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Strong quantum turbulence in Bose-Einstein condensates
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By combining experiments and numerical simulations which model the dynamics of shaken atomic Bose-
Einstein condensates, we reveal the surprising nature of quantum turbulence in these systems. Unlike the tangles
of vortex lines described in the superfluid helium literature, we find that our turbulent atomic condensate contains
a mixture of strong fragmented density fluctuations and small random vortex loops which are not homogeneously
distributed. This unusual form of turbulence, with its own properties and scaling behavior, which we call strong
quantum turbulence, is significantly different from the turbulence which is observed in either classical or other
quantum systems, thus posing a new challenge in turbulence research.
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I. INTRODUCTION

Quantum fluids (e.g., superfluid helium, atomic Bose-
Einstein condensates, polariton condensates, and the interior
or neutron stars) differ from ordinary fluids in two respects.
The first is superfluidity (the absence of viscosity), a con-
sequence of the particular dispersion relation of elementary
excitations. The second is more fundamental: the quantization
of the circulation, a direct consequence of the existence of a
macroscopic wave function describing the properties of the
whole atomic cloud. This second property implies that vortic-
ity is constrained to vortex lines of fixed strength, proportional
to Planck’s constant. Quantum turbulence (turbulence of a
quantum fluid) thus consists of a disordered tangle of vortex
lines moving over an inviscid background [1], unlike classical
turbulence (turbulence of ordinary viscous fluids such as air
or water) [2] where vortices are unconstrained in size and
strength and are diffused by viscosity. Most work on quantum
turbulence has been carried out in superfluid helium (both 4He
and 3He), the driving concern being the comparison with clas-
sical turbulence. Indeed, dedicated cryogenic techniques to
visualize vortex lines [3,4] and measure velocity fields [5–7]
have led to the discovery of remarkable similarities between
quantum turbulence and classical turbulence [8]. A major
observed similarity [5,9] is the k−5/3 Kolmogorov [10] en-
ergy spectrum (where k is the wave number) describing the
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distribution of kinetic energy over the length scales; this
property is the signature of a universal effect: an energy cas-
cade from large to small length scales. Further experiments
have also uncovered nonclassical aspects of quantum turbu-
lence [11–14] which still need to be understood. Unlike liquid
helium, the properties of atomic condensates are exquisitely
tunable, opening the possibility of studying the phenomenon
of turbulence (still a major challenge for scientists) in a more
general way. Unfortunately, the study of three-dimensional
(3D) quantum turbulence in atomic condensates has been
frustrated by difficulties in directly visualizing vortices and
in measuring turbulent velocity fields (necessary to quantify
intensity and structure of the turbulence); it is worth notic-
ing that the absence of these difficulties in two-dimensional
(2D) condensates has allowed great progress in 2D quantum
turbulence [15–17]). Nevertheless, pioneering work with 3D
condensates confined by harmonic traps [18] or boxtraps [19]
has shown evidence of energy transfer from large to small
length scales. However, attempts to observe the same scal-
ing behavior measured in turbulent superfluid helium and
in classical turbulence have not been successful, partly also
due to the limited k-space available in atomic condensates
given their small size. Our work tackles these difficulties.
By combining experiments and numerical simulations which
model the excitation of the condensate by shaking the confin-
ing external potential, we reveal that, surprisingly, turbulence
in our atomic condensate is qualitatively different from the
familiar tangles of vortex lines described in the superfluid
helium literature and in previous numerical models of turbu-
lent condensates [20,21], which in hindsight appear idealized.
Instead, we find that the condensate contains huge nonlinear
density waves, almost fragmenting the cloud. The vortex lines
take the form of very short vortex loops, randomly oriented
but distributed nonhomogeneously, instead of the familiar
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FIG. 1. 2D density slices n(x, y = 0, z) of the simulated condensate at (a) t = 0.0 (the ground state), (b) t = 4.9 (nucleation of solitons),
and (c) t = 35.2 (turbulent state with vortices and strong density waves).

distribution of long and short vortex lines observed in exper-
iments and numerical simulations of turbulent helium. Such
mixture of strong nonlinear waves and small random vortex
loops nonhomogeneously distributed has never been reported
in a turbulent system, either quantum or classical, and presents
a new challenge in turbulent research.

