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Long distance electron-electron scattering detected with point contacts
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We measure electron transport through point contacts in an electron gas in AlGaAs/GaAs heterostructures and
graphene for a range of temperatures, magnetic fields, and electron densities. We find a magnetoconductance
peak around B = 0. With increasing temperature, the width of the peak increases monotonically, while its
amplitude first increases and then decreases. For GaAs point contacts the peak is particularly sharp at relatively
low temperatures T ≈ 1.5 K: the curve rounds on a scale of a few tens of microteslas, hinting at length scales
of several millimeters for the corresponding scattering processes. We propose a model based on the transition
between different transport regimes with increasing temperature: from ballistic transport to few electron-electron
scatterings to hydrodynamic superballistic flow to hydrodynamic Poiseuille-like flow. The model is in qualitative
and, in many cases, quantitative agreement with the experimental observations.
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I. INTRODUCTION

Electron transport can often be described by a semiclas-
sical picture of charged particles moving through a material
and interacting with impurities, phonons, and sample bound-
aries. The two widely used models of electron flow—ballistic
and diffusive (Ohmic)—correspond to two opposite limits
within this picture. Ballistic transport usually describes the
situation with few impurities and phonons, so that electrons
mostly scatter with the sample boundaries, while the diffusive
flow represents the case where momentum relaxation occurs
mostly in the bulk of the system.

This picture changes considerably if electron-electron scat-
tering becomes significant. In clean systems, where the
electron-electron mean free path lee is much shorter than both
the characteristic sample size and the transport mean free path
lτ , electron transport is similar to viscous flow of a classical
fluid. This is known as the viscous (or hydrodynamic) electron
transport regime [1].

Viscous electron flow was observed in different materials,
including GaAs [2–5], graphene [6–8], PdCoO2 [9], WP2
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[10], and WTe2 [11]. Experimental evidence for hydrody-
namic behavior comes from superballistic flow through point
contacts [4,7], negative nonlocal resistance [3,6], the Gurzhi
effect [2], Stokes flow [12], and scanning probe experiments
investigating Poiseuille flow [11,13–15]. Most experiments
were performed at zero magnetic field. Magnetic fields high
enough that the cyclotron radius becomes the shortest relevant
length scale in the system will eventually eliminate hydrody-
namic effects [16]. However, the intermediate regime of small
magnetic fields offers an interesting playground where several
length scales compete. A magnetic field introduces a Lorentz
force acting on the electron system. Furthermore, it modifies
the viscosity and adds a second viscosity coefficient, usually
called the Hall viscosity [16–18]. The interplay of viscous
flow and magnetic field was experimentally investigated in a
vicinity geometry [8] as well as in channels wider than the
electron-electron mean free path [19,20].

In this paper we focus on one of the simplest possi-
ble structures in two-dimensional electron gases (2DEGs):
point contacts (PCs). Electron transport through the PCs at
low temperatures is well understood and, in general, can
be explained well within ballistic approximations. It was
shown before that at higher temperatures hydrodynamic ef-
fects begin to play a significant role: at zero magnetic
field the conductance exceeds the fundamental ballistic
(Sharvin) limit due to the collective movement of electrons
reducing momentum loss. This effect was predicted theoret-
ically [21] and observed experimentally in graphene [7] and
GaAs [4].
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Nonzero magnetic fields add further complexity to the sys-
tem: a peak in the magnetoconductance is observed around
zero magnetic field at elevated temperatures (≈10 K in GaAs
PCs). This peak was observed previously in GaAs PCs [22,23]
and was associated with electron-electron interactions. Here
we expand on these early observations for PCs in GaAs
2DEGs and investigate the nonmonotonic behavior of the
magnetoconductance peak as a function of temperature, car-
rier density, and split-gate voltages. Peculiar properties of
the conductance peak that were previously unnoticed include
extreme sharpness of the peak (rounding on a scale of a
few tens of microteslas) at relatively low temperatures (T <

2 K) and slow disappearance of the peak at high tempera-
tures (T > 10 K). Furthermore, we demonstrate that some of
these effects can be observed in graphene PCs at ≈100 K,
which is the temperature range where viscous flow occurs in
graphene [7].

We argue that the observations can be explained by a
continuous transition between different transport regimes with
increasing temperature. At very low temperatures (T < 1 K
for GaAs PCs) transport is mostly ballistic. At 1 < T <

2 K electron-electron interactions become more important,
and the system is not ballistic but is also not yet fully
hydrodynamic. This transitional regime results in a small,
but very sharp, peak. At higher temperatures lτ � lee, and
electron transport becomes hydrodynamic. For T < 10 K the
PC width d remains small compared to the other relevant
length scales. Electron transport is superballistic; the peak
in the magnetoconductance is present. At even higher tem-
peratures d becomes comparable to or smaller than the
electron-electron mean free path, and electron transport starts
to resemble Poiseuille flow. As a consequence, the peak in
conductance becomes less pronounced and eventually almost
disappears. For graphene PCs the relevant temperatures are
generally higher, and we observe only ballistic and super-
ballistic regimes. The model that we present agrees with our
observations qualitatively and, in most cases, quantitatively.

II. METHODS

In this paper we use both GaAs and graphene devices.
The first device is based on an AlGaAs/GaAs heterostruc-

ture with a 2DEG 200 nm below the surface. The global
patterned back gate allows us to change the electron density
between 1.5 × 1011 and 2.7 × 1011 cm−2 [24]. The low-
temperature (below 1 K) mobility is up to 7 × 106 cm2/Vs,
corresponding to a transport mean free path of more than
60 µm. The device has the shape of a large multiterminal
Hall bar (1800 × 400 µm2) with several top-gate-defined PCs
(lithographic width d = 250 nm) in the central part of the Hall
bar.

