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We introduce two infinite sequences of entanglement monotones, which are constructed from expectation
values of polynomials in the modular Hamiltonian. These monotones yield infinite sequences of inequalities
that must be satisfied in majorizing state transitions. We demonstrate this for information erasure, deriving an
infinite sequence of “Landauer inequalities” for the work cost, bounded by linear combinations of expectation
values of powers of the modular Hamiltonian. These inequalities give improved lower bounds for the work
cost in finite-dimensional systems, and depend on more details of the erased state than just on its entropy and
variance of modular Hamiltonian. Similarly one can derive lower bounds for marginal entropy production for a
system coupled to an environment. These infinite sequences of entanglement monotones also give rise to relative
quantifiers that are monotonic in more general processes, namely those involving so-called o majorization with
respect to a fixed point full rank state o; such quantifiers are called resource monotones. As an application to
thermodynamics, one can use them to derive finite-dimension corrections to the Clausius inequality. Finally, in
order to gain some intuition for what (if anything) plays the role of majorization in field theory, we compare pairs
of states in discretized theories at criticality and study how majorization depends on the size of the bipartition

with respect to the size of the entire chain.

DOI: 10.1103/PhysRevResearch.5.043082

I. INTRODUCTION

Quantum resource theories (see e.g., [1] for a review)
have been developed as a general framework to sharpen the
distinction between the achievable and the unachievable in
various classes of quantum processes. One makes the distinc-
tion between “free states”, which are generated by the class
of allowed quantum operations (“free operations”), and “re-
source states”, which cannot be generated by free operations
and must therefore be prepared by an external agent. As an ex-
ample, entanglement cannot be created by LOCC operations
(the free operations in the resource theory of entanglement),
and it thus acts as a resource. There are two other important
ingredients in resource theories: monotones and partial orders.
In the context of entanglement, entanglement entropy is a
well-known monotone. The inability to create entanglement in
a bipartite system by LOCC operations is quantified by non-
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increasing (decreasing) entanglement entropy in the reduced
state of a subsystem, when LOCC operations are applied to the
global state. Similarly, partial orders among quantum states,
in particular majorization p > o defined for a pair of states
restrict the ability to convert a state to another state by a
single-shot operation. For example, by Nielsen’s theorem [2],
conversion by a LOCC operation is only possible if the output
state majorizes the input state. Conversely, the majorization
relation leads to inequalities satisfied by the values of mono-
tones computed for the pair of states.

Generalizing the concept of an entanglement monotone,
one can introduce quantifiers to track the loss of a resource
under free operations, resource monotones R that have the
property [1]

R(p) = R(®(p)), (1.1)

under any free operation ® of the resource theory. Like-
wise, generalizing the concept of majorization, one can define
relative notions of majorization involving pairs of states
(p1, p2) = (o1, 02). Such relative majorization arises natu-
rally as a constraint when p, =0, =0, is a fixed state
®(0,) = o, of free operations of a resource theory. For ex-
ample, in the resource theory of quantum thermodynamics,

Published by the American Physical Society


https://orcid.org/0000-0002-4851-4524
https://orcid.org/0000-0002-3356-4035
https://orcid.org/0000-0003-4350-8755
https://orcid.org/0000-0002-6737-6067
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.5.043082&domain=pdf&date_stamp=2023-10-24
https://doi.org/10.1103/PhysRevResearch.5.043082
https://creativecommons.org/licenses/by/4.0/

RAUL ARIAS er al.

PHYSICAL REVIEW RESEARCH §, 043082 (2023)

where the fixed state is the thermal equilibrium state, one
obtains a thermomajorization relation constraining thermal
operations involving nonequilibrium states.

In this paper, we introduce infinite sequences of en-
tanglement and resource monotones. Our constructions are
motivated from three different directions. First, Rényi en-
tropies (and their relative generalizations) are a useful tool
in many areas of quantum science, and many techniques
have been developed to compute them, in particular recently
in many-body physics and quantum field theory. However,
Rényi entropies in general are not monotones. Here we show
how one can use them as generating functions to compute
sequences of monotones.

Second, von Neumann entropy and relative entropy are
monotones with a central role. Recently [3], inequalities asso-
ciated with (relative) entropy production in finite-dimensional
systems were sharpened with lower bounds involving the vari-
ance of surprisal C(p) = Tr[p(—1n 0?1 — [-Tr(p1n p)]>.
These inequalities were shown to result from quantum op-
erations that imply a majorization relation between the input
and output states. We show that our monotones extend these
inequalities into infinite sequences involving quantities that
generalize C(p). These quantities come from our third motiva-
tion: the spectrum of the surprisal K = — In p, or as we will be
calling it in this paper following [4], the modular Hamiltonian
[5].

In the context of entanglement, for the reduced density
matrix p4 the operator K4 = — In p4 is known as the entan-
glement Hamiltonian, and its spectrum of eigenvalues {¢;}, the
entanglement spectrum, is a useful tool to study many-body
quantum systems, e.g., to detect quantum phase transitions
[6,7]. It is interesting to study how quantum operations involv-
ing majorization relation alter the (entanglement) spectrum,;
in this paper we characterize the spectrum by its cumulants.
Our monotones can be expanded as combinations of arbi-
trarily higher-order cumulants, and the resulting sequences
of inequalities characterize and constrain the spectra by sta-
tistically natural quantities generalizing the entropy. After
presenting the sequences of monotones, we construct their
relative counterparts, which generalize the relative entropy
since they involve two states rather than one. Defining these
quantities, referred to in the paper as relative quantifiers, we
obtain sequences of resource monotones.

Most of the results of this paper apply to majorization
for finite-dimensional systems. In quantum field theory, less
is known about majorization. There have been studies in-
vestigating ground state entanglement and the behavior of
majorization in the reduced density matrix in a subsystem
under renormalization group flow and scaling transformations
[6,8—14]. In this paper, our interest is in the possibility of
majorization between a pair of states in a quantum field theory.
To move the first step towards this goal, we compute some
entanglement monotones for states in discretized conformal
field theories (CFTs) and study whether the majorization
between states is ruled out and how this depends on the
size of the bipartition with respect to the one of the entire
chain.

Before moving to summarize our main results in Sec. I B,
we present some technical background needed to discuss the
results.

A. Some technical background

It is widely known that the Rényi entropies

n 1
S = L InTrp", (1.2)

in the limit n — 1 reduce to the Von Neumann entropy

$ = lim S™W = —3,(nTrp")|uey = —Tr(plnp).  (1.3)
n—

The definition of S(p) allows to interpret it as the expec-
tation value of the modular Hamiltonian, Hermitian and
well-defined since p is Hermitian and positive definite. The
standard normalization is [15] Tr(p) = Tr(e %) = 1. Given a
system bipartite into A and its complement, the entanglement
entropy Sy is the average (or the first moment) of the entangle-
ment Hamiltonian, namely Sy = (K4), where the mean value
is evaluated through the reduced density matrix p4.

In addition to the first moment of modular Hamiltonian,
it is natural to explore its higher moments or cumulants as
well. The second cumulant, the variance of modular Hamil-
tonian, is a much less-known quantity, and therefore even
its name varies in the literature. It is also known as entropy
variance, varentropy, and in the context of entanglement in
many-body physics and quantum field theory, as capacity of
entanglement C4(p4). In the latter context, it was introduced
in [16] and [17], first with a definition modeled after that
of a heat capacity, and proposed to detect different phases
in topological matter, where entanglement is known to play
an important role [7,18,19]. Since heat capacity is related
to the variance of thermodynamical entropy, it was realized
that capacity of entanglement is equal to the variance of the
modular Hamiltonian, and can also be derived from the Rényi
entropies [20-22]

CA = 83(1nTr’O:\l)‘n:l = ai(TrpZHn:l
= (K3) — (Ka)”.

- [a” (Trpz)]z |n:l
(1.4)

One of the reasons the variance of the modular Hamiltonian
or capacity of entanglement is less known is that it is not
known to satisfy many interesting properties, unlike the von
Neumann entropy does. For instance, the entanglement en-
tropy is known to be an entanglement monotone [23], while
the capacity of entanglement is not. Some of its uses in
quantum information theory, which we are aware of, are in
a finite-dimension correction to the Landauer inequality or
more generally in bounding the increase in entropy in state
transitions between majorizing states [3,24], in the analysis of
catalytic state transformations [3], and in-state interconvert-
ibility in finite systems [25].

This paper is primarily motivated by [3], which consid-
ered the capacity of entanglement (there called variance of
surprisal) and more generally the relative variance

C(pllo) = Tt[p(In p — Ino)*] — S(p|lo)?, (1.5)

where S(p|lo) = Tr[p(Inp — Ino)] is the relative entropy.
When we consider ¢ in (1.5) to be the maximally mixed state
C(p||lo) reduces to C(p). While both the relative variance
and the relative entropy have applications in the independent
and identically distributed setting involving many copies of a
system or operations, the authors of [3] explored their role in a
single-shot setting where an operation or protocol is executed
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only once in one system, proving many new results for the
variance and relative variance. Many properties were based
on a new quantifier [26]

M(p) = C(p) +[S(p) + 1T, (1.6)

which was shown to be Schur concave, and its relative
version, which was shown to be a resource monotone.
The quantities S, C, M were shown to be connected by an
inequality [27]

C(o)—C(p)

S(p)—=S8(0) 2 —F———,

2/M(0) (1.7)

when the majorization order o > p holds for two states in a
system with a finite-dimensional Hilbert space. As an appli-
cation, [3] considered, e.g., information erasure, deriving a
new lower bound for the associated work cost that involves
both entropy and variance. Related results were proven for
the relative quantifiers. In the end they posed a question of
whether it is possible to extend this construction of M to a
sequence of Schur concave quantifiers that would have similar
properties and involve higher cumulants than C, perhaps also
likewise for the relative quantifiers.

B. Summary of the main results

In state conversions involving a majorization order be-
tween the initial state p and the final state o, the whole
spectrum of eigenvalues is affected, and the majorization
order itself can be defined by a sequence of inequalities. Prop-
erties of the spectra can be characterized by various quantities,
such as Rényi entropies, or moments and cumulants of —In p
and —Ino. Hence it is natural to expect that majorization
order may imply a sequence of inequalities involving changes
in cumulants beyond the first two. To derive such inequalities,
we construct two sequences of entanglement monotones, that
can be expanded as combinations of cumulants. We first gen-
eralize the construction (1.6) and define the moments of the
shifted modular Hamiltonian

M™(p;b,) = Tr[p(—In p + b,)"] — b, (1.8)

for n > 1 [with M®(p;b, = 1) = M(p) — 1]. Explicit for-
mulas for their expansions by higher cumulants are given in
Sec. III. For the parameter range b, > n — 1 all of them are
concave (see Sec. II for the relevant definitions); hence, from
the Vidal’s theorem [23], they are pure state entanglement
monotones (where p and o are the reduced density matrices
of global pure states |y/) and |¢) respectively), thus yielding
inequalities

M™(p;b,) =M™ (0;b,), (1.9)

in local operations assisted with classical communication
(LOCC) and other majorizing state transformations [28] with
o > p. For example, at second-order n = 2 with b, = 1 we
obtain the inequality

Clo) =C(p)
S(p) +S(o)+2’

which is slightly sharper than the inequality (1.7). The mo-
ments M™ can be computed from Rényi entropies S (p), by

S(p) —S(o) = (1.10)

using the latter as a generating function

n

d
M™(p;b,) = [e”(—l)"
da”

exp[—ab

i
— b
a=1,b=b,

+(1 - a)S@‘)(p)]} (1.11)

The Rényi entropies S are not concave (for index value
a > 1); hence, our observation gives a way to repackage their
information to an infinite sequence of concave quantifiers, that
define entanglement monotones.

Next we identify a basis for monotones, which are polyno-
mial in moments of — log p, which allows to construct another
infinite sequence that we call extremal polynomial monotones
Pé”) (see Sec. IIIB). All —Pé") are also concave, hence define
monotones, and any concave polynomial can be written as a
linear combination of extremal polynomial monotones with
non-negative coefficients. We therefore believe that they pro-
vide the tightest inequalities of this type in majorizing state
transformations. For example, given two majorizing states
p > o, the third monotone PS) yields the inequality

AMs > 3AM, + > (AM>)” (1.12)
3 = 2 4 AMl s .
and the fourth-order Pgl) the inequality
8 (AM3 — 3AM;)?
AMy > 8AM3 — 6AM. - 1.13
4 3 2+ AM, (1.13)

where AM, =M™ (o;n—1) — M™(p;n — 1). Notice that
(1.12) and (1.13) are stronger than the inequalities AM3 > 0
and AM, > 0 obtained from (1.9).

As an application of these inequalities we first consider in-
formation erasure: We obtain infinite sequences of “Landauer
inequalities” for the work cost, bounded by arbitrarily high cu-
mulants of the modular Hamiltonian of the initial state —In p
to be erased, extending the previous result of [3], that involves
only the variance. We also derive a slightly sharper inequality
for marginal entropy production by applying a unital quantum
channel to a system and environment, and outline steps for
deriving an infinite sequence of inequalities.

For relative quantifiers, we first generalize a theorem
proven in [3], to show how one can construct an infinite
class of resource monotones, relative quantifiers based on a
concave quantifier E(p) = Tr[pF (In p)]. We then apply this
construction to the monotones M and —P"”, obtaining infi-
nite sequences of resource monotones that involve cumulants
of In p — In 0. An important restriction is that the results only
apply in the case where p and o commute. The sequences
imply inequalities for relative entropy production bounded by
changes in the relative cumulants; we consider two examples
more explicitly. In particular, as an application to quantum
thermodynamics, we derive a finite-dimension correction to
the Clausius inequality,

1
S(yp) = S(p) = ——[(H),, — (H),]

kgT
C(pllyp)
2 + 2IB(Emax - F(:B))’

_|_

(1.14)
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where p is a nonequilibrium state commuting with the equi-
librium thermal state yg = exp(—BH)/Z(B), Emax is the
maximum energy eigenvalue of the system, and F(B) =
—B~'InZ(B) is the Helmholtz free energy. Here we refer to
finite-size corrections as corrections that vanish when the di-
mension of the Hilbert space of the system is infinite. Indeed,
Eax 18 finite only if the dimension of the Hilbert space is finite
and, when E.,x — 00, (1.14) reduces to the usual Clausius
inequality. Instances where our findings are applicable include
systems with a finite number of qubits or spin chains with a
finite number of sites.