II. EXCITING THE CONDENSATE

Various techniques to excite turbulence in condensates
have been proposed, such as phase imprinting singly
charged [21] or multicharged [22] vortices, or rotating the
condensate [20,23]. Here we focus on the successful tech-
nique of shaking the trap confining the condensate [19,24].
This technique was first shown to create vortices [25–27]
before being further developed in a number of notable
studies revealing in particular the presence of a turbulent
cascade [28]. In the experiment, we prepare a 87Rb condensate
of N = 3 × 105 atoms within a cigar-shaped harmonic trap-
ping potential (more details about experimental techniques in
Appendix A and in Refs. [24–26]). The condensate is driven
for a time TD using a secondary oscillatory magnetic trap,
followed by a waiting time TH , in which the condensate is kept
in the static harmonic trap, before finally released and imaged.
In experiments, images of the condensate are typically taken
from a light source which has traveled through the expanding
condensate in the imaging plane after the trapping harmonic
potential has been switched off. During the time-of-flight
(TOF), the momentum distribution is obtained by observing
the number of atoms traveling different distances from the
beginning of the ballistic motion. Our group [29,30] and oth-
ers [19] have demonstrated the validity of the TOF technique
to obtain the 2D column-integrated momentum distribution
n(k) for a self-similar turbulent cloud.

III. COMPUTATIONAL METHODS

The experiment is simulated using the Gross–Pitaevskii
equation (see Appendix B for details) nondimensionalized via
harmonic-oscillator units as follows:

i
∂�

∂t
= −1

2
∇2� + C|�|2� + V � − μ�. (1)

The solution of Eq. (1) depends on two dimensionless param-
eters. The first parameter μ is the chemical potential, which
dictates the size of the condensate. The second parameter ωz

appears in the axisymmetric trapping potential

V (x, y, z) = 1
2

[
(x2 + y2) + ω2

z z2
]
, (2)

and sets the geometry (oblate, spherical, or prolate) of the
condensate. The parameter C, dependent on μ and ωz, denotes
the interaction strength (which in our case is positive, signify-
ing repulsive interactions). For computational feasibility, we
increase the experimental value of ωz = 0.16 to 0.5 and lower
the chemical potential from μ = 13 to μ = 8. The parameter
C is set to 1715 (see Appendix B). To generate turbulence we
shake the condensate by superimposing an oscillatory poten-
tial of the form

Vosc(x, y, z, t ) = Aμ[1 − cos (�t )]z′/Rz, (3)

to the harmonic trapping potential V , in Eq. (2), where A, �,
and z′/Rz denote respectively the amplitude, the frequency
and the length of the driving, Rz being the Thomas-Fermi
radius in the z direction. We match the value of the amplitude
A, frequency �, and time TD to the experiment with A = 1.25,
� = 0.97, and TD = 10π/� = 32.4 (all values are reported
in nondimensional units). The direction of the driving is
z′ = cos (θz )z − sin (θz )x where θz = 5◦ breaks the symmetry
of the system around the z axis [24–26,31]. For t > TD, the
condensate is left to evolve and oscillate for TH in the static
harmonic potential [Eq. (2)].

IV. ONSET OF TURBULENCE

Figures 1(a)–1(c) show the shape of the condensate during
the evolution, from the initial ground state, to the genera-
tion of deep density waves in the form of dark solitons, to
the turbulent state, respectively. It is natural to ask what
is nucleation process of vortex lines in the absence of an
external, small-scale stirring potential (“laser spoon”) [32,33].
The process is more clear during the first oscillation of the
condensate, before it is masked by large density fluctuations.
For a large driving amplitude (A > 1), dark solitons (nonlinear
waves characterized by a localized dip in the density and
a step in the condensate phase) appear at the front of the
condensate moving in the −z direction [Fig. 1(b)]. Solitons
have previously been generated in condensates via a variety
of techniques but are stable only in quasi-one-dimensional
(quasi-1D) systems [34]. Indeed, the solitons quickly break
down into vortex lines and sound waves [35], which respec-
tively multiply and grow in size as the shaking continues
[Fig. 1(c)]. For t > TD, the condensate moves unforced and
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FIG. 2. Panel (a) shows an experimental absorption image of the turbulent condensate taken after a 30 ms TOF. Panel (c) shows the
expanding computed 2D column-integrated density n(x, z) (see Appendix B for details in the numerical expanded density). Panels (b) and
(d) respectively correspond to experimental and numerical 1D slices of the integrated densities at x = 0, showing large fluctuations on top of
a background density. Units of length, in SI form, are added to each TOF image for reference.

