we refer to the associated SU(2) controls as “biased rotation”
(BR).

APPENDIX D: GRAPE OPTIMIZATION

We use a gradient-based optimization algorithm called
GRAPE (gradient ascent pulse engineering) [49] to optimize
the target gates. Specifically, for each phases ϕi at each
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iteration, its gradient is

gi = −∂F
∂Ũ

∂Ũ

∂ϕi
. (D1)

The ∂F/∂Ũ is obtained from Eq. (4) directly, while the sec-
ond term is

∂Ũ

∂ϕi
= ŨN · · · Ũi+1

∂Ũi

∂ϕi
Ũi−1 · · · Ũ1. (D2)

The Ũ ′
js are evaluated by Eq. (C4). We further have

∂Ũ

∂ϕ
= −i sin

φ̃

2

σy cos ϕ − σx sin ϕ√
1 + b2

. (D3)

During the optimization for the A-error resilience, the gra-
dients are averaged over a list of errors {εA},

gi(A, b; {ϕ j}) = 〈g(A + εA, b; {ϕ j})〉{εA}. (D4)

The analytical evaluation of the propagators and gradients at
SU(2) level helps to improve the computational efficiency and
precision for the GRAPE optimization.

APPENDIX E: π/2 GATE

Our discussions of CP-BR in the main text exploit the
Rx(π ) example. In this Appendix, we present an additional ex-
ample of Rx(π/2) with amplitude-error resilience. The results
are presented in Fig. 5. Similar to the Rx(π ) case, the am-
plitude deviation uniformly samples εA ∈ (−0.5, 0.5)A. The
bias ratio is again set as b = 0.0 (MR, with � = 0.5ωHF) and
b = 0.3 (BR, with � = 3.6ωHF). The Iopt (A) versus A for
the case of CP-BR (green line and symbols) shows stepwise
features, similar to the Rx(π ) case in Fig. 2. Comparing to the
Rx(π ) results, here the “plateau” pulse area A following sig-
nificant improvements to Rx(π/2) (mA = 2 and 3.5 in Fig. 5)
is approximately π/2 less, which is somewhat expected as
the desired π/2 rotating angle of Rx(π/2) is π/2 less than
that for Rx(π ). Similar to the Rx(π ) results in Fig. 2(a), the
performance of the full-model I degrades more substantially
for the MR case, due to the more severe spin-leakage as
discussed in the main text. The apparently more severe BR-I
degradation is actually due to the improved fidelity for the
Rx(π/2) at the SU(2) level here (green circle symbols), com-
pared to the Rx(π ) case, which makes the difference more
apparent.

APPENDIX F: ROBUSTNESS TO BARE
TWO-PHOTON DETUNING ERROR

In the main text, we clarified that errors induced by
bare two-photon detuning δoff , such as those associated with
Doppler and Zeeman shifts, become negligible when δoffτc �
1 during the nanosecond control. In this Appendix, we use
the Fig. 2(i) example to quantify this statement. As shown
in Fig. 6, without any tailored optimization, the CP-BR so-
lutions are naturally immune to δoff at the 99% level within
the δoff/�R ∼ ±0.05 range. Using 87Rb with τπ = 100π/ωHF

as an example, the robustness range of δoff is around 2π ×
7 MHz, which covers well the Doppler and Zeeman shifts in

FIG. 5. CP-BR for Rx (π/2). Parts (a),(b) correspond to
Fig. 2(a)(i) in the main text, but with A = 2π . Parts (c),(d) corre-
spond to Fig. 2(a)(ii) in the main text, but with A = 3.5π . These
pulse areas are highlighted in (e) near the plateaus after the stepwise
improvements to I occur.

typical interferometric experiments. Since the CP-BR is opti-
mized on the δ-|�R| plane along a line with “tilted” angle θb,
CP-BR naturally have a certain level of immunity to δoff along
the δ-axis. Further enhanced δoff -tolerance can be achieved by
tailored optimization of F at the expense of either reduced F
or increased pulse area requirements.

FIG. 6. Infidelities I of CP-BR for Rx (π ) against bare two-
photon detuning and amplitude errors. Here we choose the CP pulse
with bias ratio b = 0.3 and A = 4π , as in Fig. 2(i).
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APPENDIX G: NONPERFECT IMPLEMENTATION

In Fig. 2 in the main text and Fig. 5, here we have shown
that CP-BR achieves high-fidelity control (F > 99%) in the
presence of εA ∈ (−0.5, 0.5)A amplitude errors. However, in
real experiments, one can never implement CP with perfect
amplitudes and phases as desired. To test the robustness of our
CP solutions against nonperfect implementations, we consider
the Rx(π ) example in Fig. 2 for a case study by evaluating
the CP-BR performance in the presence of random noise
among the subpulses. For each test, the random amplitude
deviations uniformly sample between ±σ , so that the relative
amplitude of each subpulse is between C̃i = (1 ± σ )Ci. The
average I from 100 random tests is plotted against the max-
imum noise level σ in Fig. 7(a) with solid lines, while still
covering the εA ∈ (−0.5, 0.5)A mean amplitude error. The
shadings suggest the 90% variance from these 100 tests. The
red, blue, and green lines correspond to pulse areas and pulse
number as (mA, N ) = (4, 20), (4, 80), (5.5, 80), respectively.
For mA = 4 and N = 20, the nonperfect CP implementation
starts to impact the control fidelities when the noise level is
larger than 5%. From Fig. 7 we also see that a larger pulse
number N supports a stronger tolerance to waveform imper-
fections. For the mA = 4 and N = 80 cases, the maximally
allowed deviations can be as large as 10% while maintain-
ing target fidelity. On the other hand, for large pulse area

FIG. 7. Performance of CP-BR for Rx (π ) with b = 0.3, with
random amplitude and phase noises distributed among the N
subpulses. The red, blue, and green lines denote (mA, N ) =
(4, 20), (4, 80), (5.5, 80), respectively. (a) I as those in Fig. 2(a) per-
turbed by random amplitude noise vs the noise level. (b) I as those
in Fig. 2(a) perturbed by random phase noise vs the noise level.

A so that the actual pulse area per subpulse increases, the
maximally allowed random noise level decreases. The case
of random phase noise is similar to the case of amplitude,
as in Fig. 7(b). Practically, we note that accurate wave-
forms with a precision better than 95% can be programed
directly with a wide-band optical waveform generation tech-
nique developed recently [69,70] after moderate waveform
calibration.
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