
PHYSICAL REVIEW RESEARCH 5, 043085 (2023)

Stochastic heat engines beyond a unique definition of temperature
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When Carnot and Stirling initially conceptualized heat engines, temperature unambiguously represented our
everyday perception of cold and hot. However, as this energy scale is expanded to measure the strength of
noise in general nonequilibrium heat baths, such as those consisting of bacteria or active particles, it takes on
different definitions and connotations. This raises a fundamental question of whether and how thermodynamic
conclusions beyond a unique definition of temperature would deviate from our conventional understanding.
To address this inquiry, we investigate a colloidal Stirling engine governed by a large number of stochastic
dynamical systems. Within experimentally accessible parameter values, we discover certain exceptional active
engines that can outperform their passive counterpart, as notably claimed in a recent experiment involving a
bacterial bath. Our analysis shows that such heightened performance can be attributed to either a restoring effect
in noise or a significant dissipation kernel. The revealed influence of active baths on Stirling efficiency provides
further insights into their impact on maximum power output, Carnot efficiency, and Curzon-Alhborn efficiency.
The finding elucidates the origins of exceptional performance in stochastic heat engines, offers strategies for
harvesting energies from active noises, and sheds light on the effects of nonequilibrium temperature in stochastic
thermodynamics.
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I. INTRODUCTION

Temperature is a concept whose meaning can be as com-
prehensible as that in a fairy tale or as complex as that in
nonequilibrium physics. In the latter case, the interpretation
of temperature is usually not unique, which poses difficulties
in defining and understanding the nonequilibrium tempera-
tures. This subtle issue has emerged in various subfields of
physics, including glasses, sheared fluids, granular materials,
amorphous semiconductors, turbulent fluids, chaotic systems,
nuclear materials, and nanoscale systems [1–3]. Recently, it
has also entered stochastic thermodynamics, where a mystery
is whether and why, if any, a stochastic heat engine immersed
in an active heat bath can outperform its passive counterpart.
This concern arises from a noteworthy experimental observa-
tion conducted in a bacterial heat bath [4]. It raises an even
more fundamental question of how to imagine the tempera-
tures of an active bath that violate the fluctuation-dissipation
theorem and what the consequences are of adopting different
definitions. If we acknowledge that the applicability of ther-
modynamics, such as the concept of heat engine, is not limited
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to passive baths, then we are compelled to confront this elu-
sive temperature or, more rigorously, this temperature-related
energy scale. In contrast to the aforementioned subfields of
physics, the effects of such nonequilibrium temperature are
much less known in stochastic thermodynamics. This paper
carries out a comprehensive survey across a wide range of
systems, with the hope of filling the knowledge gap.

To this end, we consider a stochastic heat engine operat-
ing under cyclic environmental changes. These changes are
typically represented by different protocols in different pa-
rameter spaces, including spaces that differ in the definition
of temperature. Here, the two most widely used definitions of
temperature are adopted to deduce the explicit transformation
between different protocol representations. Under these rep-
resentations, we analyze how the heat, work, and efficiency
functionals depend on the trajectories of the engine state
(Fig. 1). These trajectories are generated by a broad collection
of dynamical systems, ranging from solvable theoretical mod-
els to real experimental systems. For each system, we provide
experimentally accessible parameter values for attaining high-
performance engines. The results summarized from these
systems clarify several paradoxical arguments regarding high
engine efficiency and reveal principles for achieving it. Some
of those unveiled mechanisms may have played a role in exist-
ing experiments, while others could be encountered in general
systems under cyclic variations of active heat baths. These re-
sults further indicate the relation between the nonequilibrium
temperature of active heat baths and other measures of engine
performance, like the Carnot efficiency, the maximum power
of the engine, and the Curzon-Alhborn efficiency.
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FIG. 1. The state x of a stochastic heat engine indexed by i
follows a trajectory of a stochastic dynamical system ẋ = Fi(x, ξi ).
This nonautonomous system has a cyclic variation in its parameters
and the statistics of noise ξi. Each trajectory x(t ) is assigned with
a functional of heat and work (Appendix A). Order the trajectories
from good to bad according to whether their stochastic efficiency
η̃ is high or low, which is the ratio of the work done to the heat
input along a trajectory [35]. Then all trajectories of the ith system
ẋ = Fi(x, ξi ) form a spectrum Si(x). The macroscopic efficiency ηi

of the heat engine governed by Fi(x, ξi ) would be high if Si(x)
contains more good trajectories. Criteria for generating such spectra
are summarized from several Fi(x, ξi ) in Sec. III and discussed in
Sec. IV. More details about η̃ can be found in Sec. V.

A paradigmatic example of the stochastic heat engine is
made of a colloidal particle under a cyclic variation of tem-
perature and confining potential [5–7]. If this engine is a
Stirling engine, its protocol contains four processes: Isother-
mal compression, iso-stiffness heating, isothermal expansion,
and iso-stiffness cooling (Figs. 2 and the text below Eq. (A5)).
When heating and cooling are performed by changing the
noise strength of a nonequilibrium bacterial heat bath, the effi-

FIG. 2. The protocol of a stochastic engine can be represented
by two distinct loops in two different spaces (k, T̂ ) (blue) and (k, T̄ )
(red) when the noise is active. These two spaces will converge to
a common space (k, T ) (yellow) with T = T̂ = T̄ when the active
noise reduces to a passive one. Here, the blue loop of efficiency
η̂NS

act (η̂S
act) in (k, T̂ ) is converted into the red loop of efficiency η̄S

act

(η̄NS
act ) in (k, T̄ ) by f (k) = T̂ /T̄ = (1 + kτ/γ )−1, which is the TR of

a colloidal heat engine subject to an Ornstein-Uhlenbeck noise, as
shown before Eq. (4).

ciency of the engine is experimentally shown to be higher than
that of its equilibrium counterpart [4]. This phenomenon was
attributed to non-Gaussian statistics of particle displacement
in that experiment. However, subsequent theoretical studies
explained that neither non-Gaussian nor persistent noise is
crucial for high efficiency [8–10]. So far, whether and under
which conditions a nonequilibrium engine can surpass the
efficiency of its passive version remains unsettled.

In the colloidal engine described above, there are two com-
monly used temperatures. One is defined by the diffusion of a
free colloidal particle through the Einstein relation, denoted
by T̄ [1,3,11]. The other is by the particle variance in the
equipartition theorem, denoted by T̂ [1,3,5,8,12,13]. Suppose
that this Brownian particle follows an overdamped Langevin
equation

γ ẋ = −∂xV + ξ, (1)

where x is the position of the particle, γ denotes the friction
coefficient, ξ represents the random noise of a heat bath,
and V = kx2/2 stands for a harmonic potential of stiffness
k. Then T̂ = k〈x2〉/kB, with kB the Boltzmann constant, and
T̄ = γ D/kB, with D the diffusion constant of the particle in
a potential-free space. For an equilibrium heat bath, the def-
initions of T̂ and T̄ yield the same value, which corresponds
to the thermal temperature T . However, for a nonequilibrium
heat bath, the definitions of T̂ and T̄ result in different values.
Therefore, we cannot have the equality relation T = T̂ = T̄ ,
and it becomes necessary to choose either T̂ or T̄ , or other en-
ergy scales, when a discussion requires addressing the concept
of temperature. In this case, both T̂ and T̄ are not the bona
fide temperature in equilibrium physics. A heat bath or an
engine is called passive (active) when the noise comes from an
equilibrium (nonequilibrium) bath. In an active bath, such as
that in Ref. [14], x is not necessarily Boltzmannian distributed,
and the fluctuation-dissipation theorem may not hold. An ex-
ception is a non-Gaussian white active noise with T̂ = T̄ [8],
which extends the equipartition relation to a nonequilibrium
context.

II. EFFICIENCY FUNCTIONALS IN DISTINCT
(k, T ) SPACES

Given a cyclic change in confinement and noise strength,
an engine protocol can be plotted as a loop in the (k, T̂ ) or
(k, T̄ ) space. A loop in (k, T̂ ) can be converted into another
loop in (k, T̄ ) by a given temperature ratio (TR) f (k) ≡
T̂ /T̄ = k〈x2〉/(kBT̄ ) and vice versa (Fig. 2 and Appendix A).
This function quantifies the difference between T̂ and T̄ , or
equivalently the deviation of k〈x2〉 from kBT̄ . If an engine is
a Stirling one in (k, T̄ ), it will have a rectangular loop in that
space and generally a nonrectangular loop in (k, T̂ ), and vice
versa. The efficiency of an active Stirling cycle η̄S

act in (k, T̄ )
[η̂S

act in (k, T̂ )] is then a function of the four corner positions
of the rectangular loop. In contrast, the efficiency of an active
non-Stirling cycle η̄NS

act in (k, T̄ ) [η̂NS
act in (k, T̂ )] depends on

all points in the loop (Fig. 2). Substituting T̂ = T̄ f (k) into
formula η̂S

act merely reexpresses the efficiency of a Stirling
cycle specified by four rectangular corner points in (k, T̂ ) in
terms of other four nonrectangular corner points in (k, T̄ ).
Therefore, the new formula can generally not be the efficiency
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of a Stirling cycle η̄S
act in (k, T̄ ) [see more below (A5)]. When

the active noise is reduced to a passive noise, then f (k) → 1
and (k, T̄ ) and (k, T̂ ) will degenerate to an identical space
(k, T ) with T = T̂ = T̄ . In this limit, the two different loops
represented in (k, T̂ ) and (k, T̄ ) will converge to the same loop
in (k, T ). If an active Stirling engine outperforms its passive
counterpart, then η̂S

act > ηS
pas (η̄S

act > ηS
pas), where the compar-

ison is between two identical rectangular loops in (k, T̂ ) and
(k, T ) [in (k, T̄ ) and (k, T )].

Accumulative stochastic heat Q and work W along a
stochastic trajectory governed by Eq. (1) can be evaluated
using the stochastic energetics approach of Sekimoto [15].
In a quasistatic process, their ensemble averages along a pro-
cess from state i to f are 〈Q〉 = 〈∫ f

i kxdx〉 = (1/2)(k f 〈x2〉 f −
ki〈x2〉i ) − (1/2)

∫ f
i 〈x2〉dk and 〈W 〉 = (1/2)

∫ f
i 〈x2〉dk, re-

spectively. Here, ki (k f ) is the stiffness in the state i ( f ). If
the temperature along a trajectory is understood as T̄ , the
efficiency of an active Stirling engine is (Appendix A)

η̄S
act = (T̄1 − T̄2)[G(k1) − G(k2)]

T̄1 f (k2) − T̄2 f (k1) + T̄1[G(k1) − G(k2)]
, (2)

with T̄1 (T̄2) the maximum (minimum) temperature and k1 (k2)
the maximum (minimum) stiffness of the Stirling cycle in the
(k, T̄ ) space. Here, f (k) is the TR defined above and G(k)
is its derivative G′(k) = f (k)/k. When f (k) = 1 for all k, it
yields G(k) = ln k, for which Eq. (2) reduces to the efficiency
ηS

pas of a passive Stirling engine subjected to an equilibrium
bath or, exceptionally, of an active Stirling engine immersed
in the non-Gaussian white noise mentioned below Eq. (1). On
the contrary, if the temperature in the protocol refers to T̂ , its
efficiency η̂S

act is always equal to ηS
pas of the passive engine [8].

The condition for η̄S
act > ηS

pas is (Appendix A)∫ k1

k2

1

k

{
T̄2

T̄1
[ f (k1) − f (k)] + [ f (k) − f (k2)]

}
dk > 0. (3)

A sufficient but not necessary condition for Eq. (3) is “a
monotonically increasing f (k)” within the operating range
[k2, k1] of the engine. However, f (k) ∼ k〈x2〉 should not in-
crease too fast to lead to an increase of 〈x2〉 with k because
then a stronger confinement would counterintuitively give a
larger particle fluctuation (Appendix A). Therefore, the above
monotonic increasing condition can be sharpened to f (k) ∼
kα , with 0 < α < 1. The larger the nonzero value of Eq. (3),
the higher is η̄S

act, which, for example, can be achieved by
enhancing the ratio T̄2/T̄1 in Eq. (3).

III. ENGINE TRAJECTORIES GENERATED
BY VARIOUS DYNAMICAL SYSTEMS

A. Cosine persistent noise

As a simple example, consider the persistent noise ξ (t )
with a correlation 〈ξ (t )ξ (t ′)〉 = (γ kBT̄ /τ ) exp(−|t − t ′|/τ ),
where τ is the correlation time. Several real systems share
this property, including the Ornstein-Uhlenbeck noise, the
run-and-tumble noise, and the active Brownian noise [8]. For
this ξ (t ), f (k) = (1 + kτ/γ )−1 = (1 + K )−1 ≡ f̂ (K ), where
K ≡ kτ/γ is a dimensionless stiffness (Appendix B). Since
this f (k), or equivalently f̂ (K ), is a decreasing function, the

persistent noise cannot give a high engine efficiency [8]. In
the limit τ → 0, this noise returns to the white noise and η̄S

act
converges to ηS

pas.
A common feature of active noises is the enhanced con-

tribution of low-frequency components in their spectrum
because the persistent motion of self-propelled active parti-
cles in those noises is generically longer than that of water
molecules in the thermal noise. The simplest way to embody
this effect might be multiplying a cosine function of a slow
angular frequency ω0 � 0 to the correlation of the persistent
noise,

〈ξ (t )ξ (t ′)〉 = γ
(
1 + ω2

0τ
2
)
kBT̄

τ
e−|t−t ′|/τ cos[ω0(t − t ′)].

(4)

Such ξ (t ) provides some restoring effect on the Brownian
particle, as the oscillating polar forces of the hydrodynamic
interaction in bacterial systems [16]. For this noise (Ap-
pendix B)

f̂ (K ) = (c + 1)(K + 1)

(K + 1)2 + c
, (5)

where c ≡ ω2
0τ

2 and K is as defined above. f̂ (K ) is an increas-
ing function within the range K ∈ [0,

√
c − 1]. At ω0 = 0,

Eqs. (4) and (5) reduce to those of the above persistent noise.
Intriguingly, the destructive role of τ in obtaining an increas-
ing f̂ (K ) at ω0 = 0 becomes constructive when ω0 > 0.

The temporal correlation function in Eq. (4) has a similar
mathematical structure as the spatial pair correlation function
of liquid molecules. It can be generated by a sequence of
pulses with alternating directions (Fig. 6). Although Eqs. (4)
and (5) have revealed the constructive role of the oscillatory
effect in noises for a large η̄S

act, it is highly nontrivial how to
tune the shape and spacing of the pulses in this noise (see
Fig. 6) to obtain a desired T̄ in an engine protocol.

B. Oscillatory telegraphic noise

To control the T̄ of a noise with a dominant low-frequency
component as that in Eq. (4), let us turn to an oscillatory
telegraphic noise ξ , which consists of a series of alternat-
ing telegraphic steps of equal time length ts (Figs. 7 and
8). Under a constant T̄ , the magnitude of the nth step is
given by ξ (n) = ξ̄ (n) + ξG(n). Here, ξ̄ (n) = (−1)nξ̄ is a periodic
jump between two values ±ξ̄ with ξ̄ > 0 and ξG(n) denotes
a Gaussian random variable of variance 	 centered at zero,
with 〈ξG(n)ξG(m)〉 = 	δK

nm and δK
nm the Kronecker delta. For

this piecewise smooth noise, the positions of the Brownian
particle at discrete time instants, iεt (i = 0, 1, 2, ....), can be
deduced from Eq. (1) (Appendix C),

xi+1 = Rxi + wi, (6)

with R ≡ 1 − kεt/γ and the increment wi ≡
γ −1

∫ (i+1)εt

iεt
ξ (t )dt , where the discretization time span εt < ts.

If we consider an ensemble of systems whose ξ (t ) have a
coherent phase starting with the same initial value ξ̄ (1) = −ξ̄

(Fig. 8), then the variance 〈x2〉 calculated at all different xi

in Eq. (6) oscillates strongly with i. If we only pick up those
xi at the end of each telegraphic step at time instants jts
( j = 1, 2, 3, ...), the variance 〈x2〉e will oscillate much less
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FIG. 3. A colloidal Stirling engine under an oscillatory tele-
graphic noise. (a) An example of this noise ξ (black) during a linear
variation of k (blue) and T̄ (red) within a Stirling cycle. (b) The
variance 〈x2〉 from a simulation (blue) and 〈x2〉e from the theoret-
ical formula in Eq. (C23) (red). The inset shows f̂e(K ) at T̄2 =
200 K (black solid), T̄1 = 300 K (black dashed), and T̄1 = 400 K
(red solid). The three circles on the left- (right-) hand side are located
at K2 = k2ts/(2γ ) (K1 = k1ts/(2γ )). (c) For the thermal noise, the
simulated 〈Q〉 is QTH,sim (blue), which agrees well with the theo-
retical curve QTH,theo (red) given by Eq. (A4). For the oscillatory
telegraphic noise ξ , the simulated 〈Q〉 is QOT,sim (yellow), which
is shown only in the two heat input processes (iso-stiffness heating
and isothermal expansion). (d) The work 〈W 〉 is evaluated as in (c);
however, in all four processes because we need its value in the whole
cycle to calculate the efficiency. All parameter values used here can
be found in Appendix C.

than 〈x2〉. The TR of 〈x2〉e is equal to (Appendix C)

f̂e(K ) = tanh(K )

K
[1 + c tanh(K )], (7)

with K ≡ kts/(2γ ) and c ≡ ξ̄ 2/	, where 	 is related to T̄ by
	 ≡ 2γ kBT̄ /ts. Since f̂e(K ) derived from the less oscillating
〈x〉e has the same rising or falling trend as that of f̂ (K )
calculated from the oscillating 〈x2〉, the former serves as an
indicator for possible high-efficiency engines.