To gain some insight into the majorization in a field
theoretical setting, we consider pairs of states in (1 4 1)-
dimensional CFTs, in particular free theories such as a
compact boson and a Dirac fermion. As a pair of states we
take the ground state and an excited state, then discretize
the theory and map it to a fermionic chain, where we find
the corresponding pair of states (yielding back to the CFT
states in a continuum limit). Furthermore, we take the theory
to live on a circle with periodic boundary conditions. The
discrete fermionic chain then has a finite-dimensional Hilbert
space, so we can use the standard definition of majorization.
We bipartite the theory into a line segment and its comple-
ment and ask if a majorization order exists between the pair
of pure states. The majorization condition involves reduced
states, which depends on the bipartition, and thus on the
relative size of the subsystem. While it is laborious to di-
rectly verify the majorization conditions, it is simpler to show
them to be violated by comparing entanglement monotones or
Schur concave quantifiers for the pair of states and test if the
majorization-implied inequality is falsified for any monotone.
In the final part of this paper we perform such comparisons,
between the ground state and an excited state in a CFT and the
corresponding pair in the periodic fermionic chain. We con-
sider the entanglement entropy, the Rényi entropies S@, §®
and the monotone M®, and compare which quantity gives
the most stringent bound ruling out majorization in the largest
range of bipartition.

This paper is organized as follows. In Sec. II, we first
review some of the relevant basic concepts of quantum in-
formation theory. In Sec. III, we introduce two sequences
of entanglement monotones: the moments of shifted modular
Hamiltonian and the extremal polynomial monotones. We
then generalize a theorem in [3], allowing us to construct
infinite sequences of relative quantifiers that are also resource
monotones. As an application, we derive a finite-size correc-
tion to the Clausius inequality. In Sec. IV as an application of
the entanglement monotones, we consider Landauer erasure
and derive infinite sequences of inequalities for the work cost
of the erasure process, involving arbitrarily high cumulants of
the state to be erased. We also discuss bounds on marginal
entropy production in a system coupled to an environment.
We then initiate an exploration of state majorization in CFTs
in Sec. V. We compute the quantities S, C, M in some simple
free CFTs for the ground state and excited states and in the
corresponding discretized fermionic chains, and we examine
the monotonicity of some Schur concave quantifiers as proxies
for state majorization. We conclude with a discussion and a
description of various open problems in Sec. VI and a sum-
mary of the results of this paper in Sec. VII.

II. SOME CONCEPTS OF QUANTUM
INFORMATION THEORY

For the benefit of readers who are less familiar with some
of the relevant concepts of quantum information theory, we
briefly review some relevant background material.

In this paper our focus is on bipartite systems A U B, where
the Hilbert space is decomposed as Haup = Ha ® Hp. For a
pair of quantum states described by the density matrices p and
o, we first review the important concept of majorization (par-
tial) order. Consider a pair of vectors A, k € R? and assume
them to be ordered so that the components satisfy A; > X, >
.-+ > Mg and likewise for k. We say that A majorizes k, and
denote A > k, when [29]

m m

Z,\k>zxk, Vm=12,...,d.

k=1 k=1

@2.1)

Majorization defines a partial order in R¢, and the definition
easily extends to the case d — oo, where we have a countably
infinite number of inequalities to satisfy. We then define ma-
jorization between two density matrices p; and p>: p; > 02
when A; > A, where A; is the ordered vector of eigenval-
ues of p;. Note that the inequalities (2.1) become trivial for
any pair of pure states. However, in a bipartite system, and
when this partition is kept fixed, one can define a nontrivial
majorization partial order for pure states. Consider a pair of
pure states |), |¢) € Hap, and define majorization following
that of the reduced density matrices,

) > 1o) <« Tp(|Y ) (¥]) > Trp(1¢) (o))

Note that it does not matter whether the partial trace is taken
over B or A because the resulting reduced density matrices in
the two cases have the same eigenvalues, from the Schmidt
decomposition. However, we emphasize that the definition
depends on the choice of the bipartition A U B, and it would
be more accurate to denote it by |1/) >4p |¢): An alternative
bipartition A’ U B’ in general leads to a partial order >4/p
among bipartite pure states, which is not equivalent with > 4p.

We will be interested in quantities that are monotonic under
majorization. First, a function g mapping a density matrix to a
real number is said to be Schur concave, when, for any pair of
density matrices, we have

2.2)

p >0 = gp)<go) (2.3)

Conversely, g is Schur convex if —g is Schur concave [29].
A stronger property is concavity, which is a crucial property
we employ to construct entanglement monotones. We say that
g is concave, when, for any 0 < p < 1 and for any pair of
operators p and o, we have

glpp + (1 —p)o) = pg(p) + (1 — p)g(o). 2.4

Conversely, a function g is called convex if —g is concave. A
way to construct concave quantities is to begin with a function
f 10, 1] — R. By applying the function to an operator p, we
obtain another operator f(p). Assume that all the involved
operators are diagonalised by unitaries p = Udiag(1;)U", we
have that f(p) = Udiag(f(X;))UT, where we assume that f is
well defined for all A;. We can now define a function g through
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f as
g(p) = Trlf (p)].

It has been proven that if f is concave (convex) as a single real
variable function, then g defined in (2.5) is concave (convex)
according to the definition (2.4) [29]. For example, when
f(x) = —xInx and p is a density matrix, the function defined
in (2.5) is the von Neumann entropy. Since f(x) = —xInx is
concave in [0,1], the von Neumann entropy is concave.

As we said, concavity is a stronger property than Schur
concavity. Any function that is symmetric in its arguments
[such as g defined in (2.5) by the trace, it is symmetric, i.e.,
invariant with respect to permutations of A;] and concave is
also Schur concave, while the opposite does not hold [29]. For
example the Rényi entropies S® = L InTr(p®) are Schur
concave when o > 0, but concave only when 0 < o < 1. Also
the so-called min and max entropies are Schur concave but not
concave. On the other hand, the von Neumann and Tsallis [30]
entropies are both concave and Schur concave (see [31] for a
demonstration in the context of unified entropies).

A general way to define quantum operations £ mapping an
input state p to an output state £(p) is by the operator-sum
representation [32]

(2.5)

E(p) =) KipkK/, (2.6)

with a collection of Kraus operators {K;} that satisfy the con-
dition

> KK <1, .7)

i

where, for a Hermitian A, A <1 means that 1 — A has
only non-negative eigenvalues. If the stronger condition
> KfKi =1 applies, then £ is trace preserving and it is
called a quantum channel. Every quantum channel has a fixed
point o, = £(o,) [33]. If the fixed point is the unit matrix,
E(1) = 1, the operation £ is called unital channel. In this case
the Kraus operators satisfy the additional condition

ZK,Kj =1.
i

For us, an important feature of unital channels is that by
Uhlmann’s theorem [34,35] they imply majorization between
the input and output states,

(2.8)

p > E(p). 2.9

A simple proof (in English) of Uhlmann’s theorem, based on
the Hardy-Littlewood-Pélya theorem of majorization (which
establishes that A > u iff there exists a bistochastic matrix
T such that u = TX), can be found in [36] (in Appendix B
therein). The converse is also true in the sense that if p > o
there exists a unital channel with o = £(p).

Another well-known class of operations are the LOCC. We
can think of a LOCC as a process where quantum operations
are performed by the two parties A and B separately, while
classical communication allows the two parties to correlate
their action. We emphasize again that for this process one
must first decide on a bipartition, and then keep it fixed. Math-
ematically, LOCC operations can be represented as separable

operations [37]

pr> Ap)=) piAi®B pAl ®B], (2.10)

L

where A; and B; are operators acting on the local subsystems
A and B respectively. Note, however, that it is notoriously
difficult to characterize the set of operations, which can be
a achieved through LOCC and that the class of separable
operations (2.10) is strictly larger than LOCC. The LOCC
operations can be used to define entanglement; indeed en-
tanglement cannot be created but only decreased by these
operations. Moreover, separable states, which are states p of
the form

p=7) pimi®ai, @11

where p;, o; are states in the subsystems A, B respectively and
> . pi=1 with p; > 0, can be prepared from nonentangled
pure states |)4 ® |@)p by separable operations (2.10), which
can easily be seen using an alternative representation of (2.11)
as an ensemble of factorized pure states [38]

pZZﬁj|Xj>AA(Xj|®|77j>BB<7)j|» (2.12)

J

which follows from ensemble decompositions of p;, o; and
index relabeling. This leads to the alternative definition of p
being entangled if and only if it is not separable. Entangled
states then act as a resource for LOCC processes. For the
simplest case, attempting to convert a pure state |W) € Hap
to another state |®) € Hyp, Nielsen’s theorem [2] provides a
necessary and sufficient criterion for the possibility of state
transition. It states that it is possible to convert |W) to | D) by

LOCC with reference to a bipartition AB, namely |W) o

|®), if and only if the majorization condition |®) > |W¥) is
fulfilled, or equivalently for the corresponding reduced states,
pa > o4. Unfortunately, the majorization condition (2.1) is
somewhat inconvenient to verify. The task of first finding all
the eigenvalues and then comparing all the partial sums is
in general rather laborious (if not intractable). On the other
hand, it is easier to rule out the possibility of the LOCC tran-
sition. One can consider a Schur concave function g, which
is nonincreasing under the transition. Thus, if we find that
Ag = g(pa) — g(oa) > 0, the transition is ruled out.

More general LOCC processes, where a pure or mixed
state is converted to a mixed state p Lo_c)c o = A(p), where

p and o are general (pure or mixed) states in the composite
system A U B, have no simple characterization by majoriza-
tion. Moreover, Schur concave functions are in general not
monotonic under such processes. This leads one to consider
entanglement monotones. The key requirement for mono-
tonicity is E(p) = E(A(p)). In more detail, an entanglement
monotone E(p) is defined as a map p — E(p) € R, which
satisfies [37]

(1) E(p) 20

(2) E(p) = 0if p is separable
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(3) E(p) does not increase on average [39] under LOCC,

which means
KipK;
E(p) > i
P Zp (Tr(l@K*))

where K; = A; ® B; are Kraus operators of a LOCC process
asin (2.10), and p; = Tr(KipKiT).

Central to this work is Vidal’s theorem [23], which pro-
vides a way to construct monotones from concave quantities
of the type (2.5). Consider a pure state |V) and ps =
Trg|W) (W], and any function g(p4) such that

(1) gis concave

(2) gisinvariant under unitary transformations Uy, namely
gWUapalUy) = g(pa)

then Vidal’s theorem establishes first that Epy (|¥) (V]) =
g(pa) is an entanglement monotone for pure states (a pure
state entanglement monotone). Moreover, one can extend
Epure to a monotone E for mixed states by using the convex-
roof extension, which is defined as follows. Given the density
matrix o, one considers the minimum over all of its ensemble
decompositions {p;, |¥;)} realizing o = Zj pil¥;){¥;| and
defines

(2.13)

E(o) = min
{]7/ v /)

Zp, Epure (1W)(W;1)

2.14
{pj:1¥))} ¢ )

= min Zp,- 8(Trp| W) (W)
J
One can then show that E is an entanglement monotone [40]
[23,37,41]. A subtle feature of this construction is that while
g is concave with respect to states for the A system, E is
convex with respect to states on the AB system (as the name
“convex roof extension” implies). While our construction of
entanglement monotones follows the above steps, in this paper
we do not need to explicitly use the convex roof extension,
since we consider only LOCC processes between pure states
or processes with unital channels, both implying majoriza-
tion, where Schur concavity is sufficient to give monotonicity.
Since as we mentioned earlier in this section, concavity of g
also implies that it is Schur concave, it can therefore directly
be used to find necessary criteria for the existence of either
type of process.
We now move to construct an infinite sequence of entan-
glement monotones generalizing M in (1.6) and inequalities
generalizing (1.7) for pairs of majorizing states.

III. RESOURCE MONOTONES AND MAJORIZING
STATE TRANSITIONS

In this section we will first construct sequences of entangle-
ment monotones, and then show how they can be applied to
define more general resource monotones. As an application,
we will briefly consider (the resource theory of) quantum
thermodynamics.

A. An infinite sequence of entanglement monotones

It was established in [3] that M defined in (1.6) is a pure-
state entanglement monotone because it is Schur concave,
and thus is monotonic for reduced density matrices under

majorization. This was proven as a corollary of a more general
theorem involving relative quantities, as we will discuss in
Sec. Il C. Here we present an alternative simple proof, show-
ing that M (p) is concave. It is straightforward to rewrite (1.6)
as

M(p) = Tr[f(p)], (3.1

where

f@) =x[—Inx+17%, (3.2)

and it is simple to see that f(x) is a concave function in the
unit interval, namely for x € [0, 1]. This implies that M (p) is
concave, i.e., it satisfies

M(ppr + (1 = p)p2) = pM(p1) + (1 — p)M(p2),

for any pair of density matrices p;, p2, and for all p € [0, 1].
Concavity in turn implies Schur concavity, the property of M
proven in [3]. Furthermore, by Vidal’s theorem [23] concavity
implies that M(p) — 1 can be extended by the convex-roof
extension to a proper entanglement monotone for all states.
Since K = —In p is called modular Hamiltonian [4] and we
shift it by a constant 1, we call M as the second moment of
shifted modular Hamiltonian.

It is straightforward to find concave generalizations of M
involving higher cumulants. Up to addition of an overall con-
stant term, which has no effect to concavity, we define

(3.3)

fix)=x(=Inx+0b,)" = (=1)"x(nx — b,)".
2) f(x) =x""nb, —Inx)"*(Inx+n—

(3.4)

Since (for n >
1-5,)]1<0 for

byzn—1, (3.5

this parameter range ensures that f,, (x) is concave over the unit
interval for n € N_. We then define a concave quantity (and by
Vidal’s theorem, a pure state entanglement monotone)

M (p;b,) = Tr[f,(p)] — .

