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Magic angle butterfly in twisted trilayer graphene
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We consider a configuration of three stacked graphene monolayers with commensurate twist angles θ12/θ23 =
p/q, where p and q are coprime integers with 0 < p < |q| and q can be positive or negative. We study this
system using the continuum model in the chiral limit when interlayer coupling terms between AA12 and AA23

sites of the moiré patterns 12 and 23 are neglected. There are only three inequivalent displacements between
the moiré patterns 12 and 23, at which the three monolayers’ Dirac zero modes are protected. Remarkably, for
these displacements and an arbitrary p/q we discover exactly flat bands at an infinite set of twist angles (magic
angles). We provide theoretical explanation and classification of all possible configurations and topologies of the
flat bands.
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I. INTRODUCTION AND SUMMARY

Two graphene layers placed one on top of the other with a
relative small twist angle form a periodic moiré pattern, which
alters significantly the low-energy electronic spectrum. At the
special twist “magic” angle θ∗ ≈ 1.05◦ a dramatic flattening
of the lowest energy bands was observed in [1,2]. These
almost dispersionless electronic bands hinted to a possibility
of interesting strongly interacting phenomena, which was sub-
sequently confirmed through a series of experimental studies
[3–5]. These tantalizing experiments have inspired numerous
theoretical and experimental investigations [6–34], and the
field continues to advance with fascinating new proposals and
insights.

Multiple layers of graphene stacked on top of each other
with small relative twist angles [35–48] provide even greater
versatility compared to twisted bilayer graphene (TBG) due
to the increased number of parameters. Initial theoretical
investigations of alternating-twist trilayer graphene (aTTG)
[35] demonstrated a similar flattening of electronic bands at
“magic” angles, ultimately leading to the experimental dis-
covery of various correlated phenomena [49–54] at the angles
predicted in [35]. The study of the interaction effects in such
systems remains an active area of ongoing theoretical investi-
gations [55–57].

In [36,39] a general configuration of twisted trilayer
graphene was proposed, where the three layers are con-
secutively twisted by small angles θ12 = pθ and θ23 = qθ ,
where p and q are coprime integers 0 < p < q, as shown in
Fig. 1. The analysis of electronic bands in this system, was
initially performed using the continuum model with equal
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interlayer coupling terms between AA and AB sites of the
moiré patterns. However, this model did not exhibit a distinct
phenomenon of band flattening.

The existence of magic angles and perfectly flat bands was
recently discovered in the case of equal-twist trilayer graphene
(eTTG) [58], where the twist angles between layers 1 and 2
(θ12) and between layers 2 and 3 (θ23) are equal. The chiral
limit of the twisted graphene continuum model [29,30,59] was
crucial in revealing these magic angles and flat bands. In this
limit, the interlayer coupling terms between AA sites in the
moiré pattern are disregarded, resulting in the Hamiltonian
exhibiting exactly flat bands at an infinite series of magic
angles.

In addition to the twist angles, the spectrum of a gen-
eral twisted trilayer graphene (TTG) system is influenced by
the relative displacement d between the two moiré patterns
formed by layers 12 and 23 [39]. The investigation of equal-
twist trilayer graphene (eTTG) without any displacement
between the moiré patterns (d = 0, AAA stacking) revealed
an intriguing connection between the flat bands of twisted
bilayer graphene and eTTG, establishing a relation between
the magic angles in these distinct systems. A subsequent
study by Guerci et al. [60] (see also [61,62]) demonstrated
that eTTG system exhibits a “moiré of moiré” pattern, re-
sulting in large triangular regions of ABA and BAB stacking
[d = ± 1

3 (a1 − a2), where a1,2 are the single moiré lattice unit
vectors] separated by smaller AAA regions. By employing
the chiral model with ABA or BAB stacking of the graphene
layers, another set of magic angles and perfectly flat bands
were unveiled. Furthermore, it was shown that the flat bands
in eTTG can possess the Chern number C = 2, and the math-
ematical origin of such flat bands was explained.

In this letter, we analyze the general twisted trilayer
graphene configuration in which the consecutive layers are
twisted at small but commensurate angles θ12 = pθ and
θ23 = qθ , where p and q are coprime integer numbers 0 <

p < |q| and q can be positive or negative. We refer to
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FIG. 1. Picture of a pq-twist trilayer graphene (pqTTG) with
(p, q) = (1, 2).

this system as pq-twist trilayer graphene (pqTTG), and it
is schematically depicted in Fig. 1. Such configuration was
recently achieved in an experiment [54]. We analyze the
continuum model and take the chiral limit, where interlayer
coupling terms are wAB ≈ 110meV and wAA = 0 (this limit
is motivated by the lattice relaxation effects, which imply
wAA < wAB [63]).