As an example, Fig. 3(a) demonstrates an oscillatory tele-
graphic noise (black) during the variation of T̄ and k in an
engine protocol. In Fig. 3(b), the oscillating 〈x2〉 obtained
from the simulations (blue) is “bounded” by the theoretically
derived smooth 〈x2〉e (red), as explained prior to Eq. (C28). In
Fig. 3(c), the heat 〈Q〉 has a strong oscillation (yellow area)
because all ξ in the ensemble average have a coherent oscilla-
tion phase. The magnitude of the oscillating 〈Q〉 is comparable
to that under the thermal noise at the same temperature when
only a single system in the ensemble is considered. At the
beginning of the iso-stiffness heating, 〈Q〉 has a rapid initial
drop to a large negative value (left edge of the yellow area)
when the particle moves from a large x > 0 toward x = 0.
Notably, in stochastic thermodynamics, the heat along a single
trajectory could be negative even in a heat input process. In
Fig. 3(d), the oscillation of work 〈W 〉 is much less than that of
〈Q〉. Averaged over 104 cycles, all with the same phase in ξ ,
we obtain (ηS

pas, η̄
S
act ) ≈ (0.37, 0.43) for (T̄2, T̄1) = (200, 400)

and ≈(0.20, 0.20) for (T̄2, T̄1) = (300, 400). The former per-
forms better, as reflected in the steeper f̂e(K ) at T̄2 = 200 K,
compared to that at 300 K, in the inset of Fig. 3(b). After
randomizing the phase of ξ as in the equal a priori probability
in the microcanonical ensemble, 〈Q〉 in Fig. 3(c) becomes
a less oscillating curve, as that of 〈W 〉 in Fig. 3(d). See an
example of high efficiency under such a randomized phase of
the oscillatory telegraphic noise in Fig. 9.

C. Discretization induced high efficiency

If the oscillatory effect is absent, ξ̄ = 0, and the length of
the telegraphic step ts is as short as the time step εt , Eq. (7) will
be replaced by f̂e,0(K ) = 1/(1 − K ), where K ≡ kεt/(2γ )
(Appendix C). This is an even simpler increasing function.
However, if εt → 0 is the limit to approach a real system,
it yields K → 0 and f̂e,0(K ) → 1 for any given finite range
[k2, k1] in Eq. (3). That is, the efficiency of the active engine
will become infinitely close to that of its passive counterpart.
Therefore, if K ∼ εt , an increasing f̂ (K ) does not promise a
high efficiency. This specious high efficiency could be mis-
takenly concluded from the discrete data (εt > 0) recorded in
numerous experiments, as illustrated in the feedback system
below.

D. Optical feedback trap

The dynamics of a colloidal particle immersed in water of
temperature T and confined in an arbitrary real potential can
be mimicked by the optical feedback trap (OFT) technique
[17,18]. The idea is to shift the center xL(t ) of an optical
tweezers of stiffness kot in the OFT to a proper position to
let the particle in x(t ) experience an instant optical force, as
if it were in the real potential. The dynamics of this particle
fulfills the equation (Appendix D),

γ ẋ(t ) + kot[x(t ) − xL(t )] = ξ (t ). (8)

Here, ξ (t ) represents the thermal noise, which is Gaussian
and white, with 〈ξ (t )〉 = 0 and 〈ξ (t )ξ (t ′)〉 = 2γ kBT δ(t − t ′),
where δ(t − t ′) is the Dirac delta function. If the real potential
is harmonic and has stiffness k, ideally xL(t ) should instantly
vary with x(t ) according to the relation xL(t ) = −αx(t ),
where α ≡ −1 + k/kot is the feedback gain. However, due to
an inevitable feedback delay, the actual xL(t ) = −αx(t − td )
contains a small delay time td (Appendix D). With this delay,
the experimentally measured x are discrete acquisition posi-
tions xi that satisfy the difference equation of Eq. (8),

xi+1 = xi − kot

γ
(xi + αxi−l )εt + ξ x

i . (9)

Here, l is the number of delay steps, which corresponds to
the delay time td = lεt , and ξ x

i is the Gaussian fluctuation of
the particle position with 〈ξ x

i 〉 = 0 and 〈ξ x
i ξ x

j 〉 = 2kBT εtδ
K
i j/γ ,

where δK
i j is the Kronecker delta as before Eq. (6) [19]. For

l = 1, the TR of Eq. (9) is (Appendix D)

f̂ (K ) = −2(K − c1)

(K − c2)(K − c3)
, (10)

where c1 ≡ β − 1, c2 ≡ β + 1, c3 ≡ 2β − 2, K ≡ kεt/γ , and
β ≡ kotεt/γ . Since εt is in practice very small, both K and
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β � 1. In this regime, Eq. (10) is clearly an increasing func-
tion. It is especially apparent at α = 0, for which Eq. (10)
becomes f̂0(K ) = 2/(2 − K ) (Appendix D). However, reduc-
ing the data acquisition time, εt → 0, will cause f̂0(K ) → 1
and f̂ (K ) → 1 in Eq. (10). Therefore, the increasing function
in Eq. (10) and f̂0(K ) cannot lead to a high-efficiency engine,
as explained in Sec. III C. Nevertheless, it is too early to
conclude that delay cannot contribute to high efficiency since
Eq. (10) is a consequence of td = εt , because of which the
influence of delay might have disappeared after we take the
limit εt → 0.

E. Stochastic delay differential equation

To inspect a pure delay effect on engine efficiency without
the influence of data discretization, let us add a delay time td to
the continuous equation in Eq. (1) to form a stochastic delay
differential equation,

γ ẋ(t ) = −kx(t − td ) + ξ (t ), (11)

where ξ is the same as in Eq. (8). For td > 0, the system is out
of equilibrium and does not satisfy the fluctuation-dissipation
theorem [20]. This equation has been applied to study the
behavior of an active Brownian particle [21], the emerging
structures of multiple active particles [22], and systems in
many other contexts [23,24]. With the known variance of
the steady state of Eq. (11) [25], one obtains its T̂ and TR
(Appendix E),

f̂ (K ) = 1 + sin(K )

cos(K )
, (12)

when K ≡ ktd/γ < π/2. The high efficiency indicated by the
rising branch of Eq. (12) can be understood from the first-
order Taylor expansion of Eq. (11) in a small td, corresponding
to a small K [20],

γ ẋ(t ) = − kx(t )

1 − K
+ ξ (t )

1 − K
. (13)

This equation has a TR (Appendix E)

f̂ (K ) = 1

1 − K
, (14)

which is simpler than Eq. (12) and has a clear increasing
trend. Compared to Eq. (11) at td = 0, Eq. (13) has a stronger
potential confinement and stochastic force, which compete
with each other and lead to a larger 〈x2〉.

The OFT equation (8) is a more complicated stochastic
delay differential equation than Eq. (11). It has a nondelay
term kotx(t ) in addition to the delay term kotxL(t ), where the
latter plays the same role as x(t − td ) in Eq. (11). However, the
variance 〈x2〉 of an equation like Eq. (8) can also be derived
[26,27]. It gives rise to the TR (Appendix D)

f̂ (K ) = K[(K − c) sin (g(K )) + g(K )]

g(K )[c + (K − c) cos (g(K ))]
, (15)

when K > 2c and 0 � g(K ) < cos−1 (c/(c − K )) � π , where
K ≡ ktd/γ , c ≡ kottd/γ , and g(K ) ≡ √

K (K − 2c). One can
easily obtain a rising regime in Eq. (15) when K is slightly
larger than 2c (Appendix D).

F. Memory kernels in the position term

The increasing trend of f̂e,0(K ) mentioned in Sec. III C
comes from εt �= 0, which means that the magnitude of a pre-
vious force will last for a period of εt in Eq. (6). The increasing
trend of f̂ (K ) in Eq. (12) is caused by td �= 0 in Eq. (11),
indicative of the influence of an early force on the dynamical
system. Both pertain to memory effects, which leads us to
examine the dynamics of a colloidal particle governed by the
generalized Langevin equation

γ ẋ(t ) + k
∫ t

−∞
KM(t − t ′)x(t ′)dt ′ = ξ (t ), (16)

where KM(t − t ′) is a memory kernel. This model can cap-
ture the behavior of a Brownian particle when its potential
energy from a confining well can be converted into the
energy stored in the compressed background media. More
applications of the model can be found in the context
of integrodifferential equations of Volterra type [28]. Tak-
ing the Fourier transform on both sides of Eq. (16), we
obtain the power spectrum of x, Sx(ω) = Sξ (ω)/{ω2γ 2 +
k2K̃M(ω)K̃M(−ω) + iωγ k[K̃M(−ω) − K̃M(ω)]} and its vari-
ance 〈x2〉 = ∫∞

−∞ Sx(ω)dω/(2π ), with Sξ (ω) the power spec-
trum of ξ (Appendix F).

Given KM(t ) = exp(−|t |/τp)/τp for t � 0 and 0 elsewhere,
as well as 〈ξ (t )ξ (t ′)〉 = 2γ kBT̄ δ(t − t ′), the corresponding
〈x2〉 gives an increasing TR (Appendix F),

f̂ (K ) = K + 1, (17)

where K = kτp/γ . It shows that when the noise is uncorre-
lated, a simple memory effect on the position of the particle
is sufficient to enhance the engine performance to surpass its
passive counterpart.

G. Dissipation kernels in the velocity term

In contrast to the memory kernel in the position term in
Eq. (16), an even more well-known generalized Langevin
equation has a dissipation kernel KD(t − t ′) in the velocity
term [29,30],

γ

∫ t

−∞
KD(t − t ′)ẋ(t ′)dt ′ + kx = ξ (t ). (18)

It has been used to study several active [31] and self-propelled
particles [32] for persistent random walks, as well as
Brownian colloidal heat engines in viscoelastic baths [33,34].
Such dissipation kernel has also been suspected to be the
reason for the high efficiency of the bacterial-driven heat
engine [8]. In analogy to the calculations below Eq. (16), the
variance 〈x2〉 of Eq. (18) can be obtained from its power
spectrum Sx(ω) = Sξ (ω)/{k2 + ω2γ 2K̃D(ω)K̃D(−ω) +
iωγ k[K̃D(ω) − K̃D(−ω)]} (Appendix G).

If KD(t ) = exp(−|t |/τv)/τv for t � 0 and 0 elsewhere, as
well as 〈ξ (t )ξ (t ′)〉 = 2γ kBT̄ exp(−|t − t ′|/τ )/(2τ ), it yields
(case 1 in Appendix G).

f̂ (K ) = c(K + 1 − c)

(1 − c)(K + 1)(K + c)
, (19)

where c ≡ τv/(τv + τ ) and K ≡ kτv/γ . This f̂ (K ) is
an increasing function when K ∈ [0, c − 1 + √

c(2c − 1)]
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if c > c0 ≡ (−1 + √
5)/2, corresponding to τv/τ > (−1 +√

5)/(3 − √
5). In the limit τv → 0, Eq. (19) returns to the

f (k) calculated by 〈x2〉 = kBT/[k(1 + kτ/γ )] in Eq. (15)
of Ref. [8]. With the same KD(t ) but different correla-
tion 〈ξ (t )ξ (t ′)〉 = 2aγ kBT̄ sinc(a(t − t ′)), where a > 0 and
sinc(x) = sin(πx)/(πx), the TR becomes (case 2 in Ap-
pendix G)

f̂ (K ) = 2(1 − K )

π

[
cK + (1 − K2) tan−1

(
c

K

)]
, (20)

where c = πaτv and K ≡ kτv/(kτv + γ ) increases with k and
lies within (0,1). This f̂ (K ) is also an increasing function, at
least at small K when tan−1(c/K ) ≈ π/2, for which the rising
trend appears when c > c0 ≡ (π + √

π2 + 16)/4.
Both Eqs. (19) and (20) can become an increasing func-

tion in some range of K when c exceeds a threshold c0, or
equivalently when τv is larger than some critical value. That
is, the correlation in the dissipation kernel KD must be suffi-
ciently strong, in comparison with that of the injection kernel
〈ξ (t )ξ (t ′)〉 to find high-efficiency engines. Interestingly, both
conditions c > c0 for Eqs. (19) and (20) do not depend on
viscosity γ . Moreover, regardless of whether 〈ξ (t )ξ (t ′)〉 has a
long tail in Eq. (19) or a sharp cutoff frequency in Eq. (20),
a rising regime can be found in these TRs. Therefore, such
a regime is highly expected for other 〈ξ (t )ξ (t ′)〉 with more
general intermediate tails.

IV. ORIGINS OF HIGH EFFICIENCY

The high-efficiency engines found above can be summa-
rized into two categories: (i) microscopic restoring effects of
noise and (ii) strong memory or dissipation kernels. Category
(i) includes the oscillatory effect, which leads to Eqs. (5)
and (7), while (ii) contains the retarding effect, which causes
Eqs. (12) and (15), as well as various kernels that induce
Eqs. (17), (19), and (20). Mathematically, why these two cat-
egories have high efficiencies is that an additional parameter
is introduced in 〈x2〉 to let f (k) behave as kα elucidated below
Eq. (3). For example, in category (i), introducing ξ̄ into the
telegraphic noise before Eq. (6) creates the term c tanh(K )
in Eq. (7) to avoid the monotonic decline of tanh(K )/K . In
category (ii), introducing td into Eq. (11) generates the terms
sin(K ) and cos(K ) in Eq. (12) to turn f̂ (K ) into an increasing
function. The increasing trends of most of these f̂ (K ) are
depicted in Fig. 4.

The examples studied above provide a lot of useful in-
formation to understand the efficiency of stochastic engines.
First, according to the expressions of 〈Q〉 and 〈W 〉 before
Eq. (2), it is tempting to regard a small k f 〈x2〉 f − ki〈x2〉i

and a large
∫ f

i 〈x2〉dk for general stiffness and temperature as
the condition for a dynamical system of x to generate good
trajectories (Fig. 1) because they would give a large ratio
〈W 〉/〈Q〉 for a cycle. Unfortunately, high efficiency is usually
not due to a large ratio 〈W 〉/〈Q〉 in all individual processes,
but a compromise between large and small ratios in different
processes, as seen in Figs. 3(c) and 3(d). Certainly, one can
question whether some perfect dynamical system could gen-
erate large 〈W 〉/〈Q〉 for all processes. Second, based on the
mismatch between energy injection and dissipation, T̄ < T̂ is
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FIG. 4. (a), (b), (c), (d), (e), and (f) are the TRs f̂ (K ) of six
stochastic dynamical systems in Eqs. (5), (7), (12), (15), (19), and
(20) within experimentally accessible parameter ranges collected in
Appendix B, C, D, E, and G.

hypothesized to be a condition for finding high efficiencies
[8]. It looks trivial because if an engine cycle in a high-
temperature range [T̂1, T̂2] in the (k, T̂ ) space is represented
in a low-temperature range [T̄1, T̄2] in the (k, T̄ ) space, the
low heat input of the latter would intuitively lead to higher
efficiency. However, such a comparison is not fair because it
would not be between two Stirling engines, as explained in
Fig. 2. Nevertheless, as seen in Fig. 4, the rising regimes of all
studied f̂ (K ) indeed have T̄ < T̂ , or equivalently f̂ (K ) > 1.
Third, the restoring effect of noise could intuitively suppress
particle diffusion and its associated T̄ , but would not greatly
change the long-term value of the confined variance 〈x2〉 and
its related T̂ . Thus, this effect seems to be beneficial for
creating T̄ < T̂ . However, this impression is challenged by
the oscillatory factor ξ̄ before Eq. (6), which can influence
T̂e in Eq. (C24), but not T̄e = T̄ in Eqs. (C17) and (C28).
Lastly, note that taking different interpretations of temperature
neither produces new trajectories x in Fig. 1 nor modifies the
relationship between these trajectories and the functionals of
heat, work, and efficiency. It merely affects the temperature
values assigned to the trajectories evolved from a thermody-
namic process, as seen in Eqs. (A2) and (A3). Ultimately,
diverse interpretations of temperature lead to a divergence in
the efficiency value of an engine [see more examples below
the paragraph of Eq. (A13) in Appendix A].

V. DISCUSSION

In addition to indicating high efficiencies, f (k) offers
further insight into how active noise impacts more general
thermodynamic problems in heat engines. Firstly, the differ-
ence between the active Carnot efficiency η̄C

act and the active
Stirling efficiency η̄S

act can be expressed as

η̄C
act − η̄S

act = (ηC
pas

)2
H (k1, k2), (21)
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which is linearly proportional to the square of the passive
Carnot efficiency ηC

pas [see Eq. (A18)]. Here, the function
H (k1, k2) is solely determined by f (k) and the maximum k1

(minimum k2) of stiffness. As H (k1, k2) > 0, the discrepancy
in Eq. (21) is always positive. Secondly, if the engine oper-
ation time is sufficiently large but not infinite, the power of
the engine can be expressed in terms of f (k) as well [see
Eq. (A22)],

P ≈ − 1

τ

kB(T̄2 − T̄1)

2

∫ k1

k2

f (k)

k
dk. (22)

Thirdly, the efficiency at maximum power is also influenced
by active noises, which can be illustrated by the low dissipa-
tion Carnot engine [see Eq. (A23)]. In this engine, the heat
exchange during the isothermal process at low (high) temper-
ature Tc (Th) is Qc = Q∞

c − Tc�c/τc (Qh = Q∞
h − Th�h/τh),

where τc (τh) is its corresponding operation time and Q∞
c

(Q∞
h ) is the heat for τc → ∞ (τh → ∞). The efficiency at

maximum power of the passive Carnot engine is then [see
Eq. (A26)],

η∗ = ηCH ′(Tc, �c, Th, �h), (23)

which is proportional to the efficiency of the conventional
Carnot efficiency ηC. Here, H ′ is a function of Tc, Th, �c,
and �h. Although the dependence of heat on f (k) can alter
the efficiency in Eq. (2), it interestingly does not influence η∗.
This implies that an active noise affects the Curzon-Ahlborn
efficiency solely through the variations in �c and �h with
f (k). Fourthly, the probability of finding a stochastic effi-
ciency η̃ among all long trajectories in Fig. 1 is given by [see
Eq. (A14)]

Pi(η̃) ∼ e−tJ (η̃), (24)

where t is the time span of the trajectory and J (η̃) is the large
deviation function [35]. If Pi(η̃) can still be expressed in terms
of f (k), the latter should be embedded in J (η̃).