undergoes large oscillations about the minimum of the trap-
ping potential, with a detectable breathing mode also present.
During the oscillation, the condensate retains a shape similar
to the initial cigar-shaped profile only when the center of mass
is near the potential minimum at z = 0; it is most distorted
when far from this minimum, near the points where the cen-
ter of mass reverses its direction. The most notable features
of the obtained turbulent state at t > TD are the observed
large-density oscillations shown in Fig. 2, where experimental
absorption images, necessarily 2D [Fig. 2(a)], are compared
[Fig. 2(c)] to computed 2D column-integrated density fields
n(x, z), defined as

n(x, z) =
∫

|�(x, y, z)|2dy. (4)

To better appreciate the nonhomogeneous density character-
izing the turbulent state, in Figs. 2(b) and 2(d) we also report
the corresponding 1D density profiles.

V. MOMENTUM DISTRIBUTION

To characterize the turbulence we examine the momentum
distribution n(k) [29] where k is the magnitude of the wave
number. Of particular interest here is the comparison with the
momentum distribution obtained from experimental 2D den-
sity absorption images. For this purpose, we need to account
for the expansion of the condensate. This is done by numer-
ically simulating the expansion in the frame of reference of
the center of mass after the trapping potential is set to zero.
We compute the column integrated 2D density at different
times texpan after the beginning of the expansion of the tur-
bulent BEC at t = 66, and, assuming ballistic expansion, we
relate the position x on the enlarged condensate [18] to the
wave number k of the atoms before the expansion; the final
step consists of computing the momentum distribution n(k).

For simplicity and following the experimental procedure, we
assume isotropy such that k2 = k2

x + k2
z . Although the time-

of-flight expansion of the simulation is much smaller than that
of the experiment, the spectra quickly converges to a power
law in the k subrange of k4ξ to k2ξ (see Fig. 6 in Appendix B
for the fittings of the exponents). The exponent of the power
law quickly converges; taking the average of the results after
t = 68.0 (texpan = 2.0) (see Fig. 6), we obtain n(k) ∼ k−2.6±0.1

in the aforementioned range between ka0 = 2π/a0 (corre-
sponding to the vortex core size a0 ≈ 4ξ ) and k2ξ = 2π/2ξ

(where ξ is the healing length). This distribution, shown in
Fig. 3(a), compares well with the experimental distribution
n(k) ∼ k−2.60 (obtained by averaging 10 experimental runs)
shown in Fig. 3(b). This good agreement confirms the accu-
rate modeling of the experiment, but it must be stressed that
the range of wave numbers where the scaling takes place is
narrow. This limitation arises from the small size of typical
atomic condensates and prevents good quantitative compari-
son with turbulent superfluid helium and classical turbulence.
In Fig. 3 we also report the momentum distribution of the
expanded ground state which clearly shows how the excitation
of the condensate has triggered an energy transfer towards
small scales. In the next section, we show that large amplitude
sound waves, fragmentation, and small vortex lines and loops
are responsible for this incompressible energy transfer.

VI. VORTEX TANGLE

Besides large-density fluctuations and fragmentation, the
turbulent condensate contains vortex lines, clearly visible in
the numerical simulations. Surprisingly, the vortex configura-
tion is very different from turbulence in superfluid helium.

We identify the vortex lines in the simulation using a
vortex tracking algorithm established elsewhere for homo-
geneous or smoothly varying condensates [36–38]. In our
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FIG. 3. The momentum distribution obtained from (a) an expanding numerical condensate released at t = 66 and (b) an average of 10
experimental images of the expanding turbulent state at an expansion time of 30 ms. The different distributions shown in panel (a) correspond
to the expanding condensate at expansion times texpan = 0.5 (t = 66.5) (black), texpan = 1.5 (t = 67.5) (blue), and texpan = 2.5 (t = 68.5) (red).
For reference, the corresponding ground-state expansion at texpan = 2.5 is given (red dashed). We show the early time expansion of texpan = 0.5
to highlight the convergence in the later time results. The power-law fits, superimposed to each graph for reference, are k−2.6 for both panels
(a) and (b). Panel (b) is presented in SI units.

highly fragmented system, it is numerically challenging to
identify vortices when the condensate is off-center in the trap
(i.e., when the condensate is most fragmented and loses a
discernible shape). We hence focus on vortex reconstruction
when the condensate lies at the center of the trap.