We call M™ as the nth moment of shifted modular Hamil-
tonian. The subtraction of the constant &7, in (3.6) ensures
that M™ (p pure; by) = 0, when p pye describes a pure state.
When n = 2 and b, = 1, the expression (3.6) reduces up to an
additive constant to (3.1). Moreover, since M has the form
(2.5) with f; concave in [0,1], we can conclude that it is also
Schur concave, from the discussion in Sec. II.

To rewrite (3.6) as combination of cumulants, we expand
it first as a linear combination of moments (o) of modular
Hamiltonian

(3.6)

n

MP(piby) =Y (Z)bﬁ"uk(p),

k=1

pk = Trlp (—Inp)1=Tr(p K*). (3.7

Then, in turn we can use the relation between moments and
cumulants (see e.g., [42]) to write

m(p)—z H Ci(p)™, (3.8)

l( |)I7
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where the restricted sum Z/ is over all partitions {p;} of k =
>_;Jpjs and Cj(p) is the jth cumulant of modular Hamil-
tonian. A more streamlined way is to expand the moments
M™(p; b,) as cumulants C;(p) of —In p + b, as follows:

M"(p:b,) = Zn' ]_[

where n = Z J pj. In the sum over partitions, terms involv-

ing cumulants C of —Inp + b, of order j > 2 reduce to
Cj(p) due to translatlon invariance. Terms involving j =1
give Cp'(p) [S(p) + b,]P'. In this way, setting for sim-
plicity b, to be the smallest possible value b, =n — 1 for
concavity, we obtain the sequence

MY (p;0) = S(p),

MP(p;1) = [S(p) + 11 + C(p) — 1,

M (p:2) = [S(p) + 2T’ + 3C(p)[S(p) + 2] + C3(p) — 2°,

M®(p:3) = [S(p) + 31" + 6C(p)[S(p) + 31> + 3C(p)*
+4C3(p)[S(p) + 31 + Ca(p) — 3*,

Ci(p) = b, (39

!(nV)P

(3.10)

The cumulants of modular Hamiltonian can be derived from a
generating function as [3,21]

n

n d (a)
Cu(p) = (=1 T (1 =) S (P)]la=1,

@3.11)

where S@(p) are the Rényi entropies (1.2). The Rényi en-
tropies in turn are determined by the entanglement spectrum.
Note that the Rényi entropies themselves are not concave
when the Rényi index o > 1. On the other hand, the full
information about the bipartite entanglement is encapsulated
by the entanglement spectrum, which provides the Rényi en-
tropies. They in turn can be converted to the cumulants, which
can be converted to the entanglement monotones M. To
summarize, the above sequence provides a way to convert the
full entanglement spectrum into an infinite sequence of entan-
glement monotones. It is helpful to note that the cumulants of
modular Hamiltonian are additive, namely

Cu(p1 @ p2) = Gi(p1) + Cu(p2).

This can be verified in different ways, most simply it follows
from the additivity of the Rényi entropies and the generating
function formula (3.11) for cumulants. Also, for the maxi-
mally mixed state p = 1/d of a system with a d-dimensional
Hilbert space, where 1 is the d x d identity matrix, the same
formula gives a simple proof of

Ind forn=1,
0 forn > 2.

(3.12)

C,(1/d) = { (3.13)
Notice that C,, = u, = 0 for pure states. Also, for maximally
mixed state, we have

M™(1/d;b,) = (Ind + b,)" — b, (3.14)

so that one would need to rescale by an overall normalization
constant if one wishes to follow the convention [37] that an en-
tanglement monotone is normalized to In d for the maximally
mixed state (i.e., M (1/d;b,) = Ind).

In fact, the sequence M™ can be derived more straight-
forwardly from the Rényi entropies, converting the latter to a
generating function as follows. Since

Tr(p®) = expl(1 — a)S“(p)], (3.15)

in terms of the Rényi entropies S (p), by defining

ko(p;b) = ™" Tr(p*) = Tr[e* ™7~
=exp[—ab+ (1 —a)S“(p)]. (3.16)
we have that
M (p3 by) = [ "(= 1)" » ke (p3 b)} = b

a=1,b=b,

(3.17)

which provides a prescription for converting the Rényi en-
tropies to the infinite sequence of entanglement monotones.

To summarize: The complete information of the bipartite
entanglement is encapsulated by the entanglement spectrum
and this information can be repackaged first to the set of Rényi
entropies, which in turn can be converted to an infinite tower
of entanglement monotones M (p; b,,).

Note that concavity only gives a lower bound b, > n — 1.
Other conditions may lead to a particular choice for the value
of the constant b,,.

In Appendix A 1 we report additional comments on how to
construct entanglement monotones exploiting the cumulants
of the modular Hamiltonian.

B. Extremal polynomial monotones and inequalities
for state transitions

In this section we perform a more general analysis of
infinite sequence of monotones constructed from convex
polynomials of the moments of In p. With some abuse of
terminology, we will refer to them as “polynomial entangle-
ment monotones” for brevity. We find that such monotones
form an infinite-dimensional cone, which is determined by
extremal rays, defining what we will call for brevity extremal
polynomial monotones. The extremal polynomial monotones
give rise to an infinite sequence of inequalities that must be
satisfied in majorizing state transformations.

Our starting point is the general functional

P(p) = Tr[p F(In p)].

The corresponding scalar function f(x) = x F (Inx) is convex
if 7 > 0 for x € [0, 1]. For convenience, we focus on convex
measures, which can be converted to concave measures by a
minus sign. This translates into the condition

FF)+F'() 20 y< 0.

For example, f(y) =y clearly meets this criterion, with P
in (3.18) being minus the von Neumann entropy. Convex
functions yield convex measures, which are monotonic under
majorization (Schur convex)

(3.18)

(3.19)

P(o). (3.20)

In the previous subsections, we have seen that for suit-
able functions F we get monotones, which we use to test
for majorization. We now want to be more systematic and
classify all F with the property that F' + F” > 0 for y < 0.

p>=0 = P(p) =
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We restrict our survey here by focusing on measures where F
is polynomial in y = In p. Let us introduce

GOy) =F'()+F'(). (3.21)

From (3.19), consider all polynomials G(y) such that G(y) >
0 for y < 0. For each such polynomial G, there is a unique
polynomial F such that F” + F’ = G (up to vanishing con-
stant terms, which can be added at will, e.g., changing the
value of F' and P for pure states).

The space of positive semidefinite polynomials G(y) on
negative real axis is a convex cone in the sense that, given a
set of functions G; with this property, a linear combination
Zi «;G; with non-negative coefficients will also have this
property [43]. Cones are completely determined by specifying
all “extremal” rays, which are functions G, which do not ad-
mit a nontrivial decomposition of the type G = ), «;G;. The
most general G will then be a linear combination of extremal
functions G with non-negative coefficients. In general, there
can be finitely or infinitely many extremal G.

From the perspective of monotones, the extremal G; will
provide a complete list of nontrivial “extremal polynomial
monotones”, with all other polynomial monotones being lin-
ear combinations of extremal polynomial monotones with
non-negative coefficients. It is therefore interesting to classify
all such extremal monotones. For this we need to classify all
extremal G;. We can use known results from the theory of
positive semidefinite polynomials, which can be summarized
as the following theorem.

Theorem 1. All positive semidefinite polynomials G(y) on
the negative half-line y € (—oo, 0] have the following form.
For polynomials G(y) of degree 2d (with d > 1), they are
linear combinations with non-negative coefficients of polyno-
mials of the form G;(y) = ]—[f:] (y + a;)* with all @; > 0. For
polynomials of degree 2d + 1 they are linear combinations
with non-negative coefficients of polynomials of the form
G;(y)=—y H?=1(y + a;)? with again all ¢; > 0.

We defer the detailed proof to Appendix A 2. The result
is essentially known in mathematics (see [44] for a review of
non-negative polynomials).

We emphasize that the higher moments of modular
Hamiltonian M™, introduced in Sec. IIl A, are in gen-
eral not extremal monotones. Consider F (x) = (x — by)* so
that G(x) = F' + F" = k(x — by)*"2(x — by + k — 1). This
has an isolated zero at x =by —k + 1. Since by > k — 1,
this isolated zero cannot be on the negative real axis. In the
limiting case by = k — 1 one obtains G = kx(x — k + 1)2.
This has many zeros on the positive real line rather than even
degeneracy zeros on the negative real line, hence as such it
is not extremal. Thus the moments M (p; b,) in general are
linear combinations of the extremal monotones Pg‘)(p).

Let us now study the lowest degree examples in detail. For
F of degree 1, G has degree zero and must be a non-negative
constant, which we can take to be 1. Then F(y) = y and the
resulting extremal monotone Pg) is minus the entropy, namely
PV = —S(p) = —-MD.

For F of degree 2, G is of degree one. According to the
Theorem 1, there is a unique extremal G, which is —y. Solving
F" 4+ F' = —y,wehave F =y — y?/2. We might as well take

twice this as extremal functions are defined up to overall
normalization only. In that case F = 2y — y°.
Thus, we have proven that

PP (p) = Tr[p(2Inp —In® p)]

= —C(p) — S(p)* — 25(p)

=-MP(p,b, = 1) (3.22)

is an extremal monotone. Note that, up to second order, the
two classes of monotones are related by M®(p;n—1)=
—Pé")(p), while this is no longer true for n > 3.

Instead of the entropy production inequality with the finite
correction (1.7), the extremal monotone appears to give a
slightly sharper inequality. The statement

p =0 = P’ (p)=—C(p)— S(p)* —25(p)

> —C(0) = S(0)? —28(0) = PP (0) (3.23)
can be rewritten as the inequality
C(p) —C(o)
— z 24
S(o) = S(p) S(0) + 5(0) 1 2 (3.24)

which appears to be slightly sharper than (1.7) involving M,
S,and C.

Until now, the inequalities have been the same as the ones
coming from

M™(osn—1) =M™ (p;n — 1), (3.25)

when p > o. In terms of the cumulants, using (3.9), this
sequence has the explicit form

S(e) = S(p),
[S(0)+ 11 + C(o) = [S(p) + 117 + C(p),
[S(0) + 2P +3C(0)[S() + 2] + C3(0)

> [S(p) + 27 +3C(p)[S(p) + 21+ C3(p), -+ .

Notice that the “second law” of entropy (claiming that the
entropy is nondecreasing in transitions p + o with p > o)
becomes refined into an infinite sequence of inequalities that
must likewise be satisfied. However, at orders n > 3 the ex-
tremal polynomial monotones may give tighter inequalities.

For F of degree 3, G is of degree two and must be of
the form (y + a)? with a > 0. So in this case we get a one-
parameter family of extremal monotones. Solving F' + F” =
G yields

(3.26)

F =1+ @1y’ + (@ -2a+2)y, (3.27)

and this gives rise to a one-parameter family of extremal
monotones for a > 0,

1
P(p) = Tr[p<§ In* o+ (a— 1)Inp

+(a*—2a+2)In ,0):|, (3.28)
and correspondingly to an infinite number of inequivalent in-
equalities. It is useful to express the coefficients of a* in terms
of the monotones M, = M (p;n — 1). Let us first denote
r® = Tr[p(—In p)] and r = V. We have (including fourth
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order for future reference)
M, = Tr[p(=Inp)] =r, (3.29)
M, =Trfp(—Inp+ 1’1 —1=r® +2r, (3.30)
M; =Tilp(—Inp +2)*1 -2 =r® + 6,2 + 127, (3.31)
My =Trlp(—=Inp +3)"1 = 3* = r® 412/ 4 54 @
+108r. (3.32)

We can then express

PS)(,O) = —a’r+a(r® +2r) — %,,G) —r@ 2

= —a’M, + aM — 1M3 + M>. (3.33)

We could thus calculate PS) from the Rényi entropies by using
first the generating function formula (3.17) for M™.

We explore the cubic case a bit more, to find a tight in-
equality. Assuming p > o, we obtain

P (p) = PO(0), (3.34)

which at this stage is an infinite family of inequalities due
to the free parameter a. The inequality (3.34) can be written
more explicitly as

w2a2 + wia+ wy = azAMl + —alAM, + %AM3

—AM, >0, (3.35)

where

AM, =M™ o;n—1)—M™P(p;n—1)>0. (3.36)

Notice that w, > 0 while w; < 0. The quadratic function of a
will therefore have a minimum at
w
ap = ——1 2 0.

3.37
0, (3.37)

In order to check whether the inequalities (3.35) are satisfied
for all @ > 0, we only need to verify it for ay for which the
quadratic polynomial in (3.35) takes its minimum value. This
leads to

w?

wg———2=0.

4UJ2
Finally, substituting the w,, from (3.35), the inequality (3.38)
takes the compact form

(3.38)

AMy > 3AM, + 5 B2

3 = 2+ 4 A M1 .
Now we can explicitly see the advantage of (3.39) over the
simple inequality AM3 > 0 from (3.25). We could then sub-
stitute the explicit forms of AM, from (3.36) to explore how
entropy production and changes in other cumulants up to third
order are bounded by each other. Alternatively, we can study
differences in moments r® and s" = Tr[o(—Ino)"]. For
example, the difference r® — §3 has a lower bound in terms
of r, r'¥, s and s@,

(3.39)

3 (r® — s@)?