The current colloidal heat engine (HE) shares some simi-
larities with the chemical reaction network (CN) of D-ribose
isomerization under temperature switching in Ref. [36,37].
The latter is a kinetic model of three isomers, with their popu-
lation ratio being tuned by temperature. The HE (CN) undergo
deterministic (stochastic) cyclic transformations between a
cold and a hot temperature, denoted as Tc and Th, respectively.
The state of HE is denoted by the location of the colloidal
particle on the position coordinate xp, whereas the state of CN
characterized by the conformation of furanose is represented
on the reaction coordinate xr . The heat exchange along a state
trajectory of HE on xp can generate mechanical work, while
that of CN on the abstract axis xr is irrelevant to work, but
to entropy production. The state of HE typically follows a
quasisteady cycle, whereas that of CN alternately repeats two
relaxation processes toward different equilibrium states. Both
the HE and CN fall within the category of nonequilibrium
systems. However, nonequilibrium in the HE arises from the
violation of the fluctuation-dissipation theorem, characterized
by a nonzero energy flux between injection and dissipation
kernels. Instead, nonequilibrium in the CN results from the vi-
olation of detailed balance, indicated by a nonzero population
flux between chemical states. When the parameter kD for mass

transport in the CN is small, the switches between Tc and Th

are slow and resemble those in traditional Carnot or Stirling
heat engines. Conversely, when kD is sufficiently large, the
switches occur so rapidly that the populations of different
isomers in the CN reach a nonequilibrium steady distribution,
which is reminiscent of the Brownian gyrator [38], a type of
heat engine without temperature switching.

An even broader class of nonequilibrium system is that
of chemically active systems (CAS), which encompass active
matter [39] and various life-related chemical processes [40].
In these systems, a constant flow of energy or matter pro-
pels chemical reactions, generates mechanical forces, and/or
initiates molecular motion, which prevents the system from
thermalizing toward an equilibrium state. The active noises of
HE will be a member of CAS when they originate from ac-
tive matter comprised of self-propelled agents, as opposed to
passive matter like water molecules in passive engines. While
these agents can be bird flocks, fish schools, and Janus parti-
cles within the category of active matter, they usually refer to
bacterium swarms in the context of the microscopic HE [4]. In
addition, the CN is also a type of CAS because the continuous
injection and removal of energy during temperature switching
result in non-Boltzmannian population distributions among
distinct conformational states. Although both HE and CN are
nonequilibrium problems, how they are rendered nonequilib-
rium by temperature is different. Another recent intriguing
study of CAS involves the measurement of local tempera-
ture and heat transport within living cells [41–43], which is
possible as it is based on the local equilibrium condition.
However, there has been concern regarding the limits of length
and time scales for the validity of that condition [40], which
is estimated to be approximately 102 nm and 10−6 s inside
a living cell [44]. Above these critical values, passive ther-
mal fluctuations will be dominated by active ones, the latter
originating from local stochastic events of chemical reactions
and having different meanings in temperature. In this case,
a tracer particle inside a cell will yield a value for T̂ from
its position variance and another value for T̄ from diffusion.
The discrepancy between the values of T̂ and T̄ is similar
to that observed in the colloidal heat engine analyzed in this
study.

VI. CONCLUSIONS

In the field of statistical physics, there has been a recent
trend towards expanding its scope to incorporate active matter
systems. However, the nonequilibrium nature of these sys-
tems gives rise to nonuniqueness in defining thermodynamic
concepts and relations, which are difficult to extrapolate from
their equilibrium counterparts [1]. In this study, active matter
serves as a heat bath connected to a heat engine governed
by a series of stochastic dynamical systems. Under the two
most frequently considered interpretations of temperature T̂
and T̄ , our analysis reveals whether, when, and why the en-
gine efficiency of an active bath can unexpectedly surpass
that of its passive equilibrium counterpart. Physically, such
high performance can be attributed to either a restoring ef-
fect in noise or a strong dissipation kernel. Mathematically,
it arises from the enlarged dimensionality in the parame-
ter space of the heat engine. Interestingly, the heat engine
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efficiency once again plays a role in the history of under-
standing temperatures, apart from its early contribution in
finding the absolute temperature [45,46]. In general active
heat baths, other temperature measures beyond T̂ and T̄ are
expected, such as the active particle velocity-dependent tem-
perature [47]. The interpretation, understanding, or potential
unification of the diverse consequences stemming from these
energy scales will be a challenging task for future statistical
physics. The current study sets an example for research in this
direction.
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APPENDIX A: EFFICIENCIES OF STIRLING
ENGINES IN AN ACTIVE BATH

The temperature of a stochastically moving Brownian
particle has two commonly adopted definitions. One is T̄
defined by the mean-square displacement 〈x2(t )〉 = 2Dt =
2(kBT̄ /γ )t averaged over an ensemble of particle trajectories
x(t ), with D the diffusion constant of the particle, kB the
Boltzmann constant, and γ the friction coefficient, which are
related by the Einstein relation D = kBT̄ /γ . The other is T̂
defied by the equipartition theorem, 〈x2〉 = kBT̂ /k, via the
variance 〈x2〉 of the stationary distribution of the particle when
it is confined in a harmonic potential of stiffness k.

Since T̄ is defined by the diffusivity of a tracer particle
surrounded by background particles, such as bacteria in an
active heat bath or water molecules in a passive heat bath,
this temperature increases with the activity of the background
particles, like the enhanced self-propulsion force of bacteria
or the intensified agitation of water molecules. On the other
hand, T̂ is defined by the “effective pressure” 〈x2〉 under a
confining potential of stiffness k. This temperature not only
increases with the activity of the background particles, as
T̄ , but also with the “effective volume” 1/k [48]. Although
T̂ seems to be more commonly used in the literature, T̄ is
arguably a more natural definition of temperature because it
does not depend on a system parameter like k [8].

Although T̄ and T̂ are identical for the thermal noise (a
passive noise), they are generally different from each other
for an active noise. In the latter case, these two temperatures
can be related by [8]

T̂ = f (k)T̄ . (A1)

In stochastic energetics [15], if a Brownian particle is sub-
jected to a force F (x) and moves along a stochastic trajectory
from an initial state i to a final state f , then the stochastic
heat received by the particle is Q ≡ − ∫ f

i F (x)dx. For F (x) =
−kx, the heat will be Q = ∫ f

i kx dx = [ kx2

2 ] f
i − ∫ f

i
x2

2 dk. In
the quasistatic regime, its ensemble average can be expressed
in terms of T̂ or T̄ and represented in the (k, T̂ ) or (k, T̄ )

space,

〈Q〉 = 1

2

(
k f 〈x2〉 f − ki〈x2〉i

)− 1

2

∫ f

i
k〈x2〉dk

k

= kB

2
(T̂f − T̂i ) − kB

2

∫ f

i
T̂

dk

k︸ ︷︷ ︸
(k,T̂ ) space

= kB

2
[ f (k f )T̄f − f (ki )T̄i] − kB

2

∫ f

i
f (k)T̄

dk

k
.︸ ︷︷ ︸

(k,T̄ ) space

(A2)

Here, ki (k f ) is the stiffness in the initial (final) state. Fur-
thermore, the stochastic work done on the particle is W =∫ f

i
∂U
∂k

dk
dt dt = ∫ f

i
1
2 x2dk [15], when U = − ∫ F (x)dx = kx2

2 .
In the quasistatic regime, its ensemble average can be ex-
pressed in terms of T̂ or T̄ and represented in the (k, T̂ ) or
(k, T̄ ) space,

〈W 〉 = 1

2

∫ f

i
k〈x2〉dk

k

= kB

2

∫ f

i
T̂

dk

k︸ ︷︷ ︸
(k,T̂ ) space

= kB

2

∫ f

i
f (k)T̄

dk

k
.︸ ︷︷ ︸

(k,T̄ ) space

(A3)

In Eqs. (A2) and (A3), 〈x2〉 and T̂ generally vary with k and
the noise strength. If the noise strength is properly controlled
to let k〈x2〉 remain invariant during the change from state i to
f , the process is iso-T̂ , which means isothermal at constant
T̂ = k〈x2〉/kB. Likewise, if T̄ = T̂ / f (k) is kept unchanged,
the process is iso-T̄ .

According to Eqs. (A2) and (A3), an iso-T̂ and an iso-k
process in the (k, T̂ ) space have the explicit expressions⎧⎨

⎩〈Q〉 = − kBT̂
2 ln

( k f

ki

)
〈W 〉 = kBT̂

2 ln
( k f

ki

) iso-T̂ in space (k, T̂ ),

{
〈Q〉 = kB

2 (T̂f − T̂i )

〈W 〉 = 0
iso-k in space (k, T̂ ). (A4)

In analogy, an iso-T̄ and an iso-k process in the (k, T̄ ) space
will give{〈Q〉 = kBT̄

2 [ f (k f ) − f (ki ) − G(k f ) + G(ki )],

〈W 〉 = kBT̄
2 [G(k)] f

i , iso-T̄ in space (k, T̄ ),{
〈Q〉 = kB

2 (T̄f − T̄i ) f (k),

〈W 〉 = 0
iso-k in space (k, T̄ ), (A5)

where G(k) = ∫ dk f (k)/k. Notice that the iso-T̄ process in
(A5) comes from (A2) and (A3). It cannot be derived by
simply inserting T̂ = f (k)T̄ into the iso-T̂ process in (A4)
because this would only reexpress an iso-T̂ process in the
(k, T̂ ) space by a generally “non”-iso-T̄ process in the (k, T̄ )
space.

A Stirling engine consists of four processes (Fig. 5): In the
iso-T compression (A → B), k rises from k2 to k1 at T2. In
the iso-k heating (B → C), T rises from T2 to T1 at k1. In the
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FIG. 5. The four processes in the protocol of a Stirling engine.

iso-T expansion (C → D), k falls from k1 to k2 at T1. In the
iso-k cooling (D → A), T falls from T1 to T2 at k2. The cycle
formed by these four processes is represented by a loop in the
(k, 〈x2〉) space in Fig. 5. If iso-T there means iso-T̂ (iso-T̄ ),
the loop should have a rectangular shape in the (k, T̂ ) space
((k, T̄ ) space), as the three rectangles depicted in Fig. 2. In a
passive bath, T̂ = T̄ and iso-T̂ and iso-T̄ processes become
identical, while in an active bath, generically T̂ �= T̄ .

For a Stirling engine in the (k, T̂ ) space, its four processes
have the expressions of heat and work from Eq. (A4),

〈QAB〉 = −kBT̂2

2
ln a < 0, 〈QBC〉 = kB

2
(T̂1 − T̂2) > 0,

〈QCD〉 = kBT̂1

2
ln a > 0, 〈QDA〉 = −kB

2
(T̂1 − T̂2) < 0,

〈WAB〉 = kBT̂2

2
ln a > 0, 〈WCD〉 = −kBT̂1

2
ln a < 0,

〈WBC〉 = 〈WDA〉 = 0, (A6)

with a ≡ k1/k2 > 1. For a Stirling engine in the (k, T̄ ) space,
the heat and work in Eq. (A5) indicate

〈QAB〉 = kBT̄ 2

2
[ f (k1) − f (k2) − G(k1) + G(k2)],

〈QBC〉 = kB

2
(T̄1 − T̄2) f (k1) > 0,

〈QCD〉 = −kBT̄ 1

2
[ f (k1) − f (k2) − G(k1) + G(k2)],

〈QDA〉 = −kB

2
(T̄1 − T̄2) f (k2) < 0,

〈WAB〉 = kBT̄ 2

2
[G(k1) − G(k2)] > 0,

〈WCD〉 = −kBT̄ 1

2
[G(k1) − G(k2)] < 0,

〈WBC〉 = 〈WDA〉 = 0. (A7)

Among the eight terms in Eq. (A7), only the signs of
〈QAB〉 and 〈QCD〉 are less trivial. However, due to 〈QAB〉 =
−(T̄2/T̄1)〈QCD〉, the conditions for 〈QAB〉 < 0 and 〈QCD〉 > 0
are equivalent. This generic case occurs if and only if

G(k1) − G(k2) =
∫ k1

k2

f (k)

k
dk > f (k1) − f (k2). (A8)

When f (k) = T̂ /T̄ = k〈x2〉/(kBT̄ ) decreases with k, the in-
equality in Eq. (A8) is trivial because

∫ k1

k2

f (k)
k dk > 0 and

f (k1) − f (k2) < 0. For example, f (k) = (1 + kτ/γ )−1 in
Sec. III A or Eq. (B10) has∫ k1

k2

f (k)

k
dk − f (k1) + f (k2)

=
∫ k1

k2

1

1 + kτ/γ

1

k
dk − 1

1 + k1τ/γ
+ 1

1 + k2τ/γ

= ln

(
τ + γ /k2

τ + γ /k1

)
+ γ τ (k1 − k2)

(γ + k2τ )(γ + k1τ )
> 0 (A9)

because either of the two terms in the last line is positive.
In opposite, if f (k) increases with k, it needs to rise suf-

ficiently fast to see a violation of Eq. (A8). For instance, for
f (k) = ckα within [k2, k1] with α, c > 0,∫ k1

k2

f (k)

k
dk − [ f (k1) − f (k2)]

=
∫ k1

k2

ckα−1dk − c
(
kα

1 − kα
2

)
= c

(
1

α
− 1

)(
kα

1 − kα
2

)
. (A10)

The condition for Eq. (A10) <0 is α > 1. Hence, at least
f (k) must rise to the extent to have α > 1 within [k2, k1]
to see 〈QAB〉 > 0 and 〈QCD〉 < 0. However, in this case, the
fluctuation of the particle 〈x2〉 in f (k) = k〈x2〉/(kBT̄ ) will
increase with k, which is counterintuitive and never seen in all
systems tested below, including Eqs. (B8), (C25), (D15), (E4),
(G13), and (G23) (see A8 in Supplemental Material [49]).

All these systems have
∫ K1

K2

f̂ (K )
K dK > f̂ (K1) − f̂ (K2), where

f̂ (K ) is the function f (k) with k replaced by K = const × k or
K ≡ (1 + const × k−1)−1. Such an inequality of f̂ (K ) implies
the inequality in Eq. (A8), which leads to 〈QAB〉 < 0 and
〈QCD〉 > 0.

Under the generic condition given in Eq. (A8), we have
〈QAB〉 < 0, 〈QBC〉 > 0, 〈QCD〉 > 0, and 〈QDA〉 < 0, for which
the efficiency of an active Stirling engine in the (k, T̄ ) space
can be deduced from Eq. (A7),

η̄S
act = − 〈W 〉

〈Qinput〉

= −〈WAB〉 + 〈WBC〉 + 〈WCD〉 + 〈WDA〉
〈QBC〉 + 〈QCD〉

= (T̄1 − T̄2)
∫ k1

k2

f (k)
k dk

T̄1 f (k2) − T̄2 f (k1) + T̄1
∫ k1

k2

f (k)
k dk

= (T̄1 − T̄2)

⎡
⎣ T̄1 f (k2) − T̄2 f (k1)∫ k1

k2

f (k)
k dk

+ T̄1

⎤
⎦−1

. (A11)

The third equality is equal to Eq. (2), and as known in
Ref. [8]. On the contrary, if 〈QAB〉 > 0, 〈QBC〉 > 0, 〈QCD〉 <

0, and 〈QDA〉 < 0 should happen, 〈Qinput〉 = 〈QBC〉 + 〈QCD〉
in Eq. (A11) will be replaced by 〈QBC〉 + 〈QAB〉 = 〈QBC〉 −
(T̄2/T̄1)〈QCD〉.
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For f (k) = 1, Eq. (A11) reduces to the efficiency of a
passive Stirling engine

ηS
pas = (T̄1 − T̄2)

⎡
⎣ T̄1 − T̄2∫ k1

k2

1
k dk

+ T̄1

⎤
⎦−1

. (A12)

Therefore, the condition for η̄S
act > ηS

pas is

T̄1 f (k2) − T̄2 f (k1)∫ k1

k2

f (k)
k dk

<
T̄1 − T̄2∫ k1

k2

1
k dk

⇔
∫ k1

k2

{T̄1 f (k2) − T̄2 f (k1) − [T̄1 − T̄2] f (k)}dk

k
< 0

⇔
∫ k1

k2

{
T̄2

T̄1
[ f (k1) − f (k)] + [ f (k) − f (k2)]

}
dk

k
> 0.

(A13)

For T1 � T2, it reduces to
∫ k1

k2
[ f (k) − f (k2)] dk

k > 0 [8]. A
sufficient but not necessary simple and useful condition for
Eq. (A13) is a “monotonically increasing f (k)” in the range
[k2, k1] where the engine operates.