The turbulent condensate and vortex lines therein at t =
35.2 is shown in Fig. 4. It is apparent that there are two
kinds of vortex lines: small vortex rings (shown as blue
lines in the figure) and short open vortex lines which ter-
minate at the condensate’s boundary (shown as red lines).
These open vortex lines are shorter versions of the U-shaped
vortices discussed in the literature of nonturbulent conden-
sates [39–42]. Both vortex rings and U-vortices are small, of
the order of the vortex core size a0 (see Appendix C). The
lack of homogeneity of the vortex configuration is immedi-
ately visible in the figure. Although just after TD vortices
are distributed more-or-less uniformly throughout the sys-
tem, at later times most vortices reside at the back of the
moving condensate (see Appendix D). When the longitudinal
center of mass z̄ is zero (Fig. 4), the vortex rings tend to
be located along the central z axis of the condensate, while
U-vortices tend to be more clustered towards the rear of the

moving condensate which in Fig. 4 is moving toward the left.
The orientation of the vortices, however, is fairly isotropic.
The vortex length in each projected Cartesian direction falls
between 30% and 40% of the total length at each time an-
alyzed. It is therefore fair to conclude that in a turbulent
condensate the vortex tangle is isotropic but not homoge-
neous. It is interesting to remark that, according to numerical
simulations, small vortices have also been observed along
the edges of a condensate excited by oscillating a box trap
potential [19].

VII. ENERGY SPECTRUM

The current understanding of three-dimensional (3D)
quantum turbulence in superfluid helium arises from com-
bined experimental, numerical, and theoretical investiga-
tions [8] of the energy spectrum, Ê (k), defined by Ei =∫ ∞

0 Ê (k)dk where k is the wave number and Ei is the total,
incompressible, turbulent kinetic energy. The importance of
Ê (k) is that it describes the energy distribution over the length
scales, thus revealing interscale energy transfers. The key
property of classical turbulence (described by the incompress-

FIG. 4. The isosurface of the condensate at t = 35.2 with the central vortex lines marked. Line vortices are in red whereas ring vortices
are in blue. Note that darker patches do not denote larger density but reveal the fragmented nature of the condensate because they result from
the line of sight crossing the semitransparent density isosurfaces multiple times.
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FIG. 5. (a) Numerical incompressible energy spectra Ê (k) of the condensate at times t = 35.2 (red) and t = 92.0 (blue). The dashed line,
∝ k−3, is drawn for reference. The spectra are shifted vertically for clarity. The vertical lines indicate the wave numbers kR, and kξ corresponding
in physical space to the longitudinal Thomas-Fermi radius kR = 2π/11 ≈ 0.6, and to the healing length ξ , respectively. The wave number ka0

corresponds to the vortex width. (b) Total vortex line length L(t ) vs time t ; the dashed line ∝ t−1 is given for reference.

ible Navier-Stokes equation) is the celebrated Kolmogorov
scaling Ê (k) ∼ k−5/3. In superfluid helium there appear to
be two limiting regimes of quantum turbulence [12]: a Kol-
mogorov regime characterized by the same Ê (k) ∼ k−5/3

observed in classical turbulence, indicating the existence of
an energy cascade; and a Vinen regime, which is akin to
a random flow, in which the energy spectrum peaks at the
mesoscales 	 and decays as k−1 at length scales smaller than
	 and larger than the vortex core a0. Unfortunately, the en-
ergy spectrum of turbulent 3D condensates is experimentally
unavailable due to the lack of local velocity probes. There are
also two significant differences with respect to liquid helium.
First, condensates are very compressible and become easily
fragmented (whereas the Kolmogorov scaling assumes con-
stant density). Second, condensates are relatively small, so the
spectrum extends only over a limited range of length scales,
hindering any scaling law. In this respect, the comparison with
liquid helium is staggering: the spatial extension of an atomic
condensate is typically of the order of 102 times the size of a
vortex core, whereas in helium experiments [43] the size of the
system can be as high as 1010 vortex cores. To make progress,
in our numerical part of the study, we obtain the energy
spectrum Ê (k) of the turbulent condensate by extracting the
incompressible kinetic-energy contribution, Ei, from the total
kinetic energy via a standard Helmholtz decomposition [44].
The spectrum computed at two different times t > TD when
z̄ = 0 is reported in Fig. 5(a), showing no significant temporal
dependence. The wave number corresponding to the average
radius of the vortices at t = 35.2, defined as L/2π for vortex
rings and L/π for U-shaped vortices is very close to ka0 . In the
range 1.5ka0 ≈ 10 < k < kξ ≈ 25 the energy spectrum scales
approximately as k−3, while no other scaling is observed
at larger scales. At later times (t = 92) the average radius
decreases with the range of the k−3 scaling decreasing ac-
cordingly. The k−3 scaling, in contrast to both Kolmogorov’s
and Vinen’s spectra, directly stems from the small size of the
vortices observed in our turbulent condensate. In fact, the k−3