1O s <3 — 9+ 3 (3.40)

Note that (3.49) has an interesting hierarchy where the third-
order AMj3 is bounded by are bounded by combinations AM;,
with k = 1, 2, or the next-order inequality is bounded by the

previous-order inequalities. This suggests that higher-order
inequalities could have some interesting recursive structure.
We explore this some more by working out the fourth-order
monotone P.” and the resulting i liti
5 g 1inequalities.
To find P (p), we first need to solve F”(y) + F'(y) =
G(y) with

GO) =~y +a), (3.41)
where y = In p and a > 0. The polynomial solution is
2 2 3
F(y) = az(y - y?) +a<—4y +2y* — %)
v
+6y —3y* +y° — T (3.42)

collecting coefficients of a*. Then, Pg‘)(p) = Tr[pF(p)],
whose explicit form reads

@ 2,3
P = a2<—r - %) + a<4r +2r@ + %)

4)
,
—6r — 37D D _

7 (3.43)

The coefficients of af can be expressed in terms of the
monotones M, = M™(p;n — 1) and using (3.32). With some
calculation, we find

r? 1
—r—o = —§M2, (3.44)
s 2r® 2
ar+2r% 4 T = 2 - 3, (3.45)
@ 1
C6r—3r® _ % _ ’T = — 3 (My — 8M5 + 6M>),
(3.46)
so that
pW — 1 2 2
e (0) = | —5M2)a"+ | 2 (M5 —3My) |a
1
- Z(M4 — 8M3 + 6M>). (3.47)

Now consider a pair of majorizing states. As before, we have
(3.48)

Let us denote M, = M™(o;n — 1) and AM,, = M™ (o3 n —
1) —M®™(p;n—1) >0, as in (3.36). As before, we rewrite
the inequality (3.48) in the form

p>=0o = PYp) = PP ).

wya® + wia + woy > 0, (3.49)
where now
wy = L(My — M) = 1AM, > 0, (3.50)
w; = —3(AM3 — 3AM;) <0, (3.51)
wo = H(AMy — 8AM3 + 6AM,). (3.52)

Note that in the above w; < 0 since AM3 > 3AM, by the
inequality (3.39). We then find the minimum of (3.49) at a,
as in (3.37) and obtain the same w inequality (3.38) as before.
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Substltutmg the wy from (3.50) by AM,, gives the final form

of the P( inequality,
8 (AM3 — 3AM,)?
AMy 2 8AM; — 6AM, + - —F————. 3.53
4> 3 — 2+ 5 A, (3.53)
The right-hand side is positive since
8AM; — 6AM, = 6AM5 +2(AM3 —3AM;) > 0, (3.54)

from (3.39). We could use (3.39) twice in the right-hand side
of (3.53) to relax the lower bound a bit to the inequality
3 (AM,)?

6AM; + >
3T TAM,

1 (AM,)?

AMy > —
2 AM,

(3.55)

The upshot is that the fourth-order inequality is manifestly
tighter than just AMy > 0. There is still some interesting re-
cursive structure, albeit the terms appearing in the right-hand
side of (3.53) do not appear in the same combinations as in

the previous-order inequalities: both AM3 and AM3; — 3AM,
3 (AM,)?
iAM, -

The virtue of M™(p;b,) is that they are simple to com-
pute (for example when the Rényi entropies are known) and
provide inequalities involving cumulants up to order n. The
inequalities AM™ > 0 are expected to be weaker than those
derived from the extremal polynomial monotones Pg’)(p).
A trade-off is that the latter inequalities are less straightfor-
ward to derive, due to the increasingly many free parameters
contained in P , which need to be optimized to make the
inequalities as tlght as possible.

appear instead of only AM3 — 3AM, —

C. Other resource monotones from pure state
entanglement monotones

In Ref. [3] a more general version of majorization has
also been considered, which has applications to other resource
theories than that of entanglement, e.g., to quantum thermo-
dynamics. Let D denote the set of quantum states of a given
system. Consider two pairs of states p, o € D and p’, 0’ € D.
If there exists a quantum channel £ in D such that £(p) = p
and £(o) = o/, we denote (p, o) > (p’, o), defining a partial
order between pairs of states. A special case is the fixed point
o =o' = o, of the free operations, we then write p >, p’
instead of (p, 0,) > (o', 0,) and say that p o,-majorizes p’.
An important example is the thermomajorization, where the
fixed point is the Gaussian thermal state, o, = e #7/Z (or a
generalized Gaussian state). This leads to a partial order in
quantum thermodynamics. For the generalized majorization
(p,0) > (p', 0’), the relative entropy S(p||o) is monotonic
with

S(pllo) = S(p'llo"),

and is called a resource monotone in the above context.
The monotonicity (3.56) is a special case of the more gen-
eral contractivity property S(p||o) = SN (p)||N (o)) for any
quantum channel V.

In Ref. [3] a new relative quantifier was introduced, which
takes the form

M, (pllo) = C(pllo) + (1 — In(x) — S(pllo))*,

(3.56)

(3.57)

where o is a full rank state, C(p||o) is the variance of the
relative modular Hamiltonian [45],

C(pllo) = Trlp(In p — Ino)*] = S(pllo)’,

where S(p|lo) = Tr[p(Inp — Ino)] is the relative entropy,
which is the expectation value of the relative modular Hamil-
tonian. They considered pairs of state such that [p, o] =
[0’, 6'] = 0, further assuming that o, o’ are both full rank.
In this setting, they proved some interesting properties for the
quantifier (3.57), and proved a lower bound for the production
of relative entropy, involving variations of the relative vari-
ance. In this section we generalize this construction of [3] to
an infinite class of relative quantifiers, which are also limited
to pairs of commuting states. A more general analysis in the
noncommuting case remains an important open problem.
Consider first quantifiers of the form (3.18),

E(p) = Tr[pF (In p)],

where we change the notation with respect to (3.18), to em-
phasize that now we allow F(x) to be any smooth function
(not just a polynomial), such that xF(x) is concave in the
unit interval x € [0, 1]. By Vidal’s theorem, (3.59) defines a
pure state entanglement monotone in a bipartite system A U B,
when p is the reduced state of a pure state |y )4up. Then, for a
pair of commuting full rank density matrices p, o, we define
a relative quantifier

E.(pllo) = E(xpo ") = Tr[pF (In(xpo~"))]
= Tr[pF(Inp — Ino + In(x))],

(3.58)

(3.59)

(3.60)

where x is a real number. We then prove the following theo-
rem, which generalizes Theorem 12 of [3]:

Theorem 2. Let (p, o) and (p’, 0’) be two pairs of com-
muting states, thatis [p, o] = [p’, 6'] = 0, and o, ¢’ both full
rank. If (p, 0) > (p’, '), namely p > p’ and o > o/, then

E,,.(0'llo") > E,,, (pllo), (3.61)

where sy, denotes the smallest eigenvalue of 0.

Proof. The proof is a simple modification of the proof
reported in Appendix G of [3], so we will only present the
essential steps here, referring to [3] for details.

First, since [p, 0] = 0 we can diagonalize both states in the
same eigenbasis and write p = Y, r;|i) (il and o = >, 5;1i) (il.
Then we write

E,,(pllo) = Z ri (ln (smm = ))
1 T T
= Z Si (smm ) <1n <smin_)>
Smin i Si S;

ri
= E Si&smin s_z ’
1

(3.62)

where

ri 1 ri ri
Esmin| = ) = Smin— ) F [ In { Smin —
Si Smin Si Si

is a concave function in the interval [min; ;—, max; ;—] since
xF (x) is concave in the unit interval, s.,;, > 0 since o is full
rank and smin;—:j € [0, 1]. On the other hand, since (p, o) >

(3.63)
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(p’, 0"), there exists a quantum channel mapping (o, o) to
(p’, o), thus by Lemma 20 of [3] there exists a right stochastic
matrix 7' that maps the eigenvalue vectors (denoted with bold
symbols) as rT =1, sT =s'. Then, by Lemma 34 of [3],
it follows that the inequality (3.61) holds. Note also that from
the majorization o > o', it follows that the respective smallest
eigenvalues satisfy smin < ;- [ |

For an operation ® with a fixed state o, and p >,, ®(p),
the inequality (3.61) implies that

R.(p) = —E(pllow) = —E(P(p)lloy) = R.(P(p)), (3.64)

thus we make contact with the definition of a resource mono-
tone (1.1). As an application of the construction (3.60), we can
use our monotones M ™ and Pg‘) to define relative quantifiers
as follows:
M, (pllo) = (—=1)'Trlp(n(xpo ") — b,)"]
=M (xpo~";b,) + D!
= (=1)"Tr[p(Inp — Ino + In(x) — b,)"].
(3.65)

The first two quantifiers of the sequence reduce to (minus) the

relative entropy and M, (p||o ) defined in (3.57) by
M{)(pllo) = My(pllo). (3.66)

More generally, expanding (3.65) with relative cumulants and
setting a, = b, — In(x), we have

M (pllo) = =S(pllo) + ai. (3.67)
M2 (pllo) = [=S(pllo) + a:l* + Clpllo), (3.68)

M (pllo) = [=S(pllo) + as]* + 3C(pl|o)
x [=S(pllo) + a3] — Cs(pllo). (3.69)

M (pllo) = [=S(pllo)+asl*+6C(pllo)[—S(pllo) + as])*

+3C(pllo)* — 4C5(pllo)[—S(pllo) + as]
+Cylpllo), -+, (3.70)

where C,(p|lo) is the nth cumulant of In(po~!). No-
tice that, up to additive constants, the equations in (3.67)
reduce to the ones in (3.10). This follows by choosing
o =1/d giving S(pl|1/d) = —S(p) +1Ind and more gen-
erally Cj(p||l1/d) = (—l)jC_,-(,o), and setting a, =n—1—
Inspin=n—1+1nd.

When p and o are commuting density matrices, we can

also define a generating function
kiei(a;a) = e~ *“ expl(a — DS (pll0)], (3.71)

where

1
Sa(pllo) = — InTrlp"o ] (3.72)

is the Petz-Rényi relative entropy [46]. In this case, we get

n

0
M, (pllo) = [(—n"e“a ;
o

. (3.73)

a=1,a=b,—In(x)

kee1 (o a):|

It would be interesting to generalize the generating function
giving (3.73) to the case of noncommuting p and o. We leave
this investigation for a future analysis.

Likewise, from P we obtain the relative quantities
P\ (pllo) = —Tr[pFy(In p — Ino + In(x))]

= —P"(xpoh), (3.74)
where F, is an extremal polynomial that is a solution of
E'(y)+ FE,(y) = G,(y), where G,(y) is of the form given in
Theorem 1.

In Ref. [3] the monotonicity of M;_, (p||o) (see 3.57) has
been used to derive a lower bound for relative entropy pro-
duction. As corollary of the more general theorem (3.61), one
can obtain infinitely many inequalities involving the change in
relative entropy. If (p, o) > (p’, o) with both o, ¢’ full rank,
then

M (o'lle’) =M (pllo), (3.75)
(Vl) P(n) 376
P (pllo) = P (pllo), (3.76)
for all n > 1. Substituting the explicit form of M (")Y ~ from

(3.65) leads to inequalities resembling the ones in Sec. I B,
from which one can solve the relative entropy production with
a bound involving relative cumulants to arbitrary order. For
example, at order n = 2, concavity requires b, > 1, leading
to [3]

ASE +2xASwel — ACre =0 (3.77)
where  ASi = S(pllo) —S(p'llo”),  ACw =C(pllo) —
C(p'|lo") and x =a — S(pllo), with a =1 —Ins . The
inequality (3.77) can be rewritten as the following relative
entropy production bound:

ACrel
2a — S(pllo) — S(p'llo’)
When o and ¢’ are the maximally mixed state, (3.78) becomes

(1.10). The bound in (3.78) can be relaxed obtaining the some-
what less tight inequality (see [3] for the explicit calculation)

ASrel 2

(3.78)

ACrel
2 /M) (pllo)

A Crel

AS]’C > = .
! 2(1 — In $yip)

(3.79)

The inequality (3.79) is the same as that reported in [3] with
1 — In smin replacing 1/In2 —log,(smin) due to the use of
In instead of log,. Notice that the inequality (1.7) can be
recovered from (3.79) when o and o’ are the maximally mixed
state.

Moving to the Pé"zmm, tighter inequalities can be obtained
at orders n > 3. For éxample, at order n = 3, writing

0< P (p'lle") = PE) (pllo)

= w2a” + wia + wo, (3.80)
where (using b, =n — 1)
wy = MP (Sminp'0" "5 1) = MP (sminpa ™15 1)
fzs)m(ﬂ llo") = M%) (pllo). 3.81)
wi =M, (0llo")+ M, (pllo), (3.82)
wo = 5[M. 533‘“"‘(/) llo’) — My (pllo)]
—[M% (@lle") = MY (pllo)]. (3.83)
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we obtain
2
3 AMrel
AME > 3AMY + Zﬁ’ (3.84)
where now
AME =M, (0lle)y =M™, (pllo).  (3.89)

1. Finite-size correction to Clausius inequality

Rather than moving on to derive more explicit forms of
these higher-order inequalities, let us point out an interesting
corollary of (3.79). A well-known statement is that the non-
negativity of relative entropy S(p||o) > 0 can be rewritten as
an inequality

A(K) = Tr(pK) — Tr(0K) = S(p) — S(0) = AS, (3.86)

where [47] K = —Ino. The refined equation (3.79) gives
a finite-size correction to the inequality (3.86), assuming
[p,0] =0.Set p’ =0 = o’ in (3.79), which corresponds to
consider a mutually commuting pair of states with the o-
majorization p >, o. Now (3.79) reduces to

C(pllo) Clpllo)
2/M2 (olley 20— Insmin)”

S(pllo) = (3.87)

which in turn implies a finite-size correction to (3.86); indeed
C(pllo)

2/M,, (Pllo)

(3.88)

Tr(pK) — Tr(c K) = S(p) — S(o) +

In the context of nonequilibrium thermodynamics, we can
choose 0 = yg = e PR 7(B), where B = 1/(kgT) is the in-
verse temperature, and p is a state that thermomajorizes
yg and commute with it. From (3.88), we obtain a finite-
size correction to a fundamental thermodynamic relation (the
Clausius inequality),

! c
S(rp) = S(p) > = L(H),, — (H),) + %
’ 2,/MP) (ollvg)
1
2 kB—T[<H>yﬂ — (H),]
n Clollyg) (3.89)

2 +2,B(Emax - F(,B))’

where (H) , is the nonequilibrium energy of the state p, (H),,
the energy in the thermal state, S(p) the nonequilibrium en-
tropy in the state p, S(yg) the thermal entropy [or, more
conventionally, S(8) = kzS(ys)], and where sy, is the small-
est eigenvalue exp(—pBEn.)/Z(B) of the Gaussian state yg
(the finite-dimensional system has a maximum energy eigen-
value En.x) and BF(B) = —InZ(B) is the Helmholtz free
energy. Again, one could attempt to derive a sequence of more
refined inequalities from the infinite sequences of resource
monotones above constructed. We find it worth stressing that,
considering (3.89) when yg is maximally mixed, i.e., when
B — 0, the inequality becomes

Cp)

Ind > _=)
nd =S50+ S

(3.90)

It is straightforward to check that (1.10), when p is maximally
mixed, gives an inequality tighter than (3.90).