To illustrate the reason why diverse interpretations of tem-
perature lead to a divergence in the efficiency value, claimed
prior to the Conclusions, here let us consider some examples.
Suppose a thermodynamic process is generated by varying the
stiffness k in a desired manner. Repeating the same process
multiple times leads to an ensemble of data x, which yields
a unique value of 〈x2〉 and 〈W 〉 = 1

2

∫ f
i k〈x2〉 dk

k in the first
expression of Eq. (A3), say 〈W 〉 = 3. If we take the second ex-
pression there, 〈W 〉 = kB

2

∫ f
i T̂ dk

k , suppose it leads to T̂ = 1.
Then we will obtain T̄ = 1

2 , if we take the third expression,

〈W 〉 = kB
2

∫ f
i f (k)T̄ dk

k , in case f (k) ≡ 2. That is, 〈W 〉 = 3 is
the work along a process at T̂ = 1 in the (k, T̂ ) space or the
work along a process at T̄ = 1

2 in the (k, T̄ ) space. To obtain
a process at T̄ = 1 in the (k, T̄ ) space, we need to vary k in
a different way. It would generally change 〈x2〉 and subse-
quently its work to become a different value, say 〈W 〉 = 5.
That is, even though the process path at T̂ = 1 in the (k, T̂ )
space and at T̄ = 1 in the (k, T̄ ) space are the same, they
have different works 〈W 〉 = 3 and 5, respectively. Likewise,
even though two cycles in the (k, T̂ ) and (k, T̄ ) spaces are
the same, their 〈W 〉, 〈Q〉, and subsequently their efficiencies
are generally different. As an example of “the same cycle”,
consider a Stirling cycle in the (k, T̂ ) space, which is a rectan-
gle specified by four corner points (k2, T̂2), (k1, T̂2), (k1, T̂1),
and (k2, T̂1), whose efficiency is a function η̂(k1, k2, T̂1, T̂2)
of k1, k2, T̂1, and T̂2. Furthermore, a Stirling cycle in the
(k, T̄ ) space is also a rectangle specified by another four
corner points (k′

2, T̄2), (k′
1, T̄2), (k′

1, T̄1), and (k′
2, T̄1), whose

efficiency is generally a different function η̄(k′
1, k′

2, T̂1, T̂2).
To compare their performance, the difference between these
two formula, η̂(k1, k2, T̂1, T̂2) − η̄(k′

1, k′
2, T̄1, T̄2), is calculated

under the condition k1 = k′
1, k2 = k′

2, T̂1 = T̄1, and T̂2 = T̄2.
That means, these two engine performances are compared
under the same four corner points and subsequently “the same
rectangular cycle” in the (k, T̄ ) and (k, T̂ ) spaces. It is similar
to comparing Eq. (19) with Eq. (4) under the condition k1 = k′

1
and k2 = k′

2 in Zakine’s paper [8].

The discussion of the influence of the active noise on the
macroscopic efficiency in Eq. (A11) can be extended to that
on the stochastic efficiency in Fig. 1. By integrating over all
trajectories with the same value of the stochastic efficiency η̃

in Si(x) in Fig. 1, one can obtain the statistics of efficiencies
Pi(η̃). When the trajectories are long,

Pi(η̃) ∼ e−tJ (η̃), (A14)

where t is the time span of the trajectory and J (η̃) denotes
a large deviation function in the large deviation theory [35].
This Pi(η̃) behaves asymptotically like a delta function peaked
at the macroscopic efficiency η̃ = ηi. If J (η̃) can be expressed
in terms of f (k) or other characteristics of the heat bath, it
would provide information on how an active noise can affect
the statistics of η̃.

To compare the Stirling efficiency with the Carnot ef-
ficiency under an active noise, let us extend the argument
presented below Eq. (4) in Zakine’s paper [8]. If a perfect re-
generator can absorb all the heat released during the isochoric
cooling D → A and inject it back into the engine during the
isochoric heating B → C, then 〈Qinput〉 = 〈QBC〉 + 〈QCD〉 in
Eq. (A11) will reduce to 〈Qinput〉 = 〈QCD〉. Consequently, the
efficiency η̄S

act of the active Stirling engine in Eq. (A11) will
be replaced by

η̄C
act = − 〈W 〉

〈Qinput〉

= −〈WAB〉 + 〈WBC〉 + 〈WCD〉 + 〈WDA〉
〈QCD〉

= − T̄2[G(k1) − G(k2)] − T̄1[G(k1) − G(k2)]

−T̄1[ f (k1) − f (k2)] + T̄1[G(k1) − G(k2)]

=
(
1 − T̄2

T̄1

)
[G(k1) − G(k2)]

−[ f (k1) − f (k2)] + [G(k1) − G(k2)]

= ηC
pas

∫ k1

k2

f (k)
k dk

f (k2) − f (k1) + ∫ k1

k2

f (k)
k dk

. (A15)

Here, ηC
pas ≡ 1 − T̄2

T̄1
has the same form as the efficiency 1 − T2

T1

of the passive Carnot engine in the (k, T ) space, while η̄C
act is

the efficiency of the active Carnot engine in the (k, T̄ ) space.
Since 〈QBC〉 > 0,

η̄C
act = −〈WAB〉 + 〈WBC〉 + 〈WCD〉 + 〈WDA〉

〈QCD〉 (A16)

is an upper bound of

η̄S
act = −〈WAB〉 + 〈WBC〉 + 〈WCD〉 + 〈WDA〉

〈QBC〉 + 〈QCD〉 . (A17)

When f (k) ≡ 1, one obtains η̄C
act = ηC

pas, which recovers the
special case of the passive noise described below Eq. (4) in
Ref. [8].

To calculate the deviation between the Stirling and the
Carnot efficiency, it is more meaningful to compare η̄S

act and
η̄C

act, both pertaining to the active noise, rather than compar-
ing η̄S

act and ηC
pas between the active and the passive noise.
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Together with Eq. (A11), that deviation will be

η̄C
act − η̄S

act = ηC
pas

∫ k1

k2

f (k)
k dk

f (k2) − f (k1) + ∫ k1

k2

f (k)
k dk

− ηC
pas

∫ k1

k2

f (k)
k dk

f (k2) − T̄2

T̄1
f (k1) + ∫ k1

k2

f (k)
k dk

= (ηC
pas

)2
f (k1)

∫ k1

k2

f (k)

k
dk

×
[

f (k2) − T̄2

T̄1
f (k1) + ∫ k1

k2

f (k)
k dk

]−1[
f (k2) − f (k1) + ∫ k1

k2

f (k)
k dk

] ,

(A18)

which is positive as mentioned above.
The revealed effect of active baths on the Stirling efficiency

discussed above also indicates the effect on the power of the
engine. For a heat engine with a four-process cycle, suppose
the operating time for the ith process is τi < ∞, where i =
1, . . . , 4. Their heat and work,

Wi ≈ W ∞
i + Ai

τi
and Qi ≈ Q∞

i − Bi

τi
, (A19)

can be generalized from Ref. [50]. It yields the power

P = −W

τ
= −

∑4
i=1 Wi

τ

≈ −
∑4

i=1 W ∞
i

τ
−
∑4

i=1 Ai

τ 2
, (A20)

where τ =∑4
i=1 τi. In the example of the Stirling engine,

4∑
i=1

W ∞
i = (T̄2 − T̄1)

kB

2

∫ k1

k2

f (k)

k
dk < 0 (A21)

has been derived in Eq. (A7). However, the dependence of∑4
i=1 Ai, and consequently P, on f (k) is unknown. Never-

theless, if τ is sufficiently large, such that −
∑4

i=1 Ai

τ 2 in P is
negligible, as in the quasistatic regime, then

P ≈ − 1

τ

kB(T̄2 − T̄1)

2

∫ k1

k2

f (k)

k
dk. (A22)

In this case, we know how to adjust the function f (k) of an
active noise to enhance the power P and surpass the power of
its passive counterpart. It can be achieved when the f (k) of the
active noise is an increasing function, starting from f (0) = 1,
like that in Fig. 4, within the operating range [k2, k1] of the
engine so that

∫ k1

k2

f (k)
k dk >

∫ k1

k2

1
k dk.

To understand the maximum power under active noises,
let us use the low dissipation Carnot engine to explain it
[50]. According to that study, the heat exchanges during the
isothermal processes at low and high temperatures, Tc and Th,

are

Qc = Q∞
c − Bc

τc
+ · · · = Tc

(
−�S − �c

τc
+ · · ·

)
,

Qh = Q∞
h − Bh

τh
+ · · · = Th

(
�S − �h

τh
+ · · ·

)
. (A23)

Here, Bc, Bh, �c, and �h are some coefficients, τc (τh) denotes
the operation time during the cold (hot) isothermal process,
and S stands for the entropy during those processes. Impos-
ing the condition of zero derivatives, ∂P

∂τh
= ∂P

∂τc
= 0, for the

maximum P∗ of the power

P = − W

τh + τc
= Qh + Qc

τh + τc

=
(Th − Tc)�S − Th�h

τh
− Tc�c

τc

τh + τc
(A24)

yields the durations

τ ∗
h = 2Th�h

(Th − Tc)�S

⎛
⎝1 +

√
Tc�c

Th�h

⎞
⎠,

τ ∗
c = 2Tc�c

(Th − Tc)�S

⎛
⎝1 +

√
Th�h

Tc�c

⎞
⎠ (A25)

of P∗. The efficiency η = − W
Qh

= 1 + Qc
Qh

at τ ∗
h and τ ∗

c is then

η∗ =
ηC
(
1 +

√
Tc�c
Th�h

)
(
1 +

√
Tc�c
Th�h

)2 + Tc
Th

(
1 − �c

�h

) . (A26)

When �c = �h, η∗ recovers the Curzon-Ahlborn efficiency

ηCA = 1 −
√

Tc
Th

.

For active noises, the condition ∂P
∂τh

= ∂P
∂τc

= 0 to maximize
the power P is the same, although their �c, �h, and �S in
Eq. (A24) will generally be different from those of the passive
noise. For the Curzon-Ahlborn efficiency under active noises,
first notice that τh, τc, and �S are independent variables for
general P and η. However, due to τ ∗

h ∼ 1
�S and τ ∗

c ∼ 1
�S in

Eq. (A25), P∗ and η∗ interestingly become independent of �S.
It implies that the variation of η∗ with f (k) is not determined
by the variations of Q∞

c = Tc�S and Q∞
h = Th�S with f (k),

as indicated in Eq. (A7). This analysis shows that the impact
of an active noise on the Curzon-Ahlborn efficiency occurs in
the variations of �c and �h with f (k). The entire argument for
the Carnot engine applies in a similar manner to the Stirling
engine, both with and without a perfect regenerator.

APPENDIX B: PARTICLE SUBJECT TO THE
OSCILLATORY ORNSTEIN-UHLENBECK NOISE

Let us consider the Langevin equation

ẋ + k

γ
x = ξ

γ
, (B1)

where k and γ are as defined before Eq. (A1) and ξ represents
a noise. Suppose that noise is a Gaussian colored noise with
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the correlation

〈ξ (t )ξ (t ′)〉 = C̄e−|t−t ′ |/τ cos[ω0(t − t ′)]

= 2γ (1 + ω2
0τ

2)kBT̄
e−|t−t ′ |/τ

2τ︸ ︷︷ ︸
δ-function if τ→0

cos[ω0(t − t ′)],

(B2)

where

C̄ ≡ γ
(
1 + ω2

0τ
2
)
kBT̄

τ
. (B3)

Therein τ and ω0 characterize the correlation and the oscilla-
tion effect of 〈ξ (t )ξ (t ′)〉, respectively. T̄ denotes the tempera-
ture defined by diffusion, as explained before Eq. (A1), when
a free Brownian particle is subject to the colored noise ξ . To
show that C̄ is indeed related to such T̄ by Eq. (B3), let us
consider the mean-square displacement of Eq. (B1) at k = 0,

〈x2(t )〉 = 1

γ 2

∫ t

0

∫ t

0
〈ξ (s)ξ (s′)〉dsds′

= 1

γ 2

∫ t

0

∫ t

0
C̄e−|s−s′ |/τ cos[ω0(s − s′)]dsds′

= C̄

γ 2

∫ t

0

{∫ s′

0
e(s−s′ )/τ cos[ω0(s − s′)]ds

+
∫ t

s′
e−(s−s′ )/τ cos[ω0(s − s′)]ds

}
ds′

= C̄

γ 2

∫ t

0

{∫ 0

−s′
es/τ cos(ω0s)ds

+
∫ t−s′

0
e−s/τ cos(ω0s)ds

}
ds′

= C̄

γ 2

1(
1 + ω2

0τ
2
)2 [−2τ 2 + 2ω2

0τ
4 + 2ω2

0τ
3t

+ 2τ t + 2τ 2e−t/τ cos (ω0t ) − 4ω0τ
3e−t/τ sin (ω0t )

− 2ω2
0τ

4e−t/τ cos(ω0t )
]
, (B4)

where the last equality has been confirmed by a symbolic
calculation (see B4 within the Supplemental Material [49]).
At large t , Eq. (B4) behaves as

〈x2(t )〉 ≈ 2
C̄
(
ω2

0τ
3 + τ

)
γ 2
(
1 + ω2

0τ
2
)2 t ≡ 2Dt, (B5)

with D ≡ C̄τγ −2(1 + ω2
0τ

2)−1 the diffusion constant under
the colored noise ξ . Expressing it in the form of the Einstein
relation D = kBT̄ /γ , mentioned before Eq. (A1), shows that
C̄ is indeed related to T̄ by Eq. (B3).

For k > 0, recall that the Fourier transforms of f (t ) cos(bt )
and e−|t |/τ are F ( f (t ) cos(bt )) = [ f̂ (ω − b) + f̂ (ω + b)]/2
and F (e−|t |/τ ) = (2/τ )[(1/τ )2 + ω2]−1, respectively, where
f̂ (ω) is the Fourier transform of f (t ). Therefore, the Fourier
transform of Eq. (B2) at t ′ = 0 is

F (〈ξ (t )ξ (0)〉)

= C̄F (e−|t |/τ cos (ω0t ))

= C̄

2

[
2/τ

(1/τ )2 + (ω − ω0)2 + 2/τ

(1/τ )2 + (ω + ω0)2

]

= τC̄

(
1

1 + (ω − ω0)2τ 2
+ 1

1 + (ω + ω0)2τ 2

)
.

Subsequently, the power spectrum of x in Eq. (B1) is [for more
discussion, see Eq. (F6)]

Sx(ω) = F (〈ξ (t )ξ (0)〉)
k2 + ω2γ 2

= 1

(k2 + ω2γ 2)

2τC̄
[
1 + (ω2 + ω2

0

)
τ 2
]

[1 + (ω − ω0)2τ 2][1 + (ω + ω0)2τ 2]

= 2τC̄
( γ

kτ

)(kτ

γ

)
(τ 2/γ 2)

(k2τ 2/γ 2 + ω2τ 2)

× 1 + ω2τ 2 + ω2
0τ

2

[1 + (ωτ − ω0τ )2][1 + (ωτ + ω0τ )2]

(
1

τ

)
τ

= 2τC̄

γ k

K

K2 + w2

1 + w2 + w2
0

[1 + (w − w0)2][1 + (w + w0)2]
τ,

(B6)

where K ≡ kτ/γ , w ≡ ωτ , and w0 ≡ ω0τ . As a result, the
variance of x is (see B7 within the Supplemental Material
[49])

〈x2〉 = 1

2π

∫ ∞

−∞
Sx(ω)dω

= 1

k

τC̄

πγ
K
∫ ∞

−∞

1 + w2 + w2
0

(K2+w2)[1+(w−w0)2][1+(w+w0)2]
dw

= 1

k

τC̄

πγ
K

(K + 1)π

K
(
K2 + 2K + 1 + w2

0

)
= 1

k

τ

γ

γ
(
1 + ω2

0τ
2
)
kBT̄

τ

(K + 1)

(K + 1)2 + w2
0

= kBT̄

k

(
1 + w2

0

)
(K + 1)

(K + 1)2 + w2
0

= kBT̄

k

(c + 1)(K + 1)

(K + 1)2 + c
, (B7)

where dw ≡ d (ωτ ) and c ≡ w2
0 > 0. Consequently,

f (k) = T̂

T̄
= k〈x2〉

kBT̄
= (c + 1)(K + 1)

(K + 1)2 + c
≡ f̂ (K ). (B8)

Since K is proportional to k, the condition for an increasing
f (k) is equivalent to that for an increasing f̂ (K ).

In the limit ω0 → 0, Eqs. (B2) and (B7) reduce to

〈ξ (t )ξ (t ′)〉 = γ kBT̄

τ
e−|t−t ′ |/τ ,

〈x2〉 = kBT̄

k(1 + K )
= kBT̄

k(1 + kτ/γ )
(B9)

of a persistent noise [8]. Notably, due to a different expres-
sion of the Langevin equation in Ref. [8], the 〈ηp(t )ηp(t ′)〉
in Eq. (12) of that paper corresponds to 〈ξ (t )ξ (t ′)〉/γ 2 here.
With Eq. (B9), Eq. (B8) is simplified to

f (k) = 1

1 + K
≡ f̂ (K ), (B10)
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FIG. 6. A noise with a dominant low frequency. The noise com-
posed of a series of alternating peaks in (a) has a normalized
autocorrelation in (b) similar to Eq. (B2).

which is a decreasing function of K . However, for ω0 > 0,
f̂ (K ) in Eq. (B8) can be an increasing function in the region
where its slope d f̂ (K )/dK = −(c + 1)[(K + 1)2 − c][(K +
1)2 + c]−2 > 0, which has its maximum value (c − 1)/(c +
1) at K = 0. This derivative is positive when (K + 1)2 < c,
or equivalently K <

√
c − 1, because both K + 1 and

√
c =

w0 > 0. Since K = kτ/γ and w0 = ω0τ , it implies k < (ω0 −
1/τ )γ , which is the range for finding an increasing f̂ (K ) in
Eq. (B8).