spectrum reported between ka0 and kξ coincides, as expected,
with the incompressible kinetic-energy spectrum inside the
core of a quantum vortex [44]. On the other hand, at smaller k,
we lack the k−1 spectrum (which one would assume given the

random orientation of the vortices [22]) precisely because the
radii of the vortex rings are of the order of vortex core: there
is no separation of scales between the radii of the vortex rings
and their core, essential in order to observe the k−1 scaling,
(see Appendix E). Indeed, if we compute the spectrum of a
homogeneous gas of small vortex rings, we recover the same
k−3 scaling for ka0 � k � kξ , without further scalings at large
scales (see Appendix E).

VIII. VORTEX DECAY

The random character of the vortex tangle is confirmed by
the computed temporal decay of the total vortex length, which
is itself a characteristic feature of the turbulent state. Indeed,
by measuring the temporal behavior of the vortex length at all
times when z̄ = 0, we find L(t ) ∼ t−1±0.2 [Fig. 5(b)] matching
the length temporal decay in the Vinen (random flow) regime,
observed both in helium [11] and numerically in atomic con-
densates when the turbulence is created by the instability of
antiparallel multicharged vortices [22]. This temporal decay
behavior is clearly distinct from the L(t ) ∼ t−3/2 decay ob-
served in Kolmogorov superfluid helium turbulence [45–47].

IX. DISCUSSION

The regime of 3D quantum turbulence characterizing on-
going experiments on Bose-Einstein condensates excited via
large-scale forcing [19,24] raises theoretical challenges. The
turbulence which we have identified in our experimental
and numerical study in fact reveals the presence of large-
amplitude density waves, fragmentation, and a vortex tangle
composed of very small, randomly oriented vortex loops and
lines, nonhomogeneously distributed throughout the conden-
sate. The small size of these vortical structures produces an
incompressible energy spectrum exhibiting a k−3 scaling at
small scales, stemming from the properties of quantum vortex
cores [44], and lacking any additional scaling at large length
scales, given the striking absence of long vortex lines (or even
bundles of lines) which have been observed in experiments
and numerical simulations of quantum turbulence in super-
fluid helium.
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Overall, quantum turbulence generated in current experi-
ments performed on confined condensates clearly appears to
be distinct from the traditional turbulent regimes identified in
other systems, i.e., Kolmogorov turbulence in both classical
incompressible viscous fluids [2] and superfluid helium [8],
Vinen turbulence in superfluid helium [11], and weak wave
turbulence [48] in classical fluids (ocean waves, acoustic
waves, etc.) and in quantum fluids (Kelvin waves on vortex
lines [49,50]). None of these turbulence classes fully accounts
for the turbulence observed in our study, which remarkably
displays a coexistence of several turbulent features. In this
perspective, the possibility of turbulence which combines vor-
tex lines and weakly nonlinear density waves was indeed
suggested years ago [51] for an idealized 2D homogeneous
system. However, what we have found in an actual 3D tur-
bulent atomic condensate is a more radical combination of
unusually strong density waves and unusually small vortex
loops (“unusual” in the sense of previous paradigms) which
creates a scenario not seen in previous turbulence studies.
This creates a window of opportunities to search for more
possible phenomena that can only be present when different
behavior coexist. This the important conclusion of this study.
Future investigations should concentrate on the vortex nucle-
ation mechanism, on how the turbulent features depend on the
driving mechanism, and on the effect of thermal atoms.