Let us remark that the finite-size correction obtained above
has no effect on the so-called first law of entanglement. Con-
sider a one-parameter family of states p(X), with p(0) = o.
Expanding p(A) = o + A8p + - - -, one obtains

85(pllo) = S(p(M)]|o) —0 =0+ ASV(o]|o)

+228P (@ ||lo) + -+ = 0. (3.91)

Since S(p||o) has a global minimum at p = o, at first order
we have an equality 85(p|lo) = A SP(o||o) = 0 instead of
an inequality, hence (3.86) becomes the equality

8(K) =4S, (3.92)

for infinitesimal changes, which is known as the first law of
entanglement. The reason why it does not receive finite-size
corrections from (3.88) is that p = o is a local minimum of
C(p|lo), so §C(pl||lo) = 0 also to first order, so that the first-
order equality §S(p||o) = 0 remains intact.

IV. APPLICATIONS
A. Information erasure

As an application of the inequalities (3.24) and (3.40),
we study a state erasure process, following [3]. The erasure
process is described in two steps. Consider first a system in a
state p to be “erased”, i.e., to be converted to some fixed pure
state |y). This conversion can be accomplished introducing an
external system B involving n qubits, an information battery,
which is simultaneously converted from a pure state |0)®" to
a maximally mixed flat state (1,/2)®". This first step of the
process requires the battery to be large enough, meaning that
there is a lower bound on the required n. Mathematically, this
step can be modeled by a unital channel £ mapping the input
state 2 of the composite system to the output state T = £(2).
According to the Uhlmann’s theorem discussed in Sec. II, the
unital channel implies the majorization relation

Q=p 00" > [Yy) (Y| ®1/)*" =T

From the Schur concavity of von Neumann entropy it follows
that S(2) < S(Y), which by additivity of S produces the
lower bound

A.1)

nin2 > S(p). 4.2)

In the second step, in order to be able to repeat the pro-
cedure, one must restore the battery back to the initial state
|0Y®", This step requires work to be done on the battery [48],
and can be performed in different ways (see e.g., [49] for
more discussion and references). We consider here the process
described in [50], where the battery consists of n identical
copies of a tunable two-state system and the energy gap of
the two energy eigenstates can be parametrically adjusted to
be anything from zero towards infinity. One places the battery
in contact with a heat bath at temperature 7', with the energy
gap initially being zero, and then adiabatically increases the
gap towards infinity. This requires work W to be performed on
the battery. At the end, each two-state system is in the ground
state |0) with probability 1, so that the battery is restored to
the state |0)®", at the expense of the work cost involved in the
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adiabatic process, which can be calculated to be

W =kgTnln2 . 4.3)

One then removes the battery from the contact with the heat
bath, after which the energy gap can be reduced back to zero
while doing no work. The battery is now ready to be used
again.

The two equations (4.2) and (4.3) can be combined as the
Landauer inequality

W = kgT S(p), 4.4)

for the work cost of erasure. Note that erasure deletes all
details of the eigenvalue spectrum of p, so it is natural to ask
if additional details of the distribution of the spectrum beyond
just the entropy will have an effect on the work cost of erasure.
Indeed we find that all cumulants of the spectrum can be used
to characterize the cost.

The inequality (4.2) has been derived from S, but now
we may consider the infinite sequence inequalities following
from the monotones M. Since M are (Schur) concave,
we have that Q@ > Y = M"(Y,b,,) > M™(Q, b,,). First
we compute

m

M, by) = (Z’)b:,",—mk(wr),

Zk'ﬂ

where Y is the restricted sum introduced in (3.8) and, by
additivity of cumulants (3.12) and the fact that they are zero
for pure states, we have

CP/ (T)

i) = - ( 0

4.5)

Ci(Y) =0+nC;(1/2). (4.6)

Since C;(1/2) = 0 for j > 2, in the above sum only the parti-
tionk =1+ 1+ ---4 1 remains, hence

m

M™(C )= ('Z)bgk(n In2)t

k=0

= (nn2+ b,)". 4.7)

Next, we have

m

1‘4(m)(§27 by) = Z < )bm —k Z 1_[ W Cff(Q),

k=0
(4.8)
where [using again the additivity (3.12)]
Cj(Q) = C;(p) +0. 4.9)
We thus have confirmed that
M"™(Q, by) =M™ (p, by). (4.10)

Now we employ the cumulant expansion (3.9). Set-
ting for simplicity b,, to be the smallest possible value
b, =m —1 allowed by concavity, we obtain the se-
quence of inequalities for the work cost W = kgTnln2

with [51]
nln2 >

(nIn241)* >

(nIn2+42)>* >

S(p), 4.11)
[S(p) + 11* + C(p), (4.12)
[S(p) + 21 + 3C(P)IS(p) + 2] + C3(p).
4.13)
> [S(p) + 31* + 6C(p) [S(p) + 31> + 3C(p)*
+4C5(p) [S(P) + 31+ Calp), -+ . (4.14)

(nln2 + 3)*

Let us remark on the relative significance of the vari-
ous terms on the right-hand side of these inequalities. We
point out that, while Sp,x = Ind by the maximally mixed
state pga = 51, we have Cpax =~ §1In?(d — 1) [3 21,24] by
a different state ppm,x = diag(l —r, ﬁ, R 1) where r
is the solution of (1 —2r)In[(1 —r)(d —1)/r] =2. One
might anticipate that the higher cumulants have maxi-
mum values C,mix & In"d each reached at a different
state 0, max, but this remains (to our knowledge) an open
problem.

Let us now compare these inequalities with those ones
obtained from the extremal polynomial monotones. The first
two are the same as in the above: PI(;) =-8=-MD gives
the Landauer bound (4.11), while the inequality from sz) =
—~M@ will be the same as (4.12). Let us verify the lat-
ter inequality starting from (3.24), which first gives nln2 >
S(p) + S(p)ﬂl—quﬂ, or

> V(S(p) + D2+ C(p),

which coincides with (4.12). This is already a stronger bound
than the one coming from the inequality (1.7) involving S, C
and M, which reads

nin2 + 1 4.15)

C(p)

nln2 > .
2/M(p)

S(p) + (4.16)

Consider then the tighter third-order inequality (3.40) applied
to the erasure process. We need the moments of modu-
lar Hamiltonian u, [see (3.7)] for the states 2 and Y in
terms of the cumulants. From (3.8), for Q = p ® |0)(0|®"
we have

wn1(2) = S(p), 4.17)
12(R) = $*(p) + C(p), (4.18)
13(Q) = S3(Q) + 38(2) C(Q) + C3(Q)
= $’(p) + 38(p) C(p) + C3(p). (4.19)
and for Y = |)(¥| ® (1/2)®" we obtain 1 (Y) = (nln2)~.

After some calculation, we find

nIn2+ 17 —[S(p) + 11> +3[nIn2 — S(p)]
—[C3(p) 4+ 3C()(S(p) + 1]

S 3[(nIn2+1)* = (S(p) + 1)?
“ 4 (nln2 — S(p))

—C(p)I

(4.20)

From (3.39), we already know that this is a stronger inequal-
ity than (4.13). A weaker form of the inequality (3.39) is
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AM;3 > 3AM,; and it gives
(nIn2+41)> +3nIn2 > (S(p) + 1)> + 35(p)
+3C(p)(S(p) + 1) + C3(p),
4.21)

which is still somewhat stronger than (4.13).

Moving to higher-order extremal polynomial monotones,
one can derive an infinite sequence of (increasingly more
complicated) inequalities, involving higher cumulants of
modular Hamiltonian. As already noted, it is possible that
the sequence contains some interesting hierarchical structure,
e.g., the right-hand side of (4.20) contains a ratio of quantities
that appears in the two previous inequalities (4.12) and (4.11).

In the Outlook section of [3], it was commented that it
would be interesting to construct a hierarchy of (Schur-)
concave functions from cumulants of modular Hamiltonian
relevant to single-shot settings. We have proposed two such
sequences: The moments of shifted modular Hamiltonian and
the extremal polynomial monotones. The latter one could be
relevant to provide tight inequalities. It would be interesting
to further explore the hierarchical structures contained in the
two sequences. Furthermore, besides a “sequence of Landauer
inequalities”, the majorization relation in the information era-
sure already contains many inequalities for the partial sums
of the two eigenvalue spectra. Since any concave quantifier
produces an inequality for the information erasure, and thus
some kind of a bound on 7, there is obviously an uncountable
infinity of inequalities that one could consider. The above
sequences are special only in the sense that they contain the
entropy and higher cumulants.

Majorization gives a partial ordering among density matri-
ces, but one can also define another partial ordering based on
the sequences of inequalities from the monotones. It would be
interesting to study the relation between these two orderings
in more detail and some tentative observations are made in
Sec. VL.

Finally, while we discussed an idealized model of state
erasure to demonstrate the implications of the monotones, the
obvious next step would be to investigate a more realistic
scenario. For instance, the initial state p of the system and the
initial state of the battery could be known only up to some un-
certainties €; and €;. The erasure process could be imperfect,
modeled by a quantum operation £ involving an additional
uncertainty §. The overall result is an output state approxi-
mating ) (¥| ® (1/2)®" only up to a cumulative inaccuracy.
In particular, some of the battery qubits could be in an exactly
known state, some in a biased state, and some in a completely
unknown state, making the work estimation resembling the
setting of [52]. One aspect involved is computing cumulants
of the probability spectrum from a smoothed distribution.
Related questions are whether the monotones M™ intro-
duced in this paper have interesting physical upper and lower
bounds, generalizing the min- and max-entropies, and what
happens if a catalytic system is incorporated into the state
erasure model. We leave these questions for future study.

B. Lower bound on marginal entropy production

The inequality (3.24) offers a slight tightening of the lower
bound on marginal entropy production derived in [3]. Our

discussion follows again [3] but with some small modifica-
tions. Consider a quantum channel £ mapping a system S to
itself. In order to represent the channel £ acting on a state pg
of the system, we introduce an environment E in a state pg
and a unital channel [53] U to write

E(ps) = Tre[U(ps @ pe)]. (4.22)

We denote by

psg = U(ps @ pg) (4.23)

the state of the joint system S U E after the application of the
unital channel. Since I/ is unital, by the Uhlmann’s theorem
mentioned in Sec. II, we have the majorization pg ® ps > Py
and therefore, using (3.24), we obtain

(S(psg) + 1)? — (S(pos ® pp) + 1)
> C(ps ® pe) — C(psg),

which means that the entropy production in the joint system
is bounded from below by the decrease of the variance. The
right-hand side can be manipulated using a result (Lemma
11) from [3], which takes the form of a correction to the
subadditivity of variance. To describe that result we consider a
bipartite system S U E of dimension d = dsdg > 2, where psg
and osg are two commuting quantum states. If osg = o5 ® og
and is full rank, then [54]

C(psellose) < C(psllos) + C(pgllog) + « f(Isg/1n2),
(4.25)

(4.24)

where ps = Trg psg, pg = Trs psg, k is a constant given by
K =~/2In2 (12102 + In® spin + 810 d), (4.26)

where s, is the smallest eigenvalue of o, Isg is the mutual
information

Isg = S(psEllps ® pE) (4.27)

of psg with respect to the bipartition and f(x)=
max{x'/4 x'/2}. As a special case, choosing osg =
(Is/ds) ® (1g/dg) Wwith spin = 7= = 3, we obtain the
following correction to the subadditivity of variance:

C(pse) < C(ps) + C(pg) + « f(Ise/In2), (4.28)
where now
K =+/2In2 (1210’2 + 91nd). (4.29)

We can now turn back to (4.24) and bound the right-
hand side that equation using the additivity of the vari-
ance (3.12), C(ps ® pr) = C(ps) + C(pr) and the correction
to the subadditivity (4.33) to decompose C(pgg), ending
up with

C(ps ® pr) — C(psg) = —ACs — ACg — k f(Isg/In2),
(4.30)

where we have defined ACs = C(p$) — C(ps) and ACg =
C(pg) — C(pg). Note that, for decreasing variance, —AC >
0. In the left-hand side of (4.24) we can use the additivity and
subadditivity of entropy to write

(SsE+ ASsg+ 1)* — (Ssg + 1)

> (S(pe) + 1* = (S(ps ® pe) + 1), (4.31)
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where Ssg = S(ps) +S(pe) and ASsg = ASs 4+ ASg =
S(pg) —S(ps) + S(pg) — S(pe). Combining everything to-
gether, and expressing the resulting inequality for the entropy
production, we have

ASs + ASg
= (S(ps)+ S(pe)+ 1)

(S(ps) + S(pp) +1)°

which is a slightly tighter lower bound for marginal entropy
production, compared to Result 4 in [3]. We emphasize that
the result is nontrivial only when the numerator in the ratio in
the square brackets is positive (the total decrease in variances
is sufficiently large). If the ratio in the square bracket in
the right-hand side of (4.32) is much smaller than one, we
can employ the Taylor expansion, obtaining from the leading
approximation

(4.32)

ACS — ACE — K f(ISE/ In 2)
2(S(ps) + S(pp) + 1)

which can be easily compared against the inequality in [3]
(see also [55]). As an application, [3] considered state tran-
sitions with a help of a catalytic system C and derived
the lower bound dc > O[exp(8~'/%)] for the necessary di-
mension dc of C for a state transition, where the variation
of entropy 6 is small while variance is reduced. Similarly,
it would be interesting to consider what are the implica-
tions of the other inequalities in the sequences considered
in this paper, which involve higher cumulants. For that,
one would need to first derive subadditivity properties of
higher cumulants C,, generalizing the result (4.33) for the
variance.