The second device comprises monolayer graphene encap-
sulated between hexagonal boron nitride (hBN) crystals with
a graphite back gate. The stack is made with the standard
dry-transfer technique and is placed on top of a silicon chip
with SiO2 surface. The Hall bar shape of the device and the
PCs are etched through the top hBN crystal with reactive
ion etching. The widths of the PCs are dnarrow = 150 nm and
dwide = 350 nm.

All linear conductance measurements were performed in
4He and 4He / 3He systems at temperatures between 0.25 and
25 K for the GaAs device and between 4.2 and 120 K for the
graphene device. Standard lock-in techniques at 31 Hz were
used. The carrier densities n were measured using the clas-
sical Hall effect (GaAs) and Shubnikov–de Haas oscillations
(graphene). The magnetic field B is always perpendicular to
the surface of the sample. All measurements are four-terminal.
For the GaAs device, only one pair of top gates was used at a
time, with all other top-gates grounded.

III. MEASUREMENTS

First, measurements in the GaAs device were performed.
Below the data for one PC are presented; the data for other
PCs were consistent with these observations and displayed
similar features (see Appendix B).

Figure 1(a) shows an example curve for PC conductance
G as a function of B at T = 1.3 K and n = 2.7 × 1011 cm−2.
The overall behavior is well known: the conductance increases
linearly with |B| [25] until the onset of Shubnikov–de Haas
oscillations, which for this sample is visible above |B| >

200 mT. A peak in conductance is present around B = 0.
First, we focus on a relatively narrow temperature range

between 1.3 and 4.3 K [Fig. 1(b)]. The magnetoconductance
peak becomes more pronounced with increasing temperature
and less pronounced but sharper with decreasing tempera-
ture. Figure 1(c) shows �G(B, T ) = G(B, T ) − G(0, T ) as
a function of B in a narrow range of B. Note that at low
temperature T = 1.3 K the peak is rounded on a scale of a
few tens of microteslas. Features of this size in magnetic field
are, in general, highly unusual in electron transport and, to the
best of our knowledge, were not reported for AlGaAs/GaAs
heterostructures before.

Second, we explore the properties of the peak in a wider
temperature range. Figures 2(a) and 2(b) show the conduc-
tance G of the PC as a function of B and T for two different
electron densities, n = 2.7 × 1011 and 1.5 × 1011 cm−2, re-
spectively. For the higher electron density a small step in
conductance occurred at T = 13.6 K, which we attribute to
a random impurity being charged or discharged close to the
PC; in order to compensate for it, the conductance above this
temperature is multiplied by 0.997.

The background increase in conductance with |B|, men-
tioned above, is clearly present at low temperatures and
becomes less pronounced with increasing temperature. The
peak in conductance around B = 0 is present at all T > 0.5 K
and is most visible around T ≈ 12 K.

The amplitude of this peak first increases and then de-
creases with temperature, with the maximum being around
≈10 K for all measured electron densities. The maximum
is placed at slightly higher temperatures for higher electron
densities. The width of the peak along the magnetic field axis
increases monotonically with temperature for all densities.
The details of G(B) can be seen as line cuts at constant
temperatures in Figs. 2(c) and 2(d).

Similar behavior was observed for all available electron
densities in several PCs in this device as well as in a PC in
a different GaAs device (no back gate, fixed electron den-
sity of 1.8 × 1011 cm−2, mobility up to 4.1 × 106 cm2/Vs,
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FIG. 1. (a) shows the conductance of a GaAs PC as a function of magnetic field G(B) at electron density n = 2.7 × 1011 cm−2 and
temperature T = 1.3 K. The inset shows an AFM image of the PC. The range close to B = 0 (gray area) is shown in more detail and for
temperatures between T = 1.3 K and T = 4.3 K with a step of �T = 0.3 K in (b). In (c) we further zoom into a very small range of B.
Conductance with respect to the peak value for each temperature �G(B, T ) = G(B, T ) − G(0, T ) is shown. The curves in (c) are vertically
offset for clarity.

PC width d = 500 nm; see Appendix B). For as long as the
PC was defined, the top-gate voltage VTG and therefore the
effective width of the PC affected the amplitude of the peak
but not its width along the magnetic field axis. Some indi-
cations of the conductance peak are present even in a very

wide PC (lithographic width d = 4 µm; see Appendix B for
details).

Similar, but quantitatively different, effects were observed
in graphene PCs (Fig. 3) at temperatures ≈100 K. Fig-
ures 3(a)–3(e) show the normalized conductance G(B, T )