This manuscript has associated data in a data repository.
Additional metadata are available at Ref. [52].
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APPENDIX A: EXPERIMENTAL SETUP

A cloud of N = 3 × 105 87Rb atoms is confined in a
magneto-optical trap MOT1 cooled to around 140 µK and
then transferred by radiation to a second magneto-optical trap
MOT2, which captures, accumulates, and allows cooling to
temperatures of a few μK. After this new entrapment and
cooling, the optical fields are switched off, and the atoms
are transferred to a magnetic trap composed of several coils
forming a so-called IOFFE-PRITCHARD trap. Once in this
trap, rf fields operating at a few MHz promote transitions
causing the sample to evaporate. The loss of atoms during this
phase is compensated by cooling, reaching temperatures of
the order of 100 nK, where condensate begins and progresses,
until we have a condensate fraction ranging from 50% to
80% of the total atoms. The condensate is trapped into a

elongated harmonic potential with ωz = 21 × 2π rad/s and
ωr = 130 × 2π rad/s.

Once the condensate has been successfully cooled within
the final trap, a secondary oscillating magnetic field with
ωexc = 132.8 × 2π rad/s is applied to the condensate. Here, a
pair of anti-Helmholtz coils is applied close to the longitudinal
axes of the static trap. The condensate is driven for a time
of 37.65 ms, before the anti-Helmholtz coils are turned off
and the system is left to evolve in the IOFFE-PRITCHARD
trap. After TH , the sample is allowed to expand freely for a
period of 30 ms. At the end of this free-flight, a resonant probe
laser takes an absorption image, revealing the 2D projection of
the expanded density. This projection allows the extraction of
the momentum distribution as well as the fluctuation profile.
For more details on the measurements and experimental tech-
niques we refer to Refs. [24–26].

APPENDIX B: NUMERICAL SIMULATIONS

At temperatures much lower than the critical tempera-
ture, an atomic condensate of N atoms with atomic mass
m and scattering length a is quantitatively described by the
Gross–Pitaevskii equation (GPE). It is convenient to rewrite
the GPE in a dimensionless form using 
 = [h̄/(mωr )]1/2 as
the unit of length, 1/ωr as the unit of time, and N/
3 as
the unit of the density n = |�|2, obtaining the dimensionless
Gross–Pitaevskii equation (GPE) (1) and the normalization∫ |�|2dx = 1. The parameters are chosen to match those
of the experiment; the resulting dimensionless chemical po-
tential and longitudinal trapping frequency are respectively
μ = 13 and ωz = 0.16. These values, combined with the large
oscillation which is imposed to the condensate, would require
a computational domain too large to simulate numerically. For
this reason we increase the longitudinal trapping frequency
to ωz = 0.5 and lower the chemical potential from μ = 13
to μ = 8. The dimensionless interaction parameter C is cal-
culated assuming a Thomas-Fermi condensate so that C =
μ5/2(16π

√
2/15)(1/ωz ) = 1715. The GPE is solved using

finite differences on a 3D computational grid and fourth-order
Runge-Kutta time integration. The mesh size and time step
are 	x = 0.125 (corresponding to half of the system’s healing

FIG. 6. The momentum distributions from texpan = 2.0 to 2.8
(t = 68.0 to 68.8) (going from dark to light) with the boundaries of
fitting marked by k = 2π/4ξ (vertical dashed line) and k = 2π/2ξ

(vertical dot-dashed line) and (inset) the power exponents for each of
the momentum spectra in the corresponding color.
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FIG. 7. The probability density function of the lengths (in healing length) of all individual vortices within the condensate at t = 35.2 (blue)
and t = 92.0 (red).

length at the center of the trap) and 	t = 0.001, respectively.
To find the initial ground state of the system, we first run the
GPE in imaginary time, before moving to real time to observe
the dynamics of the system with a total simulation time of
t = TD + TH = 100. The method of obtaining the spectral
exponent is shown in Fig. 6; the condensate is released at
t = 66.0, at which it expands outwards and the momentum
distribution is obtained. The condensate expands for a time
texpan, and an exponent α is obtained from fitting a power law
between k = 2π/4ξ and k = 2π/2ξ . The exponent measured
in this interval quickly (texpan � 2.0; t � 68.0) converges.
Plotted in Fig. 6 are the results of the momentum distribu-
tion from texpan = 2.0 to 2.8 (t = 68.0 to t = 68.8) with the
inset providing the individual fitted power exponents obtained
from each respective distribution in this k range. The reported
power law in this paper is taken as the average of these nine
exponents to give a result of α = −2.6 ± 0.1.