ASs + ASg > — . (433)

V. PAIRS OF BIPARTITE PURE STATESIN 1 + 1 CFT
AND PERIODIC CHAINS

Majorization is a central concept in finite-dimensional
quantum systems, which provides a classification of bipartite
entanglement for pure states. What can be said about pure
states in quantum field theories? In this section we develop a
strategy to gain insights into this question. To provide explicit
examples, we first evaluate Sy and C4 in one-dimensional and
translation invariant systems. We review known results for
Rényi entropies for a ground state and a class of excited states.
From the Rényi entropies we first compute the difference
S4 — C4 and study how it changes moving from the ground
state to an excited state. We then compute monotones and
inequalities, as outlined in Sec. V A, and find the constraints
they present for the majorization order between a ground state
and an excited state.

A. Majorization and states of periodic chains

Consider a pair of pure states |®) and |¥) in a QFT, is
there any meaningful definition for a relation |®) > |W)? First
of all, bipartitioning involves an ultraviolet cutoff, making
some entanglement monotones divergent. Also, the definition
of majorization via the reduced states and partial sums of

ordered eigenvalues becomes cumbersome and very sensitive
to the choice of UV regulator. In Sec. V we will explore
this question to gain some tentative insight. We consider a
pair of states in a CFT, which is a continuum limit of a
discrete model at criticality. As a concrete example, we will
consider discrete versions of the compact boson at critical
radius and free fermion CFT on a circle, which are different
critical limits of the periodic anisotropic XY spin chain. The
latter can be mapped to free periodic fermionic chains with
a finite-dimensional Hilbert space. The original pair of CFT
states is then mapped to their counterpart in the fermionic
chain. In that case majorization becomes well defined, and
we can apply rigorous theorems from quantum information
theory and compare bipartite entanglement between the two
states. The results will then reflect some properties of the
original CFT states, which have to be interpreted with care,
as the maps between the spin chains and fermionic chains are
typically nonlocal.

Our goal is to take some first steps, leaving more ex-
haustive studies for future work. We will limit to comparing
a ground state |®) =|0) with an excited state |V) and
their counterparts in the periodic fermionic chain. We bipar-
tite the periodic chain of finite length L made by N sites
(hence the Hilbert space of the full system has dimension
2V) into a subregion made by ¢ consecutive sites and its
complement. Let us denote this subsystem by A and its com-
plement as B. We denote the reduced states in the subsystem
A by

pa =Trg(|ONP]), oy =Trg(W)(WD. (5.1

Suppose that |®) > |W) or equivalently p4 > o4. Note that
this relation depends on the choice of the bipartition to A
and B, hence on the relative size of the two lengths ¢/L.
While it is rather laborious to establish majorization, we ask
an easier question of whether it can be ruled out. For this
purpose we can use any Schur concave quantity E4 applied
to the reduced states: Assuming that ps > o4 (|®) > |V))
then AEs = Ex(04) — Es(pa) = 0, thus if we instead find
AE4 < 0 the assumed majorization order cannot hold. Con-
sequently any process converting one state into the other
implying the assumed order is impossible (for example, a

LOCC process |W¥) RC |®)). The converse analysis nat-

urally can be applied to the opposite assumption o4 > pa
and opposite processes. In this setting it becomes interest-
ing to compare which quantity E4 gives the most stringent
bound.

For the Schur concave quantities E, to study, we only con-
sider here the entanglement entropy S, the Rényi entropies
Sf), Sf) and the monotone Mf)(~, )= —P/iz)(~). The latter
gives the inequality (3.24), which must be satisfied if ma-
jorization holds. All in all, in studying the various monotones,
we will compare which one gives the tightest bound for the
range of {/L where the majorization order must be violated.
These results are discussed in detail in Sec. VF. Before
such comparisons, we will examine the cutoff dependence of
S4, C4 and Mf). We will also compare the entropy S, with the
capacity Cy for the two states, and examine how they depend
on the relative size ¢/L.
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B. Some known CFT results

In this section we study S, C, and M [see (1.4) and (1.6)] in
simple bosonic, fermionic conformal field theories and related
discrete models (which can be mapped to fermionic chains).
Considering a 2D CFT for certain states (including the ground
state) and when the subsystem A is a single interval of length
£, it has been found that [S6-59]

Trpl = cp e W (5.2)

where c is the central charge of the CFT and Wy is a function
of ¢, which diverges as the UV cutoff ¢ — 0 and depend
also on the state and on the geometry of the entire system.
The constant ¢, is model and boundary condition depen-
dent and ¢; = 1 (because of the normalisation of p4). For
instance, when the system is on the infinite line and in its
ground state, when the system is on the circle of length L
and in its ground state or when the system is on the in-
finite line and at finite temperature 1/8, for Wy we have
respectively

V4 L . nl
Wao=2In[-), Wy=2In[—sin— ],
€ TE L

¢
W, =2In (ﬁ sinh ”—).
e B

(5.3)

By employing (5.2) into the definitions (1.3) and (1.4), it is
straightforward to find that [21]

Cy =S, = %WA T+ o), (5.4)
and that C4 and S, differ at the subleading order O(1) deter-
mined by the nonuniversal constant ¢, [60].

In the following we report the expression of M™(p;b,)
defined in (3.6) for a CFT on the line in its ground state and
an interval A of length £. By using (5.2) and (3.17), for the
leading term we find

In(¢/€)
3

M (by) = ( ) +0((n(e/e)™™), (5.5
where the subleading terms in £/¢ depend both on the nonuni-
versal constants and on the parameter b,. For instance, in the
special case of n = 2 we get

In(e/e)\* 1
MP (by) = (%) + 31420 - 2¢))In(L/e) + O(1),

(5.6)

where the subleading terms that we have neglected are finite
as € vanishes. In the following, with a slight abuse of nota-

tion, we denote by ¢ both the number of consecutive sites
in a block A and the length of the corresponding interval
A in the continuum. This convention is adopted also for the
number of sites of a finite chain and for the finite size of the
corresponding system in the continuum limit, both denoted
by L.

C. Excited states in CFT

Consider a CFT in a circle of length L in the excited
state of the form |ex) = O(0, 0)|gs), obtained by applying the
operator O on the ground state. The subsystem is an interval
A of length £ < L in a circle of length L > ¢.

The Rényi entropies in the low-lying excited
states in CFT have been studied in [61,62], finding
that the following ratio provides a UV finite scaling
function:

Tr(p.4) — 1SS =St
Tr(longs,A)

where S(O") 4 and S(g":’ 4 denote the Rényi entropies when the
system is either in the excited state or in the ground state
respectively. The moments Tr(p'gs 4) in (5.7) are (5.2) with
W, given by the second expression in (5.3), while the Rényi
entropies for the excited state read

s = (14 ML gin ™
0A™ g n TE L

1 ~In [F$Pe/D)] + nc,.

F(e/L) = (5.7)

-I-l (5.8)

In [61,62] it has been found that the ratio (5.7) is obtained
from a proper 2n-point correlator of O. This gives

s
n=1

d n
Soa =S gn— %(m F3)(¢/L))

d? "
Coa =Cgsa+ - (InF§ >(5/L))‘

n

(5.9)

n=

In the following we explicitly consider only two examples of
excited states where [62—-64]

ES(€/L) = [fu(e/L)Y,

where only the exponent y distinguishes the two states and

(5.10)

2 2n
fL€/L) = (; sin(n@/L))

. 2
) I‘(%[l +n 4 nese(rt/L) ) 5.11)
T (301 —n+nese(w /L))

J
From (5.9), (5.10), and (5.4), one obtains the following UV finite combination:

Soa—Coa

— Zy(ln |2sin(l/L)| + W(

_2)/

2sin(wl/L)

1 , 1
( - sin(w¢/L) +y <2 sin(ne/L)>

=y (Balin £,€/L)cr + 0200 €/ Dlet) = €] = [B2n )],

) + sin(rr@/L)) -

(5.12)

n=1’

—[1+ sin(nZ/L)]2> — [87(nc,)]|
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where ¥ (x) is the digamma function and '(x) its derivative.
When ¢/L « 1, since ¥ (1/x) >~ —Inx and ¥'(1/x) >~ x as
x — 0, we have that 5 In(¢/¢) is the leading term of both So 4
and Cp 4. Furthermore, the combination in (5.12) becomes
—[Bf(ln ¢n)ll,=; — ¢} in this limit. The difference between
the excited state and the ground state becomes invisible in
the short interval limit. We remark also that the combi-
nations Sp 4 —Sg4 and Co g — Cgsa [see (5.9)] are UV
finite.

D. Massless compact boson

Our first example CFT is the massless compactified scalar
field, whose central charge is ¢ = 1. Its action is

g
I = H/ozzx 3,0 3", (5.13)

with a field compactification radius R such that ¢ ~ ¢ +
27 jR, j € Z. Interestingly, for this model it has been found
in [62] that, when the excited state is given by a vertex op-
erator O =:¢%+%® . the scaling function (5.7) is equal to
one identically. Therefore this excited state has the curious
property that its bipartite entanglement structure is unchanged
from the ground state. We will thus move to consider other
excited states.

A nontrivial result for (5.7) is found when O = id¢ is the
current. In this case (5.10) holds with y = 1 [62—-64]; hence
E(():;;) = f,. Although Flg(;s) is independent of R, for a numerical
check we consider a specific value of the compactification
radius in order to give an explicit value to the nonuniver-
sal constants in (5.12). At the self-dual point, namely when
ng = 1, the massless compact boson can be studied as the
continuum of a free fermion on the lattice described by the
Hamiltonian

H=-
j

(5.14)

¢

At A At A
(Cj_HCj + CjCjJrl)v

—00

where the fermionic operators ¢; satisfy the anticommuta-
tion relations {¢;, GZ} = §jx. Indeed, the continuum limit of
this free fermionic chain is the massless Dirac field the-
ory, which in the low-energy regime is formulated, through
bosonization techniques, as a massless compact free boson
[65,66]. The XX spin chain can be mapped into the free
fermionic chain by a Jordan-Wigner transformation. This im-
plies that we can employ the nonuniversal constant term ¢,
found in [67] through the Fisher-Hartwig theorem, finding that
—c} ~0.726 and [33(log cn)ll,=1 = 0.535, as discussed in the
Appendix B.

In Fig. 1 we show Sjj4 4 — Cigg.a for a block of £ consecu-
tive sites in periodic chains of free fermions made by L sites.
The top curve is for the XX chain, which corresponds to the
compact boson CFT. The numerical data are obtained through
the methods described in [61,62]. In the figure, it overlaps
with the solid curve, obtained from (5.12) with y = 1, where
the additive constants are specified above. A very good agree-
ment is observed between the numerical data and the CFT
predictions for the compact boson.

£=100 ¢ =200

Soa—Coa

0.0 0.2 0.4 0.6 0.8 1.0
¢/L

FIG. 1. Difference S» 4 — Co.4 as function of £/L. The data in
the top curve have been obtained by considering the excited state
of the XX chain corresponding to O = id¢ in the continuum limit,
while the data in the bottom curve have been obtained for the excited
state of the Ising chain corresponding to O = ¢ in the continuum
limit. The red and blue curves are obtained from (5.12) with y =1
and y = 1/2 respectively. The additive constants for the two curves
are reported in Secs. VD and VE.

E. Free fermion

Let us consider the CFT given by free massless fermion (or,
equivalently, the Ising CFT) whose central charge is ¢ = % In
this model, we study the excited states corresponding to the
operators £ and v [65].

In [62] it has been shown that, for these states, the ratios
(5.7) are given by (5.10) with y =1 and y = 1/2 respec-

tively, namely
(n) _ () (n) _ (n)
FU =F,, F°=\F".

The discretization of the Ising CFT is provided by the critical
Ising spin chain, whose Hamiltonian can be obtained as a
particular case of the one of the XY spin chain. It reads

(5.15)

L
l+a | l—a , A
HXY:_Z( 4_i‘7£+1+—4 0303+1+§Uf>’
i=1

(5.16)

in terms of the Pauli matrices o;**. The Hamiltonian of the
critical Ising chain and of the XX chain correspond to (5.17)
with « =X =1 and @ = A = 0 respectively. Performing a
Jordan-Wigner transformation, H xy is mapped into a chain
of free fermions; hence the critical Ising chain and the XX
chain (and therefore the numerical data of the two panels of
Fig. 1) correspond to two different free fermionic models.

In Fig. 1, the bottom curve is Sy, 4 — Cy 4 for a block of £
consecutive sites in a periodic Ising chain made by L spins.
The data points are obtained through the procedure detailed
in [61,62] and compared with (5.12) evaluated for y = 1/2
(blue curve), finding a very good agreement. In this case the
additive constants have been fitted, finding —c} =~ 0.479 (as
already found in [8,68]) and [af(log cn)ll,=1 = 0.385.
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0.4
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FIG. 2. Changes in the monotones as function of £/L for moving
from the ground state to the excited state of the Ising chain corre-
sponding to O = ¢ in the continuum limit. The black, blue, and
red solid curves are obtained from (5.8), (5.9), (5.10), and (5.11),
while the dashed curves are obtained using (5.4) and (5.9), (5.10),
and (5.11) into (1.6) with £ = 100 (black dashed curve) and ¢ = 200
(red dashed curve). The nonuniversal constants have been fixed as
specified in Secs. VD and VE.