In experiments of colloidal engines, typical parameter
values include γ = 10−8 kg/s, k ∈ [1, 4] × 10−5 N/m, and
the data acquisition time 10−5 s, which is less than the
particle relaxation time trelax ≡ γ /k ∈ [2.5 × 10−4, 10−3] s.
For (ω0, τ ) = (104s−1, 10−3s), since k � (ω0 − 1/τ )γ =
9 × 10−5 N/m, one can find an increasing f̂ (K ). Even for
weaker correlation times, such as τ = 5 × 10−4 s, τ = 4 ×
10−4 s, and τ = 3 × 10−4 s, an increasing trend of f̂ (K ) can
still be clearly seen, as the blue (c = 25), violet (c = 16), and
red (c = 9) lines, respectively, shown in Fig. 4(a). In this plot,
k is extended to 2 × 10−3 N/m to show how f̂ (K ) changes
from a rising to a falling function.

As an example of ξ in Eq. (B2), Fig. 6(a) shows a noise
composed of a series of alternating peaks, whose shapes,
heights, and spacings between two neighboring peaks are all
Gaussian distributed. Its correlation in (b) is similar to that
in Eq. (B2). If the peaks in (a) become denser, the noise will
have a larger ω0, which enhances the chance of finding an
increasing f̂ (K ) and a high-efficiency engine.

APPENDIX C: PARTICLE SUBJECT TO THE
OSCILLATORY TELEGRAPHIC NOISE

An oscillatory telegraphic noise consists of a series of tele-
graphic steps that have piecewise constant noise magnitudes
(Fig. 7). Its magnitudes form a double-Gaussian distribution
(inset in Fig. 7). If ξ in Eq. (B1) is of this kind of noise, the
change of the particle position from xi at time ti to xi+1 at time
ti+1 under a given k is an integration of Eq. (B1), xi+1 − xi =
−γ −1

∫ ti+1

ti
kx(t ) dt + γ −1

∫ ti+1

ti
ξ (t )dt , where i = 0, 1, 2, . . ..

If the span εt = ti+1 − ti are identical and small for all i, then

0 1 2 3 4 5 6 7 8

10-3

-4

-2

0

2

4

6
10-12

-5 0 5

10-12

0

5000

FIG. 7. An oscillatory telegraphic noise, whose magnitudes have
a double-Gaussian distribution with two peaks symmetrically located
at two nonzero positions (inset).

the range [ti, ti+1] = [iεt, (i + 1)εt] and
∫ ti+1

ti
kx(t ) dt ≈ kxiεt .

When ξ (t ) has a constant magnitude ξi in that range, wi ≡
γ −1

∫ ti+1

ti
ξ (t )dt = γ −1

∫ (i+1)εt

iεt
ξidt = εtξi/γ . Therefore,

xi+1 = Rxi + wi, (C1)

with R ≡ 1 − kεt/γ . Consequently,

x1 = Rx0 + w0

×RN�⇒ RN x1 = RN+1x0 + RNw0,

x2 = Rx1 + w1

×RN−1�⇒ RN−1x2 = RN x1 + RN−1w1,

...

xN−1 = RxN−2 + wN−2

×R2�⇒ R2xN−1 = R3xN−2 + R2wN−2,

xN = RxN−1 + wN−1

×R1�⇒ RxN = R2xN−1 + RwN−1. (C2)

Summing up all equations behind the arrows and starting
with x0 = 0, one obtains RxN = RwN−1 + R2wN−2 + · · · +
RN−1w1 + RNw0 and accordingly

xN = wN−1 + RwN−2 + · · · + RN−2w1 + RN−1w0

=
N∑

i=1

Ri−1wN−i =
N∑

i=1

Ri−1 εtξN−i

γ

= εt

γ

N∑
i=1

Ri−1ξN−i. (C3)

If we reexpress the position xN at time t = Nεt as x(t ), the
ensemble average of the product x(t )x(t ′) will be

〈x(t )x(t ′)〉 = 〈xN xN ′ 〉 = εt
2

γ 2

N∑
i=1

N ′∑
j=1

Mi j, (C4)

with Mi j ≡ R(i+ j−2)〈ξN−iξN− j〉 the (i, j)th entry of an N × N ′
matrix M. Therefore, 〈x(t )x(t ′)〉 is the sum of all entries of
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M. For a given t = Nεt and t ′ = N ′εt , the value of R and the sizes N and N ′ of M depend on the value of the numerical parameter
εt . However, 〈x(t )x(t ′)〉 should be almost invariant of that parameter, when εt is sufficiently small. For N = N ′, M becomes a
square matrix of dimension N ,

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈ξN−1ξN−1〉 R〈ξN−1ξN−2〉 R2〈ξN−1ξN−3〉
R〈ξN−2ξN−1〉 R2〈ξN−2ξN−2〉
R2〈ξN−3ξN−1〉

· · · · · ·

...
. . .

...

... · · ·
R2N−4〈ξ2ξ0〉

R2N−4〈ξ1ξ1〉 R2N−3〈ξ1ξ0〉
R2N−4〈ξ0ξ2〉 R2N−3〈ξ0ξ1〉 R2N−2〈ξ0ξ0〉

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (C5)

Let the magnitude of the nth telegraphic step of the oscillatory
telegraphic noise in Fig. 8 be

ξ (n) = ξ̄ (n) + ξG(n) (n = 1, 2, 3, . . .). (C6)

Here, ξ̄ (n) = (−1)nξ̄ is a deterministic term, which oscillates
between two values ±ξ̄ , depicted by the two dashed lines
in that plot. ξG(n) is a Gaussian random variable, which
causes deviations from the dashed lines. The correlation
of ξG(n) is 〈ξG(n)ξG(m)〉 = 	δK

nm, which gives the variance
	 = 〈ξG(n)2〉, where δK

nm is the Kronecker delta. Thus, the
correlation between two telegraphic steps is 〈ξ (n)ξ (m)〉 =
(−1)n+mξ̄ 2 + 	δK

nm. If we use this noise to drive a Stirling
engine in the (k, T̄ ) space, the temperature T in Fig. 8
refers to T̄ = T̄e in Eq. (C28), where T̄e = 	ts/(2γ kB) in
Eq. (C17).

Suppose that an oscillatory telegraphic noise has ns tele-
graphic steps in each of the four processes in an engine
cycle and each step is discretized as nd spans of length εt .
Figure 8 shows an example of (nd, ns ) = (3, 4) in a cycle.
Therein the noise magnitudes ξi = ξ̄i + ξG

i at the ith time
instant (i = 0, 1, 2, . . .) are denoted by red stars. During the
two isothermal processes, if the ith instant belongs to the nth
telegraphic step, ξi, ξ̄i, and ξG

i have magnitudes ξ (n), ξ̄ (n), and
ξG(n) in Eq. (C6), respectively. During the iso-k heating and
cooling processes, ξi in a telegraphic step should, in principle,
vary slightly with the temperature T , as seen in ξ12 ∼ ξ23 and
ξ36 ∼ ξ47. Specifically, ξi should deviate more from (come
closer to) ξ̄i = +ξ̄ or −ξ̄ when T becomes larger (smaller).
However, since the variation of T is very small within a short
tilted telegraphic step, in simulations all ξi in the nth step can
be approximated by the same ξ (n) of a flat step, whose ξG(n) is
determined by the T at the beginning of the tilted step.

For (nd, ns ) = (2, 4) and N = 8, Eq. (C3) gives

x8 = w7 + Rw6 + · · · + R6w1 + R7w0

=
(

ξ7εt

γ

)
+ R

(
ξ6εt

γ

)
+ · · · + R7

(
ξ0εt

γ

)

= εt

γ

[(
ξ̄7 + ξG

7

)+ R
(
ξ̄6 + ξG

6

)+ +R2(ξ̄5 + ξG
5

)
+ R3(ξ̄4 + ξG

4

)+ R4(ξ̄3 + ξG
3

)+ R5(ξ̄2 + ξG
2

)
+ R6

(
ξ̄1 + ξG

1

)+ R7
(
ξ̄0 + ξG

0

)]
= εt

γ

[(+ξ̄ + ξG
7

)+ R
(+ξ̄ + ξG

6

)+ R2(−ξ̄ + ξG
5

)
+ R3(−ξ̄ + ξG

4

)+ R4(+ξ̄ + ξG
3

)+ R5(+ξ̄ + ξG
2

)
+ R6

(−ξ̄ + ξG
1

)+ R7
(−ξ̄ + ξG

0

)]
, (C7)

with ξG
0 = ξG

1 = ξG(1), ξG
2 = ξG

3 = ξG(2), ξG
4 = ξG

5 = ξG(3),
and ξG

6 = ξG
7 = ξG(4). Its M in Eq. (C5) is then the 8 × 8

iso-T compression

iso-k heating

iso-T expansion

iso-k cooling

FIG. 8. An oscillatory telegraphic noise of four telegraphic steps
(ns = 4) and three discretized spans (nd = 3) in each of the four
processes of a Stirling cycle (Fig. 5). The noise magnitudes ξ0,
ξ1, and ξ2 in the first telegraphic step have the same value ξ (1) in
Eq. (C6), the noise magnitudes ξ3, ξ4, and ξ5 in the second step have
the same value ξ (2), and so on. The ξ presented here is regarded as
having a phase zero. If ξi at ti are replaced by ξi+1 at ti+1, the phase
of ξ is shifted 60◦.
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matrix

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

〈ξ7ξ7〉 R〈ξ7ξ6〉 R2〈ξ7ξ5〉 R3〈ξ7ξ4〉 R4〈ξ7ξ3〉 R5〈ξ7ξ2〉 R6〈ξ7ξ1〉 R7〈ξ7ξ0〉
R〈ξ6ξ7〉 R2〈ξ6ξ6〉 R3〈ξ6ξ5〉 R4〈ξ6ξ4〉 R5〈ξ6ξ3〉 R6〈ξ6ξ2〉 R7〈ξ6ξ1〉 R8〈ξ6ξ0〉
R2〈ξ5ξ7〉 R3〈ξ5ξ6〉 R4〈ξ5ξ5〉 R5〈ξ5ξ4〉 R6〈ξ5ξ3〉 R7〈ξ5ξ2〉 R8〈ξ5ξ1〉 R9〈ξ5ξ0〉
R3〈ξ4ξ7〉 R4〈ξ4ξ6〉 R5〈ξ4ξ5〉 R6〈ξ4ξ4〉 R7〈ξ4ξ3〉 R8〈ξ4ξ2〉 R9〈ξ4ξ1〉 R10〈ξ4ξ0〉
R4〈ξ3ξ7〉 R5〈ξ3ξ6〉 R6〈ξ3ξ5〉 R7〈ξ3ξ4〉 R8〈ξ3ξ3〉 R9〈ξ3ξ2〉 R10〈ξ3ξ1〉 R11〈ξ3ξ0〉
R5〈ξ2ξ7〉 R6〈ξ2ξ6〉 R7〈ξ2ξ5〉 R8〈ξ2ξ4〉 R9〈ξ2ξ3〉 R10〈ξ2ξ2〉 R11〈ξ2ξ1〉 R12〈ξ2ξ0〉
R6〈ξ1ξ7〉 R7〈ξ1ξ6〉 R8〈ξ1ξ5〉 R9〈ξ1ξ4〉 R10〈ξ1ξ3〉 R11〈ξ1ξ2〉 R12〈ξ1ξ1〉 R13〈ξ1ξ0〉
R7〈ξ0ξ7〉 R8〈ξ0ξ6〉 R9〈ξ0ξ5〉 R10〈ξ0ξ4〉 R11〈ξ0ξ3〉 R12〈ξ0ξ2〉 R13〈ξ0ξ1〉 R14〈ξ0ξ0〉

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(ξ̄ 2 + 	) R(ξ̄ 2 + 	) −ξ̄ 2R2 −ξ̄ 2R3 ξ̄ 2R4 ξ̄ 2R5 −ξ̄ 2R6 −ξ̄ 2R7

R(ξ̄ 2 + 	) R2(ξ̄ 2 + 	) −ξ̄ 2R3 −ξ̄ 2R4 ξ̄ 2R5 ξ̄ 2R6 −ξ̄ 2R7 −ξ̄ 2R8

−ξ̄ 2R2 −ξ̄ 2R3 R4(ξ̄ 2 + 	) R5(ξ̄ 2 + 	) −ξ̄ 2R6 −ξ̄ 2R7 ξ̄ 2R8 ξ̄ 2R9

−ξ̄ 2R3 −ξ̄ 2R4 R5(ξ̄ 2 + 	) R6(ξ̄ 2 + 	) −ξ̄ 2R7 −ξ̄ 2R8 ξ̄ 2R9 ξ̄ 2R10

ξ̄ 2R4 ξ̄ 2R5 −ξ̄ 2R6 −ξ̄ 2R7 R8(ξ̄ 2 + 	) R9(ξ̄ 2 + 	) −ξ̄ 2R10 −ξ̄ 2R11

ξ̄ 2R5 ξ̄ 2R6 −ξ̄ 2R7 −ξ̄ 2R8 R9(ξ̄ 2 + 	) R10(ξ̄ 2 + 	) −ξ̄ 2R11 −ξ̄ 2R12

−ξ̄ 2R6 −ξ̄ 2R7 ξ̄ 2R8 ξ̄ 2R9 −ξ̄ 2R10 −ξ̄ 2R11 R12(ξ̄ 2 + 	) R13(ξ̄ 2 + 	)

−ξ̄ 2R7 −ξ̄ 2R8 ξ̄ 2R9 ξ̄ 2R10 −ξ̄ 2R11 −ξ̄ 2R12 R13(ξ̄ 2 + 	) R14(ξ̄ 2 + 	)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

(ξ̄ 2 + 	)E −ξ̄ 2R2E ξ̄ 2R4E −ξ̄ 2R6E

−ξ̄ 2R2E (ξ̄ 2 + 	)R4E −ξ̄ 2R6E ξ̄ 2R8E

ξ̄ 2R4E −ξ̄ 2R6E (ξ̄ 2 + 	)R8E −ξ̄ 2R10E

−ξ̄ 2R6E ξ̄ 2R8E −ξ̄ 2R10E (ξ̄ 2 + 	)R12E

⎤
⎥⎥⎥⎥⎦

= ξ̄ 2

⎡
⎢⎢⎢⎢⎣

E −R2E R4E −R6E

−R2E R4E −R6E R8E

R4E −R6E R8E −R10E

−R6E R8E −R10E R12E

⎤
⎥⎥⎥⎥⎦+ 	

⎡
⎢⎢⎢⎢⎣

E 0 0 0

0 R4E 0 0

0 0 R8E 0

0 0 0 R12E

⎤
⎥⎥⎥⎥⎦, (C8)

where the 2 × 2 submatrix E ≡ [R0 R1

R1 R2] gives a contribution from a telegraphic step with nd = 2.
For general nd and even number of ns, the noise has ns/2 pairs of forward and backward telegraphic steps. In this case, the

matrix in Eq. (C8) can be extended to

M = ξ̄ 2

⎡
⎢⎢⎢⎢⎢⎣

E −Rnd E

−Rnd E (−Rnd )2E

. . . (−Rnd )ns−1E
...

...

(−Rnd )ns−1E . . .

. . . (−Rnd )2ns−3E

(−Rnd )2ns−3E (−Rnd )2ns−2E

⎤
⎥⎥⎥⎥⎥⎦+ 	

⎡
⎢⎢⎢⎢⎣

E 0

0 R2nd E

0 0

0 0
0 0

0 0

. . . 0

0 R(2ns−2)nd E

⎤
⎥⎥⎥⎥⎦, (C9)

where

E ≡

⎡
⎢⎢⎢⎢⎢⎣

R0 R1

R1 R2
. . .

Rnd−2 Rnd−1

Rnd−1 Rnd

...
. . .

...

Rnd−2 Rnd−1

Rnd−1 Rnd
. . .

R2nd−4 R2nd−3

R2nd−3 R2nd−2

⎤
⎥⎥⎥⎥⎥⎦.
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Removing the nd × nd submatrix E from the ndns × ndns matrix M yields an ns × ns matrix

M′ ≡ ξ̄ 2

⎡
⎢⎢⎢⎢⎢⎣

1 −Rnd

−Rnd (−Rnd )2

. . . (−Rnd )ns−1

...
...

(−Rnd )ns−1 . . .

. . . (−Rnd )2ns−3

(−Rnd )2ns−3 (−Rnd )2ns−2

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
≡MI

+	

⎡
⎢⎢⎢⎢⎣

1 0

0 R2nd

0 0

0 0
0 0

0 0

. . . 0

0 R(2ns−2)nd

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
MII

= ξ̄ 2MI + 	MII, (C10)

with MI and MII two additional submatrixes. Let the sum of all entries in M, E, M′, MI, and MII, be SM, SE, SM′ , SMI , and SMII ,
respectively. Clearly, they are related by

SM = SM′SE = (ξ̄ 2SMI + 	SMII )SE. (C11)

Since 1 + r + · · · + rn = (1 − rn+1)/(1 − r) for r < 1, we have

SE ≡ (1 + R + R2 + · · · + Rnd−1)2 =
{

nd
2 for R = 1(

1−Rnd

1−R

)2
for R < 1,

(C12)

SMI ≡ (1 + (−Rnd ) + · · · + (−Rnd )ns−1)2 =
{

1+(−1)ns−1

2 for R = 1( 1−(−Rnd )ns

1+Rnd

)2
for R < 1 ⇒ |−Rnd | < 1,

(C13)

SMII = 1 + R2nd + R4nd + · · · + R(2ns−2)nd =
{

ns for R = 1

1−R2nsnd

1−R2nd
for R < 1,

(C14)

where SMI = 0 for R = 1 in Eq. (C13) if ns there is an even number. Let 〈x2(t )〉e be the variance of x calculated from the matrices
in Eqs. (C8) and (C9), for which t is at the end of a pair of telegraphic steps and ns is an even number. Due to Eqs. (C4) and
(C11)∼(C14), one obtains

〈x2(t )〉e = εt
2

γ 2
SM = εt

2

γ 2
(ξ̄ 2SMI + 	SMII )SE

= εt
2

γ 2

⎡
⎣ξ̄ 2

⎧⎨
⎩

1+(−1)ns−1

2( 1−(−Rnd )ns

1+Rnd

)2 + 	

{
ns

1−R2nsnd

1−R2nd

⎤
⎦×

{
nd

2(
1−Rnd

1−R

)2

=

⎧⎪⎨
⎪⎩
[
ξ̄ 2 1+(−1)ns−1

2 + 	ns
]
nd

2 εt
2

γ 2

[
ξ̄ 2
( 1−(−Rnd )ns

1+Rnd

)2 + 	 1−R2nsnd

1−R2nd

]
(1 − Rnd )2

(
εt

1−R

)2 1
γ 2

=

⎧⎪⎨
⎪⎩
[
ξ̄ 2 1+(−1)ns−1

2 + 	
(

t
ts

)] t2
s

γ 2 for R = 1

[
ξ̄ 2(1 − (−1)ns RN )2

(
1−Rnd

1+Rnd

)2 + 	
(
1 − R2N

)(
1−Rnd

1+Rnd

)]
1
k2 for R < 1,

(C15)
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with ns = t/ts, ndεt = ts, and nsnd = N , where(
εt

1 − R

)2 1

γ 2
=
(

εt

kεt/γ

)2 1

γ 2
= 1

k2

has been used in the last equality of Eq. (C15). Here, t and
ts are two physical parameters, while nd → ∞ and εt → 0
are two numerical parameters, which have disappeared in
Eq. (C15). The long-time behavior of 〈x2(t )〉e in Eq. (C15)
is as follows.