APPENDIX C: THE PROBABILITY DENSITY
FUNCTION OF VORTEX RADII

The probability density functions of the length of individ-
ual vortex rings and U-vortices at times t = 35.2 and 92 are
shown in Fig. 7. Here, the change of the vortex length towards
smaller scales at later times is apparent as the PDF’s width
decreases.

APPENDIX D: ISOSURFACES OF THE TURBULENCE
CONDENSATE IN TIME

Figure 8 displays vortex rings and U vortices as red lines
together with the blue density isosurface of the condensate (in
contrast, Fig. 4 of the main text differentiates between vortex
rings and U vortices). At t = 35.2, in Fig. 8(a), the vortices
are distributed almost uniformly in space. The condensate in
Fig. 8(b) at t = 60.5 is traveling to the right of the figure,
whereas Fig. 8(c) at t = 92.0 is moving to the left. Note that
the vortices tend to be located in the back of the moving
condensate.

APPENDIX E: INCOMPRESSIBLE ENERGY SPECTRA
OF RINGS

It is known that the energy spectrum of a single straight
vortex line of infinitesimal thickness in a fluid of constant
density decays as k−1 for large k. If the vortex line is in the
shape. If the vortex line is in the shape of a ring of radius
R, the energy spectrum [53] rises as k2 for small k, peaks at
kR ≈ 1, and decays as k−1 at larger k with characteristic small
amplitude oscillations. A gas of random vortex rings [54]
has a similar spectrum, the precise crossover between the k2

and k−1 behaviors depending on the distribution of values
of R. It is also known that in a homogeneous condensate,
the kinetic-energy spectrum at very large wave numbers in
the region ka0 � k � kξ scales as k−3 due to the presence of
the singularity at the core [44].

FIG. 8. The isosurfaces of the condensate (blue) with vortices marked at times (a) t = 35.2, (b) t = 60.5, and (c) t = 92.0.
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FIG. 9. The incompressible energy spectrum (a) of gas of small vortex rings; N = 1 (green), N = 20 (blue), and N = 40 (red) with the
result of our turbulent spectra at t = 35.2 (black) with the wave numbers corresponding to the radial Thomas-Fermi radius, kR, the correlation
length of the density fluctuations kχ , the average width of the vortex core ka0 , the radius of the average ring size, kr , of our homogeneous system
and the healing length kξ . The (b) N = 1 result is repeated (green) accompanied by the spectra of a single large ring of radii 25 (magenta) with
the matching k numbers of the respective radii of the big-ring case, k(big)

r , the width of the vortex core ka0 and the radii of the small ring, k(small)
r .

The scalings ∝k−3 (dashed) and ∝k−1 (dot-dashed) are marked for reference.

Consider a gas of random vortex rings in a condensate. If
the radii are small (of the order of the vortex core size) the
region where the spectrum scales as k−1 disappears, and we
are left with a k−3 spectrum at large k. We have verified this
result by computing such spectrum in a homogeneous conden-
sate [see Fig. 9(a)]. In this calculation, the rings are randomly
placed within a homogeneous background, with a radius ran-
domly, but uniformly, chosen between 4ξ and 8ξ . This range
of radii is chosen to follow the radii of the vortex rings de-
tected in our turbulent cigar condensate. The spectra of said
homogeneous condensate is presented in Fig. 9(a), where the
spectra for systems of N = 1, 20, and 40 rings is shown.

Figure 9(b) shows that the incompressible energy spectra
of the turbulent condensate is very similar to the spectra
of the homogeneous condensate with random rings in the
large-k regime for k > kχ , where kχ is the wave number

corresponding to the correlation length of the condensate’s
density fluctuations χ .

This quantity is found by computing the correlation lengths
χi (i = x, y, z) of the condensate’s density fluctuations in the
three Cartesian planes, defined as

χi(t ) =
∫ ∞

0

〈n f l (x, t )n f l (x + ri, t )〉
〈n f l (x, t )2〉 dr, (E1)

where n f l is the density of the condensate with a fit-
ted Thomas-Fermi profile removed, n f l = n − nT F , and i =
(x, y, z). The overall correlation is then defined as χ = (χx +
χy + χz )/3. In observing Fig. 9, it clearly emerges that, for
k � kr (kr = 2π/r with r being the average ring size for our
homogeneous model) we find the same k−3 scaling, support-
ing our claim ascribing this scaling to the presence of small
vortex rings in the turbulent condensate.
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