FIG. 2. Conductance of a GaAs PC G as a function of magnetic field B and temperature T . (a) and (c) correspond to the electron density
n = 2.7 × 1011 cm−2; (b) and (d) correspond to electron density n = 1.5 × 1011 cm−2. The full data set is presented in 2D maps in (a) and
(b). The solid green lines represent Dν = RC (above the lines Dν < RC, below Dν > RC). The upper green dashed line represents lτ = 10lee;
the lower one represents lτ = lee. (c) and (d) show line cuts at constant temperatures of (a) and (b), respectively. The step in temperature
between two lines is 1.5 K for (c) and 1 K for (d). The lines are shifted artificially by 0.075e2/h for (c) and 0.1e2/h for (d). Large dots on
the lines correspond to the magnetic field value where Dν = RC (shown only for positive B). The dash-dotted black lines show the ballistic fit
(suppressed backscattering) for the two lowest temperatures. Calculations of Dν and RC use no fitting parameters; the ballistic fit calculations
use G(B = B0) as the only fitting parameter (here B0 = 2.5 mT is the effective zero of the magnetic field).
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FIG. 3. Conductance of graphene PC G as a function of magnetic field B and temperature T at different carrier densities. Negative carrier
densities correspond to holes; positive ones correspond to electrons. [(a)–(e)] Two-dimensional maps, with green dashed lines representing
the magnetic field values for which Dν = RC. Conductance is normalized by G0 = G(B = 0, T = 4.2 K) for each plot. [(f)–(j)] Line cuts at
constant temperatures (starting at 4.2 K, then going from 10 to 120 K with a step of 10 K). Magnetic field B such that Dν = RC is shown for
every temperature by an arrow of corresponding color. Red dashed lines show the ballistic fit (suppressed backscattering). Calculations of Dν

and RC use no fitting parameters; ballistic calculations use G(B = 0) as the only fitting parameter.

for different carrier densities n (positive n corresponds
to electrons) with corresponding line cuts presented in
Figs. 3(f)–3(j). At low temperatures we observe an increase in
conductance with increasing |B| due to suppressed backscat-
tering [25]. Unlike for GaAs PCs, there are oscillations
superimposed on the V-shaped background. These oscilla-
tions are not symmetric in B and decay with temperature. Fast
Fourier transformation of the curves provides a leading period
in magnetic field proportional to

√|n| and the corresponding
cyclotron radius RC ≈ 2.5 µm; these oscillations likely result
from magnetic focusing between the PCs and the narrow
voltage probes.

Like for GaAs PCs, we observe an increase of conductance
around B = 0 with increasing temperature. This behavior is
more pronounced and visible as a peak in G(B) for high hole
or electron densities [e.g., −2.9 × 1012 cm−2 for holes and
2.5 × 1012 cm−2 for electrons; Figs. 3(f) and 3(j)]. At lower
carrier densities the peak is not present, but there is still a
noticeable increase in G(B) around zero magnetic field at
higher temperatures [Figs. 3(h) and 3(i)].

In contrast to GaAs PCs, the conductance peak for
graphene PCs does not become very sharp at any measured
temperature or carrier density; that is, the rounding of the peak
always happens on a scale of tens of milliteslas.

IV. DISCUSSION

A. Hydrodynamic model

In this section we discuss possible explanations for the
conductance peak behavior as shown in Fig. 2 and propose
a quantitative model.

To begin with, we exclude possible explanations based
on a single-particle picture. The conductance peak is not a
classical size effect since the width of the peak depends sig-
nificantly on temperature, while the cyclotron radius does not.
Neither is it caused by weak antilocalization, as here the effect

becomes stronger with increasing temperature (at least up to a
certain temperature) and is not present in bulk measurements.
The observed effect is also not caused by the filling of a
second subband of the 2DEG: while this could produce a
peak of conductance around B = 0 [26] and the amplitude
of this peak could theoretically increase with temperature if
the occupation of the second subband increases, this effect
should strongly depend on electron density, which is not the
case here. No other single-particle effects seem to be able to
produce the observed behavior.

Both the temperature range in which the effect is observed
and the nonmonotonic temperature dependence suggest an
explanation related to electron-electron interactions. Below
we show that the viscous electron transport model can, indeed,
explain our observations.

First, let us consider B = 0. In this case the PC conduc-
tance can be written as the sum of two terms (the so-called
superballistic electron flow model [21]):

G = Gball + Gvis. (1)

The first part, Gball, is the same as expected for purely bal-
listic electron transport (Sharvin conductance [27]), Gball =
Ngvgs

e2

h , where N is the number of modes in the PC, gs is the
spin degeneracy, and gv is the valley degeneracy. The second
part, Gvis, is the viscous contribution, originating from the
Stokes equation (low Reynolds number, no magnetic field,
steady-state approximations):

�J − D2
ν∇2 �J = −σ0∇φ, (2)

where σ0 is the Ohmic “Drude-like” conductance due to im-
purities and phonons, φ is the electrostatic potential, �J is the
current density, and

Dν =
√

leelτ
2

(3)
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is the length scale responsible for viscous flow (also described
as the vorticity diffusion length) [28].

At high enough magnetic field, such that the cyclotron
radius RC = h̄kF

eB is much shorter than the length scale for
the viscous transport, hydrodynamic effects are not present,
and we recover the ballistic result. The conductance increases
with increasing |B| due to the suppression of backscattering
as Gball = 1

R0−|B|/en ≈ G0 + G2
0

|B|
en [25], with possible oscilla-

tions on top due to the Shubnikov–de Haas effect [here G0 =
Gball(B = 0)]. Higher temperatures remove the oscillations
and reduce the dependence of conductance on the magnetic
field due to electron-phonon scattering. If we use this formula
for Gball and extend the definition of Gvis to nonzero magnetic
field so that it is zero in high B, Eq. (1) becomes applicable in
both zero and high B.