For small twist angles we assume that the moiré patterns
12 and 23 are formed by vectors pa1,2 and qa1,2, where a1,2 =
(4π/3kθ )(±√

3/2, 1/2) with kθ = 2kD sin(θ/2) ≈ kDθ and
kD = 4π/3

√
3a is the Dirac momentum of the monolayer

graphene with lattice constant a ≈ 1.42 Å. Similarly to the
previously discussed eTTG configuration, pqTTG also has
a moiré of moiré pattern, resulting in local variations of the
displacement vector d between the moiré patterns 12 and 23.
There are only three inequivalent displacement vectors, at
which the three monolayers’ Dirac zero modes are protected.
These are d = 0 and d = ±d0, where d0 = 1

3p|q| (a1 − a2) and

the spectrum is invariant under the shifts d → d + 1
pq a1,2.

The values of the magic angles are identical for the dis-
placements ±d0. Remarkably, in the chiral limit and these
displacements the electronic energy spectrum exhibits per-
fectly flat bands at an infinite sequence of magic angles for
any combination of coprime integers p and q. We introduce
dimensionless twist parameters α12 = α/p and α23 = α/q
where α = wAB/(vF kDθ ), and vF ≈ 106 m/s is the mono-
layer graphene Fermi velocity (for brevity we also refer to α12,
α23 and α as twist angles). The twist angle could be recovered
as θ ≈ 0.62◦

α
. We plot magic angles α12 as a function of p/q

in Fig. 2. Plot of the magic angles (α12, α23) for different p/q
is shown in Fig. 3. Finally we present Tables I and II of the
first four magic angles α12 for various values of p and q and
displacements d = 0 and d = ±d0.

Below we formulate the continuum model for twisted
trilayer graphene, present the criteria for the emergence of
perfectly flat bands and provide a complete classification of
the structures of the flat bands at magic angles.

FIG. 2. The magic angle butterfly. Plot of the leading magic
angles α12 for all possible ratios p/q of coprime integers p and q
with 0 < p < |q| and up to |q| = 20 and displacements d = 0, ±d0.
Near the center (p/q = 0) the magic angles approach those of TBG.

II. CONTINUUM MODEL FOR TWISTED
TRILAYER GRAPHENE

We consider a system of three stacked graphene monolay-
ers, where each layer � = 1, 2, 3 is rotated counterclockwise
by an angle θ� around an atom site and then shifted by a
vector d�, so atoms in each layer are parametrized by r =
Rθ�

(R + τα ) + d�, where Rθ = e−iθσy is the rotation matrix
and R and τα run over the lattice and sublattice sites. The
continuum model Hamiltonian for twisted trilayer graphene
at the K valley can be written as [35]

H =

⎛
⎜⎜⎝

−ivF σθ1∇ T 12(r − d12) 0

T 12†(r − d12) −ivF σθ2∇ T 23(r − d23)

0 T 23†(r − d23) −ivF σθ3∇

⎞
⎟⎟⎠,

where σθ ≡ ei θ
2 σzσe−i θ

2 σz , σ = (σx, σy), and d��′ = 1
2 (d� +

d�′ + i cot(θ�′�/2)σy(d� − d�′ )) is the moiré pattern displace-
ment vector. The moiré potential between adjacent layers �

and �′ is

T ��′
(r) =

3∑
n=1

T ��′
n e−iq��′

n r, (1)

FIG. 3. Plot of the leading magic angles (α12, α23) for all possible
ratios p/q of coprime integers p and q with 0 < p < |q| and up
to |q| = 20. The black dashed line is a semicirlce α2

12 + α2
23 = 1/3

derived in [38] using perturbation theory.
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TABLE I. The table of magic angles for various p, q > 0.