F. Constraints for majorization from monotones

Let us consider the results in the light of our exploratory
approach to majorization outlined in Sec. V A. As antici-
pated, we focus on the periodic Ising chain, which maps
into a chain of free fermions after a Jordan-Wigner trans-
formation, with a finite-dimensional Hilbert space. We probe
possible majorization between the ground state and an excited
state. The excited state corresponds to the state created by
the operator O = ¢ in the continuum CFT. To see if ma-
jorization is ruled out, we consider first the changes in the
entanglement monotones S, S®, S®, and M@ (., 1) for the
interval A of length £. The changes in entanglement entrogy
ASa = Sa,y — Sa,gs» in Rényi entropies ASA2 = S/(f?// — SX;S

and ASA3 ) = Sf ;j - Sff ;x and in the second moment of mod-

ular Hamiltonian AM, 4 = Mfl)/f(-, 1) - Mﬁf;}s(', 1) increase
monotonically from ¢/L = 0 to a maximum value when the
subsystem is half the size of the chain, £/L = 0.5, as shown
in Fig. 2. Assuming that we want to convert the ground state

to an excited state by a process (such as |gs) L.#gc [¥)) that

involves the order |y) > |gs), the entanglement monotones
cannot increase. Notice that AS,, AS/(P , AS/(S ), and AM; 4
start as negative for small subsystem size, but all of them
become positive as the size increases, thus ruling out |y) >
lgs) and the LOCC process. Interestingly, AM; 4 becomes
positive only at £/L ~ 0.403, AS, at £/L ~ 0.337, AS at
¢/L~0.292 and ASSY at ¢/L ~ 0.282. Thus, in this case
the monotone Sf) gives the stronger constraint, ruling out
[Yr) > |gs) in the range ¢/L € [0.282, 0.718]. In the opposite
transition from the excited state to the ground state with
|gs) > |¥), the signs are reversed with AM, 4 > 0 giving a
stronger constraint for ruling out the |gs) > |¥) in the regime
¢/L € [0, 0.403] U [0.597, 1].

The general picture is consistent with the naive expectation
that it becomes relatively harder to connect two pure states

by means of LOCC as the difference between the sizes of
the two subsystems A and B becomes smaller. A heuristic
argument is that the dimension of the space of allowed local
operations decreases as |d4 — dg| gets smaller. If one, e.g.,
looks at unitaries, the total dimension of the group of local
unitaries U(dy) x U(dp) is dj + d?, which is minimized for
ds = dp. Beyond this, it seems hard to extract general lessons
from our preliminary analysis.

VI. OUTLOOK

FPartial orders among quantum states. The sequences of
inequalities coming from the monotones introduced in Sec. 11T
can be used to define a partial order among quantum states.
For example, starting with the sequence M (")(p;n — 1), we
could define p >, o if all monotones up to degree n obey
M®(p;n—1) < MP(o;n — 1), and then define p >, o by
limg_, o p > 0. With the extremal sequence Pg’)( p) we have
even more freedom, due to the infinite range of parameters
a=1(a,..., argw,l), where [x] is the smallest integer greater
than or equal to x. As we did for the order n = 3, 4 cases, we
could first express Pg’) in terms of M® up to order n, and
then find the value of parameters d that produces the tightest
inequality. The extremal parameter vector d, can be expressed
as a combination of M®), leading to a nonlinear expression
for nggo in terms of M®). We can then define a tighter partial
order p ~£ o by requiring nggo () = ng;n (o) forall k < n,
and a limit p >% o as in the above.

It is an interesting question whether any of the above
partial orders is equivalent to the majorization partial order.
Currently, it is known that the monotonicity of Rényi entropies
is not sufficient to imply majorization. All in all, our best
hope is perhaps that the order >£ is strong enough to im-
ply majorization. The hope is based on the equivalence (the
Hardy-Littlewood-Pélya inequality of majorization [69])

& Trf(p) = Trf(p)

for all real valued continuous convex

functions f defined on [0, 1].

0 >=0

6.1)

As we will discuss later in this section, one can construct
a sufficient condition for majorization, by approximating
convex functions with convex Bernstein polynomials. The
latter are series expansions in the Bernstein basis constructed
from f.

One could hope that an analogous series expansion based
on the extremal sequence Pg%o would be possible with all
coefficients being non-negative, or in other words, that non-
negative linear combinations of the extremal polynomials are
dense in the space of real values continuous convex functions.
Then >£ would imply that the inequality on the right-hand
side of (6.1) is satisfied, and be equivalent to majorization.
The above mentioned partial order based on monotones and
majorization partial order can also be formulated as orderings
generated by cones, this concept is discussed, e.g., in [70]. We
present this reformulation in Appendix C.

We remark that an efficient criterion, based on a semi-
definite program, to determine whether the majorization
condition between two states holds has been found in [71].
This algorithm is convenient for confirming the validity of ma-
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jorization but is somewhat agnostic of the underlying physics,
particularly concerning resource theory. Additional insight
can be attained by establishing a series of inequalities (derived
from monotones) equivalent to the condition of majorization.
A set of infinite inequalities with this feature has been found in
[71], where the associated monotones are constructed from the
conditional min-entropy [72]. A related question is whether
the monotones introduced in this paper could also yield a
condition equivalent to majorization. Moreover, in our case,
the monotones can be expressed in terms of cumulants of the
modular Hamiltonian and, therefore, computed from Rényi
entropies. Given the advanced technology for computing
Rényi entropies in a quantum field theory or a many-body lat-
tice model, our investigation may lead to progress in the study
of majorization in the infinite-dimensional setting, which is
one of the main motivations of this paper.

Another interesting open question is a version of a moment
problem. For a state p in a d-dimensional system, it is known
that d — 1 first Rényi entropies S(k)(,o), k=1,...,d —1, are
sufficient to determine the spectrum of p. Given the spectrum,
in small enough dimension an algorithm can then order the
eigenvalues and test majorization for a pair of states. The
explicit steps and comments on the history of the above
observation can be found in [3]. The proof is actually straight-
forward, as the Rényi entropies yield a basis for the symmetric
polynomials in the eigenvalues, which can then directly be
used to compute det(A — p) whose roots are the spectrum of
p. In a similar vein, suppose that one knows all M® or all
Pg‘) up to order n, for a state p in a d-dimensional system.
Is it possible to derive the spectrum of p for some value of n
or in the limit n — 00? If not, can even a partial spectrum be
calculated?

Extremal convex polynomials. Functions of the type
Tr[F (p)] with complex polynomial F form a cone. The func-
tion F is convex when F” > 0, and we can once again find a
complete basis of extremal polynomials. In this case, we need
to find positive polynomials on the interval [0,1] and these are
given by linear combinations (with non-negative coefficients)
of polynomials of the form [];(x — a;)* or x(1 —x) [],(x —
a;)* with in either case a; € [0, 1]. Notice that linear com-
binations of such polynomials can yield a polynomial of a
lower degree, and one therefore has to be a bit careful to
find all polynomials of a particular degree. For example, the
most general linear F” is a non-negative linear combination
of x and 1 —x, and since x =x(1 —x)+x? and 1 —x =
x(1 —x) + (1 — x)? these can indeed both be written as linear
combinations of the extremal basis polynomials of higher
degree. If F”" = x then the monotone is simply Tr[p?], and
for F” = 1 — x we obtain the monotone %Tr[,oz] — éTr[p3].
Going to higher degrees, one could in principle obtain infi-
nite families of monotones. On other hand, as we discuss in
Appendix D, there is a simple family of continuous convex
functions that provide a sufficient inequality test of majoriza-
tion, and can be approximated to arbitrary accuracy by convex
Bernstein polynomials. In this way one obtains a sequence
of polynomial inequalities (D10). Furthermore, convex Bern-
stein polynomials can be expressed as positive coefficient
linear combinations of the extremal convex polynomials. This
implies that the inequalities (D10) are equivalent to inequali-

ties satisfied by the extremal convex polynomials. The family
of extremal convex polynomial monotones would then be
complete; in other words, imposing all of them as inequal-
ities would be equivalent to state majorization. It would be
interesting to study this in more detail.

Inequalities for quantum field theories. As we discussed, to
define majorization in quantum field theory directly requires
one to introduce an explicit UV cutoff. It is, however, not
obvious that this is a natural construction as the notion of ma-
jorization may depend sensitively on the choice of UV cutoff.
Since relative entropy, as opposed to entanglement entropy,
is well defined for continuum quantum field theories, it is
tempting to think that only a relative version of majorization
applies in continuum quantum field theories. This leads one
to consider the inequality S(p;|lo) = S(p2|lo) in quantum
field theory. This inequality would follow if there exists a
quantum channel A, which maps p; to p, and maps o to
itself. For general quantum channels monotonicity of rela-
tive entropy is the statement that S(p||o) = SN (p)[|N (0)).
Similar monotonicity properties are satisfied by Rényi rel-
ative entropies (Rényi divergences). In [73] monotonicity
constraints S, (0(0)||yg) = S« (p(t)|lyg) were investigated as
additional “second laws” constraining the off-equilibrium dy-
namical evolution p(t) = N;(p(0)) [where the Gaussian state
is a fixed point y3 = N ()] in 2d CFTs and their gravity
duals.

To speculate, one could try an alternative method to
construct inequalities and proceed as follows. In quan-
tum field theory, the definition of relative entropy also
requires a choice of algebra, typically associated to a sub-
region. If we can replace the action of the channel on
states by the adjoint action A/* on the algebra A, defined
via Tr(N(p)0) = Tr(pN*(0)) for all p and O € A, then
we can also write S4(pllo) = Sy+a(pllo). This inequal-
ity follows from a corresponding operator inequality for the
relative modular operators, A .4 < Apoa+a. We could
take this inequality to be the fundamental inequality, which
defines a quantum field theory counterpart of majorization.
It would define a partial ordering for algebras rather than
for states. By applying operator monotones [74] we could
then derive additional inequalities in the spirit of the pa-
per. We leave a further exploration of these ideas to future
work.

Additional open questions [75]. It is worth asking whether
it is possible to generalize from [3] the Result 1 (a suffi-
cient condition for approximate state transition) or the Result
2 (bounds on smoothed min and max entropies) to involve
higher cumulants than entropy and variance. As far as we can
see, these results rely on the Cantelli-Chebyshev inequality
for deviations of a random variable from its mean value,
with the bound depending on the variance. One could try
to employ a refined inequality involving higher cumulants
as well, and then try to construct extensions of the above-
mentioned results. Finally, it would be interesting to explore
if our approach to resource monotones has interesting ap-
plications in other quantum resource theories. In particular,
it would be interesting to study resource monotones in the
context of (un)complexity and its connections to quantum
gravity.
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VII. BRIEF SUMMARY

We introduced an infinite sequence of monotones, which
are polynomial in the modular Hamiltonian and can be com-
puted from Rényi entropies. Such monotones form a cone,
and we identified the sequence of extremal polynomial mono-
tones that span the cone. All these monotones involve the von
Neumann entropy in combination with higher cumulants. Our
paper generalizes a previous result of [3].

In processes involving majorization between the input and
output states, the monotones yield infinite sequences of in-
equalities that bound the change in entropy. As an example,
we considered an idealized model of state erasure, where, in
addition to the Landauer inequality, the monotones yield an
infinite sequence of more refined inequalities.

Next, we moved to more general processes involving ma-
jorization between pairs of states, motivated by resource
theories, such as the one of quantum thermodynamics.
We showed how to use our monotones to construct in-
finite sequences of resource monotones, which must be
applied to a pair of commuting states. As an application,
we derived a finite-dimension correction to the Clausius
inequality.

In the end, we discussed whether these sequences of in-
equalities could be equivalent to majorization. If one instead
considers polynomials Tr(F(p)) (where F is a polyno-
mial), we sketched a way to perhaps obtain a criterion
for majorization based on sequences of convex Bernstein
polynomials.
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APPENDIX A: DETAILS ON THE CONSTRUCTION
OF ENTANGLEMENT MONOTONES

In this Appendix, we provide additional discussions on
the construction of entanglement monotones for pure states
detailed in Sec. II. In particular, in Appendix A 1 we describe
a general procedure for obtaining entanglement monotones
from the cumulants of the modular Hamiltonian, while in
Appendix A 2 we report a detailed proof of the Theorem 1.

1. Higher cumulants and pure-state entanglement monotones

In this subsection we point out that there are many ways to
construct generalizations of the function M defined in (1.6) to
concave quantities (entanglement monotones)

M™(p) = Tr[pF,(p)], (AD)

involving higher cumulants or moments of modular Hamil-
tonian, where x F,(x) is a concave function of a single real
variable x € [0, 1]. With a slight abuse of notation, we denote
the quantity in (A1) like the one in (3.6) although the former
one is more general because of the occurrence of the parame-
ters y = (Vo, - - ., Yn—1), as discussed below.

Let us list explicitly the relation (3.8) of moments w,, and
the cumulants C,, for first moments,

w = Cy, (A2)

1y = Ci + G, (A3)

uz =C; +3C,Cy +Gs, (Ad)

s =C} +6CIC, +3C3+4C,C3+Cy. (AS)

One can invert to obtain the relation of cumulants to moments,
for example,

Cr = w1, (A6)
Co = o — i, (A7)

Cy = ps —3pa 1 +2 4, (A8)
Co=pa—Apsp + 12pppd —6uf =313, (A9)

In our case, given a density matrix p, we are interested in
the moments of modular Hamiltonian w,, = Tr(p(—1n p)") =
Tr(pK"), where K = —In p and likewise for the cumulants.
The entropy is C; = p; = § and the capacity is C; = C.

Instead of considering moments of shifted modular Hamil-
tonian Tr[p(—In p + b,)"] with b, > n — 1 as concave gen-
eralizations of M, there are more general constructions. Here
is one way to proceed. For n = 1, let us consider

MY =C +a =p +a. (A10)

Up to an additive constant, MV is the entropy. For n = 2, let
us consider

M? =G+ (i +ar) +a
=y +2a1y + @ +ay = o+ v + v, (All)

which depends on the two parameters ), and y;. Comparing
(A11) with (1.6), we find that, when y; =2 and yy =1,
M@ (yy, y1) reduces to M in (1.6). Notice that the polynomial
combination of capacity and entropy in M® reduces to a
linear combination of moments y,, of modular Hamiltonian.