The applicability of Eq. (1) in intermediate fields is not
known; however, if we assume a smooth transition between
zero B and high B regions, we arrive at a result that fits our
observations. Indeed, we experimentally observed a V-shaped
background in G(B) that becomes less pronounced at higher
temperatures, which corresponds to the results of ballistic
calculations [shown as dash-dotted black lines in Figs. 2(c)
and 2(d)]. On top of this, the viscous contribution Gvis creates
a conductance peak centered around B = 0 [see Fig. 3(a)].
This peak grows with increasing temperature as lee and lτ
become shorter (see Appendix A for the temperature depen-
dence of the length scales). Increasing the temperature further
(such that optical phonons become relevant) would eventually
destroy both ballistic and hydrodynamic effects and recover
purely diffusive behavior.

Next, we discuss the width of the conductance peak along
the magnetic field axis. A magnetic field introduces an addi-
tional Lorentz-like term to Eq. (2) and modifies the viscous
term; both additions have a corresponding length scale RC.
To the best of our knowledge, the analytical solution to the
resulting equation is not known, so we attempted to extract
some estimates from a comparison of the length scales. There
are three different length scales in this problem: RC from the
magnetic field, Dν from the original Stokes equation, and the
width of the PC d from the boundary conditions. d does not
depend on magnetic field or temperature and is not likely to
give us the observed nontrivial behavior of the conductance
peak. Therefore, dimensionality dictates RC ∼ Dν . Here we
hypothesize that RC = Dν is the transition point for electron
behavior: in this case, for RC > Dν some increase in conduc-
tance above the V-shaped background due to viscous effects
would still be present; for RC < Dν the superballistic behavior
would mostly be gone.

In order to compare this hypothesis with the experiment,
we numerically calculate lee [29] (see Appendix A for the
details) and extract lτ from the direct measurements of the
bulk resistance (the large size of the Hall bar allows the use
of the Drude model). Together these two mean free paths
give us the viscous length Dν (T ) [Eq. (3)]. From the as-
sumption RC = Dν we solve RC(B) = Dν (T ) and get BC(T )
for the transition in electron behavior. The solid green lines
in Figs. 2(a) and 2(b) and large dots in Figs. 2(c) and 2(d)
correspond to B(T ) = ±BC(T ) + B0, where experimental off-
set B0 = 2.5 mT. The hydrodynamic model is applicable only
when lτ � lee; in order to show the region of model validity

we add two green dashed lines to Figs 2(a) and 2(b): the
lower ones correspond to temperatures where lτ = lee, and
the upper ones correspond to lτ = 10lee. Indeed, we see that
the observed peak of conductance lies between the two solid
green lines and above the dashed ones, i.e., in the region where
Dν (T ) < RC(B) and the hydrodynamic model is applicable.
The positions of B(T ) = ±BC(T ) + B0 closely correspond
to the minima of G(B, T ). Consequently, the measurements
support the hypothesis that RC = Dν is the relevant condition.

The expected change in BC(T ) with experimental param-
eters is also consistent with observations. A lower electron
density gives higher values of BC at a given temperature,
which correspond to a wider peak in Fig. 2(b) compared to
Fig. 2(a).

Following the same approach as for GaAs, we compare the
cyclotron radius RC with the viscous length Dν for graphene.
We estimate lτ from the bulk resistance measurements. Unfor-
tunately, unlike in the GaAs device, the width of the Hall bar
and the distance between the contacts in the graphene device
are not large compared to lτ ; therefore, the Drude model
based calculations of lτ are not precise. The real transport
mean free path is likely longer than the calculated one. For
the estimate of lee we use the experimental and numerical
results from [7], where a similar device was used. We scale
lee to the electron densities in our measurements according
to lee ∼

√
n

ln(n) . The resulting BC(T ) is shown in Fig. 3. The
observed peak of conductance is somewhat narrower along
the magnetic field axis than the calculated BC; this can be
explained by the underestimated transport mean free path lτ .
Aside from this inconsistency, the experimental results for the
graphene device correspond to the suggested model.

B. Sharpness of the conductance peak

The extreme sharpness of the conductance peak does not
follow from the hydrodynamic model described above. In
addition, not only the size but also the shape of the peak
changes significantly with temperature: at low temperatures,
the peak is wide at the bottom and sharp at the top, while at
high temperatures it has a more rounded shape. This change in
shape hints at the presence of a second relevant length scale,
in addition to Dν , with a temperature dependence different
from Dν . This new length scale should be particularly large at
low temperatures (up to a few millimeters) in order to explain
the observations of the sharp conductance peak at T = 1.3 K
[Fig. 1(c)].

The hydrodynamic model is based on the assumption
of many electron-electron interactions before momentum is
dissipated, i.e., lτ � lee. At 1 < T < 2 K, however, this as-
sumption is not valid anymore for GaAs: lτ > lee, but lτ � lee

does not hold, and the number of e-e scattering events before
momentum is dissipated is not large. This transitional regime
between ballistic and hydrodynamic transport potentially of-
fers the additional length scale described above.

Let us consider a single electron e added above an equilib-
rium distribution, moving through a PC from left to right at
B = 0, represented by the blue arrow in Fig. 4(a). After trav-
eling for ∼lee (several microns at T ≈ 1.5 K; see Appendix A
for details), this electron scatters with another electron e′
from the equilibrium distribution [yellow star in Fig. 4(a)].
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FIG. 4. Schematic of the electron backscattering as a hole rele-
vant at low temperatures (1 < T < 2 K) in (a) zero and (b) nonzero
magnetic field. Black areas represent depleted parts of the 2DEG
forming the point contact. The electron moving through the PC is
shown with blue arrows, and the backscattered hole is shown with red
arrows. The electron-electron scattering event happens at the position
marked with a yellow star.