For R = 1, the first part of Eq. (C15) at t � 1 behaves
asymptotically as

〈x2(t )〉e,free ≡ 	

(
t

ts

)
t2
s

γ 2
= 2

(
	ts
2γ 2

)
t

= 2Dt ≡ 2

(
kBT̄e

γ

)
t, (C16)

where D and T̄e are defined by diffusion, as in the case of D
and T̄ before Eq. (A1). Therefore, T̄e is related to the noise
characteristics 	 and ts and the mean-square displacement
〈x2(t )〉e,free by

T̄e = 	ts
2γ kB

= γ

2kBt
〈x2(t )〉e,free. (C17)

Here, the second equality has been confirmed numerically.
Interestingly, the temperature T̄e perceived by a stochastic heat
engine can be controlled by 	 or ts, but not by ξ̄ .

For R < 1, consider the limit (nd, εt ) → (∞, 0) un-
der a constant ts = ndεt and t = Nεt = nsndεt = nsts. Using
exp x = limn→∞(1 + x

n )n for all real x and R = 1 − kεt/γ =
1 + (−kts/γ )/nd = 1 + X/nd, with the dimensionless quan-
tity X ≡ −kts/γ , we obtain

Rnd=
(

1 + X

nd

)nd
nd→∞−→ eX = e−kts/γ , (C18)

RN =
(

1 − k

γ
εt

)t/εt

=
[(

1 − k/γ

1/εt

)1/εt
]t

εt→0−→ [e−k/γ ]t = e−kt/γ t→∞−→ 0, (C19)

R2N = [RN ]2 εt→0−→ [e−kt/γ ]2 = e−2kt/γ t→∞−→ 0, (C20)

1 − Rnd

1 + Rnd

nd→∞−→ tanh

(
−X

2

)
= tanh

(
kts
2γ

)
, (C21)

where Eq. (C18) has been used to derive Eq. (C21). Therefore,
in the limit (nd, εt ) → (∞, 0), the second part of Eq. (C15) for
R < 1 becomes

〈x2(t )〉e =
[
ξ̄ 2(1 − (−1)ns e−kt/γ )2 tanh2

(
kts
2γ

)

+ Xi(1 − e−2kt/γ ) tanh

(
kts
2γ

)]
1

k2
. (C22)

At t → ∞, Eq. (C22) reduces to

〈x2〉e,well ≡
[
ξ̄ 2 tanh2

(
kts
2γ

)
+ 	 tanh

(
kts
2γ

)]
1

k2
, (C23)

which implies

T̂e = k〈x2〉e,well/kB

=
[
ξ̄ 2 tanh2

(
kts
2γ

)
+ 	 tanh

(
kts
2γ

)]
1

kkB
. (C24)

Unlike that T̄e in Eq. (C17) can only be varied by 	 and ts,
all the three parameters 	, ts, and ξ̄ can be used to manipulate
T̂e in Eq. (C24). This allows us to use ξ̄ to tune T̂e without
changing T̄e. Numerically, the second equality in Eq. (C24)
has been confirmed by our simulation.

With Eqs. (C17) and (C24), one obtains

fe(k) = T̂e

T̄e
=
[
ξ̄ 2 tanh2

( kts
2γ

)+ 	 tanh
( kts

2γ

)]
1

kkB

	ts/(2γ kB)

= 1

kts/(2γ )

[
ξ̄ 2

	
tanh2

(
kts
2γ

)
+ tanh

(
kts
2γ

)]

= 1

K
[c tanh2(K ) + tanh(K )]

= tanh(K )

K
[1 + c tanh(K )] ≡ f̂e(K ). (C25)

Here, K ≡ kts/(2γ ) and c ≡ ξ̄ 2/	 are two dimensionless pa-
rameters, where 	 = 2γ kBT̄ /ts due to Eq. (C17), with T̄ = T̄e

as explained in Eq. (C28) below. Interestingly, f̂e(K ) depends
more crucially on the ratio ξ̄ 2/	 than the individual values of
ξ̄ 2 and 	. Since tanh(K ) ≈ K at small K , Eq. (C25) behaves
as f̂e(K ) ≈ 1 + cK in that regime. A larger c will enhance the
increasing trend of f̂e(K ), which is beneficial for improving
the engine efficiency. Furthermore, a smaller ts will pull the
value of K = kts/(2γ ) back to a smaller number, where the
slope of f̂e(K ) is steeper, which would also improve the effi-
ciency.

In Eq. (C25), ξ̄ > 0 is crucial for obtaining an increasing
f̂e(K ). If ξ̄ = 0, Eq. (C25) will reduce to a decreasing func-
tion f̂e(K ) = tanh(K )/K . However, if ξ̄ = 0 is combined with
nd = 1 (only one red star in each telegraphic step in Fig. 8),
taking t → ∞ for 〈x2(t )〉e in Eq. (C15) will give

	

(
t

ts

)
t2
s

γ 2
= 2

(
	ts
2γ 2

)
t ≡ 2

(
kBT̄e

γ

)
t for R = 1,

	
(
1−R2N

)(1 − R

1 + R

)
1

k2

N→∞−→
(

1 − R

1 + R

)
	

k2
≡kBT̂e

k
for R < 1.

(C26)

It yields T̄e = 	ts/(2γ kB), the same as Eq. (C17), and T̂e =
(1 − R)(1 + R)−1	/(kkB), different from Eq. (C24). Together
with R = 1 − kεt/γ , nd = ts/εt = 1, and K ≡ kts/(2γ ) =
kεt/(2γ ), they lead to an increasing function of K ,

fe,0(k) = T̂e

T̄e
=
(

1 − R

1 + R

)
	

kkB

2γ kB

	ts

=
(

kεt/γ

2 − kεt/γ

)
1

kεt/(2γ )

= 2

2 − kεt/γ
= 1

1 − K
≡ f̂e(K ), (C27)

which is even simpler than Eq. (C25). However, this increas-
ing fe,0(k) cannot provide a high-efficiency engine because
K ∼ εt , as explained in Sec. III C.
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Recall that Eq. (C25) is a result of M in Eq. (C9), which
is derived under three conditions: (i) k is fixed or changes
quasistatically, (ii) ns is an even number such that t contains
ns/2 pairs of backward and forward telegraphic steps, and (iii)
ξ starts with the initial value ξ̄ (1) = −ξ̄ in Eq. (C6). At that
t , a particle in the overdamped regime has been pushed to a
positive extreme position, x > 0, far away from the equilib-
rium point at x = 0 and thus has a large 〈x2〉. If ns is an odd
number, the noise just completes a backward step at t , so that
the particle will be at a negative extreme position, x < 0, again
far from x = 0. In this case, 〈x2(t )〉e,free, T̄e, 〈x2〉e,well, and T̂e in
Eqs. (C16), (C17), (C23), and (C24), respectively, remain the
same. Due to symmetry, these results still hold when the initial
value ξ̄ (1) = −ξ̄ is replaced by +ξ̄ . At other t , which contain
incomplete telegraphic steps, |x| is generically smaller than
the absolute values of the above extreme positions. There-
fore, its variance in the well, 〈x2〉well and T̂ = k〈x2〉well/kB

are generically smaller than 〈x2〉e,well in Eq. (C23) and T̂e in
Eq. (C24), respectively. Its variance in a potential-free space,
〈x2(t )〉free, is also different from 〈x2(t )〉e,free. However, at large
t , the former has the same asymptotic behavior as the latter in
Eq. (C16). Therefore, the temperatures defined by 〈x2(t )〉free

and 〈x2(t )〉e,free are identical,

T̄ = T̄e. (C28)

Putting all together, although f̂ (K ) = T̂ /T̄ is different from
f̂e(K ) = T̂e/T̄e, they have the same rising or falling trend. An
example of 〈x2〉well and 〈x2〉e,well can be seen in Fig. 3(b),
where the former denoted by 〈x2〉 (blue) is, as expected above,
“bounded” by the latter denoted by 〈x2〉e (red).

So far, the results are obtained when the telegraphic noises
ξ in all systems of the ensemble have the same phase starting
with the initial value ξ̄ (1) = −ξ̄ . When we randomize the
phase of ξ as in the equal a priori probability in the micro-
canonical ensemble, the phase-averaged 〈x2(t )〉free, 〈x2〉well, T̂ ,
and f̂ (K ) become much smoother, which are “bounded” by,
and follow the same trend as, the above 〈x2(t )〉e,free, 〈x2〉e,well,
T̂e, and f̂e(K ), respectively. Notice that T̄ and T̄e in Eq. (C28)
still have the same value after the phase is randomized because
these temperatures depend only on the long-time spread of x
and not on the phase. As T̄ does not oscillate with ξ , it is an
appropriate temperature in the engine protocol.

In colloidal engine experiments, typical or accessible
ranges of parameter values include γ = 10−8 kg/s,
k ∈ [1, 4] × 10−5 N/m, and (T̄2, T̄1) = (200, 400) K.
To create these T̄ , let us consider the length of
the telegraphic step, ts = ndεt = 2 × 10−4 s. It is of
the same order as the relaxation time trelax ≡ γ /k ∈
10−8/([1, 4] × 10−5) s = [2.5, 10] × 10−4 s. Besides,
K = kts/(2γ ) ∈ [1, 4] × 10−5 × 2 × 10−4/(2 × 10−8) =
[0.1, 0.4] and 	 = 2γ kBT̄ /ts ∈ 2 × 10−8 × 1.38 × 10−23 ×
[200, 400]/(2 × 10−4)N2 = [2.76, 5.52] × 10−25 N2.
Taking (εt, nd, ns, ncycle) = (10−5 s, 20, 102, 104), both
εt/trelax ∈ 10−5/([2.5, 10] × 10−4) = [4, 1] × 10−2 and
trelax/tprocess = trelax/(ndnsεt ) ∈ [2.5, 10] × 10−4/(20 ×
102 × 10−5) = [1.25, 5.00] × 10−2 are sufficiently small in
simulations. For ξ̄ = 1 pN = 10−12 N, its ξ̄ 2 = 10−24 N2 is
larger than 〈ξ 2

thermal(t )〉 = 2γ kBT = 8.28 × 10−29 N2 of the
thermal noise ξthermal(t ) of water molecules at T = 300 K .
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FIG. 9. Engine efficiencies under oscillatory telegraphic noises
at different phases. The 90 points in the plot represent the efficiencies
of an active engine driven by the oscillatory telegraphic noise of
18 uniformly distributed phases starting with five different initial
particle positions x0, each of which is averaged over 104 single cycles
in an ensemble. The efficiencies of the same color have the same x0.
The dashed line denotes the efficiency 0.368 of the passive engine.

This ξ̄ is comparable to the experimentally measured
thrust forces of flagellar motors, including 0.57 pN for
peritrichous (multiflagellated) Escherichia coli, 0.37 pN for
Salmonella typhimurium, and 0.029 pN for the amphitrichous
magnetotactic bacterium Magnetospirillum magneticum [51].

Taking these parameter values, we obtain Fig. 3,
where the efficiencies of the passive and active Stirling
engine are (ηS

pas, η̄S
act) = (0.37, 0.43). Since c =

ξ̄ 2/	 = ξ̄ 2/(2γ kBT̄ /ts) ∈ 10−24/([2.76, 5.52] × 10−25) =
[1.81, 3.62], its f̂e(K ) should have a rising branch. Indeed, if
c = 3.0, 2.0, and 1.1, f̂e(K ) behaves as the blue, violet, and
red lines, respectively, in Fig. 4(b). If (T̄2, T̄1) = (200, 400) K
is replaced by (300, 400) K, the efficiency of the active
engine will reduce to that of its passive counterpart, with
(ηS

pas, η̄S
act ) = (0.20, 0.20).

In the above simulations, all engine efficiencies are cal-
culated by the long-time average over a large number of
successive cycles, as commonly evaluated in experiments.
Therein the phase of the noise in each cycle is zero, as shown
in Fig. 8, while the initial position of the Brownian parti-
cle is set to zero, x0 = 0 μm, only in the first cycle. These
efficiencies can be compared with those calculated by the
ensemble average. To this end, let us prepare 90 ensembles of
single-cycle simulations from 18 uniformly distributed phases
and 5 different initial particle positions x0. Their efficiencies
are indicated by 90 points in Fig. 9, where ξ̄ = 1.6 pN is
used. These efficiencies are not always higher than the effi-
ciency 0.368 of the passive engine (dashed line). However,
taking the average of 18 phases for each of the five individual
x0 = (−2 × 10−9, −10−9, 0, 10−9, 2 × 10−9) µm gives five
efficiencies (0.399 0.393 0.392 0.398 0.395), all of which
surpass the efficiency of the passive engine.

APPENDIX D: PARTICLE DYNAMICS IN
THE OPTICAL FEEDBACK TRAP

In the OFT technique, one mimics the motion of a Brow-
nian particle in an arbitrary potential U (x) by instantaneously
shifting a simpler potential Uo(x) to some position, such that
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the two different potentials are the same, U (x) = Uo(x), at the
instant position x of the particle. The continuously moving
potential Uo(x) creates a constant virtual potential Uv(x) to
approximate the desired real fixed potential U (x). In experi-
ments, Uo(x) is commonly a harmonic potential of stiffness
kot given by an optical tweezers.

When a colloidal particle of mass m is immersed in wa-
ter and confined by a harmonic potential U (x) = kx2/2 of
stiffness k, the particle position x(t ) will be governed by
a Langevin equation mẍ(t ) = −γ ẋ(t ) − kx(t ) + ξ (t ) ≈ 0, if
the system is in the overdamped regime. Here, γ is the
friction coefficient and ξ (t ) = √

2γ kBT �(t ) =
√

2γ 2D�(t ) is
the stochastic force of thermal noise, where T and D are
the temperature of the water and the diffusion constant of
the particle, respectively, and �(t ) denotes a Gaussian white
noise of unit variance. In OFT, if the real force −dU (x)/dx =
−kx(t ) is generated by the force, −kot[x(t ) − xL(t )], of an
optical tweezers centered at xL(t ), they satisfy the relation
−kx(t ) = −kot[x(t ) − xL(t )]. It yields xL(t ) = −αx(t ), where
α ≡ −1 + k/kot. Therefore, ideally, the particle should be
governed by the Langevin dynamics γ ẋ(t ) + kx(t ) = γ ẋ(t ) +
kot[x(t ) + αx(t )] = ξ (t ). However, in practice, the location
of the optical tweezers can only be adjusted according to
an inevitably slightly earlier particle position, xL(t − td ) =
−αx(t − td ), where td is a feedback delay time. Thus, the real
particle dynamics satisfies

γ ẋ(t ) + kotx(t ) + αkotx(t − td ) = ξ (t ). (D1)

If we express the mean-square displacement of Eq. (D1) as
〈x2(t )〉 = 2D̄t = 2(kBT̄ /γ )t , it defines a diffusion constant D̄
and a corresponding temperature T̄ , as that before Eq. (A1),
for td > 0. By definition, D̄ and T̄ will reduce to the above
D and T only at td → 0. But, in reality, D̄ = D and T̄ = T
for any td > 0 because D̄ and T̄ are both defined at k = 0. In
this case, α = −1 and Eq. (D1) reduces to γ ẋ(t ) + kot[x(t ) −
x(t − td )] = ξ (t ), which is used to mimic a free particle gov-
erned by the Langevin equation γ ẋ(t ) = ξ (t ). Since the real
potential is absent in the latter equation, the optical tweezers
in the former one is redundant and can be removed by setting
kot = 0. Therefore, the D̄ and T̄ of the former equation are the
same as the D and T of the latter one even for td > 0.