Likewise, for n = 3, if we start with a polynomial expres-
sion

M = Cs + 3 (2 + 1 +b0)* = 2(us + 1)’

tar (a4 ar)* + ay (g +ar)?, (A12)

with the coefficients 3/2 and —2 in (A12) we can cancel
the terms o and u? respectively [see (AS8)]. Imposing the
vanishing of the coefficients of 3 and u? in (A12) leads to

(A13)

3 3
a=—3, o =-—35+6c.
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The point is that we are again lead to a linear combination of
moments,

M (o, y1,v2) = 13+ v2 2 + 1 41+ Yo, (A14)

with three parameters

Y2 =3(b1 — a2),

Y= 3(b1 — ZC% + 4cia; — al),

Yo = —1(4c] —3b] — 12c1a] +3a5 + 3a7).  (Al5)
Thus, since Trp = 1, we have

M (yo, y1, y2) = Trlp F5(p)] + vo,
Fi(p) = —(Inp)* + 2 (Inp)* — y1Inp. (Al6)

It is easy to see that there is a range of parameters y;, ¥, such
that f3(x) = x F3(x) is concave in the unit interval. The dif-
ference to the third moment of shifted modular Hamiltonian
Tr[p(—In p + b3)?] is that it contains a single parameter bs. It
is a special case of (A16) with

) 3
Vi = (—1)]<

3-J
We are thus lead to consider more general linear combinations
of moments as an alternative generalization of the measure M
[of which the moments of shifted modular Hamiltonian (3.7)
are a special case],

)bg‘f, where j =0,1,2.  (Al7)

n—1
MP )=+ Y viti + v
j=1
n—1
= Tr[p((—l)” In" p + Z yi(=1) In’ p)} + 0
j=1
= Tr[pF,.(0)] + yo,

where y = (yo, ..., ¥u—1). The range of the parameters y;
can be chosen so that xF,(x) is a concave function for x €
[0, 1] and yy so that M (p) > 0. It is also clear that these
measures can be computed by using the Rényi entropies or
Tr(p%) as a generating function, by applying a combination of
derivatives ), (=1 35 and setting o = 1.

To summarize, there are many ways to construct infinite
sequences of entanglement monotones, generalizing M, and
compute them from Rényi entropies. In the end, the desirable
construction depends on the specific physical motivation.

(A18)

2. Proof of Theorem 1

According to Theorem 1, all positive semidefinite polyno-
mials G(y) on the negative half-line y € (—oo, 0] have the
following form. For polynomials G(y) of degree 2d (with
d > 1) they are linear combinations with positive coefficients
of polynomials of the form G;(y) = ]_[?zl(y + a;)?, with all
a; 2 0. For polynomials of degree 2d + 1 they are linear
combinations with positive coefficients of polynomials of the
form Ga(y) = —y []%, (v + a)%, with again all a; > 0.

Proof. Consider first a positive polynomial on the entire
real line. It can be written as ]_[i(x — x;) where the roots
can be complex. There cannot be an isolated real root, as
then the polynomial would be negative somewhere in a small

neighborhood of that real root. Similarly, there can not be an
odd degeneracy of a real root, because once more the function
would be negative in a small neighborhood. Therefore, all real
roots need to have even degeneracy. So the polynomial is of
the form g(x)*r(x) where g(x) is real and all other (complex)
roots make up r(x). Because the polynomial must be real,
the roots must come in complex conjugate pairs. Therefore,
r(x) = |s(x)|> where s(x) contains all the roots in (say) the
complex upper half plane. We can write s = s¢ + is; where s
and s; are the real and imaginary parts. Then we see that the
polynomial is of the form q()c)zso(x)2 + q(x)zsl(x)z, which
shows that a positive polynomial on the real line must be sum
of two squares.

Now consider a polynomial p(x), which is positive on
the negative real axis. We can decompose these polynomi-
als again in roots. Negative real roots need to appear with
even multiplicity and positive real roots can appear with any
multiplicity. Factors of the type |x — u|> with complex u are
positive definite and can appear without restriction. Consider
now polynomials of the form f — xg with f and g positive
on the entire real axis. These polynomials form a ring (so if
you multiply two it will still be of this form). The claim is
that p is also of this form (which is manifestly non-negative
on the negative real axis). We simply need to check that all
factors of p are of this form. A factor with negative real roots
with even multiplicity is of the form f 4 x - 0 as it is positive
on the entire real axis. A factor with a positive real root can
be written as u — x, which is also of the required form (with
f =uand g = 1). Finally, factors |x — u|* are positive definite
on the entire real axis and therefore also of the form f + x - 0.
Using the previous characterization of positive polynomials
we conclude that p(x) can be written as

pO0) = q(x)* + r(x)* = xls(x)* +1(x)*], (A19)
for some polynomials ¢, r, s, t. This result is due to P6lya-
Szego [76]. It remains to show that each of these terms can be
written as a liner combination of extremal polynomials. Look,
e.g., at g(x)* and expand it in the form

g)? = [ Joc = w?[ox = b + 2T

ij

(A20)

This is a sum of terms of the form a_ (x)?a. (x)* with positive
coefficients, where a_(x) has zeros on the negative real axis,
and a4 (x) has zeros on the positive real axis. We can further
expand a. (x)? as a power series with alternating coefficients.
This shows that g(x)? is indeed a linear combination of ex-
tremal polynomials with non-negative coefficients. The same
result applies for the other three terms in p(x). This completes
the proof. |

APPENDIX B: CAPACITY OF ENTANGLEMENT IN
FERMIONIC CHAINS: CONSTANT TERM

In this Appendix we exploit the method of [67] to deter-
mine the nonuniversal constant occurring in the expression
of the capacity of entanglement for a block A made by ¢
consecutive sites in the infinite free fermionic chain.
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The Hamiltonian of the free fermionic chain on the line
reads

+0o0 s . . o 1
H:— Z CnCn+1+Cn_HCn_2h Cncn_i ) (Bl)

where {é}:, 6,1} ={é,, ¢} =0 and {é&,, 6;1} =08, and h is
the chemical potential. The ground state of this model is a
Fermi sea with a Fermi momentum k g = arccos |A|. A Jordan-
Wigner transformation maps the Hamiltonian (B1) into the
Hamiltonian of the XX spin chain with magnetic field 5.

The Toeplitz nature of the correlation matrix restricted to
A for this model allows us to write the large £ expansion
of In Trp)f through the Fisher-Hartwig conjecture, which pro-
vides the asymptotic behavior of the Fredholm determinant of
Toeplitz matrices for large matrix size. The result reads [67]

1/1
InTrpy = E<_ —n) Inf +Inc,
n

1

= —<l - n)[an + In (2| sin(k)|)]
6\n

+Y(n) + o(1), (B2)

where

Y(n) =in /oo dw{[tanh(nw) — tanh(rnw)]

o]

«In (H)} (B3)

By introducing G,(w) = n[tanh(7zw) — tanh(rnw)], we
need

3.G(w)| il (B4)
nGn(W = 5, »
n=1 cosh?(rw)
5 2w 2m2w?
0;Gu(w)|p=1 = — 5 5 tanh(rw).
cosh“(wrw)  cosh”(rw)
(BS)

Plugging (B4) into the derivatives of (B3), one finds the
corrections to the entanglement entropy and the capacity of

J

k 2
i= (y+al)a
Ga(y) = e

T, &0 +a) a; >0 Vi,

Thus in both cases the generating set ®,, is infinite, parame-
terized by vectors & in the hyperorthant of R¥, so the cone C,
is infinitely generated. Finally let us define the cone

C=U2,Cyh (C4)
which is infinitely generated by the set
O =U2, D, (CS)

Majorization p > o in d + 1 dimensions can be identified
with majorization of vectors A > @ or majorization partial

a; =0 Vi,

entanglement due to Y'(n) in (B2). This gives

Sa=1ine+tin@[sinkp))) =YD +...,  (B6)
which has been obtained in [67], and
Ca= L+ im@sinkp)) + Y (D +...., (BT

where the constant Y’'(1) and Y”(1) can be evaluated nu-
merically from (B4) in (B3), finding —Y’(1) >~ 0.495018
and Y”(1) >~ 0.303516. The subleading terms that we have
neglected are vanishing as £ — oo and some of them have
been computed in [77] through the generalised Fisher-Hartwig
conjecture.

In the main text we have mainly considered (B6) and (B7)
in the case of vanishing chemical potential, i.e., for 7 = 0,
which means kg = 7 (see e.g., all the figures in Sec. V).

APPENDIX C: SEQUENCES OF MONOTONES AND
AN ORDERING GENERATED BY A CONE

In the Sec. VI we discussed partial orders among quantum
states based on the sequences of our new monotones. Here we
rephrase this question in terms of an ordering generated by
a cone [70]. By diagonalizing a density matrix, the space of
quantum states in d + 1 dimensions can be identified with the
standard simplex A? C R4*!, Our monotones can be thought
as convex functions

d
M: A" >R M@x)=) xF(nx), (€1
i=0

such that
Gy)=F"(y)+F'(y),

with y = In x is a non-negative polynomial of the order n — 1
on the negative half-line (—oo, 0]. Thus F is polynomial of
degree n. The above functions form a convex cone C,. For our
purposes we may identify functions that differ by a constant.
Every function M is a linear combination with positive coeffi-
cients of the extremal rays of the cone. Let ®, denote the set
of extremal rays. We say that the set ®,, generates the cone
Cy. For n = 1 there is only one extremal ray with F(y) =y,
thus ®; = {3, x;Inx;}. For n > 1 we found in Theorem 1
that the extremal rays correspond to functions Fz(y) with
Ga(y) = F/'(y) + F;(y) of the form

(€2

whenn—1=2k > 2,
(C3)
whenn —1=2k+1 > 3.

(

order in the standard simplex A¢. Now alternatively [70] we
can define an ordering > based on the function set & that
generates the cone C,

Asc e MM > Mu) VM € ©. (C6)

The inequality on the right-hand side is satisfied by every
function M € C, the definition just uses the most economical
set of functions generating the cone. The ordering > is said
to be generated by the cone C. Such (partial) orderings come
with a basic problem. Define the completion C* of C, the cone

043082-22



SEQUENCES OF RESOURCE MONOTONES FROM MODULAR ...

PHYSICAL REVIEW RESEARCH §, 043082 (2023)

of all functions that respect the ordering >,
C'={f: AT > Rllx=cy = f@) > fO))

A basic problem is to identify the completion C* of C, which
is an important open question for the cone defined above.

We noted the Hardy-Littlewood-Pélya inequality of ma-
jorization

(C7)

p > o & Trg(p) = Trg(o)

for all continuous convex functions g : [0, 1] — R.

We could alternatively interpret this as another ordering gen-
erated by a cone. Define the convex cone

d
Crrp = {f PAT S R f) =) g,
i=1

g: [0, 1] — R is continuous, convex}, (C8)

and define the ordering generated by the cone Cypp,

X >CHLP Yy < f(x) 2 f(y) Vf € CHLP-

Then by the HLP inequality we can identify majorization with
the cone ordering,

(€9

P >0 S A>c,, L (C10)

Now we can ask if Cyyp could be in the completion C* of C
or at least well approximated by C*. This would mean that >
and >¢ are equivalent. We have thus reformulated the ques-
tion posed in Sec. VI as a problem of comparing orderings
generated by cones.

APPENDIX D: A SUFFICIENT CONDITION FOR
MAJORIZATION FROM CONVEX BERNSTEIN
POLYNOMIALS

In this paper, we considered convex functions of the type
Tr[pF (log p)], which have the feature that expressions of this
type include entanglement entropy and moments of shifted
modular Hamiltonian. We could also have considered even
simpler functions of the type Tr[F (p)] with polynomials F',
which are essentially linear combinations of exponentials of
Rényi entropies with integer powers. In this setting we may
construct a sufficient condition for majorization from inequal-
ities of convex polynomials.

From the Hardy-Littlewood-P6lya inequality of majoriza-
tion (6.1) the first impression may be that the equation

Trf(p) = Trf(o)

must be verified for every continuous convex function f to
imply majorization p > o. In fact a sufficient condition for
majorization is much simpler. One only needs to consider the
continuous convex functions

(D1

x<a
a X >a

0
Ja(x) = {x_ =x—-a)®x—a), ([D2)
where the parameter a € [0, 1]. Let the pair of ordered eigen-
value vectors of p, o of dimension n be A, w. In [69] it is

shown that if

S £ = Y fulw) Yaelo,1] (D3)
j=1

Jj=1

then p > o. Let us now approximate the functions f, with
convex polynomials. Consider the Bernstein basis polynomi-
als

bim(x) = (’Z)x"(l -k, (D4)
with k=0,1,...,m. From any continuous function g:

[0, 1] — R one can form a general Bernstein polynomial over
the basis (D4) by

- k
Bu(@x) =) g(—)bk,m(x). (D5)
=0 M
It has been shown that
m—0o0

uniformly in [0,1]. For the error in the approximation, a simple
bound was found by Popoviciu [78] (see also [79]),

max 1900 = Bu(@@)| < Jeg(m™'?), O

where wy is the uniform modulus of continuity of g

wg(8) = max {|f(x) — f)I[x,y € [0, 1], [x — y| < &}
(D8)
Thus we can approximate g to arbitrary precision by a Bern-
stein polynomial B, (g). Moreover, it is known that if g is
convex, the Bernstein polynomials B,,(g) are also convex. We

may thus consider the (convex) Bernstein polynomials derived
from f,,

“ k
Bu(fu)(x) = Zn(z)bk,m(x)
k=0

= (f — a) <m>xk(l — )" (DY)
m k

where p is the smallest non-negative integer with £ > a. Due
to the uniform convergence to f,, instead of (D3) we may
reformulate a sufficient condition for majorization, if

D Bulf)0) =D Bu(fa))) Ya €10,11,  (D10)

=1 j=1

when m — o0, then p > o. The virtue of this new criterion is
that now we should be able to compute the following quantity
without diagonalization:

m

k
TrlBu(f)(p)] = ) | (; - a) (’Z)Tr[pk(l - )"

-l (2 ()
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and thus check the inequalities (D10) by checking if
A (a) = Tr[Bu(fu)(p)] = TrBu(fa)(0)]

~Ze(ro) (2 ()

x (Tr[p*'] — Tr[a**']) > 0, (D11)

for all a € [0, 1] for large enough m onwards. This could be
done by just plotting A'") (a) in the interval a € [0, 1]. Ac-

cording to some preliminary tests, this proposal works well in
simple examples. We leave a more extensive investigation for
further study. An important question involved is whether there
exists a criterion for the order m where the approximation by
a Bernstein polynomial becomes good enough to be trusted.
The kink in the original function (D2) becomes rounded, and
issues may arise when the rounding is too smooth in compar-
ison with the spacing of the spectra of p, o. Perhaps useful
criteria for the approximation can be formulated based on the
error estimate (D7) and, e.g., the trace distance of p, o.
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