Electron-electron scattering tends to be a head-on collision
due to phase-space arguments [30–32]; that is, e′ was moving
toward the PC before the scattering event. In addition, d 	 lee

means that it is unlikely for either of the two electrons to move
toward the PC after the scattering event. Consequently, from
the point of view of the total current through the PC, the most
probable scattering event can be rephrased as an electron e
backscattering as a hole h toward the PC [red arrow in the
Figure 4(a)], where h represents the absence of e′ that had
been moving toward the PC. In this case holes are defined not
in a band structure meaning (as quasiparticles in the valence
band), but as quasiparticles missing from the equilibrium dis-
tribution in the conductance band.

This backscattered hole can go back through the PC and
provide additional current, leading to a small increase in con-
ductance. Multiple scattering events are also possible; that is,
an electron can backscatter as a hole, which can backscatter
again before reaching the PC as an electron, and so on. Here
we consider only a single scattering event.

Let us add a small magnetic field B perpendicular to the
2DEG. Now both the electron (before the scattering) and the
backscattered hole move in circular arcs, and their trajectories
do not coincide anymore. Figure 4(b) shows an example case
where the electron originates from one edge of the PC and the

resulting hole goes symmetrically through the PC at the other
edge. In this case it can be geometrically derived that

RC ≈ l2
ee

d
. (4)

Here we assumed RC � lee � d . Shorter RC (higher magnetic
field) would result in larger deviations between the trajectories
of the electron and the hole, preventing the hole from going
backward through the PC and eliminating this additional con-
tribution to conductance.

In a given temperature window Eq. (4) results in long
RC (up to several millimeters) and, consequently, small B
(≈ 10 μT). Below this value of B, the increase in conduc-
tance due to electron backscattering is mostly unaffected by
B; above this value, an increase in B would cause some of
the backscattered holes to miss the PC and would lead to a
decrease in conductance. This can explain the sharpness of
the conductance peak observed in the experiments.

The model is also consistent with a change in the peak
shape with temperature. In leading order, lee ∼ T −2. There-
fore, the magnetic field describing the sharpness of the peak
scales as B ∼ T 4. This temperature dependence is much
stronger than the one following from the hydrodynamic model
(Sec. IV A): B ∼ D−1

ν ∼ T 3/2 or slower (here the typical tem-
perature dependence for electron-phonon scattering is used,
lτ ∼ T −1, and impurities will lead to saturation at low T ; see
also Appendix A). Consequently, the sharpness of the peak
changes much faster with T (at low temperatures) than the
overall width of the peak [compare to Figs. 1(b) and 1(c)].

The simplified argument above gives us an estimate of the
length scale important for the problem. A complete model
would have to account for multiple factors, including the
angular distribution for the electrons arriving through the PC,
different possible distances between the PC and the first scat-
tering, multiple e-e scattering events, the finite possibility of
momentum-relaxing scattering, and the details of the electro-
static potential at the PC. Creating this detailed model goes
beyond the scope of this paper.

Interestingly, we observe the sharp conductance peak only
in GaAs devices and not in the graphene device. This can be
explained by the smaller size of the graphene device, which is
a technical limitation compared to GaAs: at low temperatures,
where the described effect is important, an electron moving
through the PC is more likely to scatter at a graphene flake
boundary and not with another electron, suppressing the rele-
vant contribution to the PC conductance at low magnetic field.

C. Peak amplitude

In the previous section we examined the transition regime
between hydrodynamic and ballistic electron transport at low
temperatures. Here we show that at higher temperatures there
is another change in the system’s behavior not predicted by
the hydrodynamic superballistic flow model. This can be seen
by analyzing the temperature dependence of the amplitude of
the conductance peak.

Following Eq. (1), which is applicable for the superbal-
listic flow model, the measured conductance is split into the
background Gball and viscous Gvis contributions. For each
temperature the V-shaped background is approximated as a
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FIG. 5. Conductance peak height �G for GaAs PC. (a) Example of the �G calculation for one temperature (7 K) and electron density
(2.7 × 1011 cm−2): the blue curve is the conductance G as a function of B at temperature 7 K and electron density 2.7 × 1011 cm−2. The red
dashed lines are linear fits at high magnetic field; �G is the excess conductance above the linear fits. (b) and (c) �G calculated this way is
shown as a function of temperature for two densities (blue dots). Hydrodynamic calculations of superballistic conductance contributions at
zero magnetic field are shown by yellow dashed lines for no-slip boundary conditions and purple dash-dotted lines for no-stress boundary
conditions.

linear fit from the high magnetic field data [see red dashed
lines in Fig. 5(a) for an example]. This fit is subtracted from
G(B) to acquire the zero B viscous contribution �G as the
height of the conductance peak. �G is shown as a function of
temperature for two different electron densities in Figs. 5(b)
and 5(c). �G is not presented for the entire temperature range
since at higher temperatures the linear parts of G(B) are not
visible and the linear fit is not well defined. Next, the theoret-
ically predicted viscous conductance contribution at B = 0 is
calculated (superballistic conductance) [21]:

Gth
vis = e2d2

eff

8h̄

√
πn

2

1

lee
, (5)

where n is the bulk electron density and deff is the effective
width of the PC. In general, deff is smaller than the litho-
graphic width d due to the side depletion below top gates.
Since the dependence of deff on temperature is weak, it can
be calculated in the ballistic case from the lowest temperature
zero B value of G:

deff = h

2e2

√
π

2nPC
G

∣∣∣
T =Tmin,B=B0

. (6)

The electron density in the PC nPC present in the equa-
tion above is significantly lower than the bulk density n. We
estimate it by comparing the Hall voltage and the diagonal
voltages in the quantum Hall effect measurement. The result
of the calculations is shown in Figs. 5(b) and 5(c) as yellow
dashed lines. However, Eq. (5) is derived under no-slip bound-
ary conditions, which is likely not the case for the gate-defined
GaAs PCs. A paper by Li et al. [33] predicted that for the
no-stress boundary condition Gvis should be two times higher
[purple dash-dotted lines in Figs. 5(b) and 5(c)].