Suppose that the particle positions xi in experiments are
measured at discrete time instants iεt , with i = 0, 1, 2, . . .,
where εt is the data acquisition time. Then they follow a
discretized version of Eq. (D1), γ (xi+1 − xi )/εt + kot(xi +
αxi−l ) = ξi [19], when the delay time in Eq. (D1) is
td = lεt for l = 0, 1, 2, . . .. Here, ξi = √

2γ kBT/εt�i =√
2γ 2D/εt�i, where �i has the same statistics as �(t ) defined

before Eq. (D1). Therefore,

xi+1 = xi − kot

γ
(xi + αxi−l )εt + εt

γ
ξi

= (1 − β )xi − αβxi−l + ξ x
i , (D2)

with β ≡ kotεt/γ , the position fluctuation ξ x
i ≡ εtξi/γ =√

2(kBT/γ )εt�i = √
2Dεt�i, and 〈ξ x

i ξ x
j 〉 = 2Dεtδ

K
i j , where

δK
i j is the Kronecker delta. For l = 1, or equivalently td = εt ,

Eq. (D2) reduces to

xi+1 = (1 − β )xi − αβxi−1 + ξ x
i , (D3)

which has the variance〈
xi+1

2
〉 = (1 − β )2

〈
xi

2
〉+ α2β2

〈
xi−1

2
〉

+ 〈ξ x
i

2〉− 2αβ(1 − β )〈xixi−1〉
− 2αβ

〈
xi−1ξ

x
i

〉+ 2(1 − β )
〈
xiξ

x
i

〉
. (D4)

Multiplying Eq. (D3) with xi and taking the average on all
terms gives

〈xi+1xi〉 = (1 − β )
〈
xi

2
〉− αβ〈xixi−1〉 + 〈xiξ

x
i

〉
. (D5)

Considering 〈xi−1ξ
x
i 〉 = 〈xiξ

x
i 〉 = 0 due to causality, as well as

〈xi+1
2〉 = 〈x2

i 〉 = 〈xi−1
2〉 ≡ 〈x2〉 and 〈xi+1xi〉 = 〈xixi−1〉 for a

steady state, Eqs. (D4) and (D5) become

〈x2〉 = (1 − β )2〈x2〉 + α2β2〈x2〉 + 〈ξ x
i

2〉
− 2αβ(1 − β )〈xixi−1〉, (D6)

〈xixi−1〉 = (1 − β )

(1 + αβ )
〈x2〉, (D7)

respectively. Inserting Eq. (D7) and 〈ξ x
i

2〉 = 2Dεt into
Eq. (D6) gives

〈x2〉 = 2Dεt

1 − (1 − β )2 − α2β2 + 2αβ(1−β )2

(1+αβ )

= 2Dεt (1 + αβ )

β(1 − αβ )(1 + α)(2 + αβ − β )

=
2 kBT

γ
εt (1 − β + K )

kotεt
γ

(1 + β − K ) k
kot

(2 − β + K − β )

= −2kBT (K − β + 1)

k(K − β − 1)(K − 2β + 2)

= −2(K − c1)

(K − c2)(K − c3)

kBT

k
, (D8)

with c1 ≡ β − 1, c2 ≡ β + 1, c3 ≡ 2β − 2, and K ≡ kεt/γ ,
where αβ = (−1 + k/kot )(kotεt/γ ) = −kotεt/γ + kεt/γ =
−β + K has been used. Notice that due to feedback delay,
Eq. (D8) has deviated from the variance 〈x2〉 = kBT/k in the
absence of delay. This deviation depends on kot and td, where
td = εt has been assumed before Eq. (D3). With Eq. (D8), it
follows that

f (k) = k〈x2〉
kBT̄

= −2(K − c1)

(K − c2)(K − c3)
≡ f̂ (K ), (D9)

where T̄ = T , as explained below Eq. (D1), has been used.
Since the nonzero εt is in practice very small, both K and

β � 1. Therefore, the real K is far from the zero point c1

and the two singularities at c2 and c3 in Eq. (D9). In this
regime, f̂ (K ) is clearly a rising function of K . For instance,
when α = 0, which is equivalent to k = kot and β = K , the
real potential is equal to the optical tweezers potential. In this
case, c1 = K − 1, c2 = K + 1, and c3 = 2K − 2 in Eq. (D9),
which yields an increasing function

f̂0(K ) = 2

2 − K
. (D10)

For the experimentally accessible values γ = 10−8 kg/s,
kot = 3 × 10−5 N/m, k ∈ [1, 4] × 10−5 N/m, and εt =

043085-19



CHANG, CHANG, WU, JUN, AND CHANG PHYSICAL REVIEW RESEARCH 5, 043085 (2023)

10−5 s, both β = kotεt/γ and K = kεt/γ are positive and
� 1, so that c1 = −1+, c2 = 1+, c3 = −2+, and K = 0+,
where a+ denotes a number slightly larger than a. Therefore,

d f̂ (K )

dK
= 2

K2 − 2c1K + (c1c2 + c1c3 − c2c3)

(K − c2)2(K − c3)2

≈ 2
02 − 2(−1)0 + (−1 + 2 + 2)

1222
= 3

2
> 0,

indicating that f̂ (K ) is an increasing function. However, K ≡
kεt/γ in Eqs. (D9) and (D10) shrinks to zero as εt → 0. For
the same reason as for Eq. (C27), the rising f̂ (K ) in Eq. (D9)
and f̂0(K ) in Eq. (D10) do not lead to a high-efficiency engine.

Beyond the discrete dynamics of a tiny td in Eq. (D3), let
us rewrite the original continuous dynamics Eq. (D1) with an
arbitrary td as the form

ẏ(t ) + γ1y(t ) + γ2y(t − td ) = �(t ). (D11)

Here, y(t ) ≡ γ x(t )/A, γ1 ≡ kot/γ , γ2 ≡ αkot/γ = αγ1 =
(−1 + k/kot )kot/γ = −kot/γ + k/γ = −γ1 + k/γ , and �(t )
= ξ (t )/A is the Gaussian white noise of unit variance
before Eq. (D1), where A ≡ √

2γ kBT . Under the condi-

tions γ2 > γ1 � 0 and 0 � td
√

γ2
2 − γ 2

1 < cos−1(−γ1/γ2) �
π , the variance of y is [26,27]

〈y2〉 =
γ2 sin

(√
γ2

2 − γ 2
1 td
)+

√
γ2

2 − γ 2
1

2
√

γ2
2 − γ 2

1

[
γ1 + γ2 cos

(√
γ2

2 − γ 2
1 td
)] . (D12)

For γ1 > γ2 � 0 and γ1 = γ2 � 0, a similar formula
can be derived [27]. The first condition for Eq. (D12)
means αγ1 > γ1 � 0, which occurs when α = −1 +
k/kot = (k − kot)/kot > 1 or equivalently k > 2kot. The
second condition means 0 � td

√
(γ2 + γ1)(γ2 − γ1) =

td
√

(k/γ )(−2γ1 + k/γ ) = √
(ktd/γ )(ktd/γ − 2kottd/γ ) =√

K (K − 2c) ≡ g(K ) < cos−1(c/(c − K )) � π , with K ≡
ktd/γ , c ≡ kottd/γ = tdγ1, and K − c = tdγ2. In terms of K
and c, the first condition above is K > 2c and Eq. (D12) can
be reexpressed as

〈y2〉 = td
2

tdγ2 sin
(√

td2γ2
2 − td2γ 2

1

)+
√

td2γ2
2 − td2γ 2

1√
td2γ2

2−td2γ 2
1

[
tdγ1+tdγ2 cos

(√
td2γ2

2 − td2γ 2
1

)]
= 1

k

γ K[(K − c) sin (g(K )) + g(K )]

2g(K )[c + (K − c) cos (g(K ))]
, (D13)

and subsequently

〈x2〉 = A2

γ 2
〈y2〉 = 2kBT

γ
〈y2〉

= 1

k

kBT K[(K − c) sin (g(K )) + g(K )]

g(K )[c + (K − c) cos (g(K ))]
. (D14)

Notice that K here is normally much larger than the K in
Eq. (D8) because td here is generically much larger than εt

there. Since T̄ = T , with the same reason mentioned below
Eq. (D1), it follows from f (k) = k〈x2〉/(kBT̄ ) that

f (k) = K[(K − c) sin (g(K )) + g(K )]

g(K )[c + (K − c) cos (g(K ))]
≡ f̂ (K ). (D15)

Under the first condition for Eq. (D12), k > 2kot, consider
a K slightly larger than 2c, such that K − 2c ≡ e ≈ 0+ and
g(K ) = √

(2c + e)e ≈ 0+. Taylor expanding Eq. (D15) with
respect to such a small g(K ) gives

f̂ (K ) = K
{

(c + e)
[
g(K ) − (g(K ))3

6 + O5
]+ g(K )

}
g(K )

{
c + (c + e)

[
1 − (g(K ))2

2 + O4
]}

= K
{

(c + e)
[
1 − (g(K ))2

6 + O4
]+ 1

}
{
c + (c + e)

[
1 − (g(K ))2

2 + O4
]}

≈ (c + 1)

2c
K, (D16)

with O4 ≡ O((g(K ))4) and O5 ≡ O((g(K ))5). Equation (D16)
is indeed an increasing function of K .

For γ = 10−8 kg/s, k ∈ [2.1, 4.0] × 10−5 N/m, and
kot = 10−5 N/m, if we take td = 10−4 s, which is longer
than the data acquisition time 10−5 s, it would give K =
ktd/γ = [0.21, 0.40]. If td = 1.6 × 10−4, 1.8 × 10−4, and
2.0 × 10−4 s, it yields c = kottd/γ = 0.16, 0.18, and 0.20,
respectively, for Eq. (D15), as depicted in Fig. 4(d). These
curves do not start with K = 0 because we need K > 2c,
or equivalently k > 2kot, to let g(K ) in Eq. (D15) be a real
number.

APPENDIX E: PARTICLE DYNAMICS IN THE
STOCHASTIC DELAY DIFFERENTIAL EQUATION

If a delay time td is added to Eq. (B1), the latter becomes

γ ẋ(t ) = −kx(t − td ) + ξ (t ). (E1)

Suppose that the noise here has the same strength ξ (t ) =
A�(t ) as that in Eq. (D1), where A = √

2γ kBT =
√

2γ 2D
is as defined below Eq. (D11). Then ξ (t )dt = A�(t )dt =
AdW (t ), with W (t ) a Wiener process, where 〈W (t )〉 = 0 and
〈W 2(t )〉 = t . Adopting these notations, Eq. (E1) becomes

ẋ(t ) = −κx(t − td ) + ζ (t ), (E2)

where κ = k/γ , ζ = ξ/γ , and ζ (t )dt = σdW (t ), with σ =√
2kBT/γ = √

2D. For general κ � 0 and π/(2κ ) > td � 0,
the variance of the steady state of x in Eq. (E2) is [25]

〈x2〉 = σ 2

2κ

[
1 + sin (κtd )

cos (κtd )

]
= 2kBT/γ

2k/γ

[
1 + sin (ktd/γ )

cos (ktd/γ )

]

= kBT

k

1 + sin(K )

cos(K )
, (E3)

where K ≡ ktd/γ = κtd < π/2. 〈x2〉 varies with td and has its
minimum at td = 0. It becomes larger when td > 0 because
the restoring force of the potential well to prevent the particle
from moving away from the potential minimum at x = 0
becomes less instantaneous and less efficient. Thus, the 〈x2〉
associated T̂ at td > 0 is also larger than that at td = 0. From
Eq. (E3) it follows that

f (k) = k〈x2〉
kBT̄

= 1 + sin(K )

cos(K )
≡ f̂ (K ), (E4)

which is an increasing function within K ∈ [0, π
2 ), where T̄ =

T below Eq. (D1) has been used.
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TABLE I. Examples of Fourier transforms.

h(t )︸︷︷︸
dim=T−1

δ(t )
1T

e
−|t |
τ

2τ

sinc(at )
1T

≡ sin(πat )
1Tπat

[
δ(t )
1T

0

] [
e

−|t |
τ

τ

0

]

F (h(t ))︸ ︷︷ ︸
dim. less

1 1
1+ω2τ2

1
1T |a| rect( ω

2πa ) 1 1
1+iωτ

For γ = 10−8 kg/s and k ∈ [0, 4] × 10−5 N/m, td = 5 ×
10−5 and 2.5 × 10−4 s give K = ktd/γ ∈ [0, 0.2] and [0, 1],
respectively. If we extend the range of k for the first td to cover
the range K ∈ [0, 1], the same as the second td, they show an
identical f̂ (K ), as depicted in Fig. 4(c).

Rewriting Eq. (E2) as ẋ(t ) = −κx(t − td ) + √
2D�(t ) and

expanding it to the first order in a small td, it yields [20]

ẋ(t ) = − κx(t )

1 − κtd
+

√
2D�(t )

1 − κtd
= − kx(t )

γ − ktd
+ ξ (t )

γ − ktd

= 1

γ

(
− kx(t )

1 − K
+ ξ (t )

1 − K

)
, (E5)

with the variance

〈x2〉 = D

κ

1

1 − κtd
= (kBT/γ )

(k/γ )

1

1 − (k/γ )td

= kBT

k

1

(1 − K )
, (E6)

which increases with td as in Eq. (E3). In analogy to T̄ = T in
Eq. (E4), the result in Eq. (E6) leads to the increasing function

f (k) = k〈x2〉
kBT̄

= 1

1 − K
≡ f̂ (K ). (E7)

APPENDIX F: GENERALIZED LANGEVIN EQUATION I

Let F (h(t )) ≡ h̃(ω) = ∫∞
−∞ h(t )e−iωt dt be the

Fourier transform of the function h(t ) and h(t ) =
(2π )−1

∫∞
−∞ h̃(ω)eiωt dω be its inverse transform. Some

useful examples are collected in Table I. Therein [x
0] stands

for {x if t � 0
0 if t < 0 and all t , 1/a, and the number of one 1T

have the dimension of time. Here, 1T is introduced to make
all terms in the equations consistent in dimension for a
dimensional analysis. For h(t ) = e−|t |/τ /(2τ ) (see Table
within the Supplemental Material [49]),

F (h(t )) =
∫ ∞

−∞

1

2τ
e−|t |/τ e−iωt dt

= 1

2τ

2/τ

(1/τ )2 + ω2
= 1

1 + ω2τ 2
.

At τ → 0, e−|t |/τ /(2τ ) in the integral converges to a delta
function δ(t )/1T and F (e−|t |/τ /(2τ )) = (1 + ω2τ 2)−1 → 1.
For the normalized sinc function h(t ) = sinc(at )/1T in Ta-
ble I, F (h(t )) = rect(ω/(2πa))/(1T|a|) is an even function,
whose support (domain of nonzero values) extending from
ω = −πa to πa has a constant value 1/|a|. For h(t ) =

[δ(t )/1T
0 ], F (h(t )) should be understood as

∫ ∞

−∞
h(t )e−iωt dt

=
∫ 0−

−∞
0 × e−iωt dt +

∫ ∞

0−

δ(t )

1T
e−iωt dt = 1,

with a number 0− slightly smaller than 0 to let
∫∞

0− fully cover

the “support” of the δ(t ) peak. For h(t ) = [e−|t |/τ /τ
0 ] (see Table

within the Supplemental Material [49]),

F (h(t )) = 1

τ

∫ ∞

0
e

−t
τ e−iωt dt = 1

τ

∫ ∞

0
e−( 1

τ
+iω)t dt

= − 1

τ

(
1

τ
+ iω

)−1

e−( 1
τ
+iω)t

∣∣∣∣∣
∞

0

= 1

1 + iωτ
.

Next, consider the generalized Langevin equation

γ ẋ(t ) + k
∫ t

−∞
KM(t − t ′)x(t ′)dt ′ = ξ (t ), (F1)

with γ and k the same as those in Eq. (B1). If, due to causality,
KM(t − t ′) is nonzero only for t ′ � t , Eq. (F1) is equivalent
to γ ẋ(t ) + k

∫∞
−∞ KM(t − t ′)x(t ′) dt ′ = ξ (t ). Its Fourier trans-

form becomes

iωγ x̃(ω) + kK̃M(ω)x̃(ω) = ξ̃ (ω), (F2)

which implies

x̃(ω) = ξ̃ (ω)

iωγ + kK̃M(ω)

〈x̃(ω)x̃(ω′)〉 = 〈ξ̃ (ω)ξ̃ (ω′)〉
[iωγ + kK̃M(ω)][iω′γ + kK̃M(ω′)]

. (F3)

If ξ (t ) is a stationary stochastic process, then 〈ξ (t +
t ′)ξ (t ′)〉 = 〈ξ (t )ξ (0)〉 and thus

〈ξ̃ (ω)ξ̃ (ω′)〉 =
∫ ∞

−∞

∫ ∞

−∞
〈ξ (t )ξ (t ′)〉e−i(ωt+ω′t ′ )dtdt ′

=
∫ ∞

−∞

∫ ∞

−∞
〈ξ (t + t ′)ξ (t ′)〉e−i(ωt+ωt ′+ω′t ′ )dtdt ′

=
∫ ∞

−∞

∫ ∞

−∞
〈ξ (t + t ′)ξ (t ′)〉e−iωt dte−i(ω+ω′ )t ′

dt ′

=
∫ ∞

−∞

∫ ∞

−∞
〈ξ (t )ξ (0)〉e−iωt dte−i(ω+ω′ )t ′

dt ′

=
∫ ∞

−∞
F (〈ξ (t )ξ (0)〉)e−i(ω+ω′ )t ′

dt ′

= Sξ (ω)
∫ ∞

−∞
e−i(ω+ω′ )t ′

dt ′

= 2πδ(ω + ω′)1TSξ (ω). (F4)
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Here, F (〈ξ (t )ξ (0)〉) is a function of ω, rather than of t or t ′.
It is the power spectrum Sξ (ω) of the noise ξ (t ), which leads
to 〈ξ 2〉 = (2π )−1

∫∞
−∞ Sξ (ω)dω. Using Eqs. (F3) and (F4), we

obtain

〈x2〉 = 1

4π2

∫ ∞

−∞

∫ ∞

−∞
〈x̃(ω)x̃(ω′)〉ei(ω+ω′ )t dωdω′

= 1

4π2

∫ ∞

−∞

∫ ∞

−∞

〈ξ̃ (ω)ξ̃ (ω′)〉ei(ω+ω′ )t dωdω′

[iωγ + kK̃M(ω)][iω′γ + kK̃M(ω′])

= 1

4π2

∫ ∞

−∞

∫ ∞

−∞

2πδ(ω + ω′)1TSξ (ω)ei(ω+ω′ )t dωdω′

[iωγ + kK̃M(ω)][iω′γ + kK̃M(ω′)]

= 1

2π

∫ ∞

−∞

Sξ (ω)1T

[iωγ + kK̃M(ω)][−iωγ + kK̃M(−ω)]1T
dω

= 1

2π

∫ ∞

−∞
Sx(ω)dω, (F5)

with the power spectrum of x,

Sx(ω) ≡ Sξ (ω)

ω2γ 2 + k2K̃M(ω)K̃M(−ω) + iωγ k�M
, (F6)

where �M ≡ K̃M(−ω) − K̃M(ω). The dimensions of some
terms in the above calculations are as follows: KM(t −
t ′) (T−1) in Eq. (F1), x̃(ω) (LT), K̃M(ω) (dimensionless),
and ξ̃ (ω) (MLT−1) in Eq. (F2), iωγ + kK̃M(ω) (MT−2) in
Eq. (F3), 〈ξ̃ (ω)ξ̃ (ω′)〉 (M2L2T−2) and Sξ (ω) (M2L2T−3) in
Eq. (F4), and Sx(ω) (L2T) in Eq. (F6).