The theoretical curves Gth
vis obtained in this way do not

match the experimental data �G. At low temperatures the
experimental and theoretical values of conductance are close,
but the experimental temperature dependence is weaker than
the theoretically predicted one. Indeed, the hydrodynamic
theory predicts Gth

vis ∼ 1/lee ∼ T 2 [neglecting the corrections
∼ log(T )], but the observed curves are much closer to linear
dependence (see Appendix B for the details).

At high temperatures the experimental curve �G decreases
with increasing T above a certain temperature. This decrease
in conductance does not follow from the superballistic flow

model, and it cannot be explained by Ohmic resistance of
the 2DEG in series with the PC either (the Ohmic resistance
needed for that is more than order of magnitude above the total
measured resistance of the system). Notably, for both elec-
tron densities at the maximum of Gvis the electron-electron
mean free path approaches lee ≈ 1.0 µm. If this experimen-
tal dependence continued to higher temperatures, the peak
would disappear at T ≈ 20 K for high electron density and
at T ≈ 12 K for low electron density. Both cases correspond
to lee ≈ 200 nm ≈ d (see Appendix A).

This observation suggests the following explanation. At
relatively low temperatures [i.e., 2 < T < 7 K for high
electron density; Fig. 5(b)] electron transport is mostly hy-
drodynamic, and the electron-electron mean free path is much
longer than the width of the PC (lτ � lee � d). Conse-
quently, the PC is the injection point for electrons, and all the
interactions happen in the 2DEG outside of the PC. This cor-
responds to the superballistic flow model, with the predictions
described in Sec. IV A. The conductance peak amplitude in-
creases with T , but the functional dependence does not agree
with the hydrodynamic prediction. Interestingly, a similar ap-
proximately linear dependence was observed previously for
the superballistic contribution of graphene PC conductance
[7]. While the two results cannot be compared directly due to
the different methods used to extract the viscous contribution
to the PC conductance, these observations hint that a more
comprehensive model might be needed.

At high temperatures (T > 18 K) electron transport is
still hydrodynamic, but the electron-electron mean free path
becomes comparable to or smaller than the width of the
PC (lτ � d � lee). Electron-electron interactions now hap-
pen in the PC itself, and the electron transport tends toward
Poiseuille flow through the channel rather than superballistic
transport through the small PC. No conductance peak G(B)
is predicted for the hydrodynamic flow through the channel,
and even the conductance peak from the classical size effect
would be suppressed by hydrodynamic effects [34]. The PC in
our experiment is not a long channel, but the top-gate-defined
potential provides a finite length of the PC which is more than
its width d .

Consequently, even within the hydrodynamic model sev-
eral regimes can be seen: superballistic flow is observed for
lower temperatures, and Poiseuille-like flow can be seen at
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FIG. 6. (a) Conductance of GaAs PC G as a function of magnetic field B for different top-gate voltages VTG. The temperature is fixed at
4.2 K, the electron density is 2.7 × 1011 cm−2. (b) Conductance peak as a function of B for different VTG, with the background V-shaped curve
subtracted as in Fig. 5. The inset shows the background conductance at effective zero magnetic field (for example, see the crossing point of
the two red dashed lines in Fig. 5). (c) Same data, but scaled along the vertical axis. The inset shows the scaling factor a as a function of the
background conductance at B = 0. The red dashed line is a linear fit. The scaling factor a is independent of B.

higher temperatures. At intermediate temperatures a gradual
transition between these two modes would be expected.

D. Scaling

The superballistic flow observed above (Sec. IV A) can be
additionally verified by examining G(B) at different top-gate
voltages VTG at a fixed temperature and electron density. It
can be shown that the curves can be scaled to collapse onto a
single curve and that the scaling parameter is close to the pre-
diction of the hydrodynamic model. For these measurements
we chose the temperature T = 4.2 K such that lτ � lee � d
and the model described in Sec. IV A is applicable [Fig. 6(a)].

Similar to the procedure used in the previous section, we
separate the measured conductance into the V-shaped ballistic
background and the hydrodynamic peak. Figure 6(b) shows
the peak of conductance Gvis with the ballistic background
subtracted for different values of VTG, while the inset depicts
the ballistic background conductance Gball at B = 0 as a func-
tion of VTG. The peak amplitude changes with VTG, while
its shape and width along the magnetic field axis are almost
constant. Below we analyze this observation and compare it
to the predictions of our model.

The amplitude of the peak explicitly depends on the effec-
tive width of the PC deff [Eq. (5)], which explains the change
in the amplitude with VTG. The constant shape of the observed
peak can be demonstrated by scaling the curves at different
VTG according to

a(VTG)Gvis(B,VTG) = Gscaled
vis (B,VTG), (7)

where the scaling parameter a depends only on VTG and is cho-
sen such that the mean square difference between the curves
is minimal. Indeed, it can be seen that the scaled curves coin-
cide [Fig. 6(c)]. The previously discussed model (Sec. IV A)
explains the constant width of the peak. The scaling behavior
for the shape of the peak does not directly follow from the
model; however, the model can be used to study the behavior
of the peak amplitude.

Below we consider the simple approximation of the PC as a
rectangular potential well, where VTG affects only the effective
width deff of the PC. In this case the ballistic conductance at

zero magnetic field would be proportional to the PC width
(Gball ∼ deff , which follows from the Sharvin formula), while
the viscous contribution Gvis ∼ d2

eff [Eq. (5)]. Therefore, one
can expect the relation a ∼ G−γ

ball between the scaling factor
a and the ballistic conductance Gball, where γ = 2. The inset
in Fig. 6(c) shows the corresponding double logarithmic plot
of the scaling parameter a as a function of Gball. The curve is
close to linear, and the extracted γ is between 1.5 and 1.8.
This shows that the amplitude of the peak increases faster
with VTG than the ballistic background. In the argument above
we ignored the dependence of the electron density in the
PC on VTG (which is considerable for the narrow PCs), so
some discrepancy between the measured and predicted γ is
expected.

V. CONCLUSIONS

We performed measurements of conductance through point
contacts in a GaAs 2DEG and graphene at different tempera-
tures, bulk carrier densities, and magnetic fields. At elevated
temperatures we observed a peak of conductance around zero
magnetic field. The width of the peak along the magnetic
field axis increases monotonically with temperature. The peak
amplitude first increases and then (at least for GaAs de-
vices) decreases with temperature. The shape of the peak
also depends on temperature. For GaAs devices, the peak is
particularly sharp (rounding on a scale of tens of microteslas)
at lower temperatures, T ≈ 1.5 K.

We proposed a model based on a transition between
different transport regimes and a comparison of relevant
length scales, which explained the observations qualitatively
and, in many cases, quantitatively. For GaAs point con-
tacts, the transition is from ballistic electron transport at very
low temperatures (no magnetoconductance peak) to the few
electron-electron interaction regime (small sharp peak) to hy-
drodynamic superballistic flow (the amplitude of the peak
increases) to hydrodynamic Poiseuille-like transport (the peak
slowly disappears). For graphene point contacts, only the first
and third transport regimes were observed directly, although
the last one should be possible at temperatures even higher
than available in our experiment.
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FIG. 7. Relevant length scales for GaAs as a function of temperature for electron densities (a) n = 2.7 × 1011 cm−2 and (b) n =
1.5 × 1011 cm−2. The solid blue line shows calculated the electron-electron mean free path lee, the dot-dashed red line shows the measured
transport (momentum-relaxing) mean free path lτ , and the dashed yellow line shows the viscous length Dν .
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APPENDIX A: RELEVANT LENGTH SCALES FOR GaAs

The transport mean free path lτ , also known as the
momentum-relaxing mean free path, was extracted from stan-
dard mobility measurements in the wide Hall bar geometry.
Viscous length Dν was calculated according to (3).

The electron-electron mean free path was calculated nu-
merically according to [29], assuming a spin-independent
scattering function in the random-phase approximation. The
formulas for the electron-electron scattering length lee of a
particle at energy ξ̃k = 1

kBT ( h̄2k2

2m∗ − EF ) (dimensionless, rela-
tive to the Fermi energy EF ) interacting with the equilibrium
Fermi sea at temperature T were acquired by combining
Eqs. (7), (17), (18), (32), and (33) of [29]:

lee(ξ̃k, T ) = π2h̄4
√

2πn3

m∗2w f b(kBT )2[1 − nF (ξ̃k )]
{

1
2

(
π2 + ξ̃ 2

k

)[
ln 8
2 + ln

( EF
kBT

)] − F (ξ̃k )
}
[1 + exp(−ξ̃k )]

, (A1)

where

F (ξ̃k ) = 1

2
[1 − nF (ξ̃k )]−1

∫ +∞

−∞
d ξ̃k′

∫ +∞

−∞
d ξ̃p ln |(ξ̃k′ − ξ̃p)(ξ̃k − ξ̃k′ )|nF (ξ̃p)[1 − nF (ξ̃k′ )][1 − nF (ξ̃k + ξ̃p − ξ̃k′ )], (A2)

w f b =
1 + (

1 + 1√
2rs

)−2

2
, rs = m∗e2

8π h̄2εε0
√

πn
, (A3)

and nF (ξ̃ ) = 1
1+exp(ξ̃ )

is a Fermi-Dirac distribution. The final result for the electron-electron mean free path (Fig. 7) follows from

the averaging of lee(ξ̃k, T ) weighed by the derivative of the Fermi-Dirac distribution:

lee(T ) =
∫ +∞

−∞
lee(ξ̃k, T )

(
−∂nF

∂ξ̃k

)
d ξ̃k . (A4)

APPENDIX B: ADDITIONAL MEASUREMENTS

Additional measurements were performed to confirm the
reproducibility of the results and provide further evidence for
the suggested explanations.