Let KM(t ) = [e−|t |/τp /τp
0 ] and 〈ξ (t )ξ (t ′)〉 = qδ(t − t ′)/1T

with q = 2γ kBT̄ , where T̄ is defined as before Eq. (A1). Then,
according to Table I, K̃M(ω) = (1 + iωτp)−1 and Sξ (ω) =
F (〈ξ (t )ξ (0)〉) = q. Therefore,

�M = K̃M(−ω) − K̃M(ω)

= 1

1 − iωτp
− 1

1 + iωτp
= 2iωτp

1 + ω2τp
2

and subsequently the denominator of Eq. (F6) is

ω2γ 2 + k2K̃M(ω)K̃M(−ω) + iωγ k�M

= ω2γ 2 + k2

1 + ω2τp
2

+ iωγ k

(
2iωτp

1 + ω2τp
2

)

= ω2γ 2 + k2 − 2γ kτpω
2

1 + ω2τp
2

= ω4γ 2τp
2 + (γ 2 − 2γ kτp)ω2 + k2

1 + ω2τp
2

= γ 2

τp
2

ω4τp
4 + (1 − 2kτp/γ )ω2τp

2 + k2τp
2/γ 2

ω2τp
2 + 1

=
[

τp

γ 2

w2 + 1

w4 + (1 − 2K )w2 + K2
τp

]−1

, (F7)

with w ≡ ωτp and K ≡ kτp/γ . As a result (see F8 within the
Supplemental Material [49]),

〈x2〉 = 1

2π

∫ ∞

−∞
Sx(ω)dω

= q

2π

τp

γ 2

∫ ∞

−∞

w2 + 1

w4 + (1 − 2K )w2 + K2
dw

= qτp

2πγ 2

π (K + 1)

K
= kBT̄

k
(K + 1), (F8)

which yields a simple rising function

f (k) = k〈x2〉
kBT̄

= K + 1 ≡ f̂ (K ). (F9)

A comparison shows that Eq. (E1) is a special case of Eq. (F1)
when KM(t ) = δ(t − td ).

APPENDIX G: GENERALIZED LANGEVIN EQUATION II

Another well-known generalized Langevin equation is

γ

∫ t

−∞
KD(t − t ′)ẋ(t ′)dt ′ + kx(t ) = ξ (t ). (G1)

It can be written as γ
∫∞
−∞ dt ′KD(t − t ′)ẋ(t ′) + kx(t ) = ξ (t )

if, due to causality, KD(t − t ′) = 0 for t ′ > t . Its Fourier trans-
form is

iωγ x̃(ω)K̃D(ω) + kx̃(ω) = ξ̃ (ω), (G2)

which yields

x̃(ω) = ξ̃ (ω)

k + iωγ K̃D(ω)

〈x̃(ω)x̃(ω′)〉 = 〈ξ̃ (ω)ξ̃ (ω′)〉
[k + iωγ K̃D(ω)][k + iω′γ K̃D(ω′)]

. (G3)

The dimension of KD(t − t ′) in Eq. (G1) is T−1 and K̃D(ω) in
Eq. (G2) is dimensionless. In analogy to Eq. (F5),

〈x2〉 =
(

1

2π

)2 ∫ ∞

−∞

∫ ∞

−∞
〈x̃(ω)x̃(ω′)〉ei(ω+ω′ )t dωdω′

= 1

2π

∫ ∞

−∞
Sx(ω)dω, (G4)

with the power spectrum

Sx(ω) ≡ Sξ (ω)

k2 + ω2γ 2K̃D(ω)K̃D(−ω) + iωγ k�D
, (G5)

where �D ≡ K̃D(ω) − K̃D(−ω). For KD(t ) = [e−|t |/τv /τv
0 ], we

have K̃D(ω) = F (KD(t )) = (1 + iωτv)−1 known from Table I
and thus

�D = K̃D(ω) − K̃D(−ω)

= 1

1 + iωτv
− 1

1 − iωτv
= −2iωτv

1 + ω2τv
2
.
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It yields

k2 + γ 2ω2K̃D(ω)K̃D(−ω) + iωγ k�D

= k2 + γ 2ω2

1 + ω2τv
2

+ iωγ k

( −2iωτv

1 + ω2τv
2

)

= k2 + γ 2

τv
2

ω2τv
2

1 + ω2τv
2

+ 2γ k

τv

ω2τv
2

1 + ω2τv
2

= k2 +
(

γ 2

τv
2

+ 2γ k

τv

)
ω2τv

2

1 + ω2τv
2

∼ const ofω at ω → ∞. (G6)

Therefore, Sξ (ω) in Eq. (G5) must decay sufficiently fast with
ω to make Sx(ω) in Eq. (G4) integrable.

Case 1. For 〈ξ (t )ξ (t ′)〉 = qe−|t−t ′ |/τ /(2τ ) with q = 2γ kBT̄
as that below Eq. (F6), one has Sξ (ω) = F (〈ξ (t )ξ (0)〉) =
q(1 + ω2τ 2)−1 from Table I. Together with Eq. (G6), Eq. (G5)
becomes

Sx(ω) =
( q

1+ω2τ 2

)
k2 + ( γ 2

τv
2 + 2γ k

τv

)
ω2τv

2

1+ω2τv
2

= q
(
1 + ω2τv

2
)

(1 + ω2τ 2)
[
k2(1 + ω2τv

2) + ( γ 2

τv
2 + 2γ k

τv

)
ω2τv

2
] .

(G7)

Since

[· · · ] = k2 + (k2τv
2 + γ 2 + 2γ kτv

)
ω2

= k2 + (kτv + γ )2ω2 = (kτv + γ )2

[
ω2 + k2

(kτv + γ )2

]
,

Eq. (G7) has the form

Sx(ω) = qτv
2
(
ω2 + 1

τv
2

)
τ 2(kτv + γ )2

(
ω2 + 1

τ 2

)[
ω2 + k2

(kτv+γ )2

]
= D(ω2 + A2)

(ω2 + B2)(ω2 + C2)
, (G8)

with A ≡ τv
−1, B ≡ τ−1, C ≡ k/(kτv + γ ) = K/[(K + 1)τv],

where K ≡ kτv/γ , and

D ≡ qτv
2

τ 2(kτv + γ )2 = 2γ kBT̄ kτv
2/γ 2

kτ 2(kτv/γ + 1)2

= kBT̄

kτ

τv

τ

2kτv/γ

(K + 1)2 = kBT̄

kτ

(
c

1 − c

)
2K

(K + 1)2 . (G9)

Here, c ≡ τv/(τv + τ ), such that 0 � c � 1 and τv/τ =
c/(1 − c). With Eq. (G8), we obtain

〈x2〉 = 1

2π

∫ ∞

−∞
Sx(ω)dω

= D

2π

∫ ∞

−∞

(ω2 + A2)

(ω2 + B2)(ω2 + C2)
dω

= D

2π

π (B2C − A2C + A2B − C2B)

(B2 − C2)BC

= D

2

[
A2

BC + 1

C + B

]
, (G10)

where

[· · · ] =
1

τv
2 τ

(K+1)τv
K + 1

K
(K+1)τv

+ 1
τ

= [(K + 1)τ + Kτv](K + 1)τvτ

[Kτ + (K + 1)τv]Kτv

=
(
K + τ

τ+τv

)
(K + 1)τ(

K + τv
τ+τv

)
K

= (K + 1 − c)(K + 1)τ

(K + c)K
.

(G11)

Inserting Eqs. (G9) and (G11) into Eq. (G10) gives

〈x2〉 = 1

2

kBT̄

kτ

c

1 − c

2K

(K + 1)2

(K + 1 − c)(K + 1)τ

(K + c)K

= kBT̄

k

c

1 − c

(K + 1 − c)

(K + 1)(K + c)
, (G12)

which has been confirmed by another calculation (see G12
within the Supplemental Material [49]). Equation (G12) im-
plies

f (k) = k〈x2〉
kBT̄

= c(K + 1 − c)

(1 − c)(K + 1)(K + c)
= f̂ (K ). (G13)

At τv → 0,

f (k) = τv

τ

( kτv
γ

+ τ
τv+τ

)
( kτv

γ
+ 1
)( kτv

γ
+ τv

τv+τ

)
=

( kτv
γ

+ τ
τv+τ

)
( kτv

γ
+ 1
)(

kτ
γ

+ τ
τv+τ

) → 1
kτ
γ

+ 1
(G14)

reduces to Eq. (B10).
Whether f̂ (K ) in Eq. (G13) increases with K depends on

the sign of

∂ f̂ (K )

∂K
= c

(1 − c)

−K2 + (2c − 2)K + (c2 + c − 1
)

(K + 1)2(K + c)2

≡ L1(K )L2(K ), (G15)

or merely on the sign of L2(K ) ≡ −K2 + (2c − 2)K + (c2 +
c − 1), as L1(K ) ≡ c[(1 − c)(K + 1)2(K + c)2]−1 is always
positive. At K = 0, due to 0 � c � 1, we have

∂ f̂ (K )

∂K

∣∣∣∣
K=0

= c2 + c − 1

(1 − c)c

{
� 0 if c � c0,

< 0 if c < c0,
(G16)

where c0 ≡ (−1 + √
5)/2. On the other hand, at K � 1,

∂ f̂ (K )

∂K

∣∣∣∣∣
K�1

≈ − c

(1 − c)K2
< 0. (G17)

That means, for c > c0, f̂ (K ) will first rise and then fall. The
maximum of f̂ (K ), if exists, will be a solution of L2(K ) = 0,
which is located at

K = −(2c − 2) ±
√

(2c − 2)2 − 4(−1)(c2 + c − 1)

2(−1)

= c − 1 ∓
√

c(2c − 1). (G18)

Here, (K) must be a positive number, which requires c(2c −
1) > 0 and K = c − 1 + √

c(2c − 1) > 0. The former gives
rise to c > 1/2, while the latter implies

√
c(2c − 1) >
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1 − c and thus 2c2 − c > 1 − 2c + c2. It implies c2 + c −
1 > 0 and subsequently c > c0, in consistent with that
in Eq. (G16). Thus, a positive slope of f̂ (K ) can exist
in the regime K ∈ [0, c − 1 + √

c(2c − 1)] or equivalently
k ∈ (γ /τv) × [0, c − 1 + √

c(2c − 1)] when c > c0 ≈ 0.618,
or equivalently τv/τ = c/(1 − c) > c0/(1 − c0) = [(−1 +√

5)/2]/[1 − (−1 + √
5)/2] = (−1 + √

5)/(3 − √
5) ≈

1.618. That is, the memory in the friction term will enhance
the efficiency, while that in the noise term will suppress the
engine efficiency. The correlation time of the former τv must
be larger than that of the latter τ to some extent to see the out-
performance of an active engine over its passive counterpart.

For γ = 10−8 kg/s, τv = 4 × 10−4 s, and τ = 10−4 s, we
have c = τv/(τv + τ ) = 0.8 > c0 ≈ 0.618. Hence, f̂ (K )
will be a rising function when k ∈ (γ /τv) × [0, (c −
1 + √

c(2c − 1))] = (10−8/(4 × 10−4)) × [0, (0.8 − 1 +√
0.8(1.6 − 1))] ≈ [0, 1.23 × 10−5] N/m, which is an

experimentally accessible range of k and corresponds to
K = kτv/γ ∈ [0, 0.49]. For all c = 0.90, 0.85, and 0.70, the
f̂ (K ) in Eq. (G13) has a rising branch, as the blue, violet, and
red lines, respectively, shown in Fig. 4(e). The rising trend
for c = 0.70 is weaker because it has been very close to the
threshold 0.618.

Case 2. For 〈ξ (t )ξ (t ′)〉 = q a sinc(a(t − t ′)) with
q = 2γ kBT̄ and a > 0, one has Sξ (ω) = F (〈ξ (t )ξ (0)〉) =
q rect(ω/(2πa)), as in Table I. Recall that the dimension
of a sinc(at ) is T−1 and rect(ω/(2πa)) is dimensionless.
Together with Eqs. (G4)∼(G6), one obtains

〈x2〉 = 1

2π

∫ ∞

−∞
Sx(ω)dω

= 1

2π

∫ ∞

−∞

q rect
(

ω
2πa

)
k2 + ( γ 2

τv
2 + 2kγ

τv

)
ω2τv

2

1+ω2τv
2

dω

=
∫ πa

−πa
L(ω)dω, (G19)

with

L(ω) ≡ q

2π

(
1 + ω2τv

2
)

[
k2(1 + ω2τv

2) + ( γ 2

τv
2 + 2γ k

τv

)
ω2τv

2
]

= qτv
2
(
ω2 + 1

τv
2

)
2π (kτv + γ )2

[
ω2 + k2

(kτv+γ )2

]
= D′(ω2 + A2)

(ω2 + C2)
, (G20)

where the equality before Eq. (G8) has been used. Here, A ≡
τv

−1 and

C ≡ k

kτv + γ
= 1

τv

kτv
γ

kτv
γ

+ 1
= 1

τv

Kv

Kv + 1
= 1

τv
K,

where Kv ≡ kτv/γ and K ≡ (1 + K−1
v )−1 = kτv/(kτv + γ ),

such that Kv = (−1 + K−1)−1 and K2/Kv = K (1 − K ). Note

that both Kv and K increase with k. With that

D′ ≡ qτv
2

2π (kτv + γ )2 = 2γ kBT̄

2πk2

(kτv)2

(kτv + γ )2

= kBT̄

k

τv

π

γ

kτv

(
kτv

kτv + γ

)2

= kBT̄

k

τv

π

1

Kv
K2

= kBT̄

k

τv

π
K (1 − K ). (G21)

Using
∫ d

b (ω2 + A2)(ω2 + C2)−1dω = (d − b) + (A2/C −
C)[tan−1(d/C) − tan−1(b/C)] to calculate Eq. (G19) and
considering the above values of A, C, and D′, it yields

〈x2〉 = D′
∫ πa

−πa

(ω2 + A2)

(ω2 + C2)
dω

= D′
{

2πa +
(

A2

C
− C

)[
2 tan−1

(πa

C

)]}

= kBT̄

k

τv

π
K (1 − K )

×
[

2πa + 2

(
1

Kτv
− K

τv

)
tan−1

(πaτv

K

)]

= kBT̄

k

2

π
K (1 − K )

[
πaτv +

(
1

K
− K

)
tan−1

(πaτv

K

)]

= kBT̄

k

2(1 − K )

π

[
cK + (1 − K2) tan−1

( c

K

)]
, (G22)

where c ≡ πaτv. Subsequently, f̂ (K ) = k〈x2〉/(kBT̄ ) implies

f̂ (K ) = 2(1 − K )

π

[
cK + (1 − K2) tan−1

( c

K

)]
, (G23)

which has been confirmed by another calculation (see G23
within the Supplemental Material [49]). At k ∝ K → 0+,
a number slightly larger than 0, one obtains f̂ (K ) →
(2/π )[tan−1(c/0+)] = 1.

The slope of f̂ (K ) is (see G23 within the Supplemental
Material [49])

d f̂ (K )

dK
= 2Q(K )

π (K2 + c2)
, (G24)

with

Q(K ) ≡ −3cK3 + 2cK2 + (c − 2c3)K + c3 − c

+ [3K4 − 2K3 + (3c2 − 1)K2 − 2c2K − c2]

× tan−1(c/K ). (G25)

At K ≈ 0+, tan−1(c/K ) ≈ π/2 and all other terms containing
K are close to zero. Hence, Q(K ) ≈ c3 − c + (−c2)(π/2) =
(c/2)(2c2 − πc − 2), which is positive when c > c0 ≡ (π +√

π2 + 16)/4 ≈ 2.057. However, when c/K decreases from
∞ to 2π , the value of tan−1(c/K ) has already reduced to 90%
of tan−1(∞) ≈ π/2. For a larger K , such that c/K < 2π or
equivalently K > c/(2π ), it is better to solve the range of
c for a rising Q(K ) numerically, instead of using the above
estimation tan−1(c/K ) ≈ π/2.

For γ = 10−8 kg/s, τv = 2.5 × 10−4 s, and k ∈ [0, 4] ×
10−5 N/m, it yields K = kτv/(kτv + γ ) ∈ [0, 1/2]. If a =
104 s−1, one has c = πaτv = 2.5π . The corresponding
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c/K ∈ [5π,∞] is large enough to consider the estimation
tan−1(c/K ) ≈ π/2 for Q(K ) in Eq. (G24). This Q(K ) should
be positive because c = 2.5π > c0 ≡ 2.057. For a = 1.2 ×

104, 8 × 103, and 4 × 103 s−1, one obtains c = 3π , 2π , and π ,
respectively, for which the rising trends of f̂ (K ) in Eq. (G23)
are as shown in the blue, violet, and red lines in Fig. 4(f).
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