1. GaAs point contacts

Figure 8(a) shows conductance G of the GaAs PC de-
scribed in Secs. II and III as a function of top gate voltage
VTG for T = 1.3 K and T = 4.3 K. At low temperature, the
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FIG. 8. (a) PC conductance G(VTG ) for n = 2.7 × 1011 cm−2 and two temperatures, T = 1.3 K and T = 4.3 K. Two arrows denote values
of VTG where the magnetoconductance measurements were performed, which are shown in (b) and (c) as �G(B, T ) = G(B, T ) − G(0, T ). In
(b) and (c) the curves are offset for clarity; the step in temperature between the curves is 0.3 K.

standard conductance steps of 2e2/h are observed. At high
temperature, the conductance steps are much less pronounced,
and the overall conductance is increased more for higher
values of VTG. Measurements are performed at n = 2.7 ×
1011 cm−2.

Examples of �G(B, T ) = G(B, T ) − G(0, T ) in a narrow
range of B are shown in Figs. 8(b) and 8(c) for two different
values of VTG (one between the conductance plateaus, one
almost on the plateau). The observed behavior is the same for
these two cases.

In Sec. IV C the dependence of the amplitude of the mag-
netoconductance peak on T is discussed. The same data as in
Figs. 5(b) and 5(c) are shown in double logarithmic scale in
Figs. 9(a) and 9(b). The observed curves at low temperatures
are much better described by �G ∼ T than the �G ∼ T 2

expected from hydrodynamic theory. �G is defined as in
Sec. IV C.

Figure 10(a) shows the conductance of a different PC
with dimensions similar to the one described in Secs. II and
III, fabricated on the same GaAs wafer. Measurements were
performed at electron density n = 2.7 × 1011 cm−2. The ob-
served G(B, T ) is qualitatively and quantitatively similar to
the one presented in Fig. 2(a).

Figure 10(b) shows the conductance of a very wide con-
striction d = 4 µm (same GaAs wafer, density n = 2.7 ×
1011 cm−2). A weak magnetoconductance peak is present
around B = 0, although it is much less pronounced than in
the case of narrow PCs.

A similar conductance peak was observed in a different
GaAs wafer [Fig. 10(c)]. This wafer has no back gate, electron
density is n = 1.8 × 1011 cm−2, low-temperature mobility is
4 × 106 cm2/Vs, PC width d = 500 nm, and the 2DEG is
130 nm below the surface.

Instead of increasing the temperature of the sample, higher
bias voltage can be applied to achieve a qualitatively similar
effect of broadening of the Fermi distribution. Figure 10(d)
shows the conductance of the GaAs PC (wafer and geome-
try as described in Sec. II) as a function of B and applied
DC bias eVsd,DC/2kB. The measurements were performed at
T = 4.2 K, and applied bias is a sum of a small AC signal
for the conductance measurement and a large DC signal for
increasing the effective temperature of the 2DEG. The mag-
netoconductance peak around B = 0 is present for all applied
values of the DC bias. The peak width is almost constant
for eVsd,DC/2kB < 5 K, where the effective temperature of
the 2DEG is mostly defined by the lattice temperature and
therefore almost constant. The peak width increases with the
DC bias for eVsd,DC/2kB > 5 K, where the effective 2DEG
temperature is mostly proportional to the DC bias. This result
is in agreement with the temperature dependences G(B, T )
described above.

2. Graphene point contacts

Unlike monolayer graphene, bilayer graphene (BLG) de-
vices allow gate-defined structures and therefore better control

FIG. 9. Magnetoconductance peak amplitude �G (as defined in Sec. IV C) as a function of temperature shown in a double logarithmic scale
for two electron densities, n = 2.7 × 1011 cm−2 and n = 1.5 × 1011 cm−2. Dashed lines show linear and parabolic functions for comparison.
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FIG. 10. (a) Conductance G(B, T ) of a second GaAs PC on the same wafer as described in Sec. II, with electron density n = 2.7 ×
1011 cm−2 and lithographic width d = 250 nm. (b) Conductance G(B, T ) of a wide d = 4 µm GaAs PC on the same wafer. (c) Conductance
G(B, T ) of a GaAs PC on a different wafer (electron density of 1.8 × 1011 cm−2, mobility up to 4 × 106 cm2/Vs, PC width of 500 nm).
(d) Conductance G as a function of magnetic field B and DC bias voltage Vsd,DC for the original PC (as described in Sec. II), measured at
T = 4.2 K.

of geometry. Bilayer graphene is also known to show hy-
drodynamic behavior [8]. Unfortunately, the gap in the band
structure induced by the vertical electrostatic displacement
field in BLG is small compared to the band gap of conven-
tional semiconductors, such as GaAs. At temperatures high
enough for hydrodynamic effects (≈100 K) the current leak
through the depleted region below the top gates is significant
and prevents proper confinement in the PCs [35]. Regardless,
we attempted to measure the magnetoconductance peak in
the gate-defined PCs in the BLG device. The data shown
in Fig. 11 are measured at T = 95 K and electron density
n ≈ 2 × 1012 cm−2. The sample is sample I described in
Appendix E of [35]. A slight increase in conductance was
observed around B = 0. The effect is much weaker than in
monolayer graphene devices and was observed only in a
narrow window of parameters. In principle, higher displace-
ment fields can produce higher band gap and correspondingly
smaller leakage currents at high temperatures, potentially im-
proving the data quality. However, for our sample this was not
possible due to a leak between gates and graphene at higher
gate voltages. Further studies are needed in order to draw a

clear conclusion regarding the magnetoconductance peak in a
gate-defined BLG PCs.

FIG. 11. Conductance G(B) of a PC in a bilayer graphene sam-
ple, with T = 95 K. The measurement was repeated nine times;
each one is shown by a narrow line of a different color. Black dots
represent the average of the nine measurements.
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