(p, q)d α
(1)
12 α

(2)
12 α

(3)
12 α

(4)
12

(1, 4)0 0.5673 1.4042 1.8253 1.8295
(1, 4)±d0 0.5672 1.64164 1.7963 2.02604

(1, 3)0 0.5542 1.2025 2.8487 4.0074
(1, 3)±d0 0.5527 1.2464 1.3919 2.0304
(1, 2)0 0.5194 0.9589 1.02554 1.53094

(1, 2)±d0 0.5094 1.0698 1.6226 2.9886
(2, 3)0 0.4403 0.4549 0.49544 0.76624

(2, 3)±d0 0.4527 0.4548 0.4668 0.5010
(3, 4)0 0.4356 0.4710 0.49414 0.5012
(3, 4)±d0 0.4269 0.4302 0.4612 0.4646
(1, 1)0 0.82834 3.14124 5.30534 7.46214

(1, 1)±d0 0.3771 1.19674 1.7549 2.41364

where T ��′
n+1 = w��′

AAσ0 + w��′
AB(σx cos nφ + σy sin nφ) and

q��′
1 = 2kD sin(θ�′�/2)Rφ��′ (0,−1), q��′

2,3 = R±φq��′
1 (2)

with θ��′ = θ� − θ�′ , φ��′ = (θ� + θ�′ )/2, φ = 2π/3. The cou-
pling between adjacent layers � and �′ is characterized by
two parameters w��′

AA and w��′
AB representing intra- and inter-

sublattice couplings. The chiral limit corresponds to w��′
AA = 0.

Also using translation invariance we can make a replacement
r → r + d12, and therefore the Hamiltonian depends only on
a single displacement vector d = d23 − d12.

We consider a trilayer configuration where the relative
twists are commensurate θ21 = pθ and θ32 = qθ and p and
q are two coprime integers, which satisfy 0 < p < |q|. For
a small angle θ we can set φll ′ = 0 leading to q12

1 = pq1

and q23
1 = qq1 and q1 = kθ (0,−1) with kθ = 2kD sin(θ/2) ≈

kDθ . Thus we obtain the following Hamiltonian:

HpqTTG =

⎛
⎜⎝

−ivF σ−pθ∇ T (pr) 0

T †(pr) −ivF σ∇ T (q(r − d))

0 T †(q(r − d)) −ivF σqθ∇

⎞
⎟⎠,

(3)

where we assume equal couplings between layers. For a small
twist angle θ we can neglect the phase factors in the Pauli
matrices σ−pθ → σ and σqθ → σ.

TABLE II. The table of magic angles for various p, −q > 0.

(p, q)d α
(1)
12 α

(2)
12 α

(3)
12 α

(4)
12

(1, −1)0 0.4141 1.5706 2.6526 3.7310
(1, −1)±d0 0.5072 2.2295 2.9043 4.4080
(3, −4)0 0.4821 0.48874 0.6493 0.66264

(3, −4)±d0 0.5121 0.6167 0.6520 0.6954
(2, −3)0 0.49124 0.5054 1.2890 1.32594

(2, −3)±d0 0.9458 1.0945 1.7939 2.2357
(1, −2)0 0.5131 1.5014 2.0490 3.2157
(1, −2)±d0 0.5857 0.7614 1.3797 1.81784

(1, −3)0 0.5574 1.4373 2.67384 3.99064

(1, −3)±d0 0.5587 1.2915 1.3920 2.1730
(1, −4)0 0.5685 1.72254 1.85484 3.2869
(1, −4)±d0 0.5685 1.7130 1.7298 1.9467

FIG. 4. Original Brillouin zones of three graphene layers with
their Dirac points K1, K2, and K3 and the moiré Brillouin zones for
pqTTG. The layers are twisted by the angles pθ and qθ , where p and
q are coprime integers such that 0 < p < |q|. The wave vector k is
zero at the Dirac point K2. We neglect a relative rotation between vec-
tors q12

1 and q23
1 and assume that q12

1 = pq1 and q23
1 = qq1. (a) Case

(p, q) = (1,−3). (b) Case (p, q) = (2, 3).

The moiré Brillouin zone (mBZ) for this Hamiltonian is
depicted in Fig. 4. The reciprocal moiré unit vectors are b1,2 =
q2,3 − q1. In the coordinate space the unit vectors are a1,2 =
(4π/3kθ )(±√

3/2, 1/2). It is useful to introduce complex
coordinates z, z̄ = rx ± iry in real space and k, k̄ = k1 ± ik2

in momentum space. The Hamiltonian (3) acts on a spinor
	(r) = (ψ1, χ1, ψ2, χ2, ψ3, χ3), where the indices 1,2,3 rep-
resent the graphene layer. Introducing the dimensionless twist
parameter α = wAB/(vF kθ ), and writing the Hamiltonian (3)
in the sublattice basis 	(r) = (ψ1, ψ2, ψ3, χ1, χ2, χ3) we ob-
tain

HpqTTG =
(
M(r) D†(r)

D(r) M(r)

)
, (4)

where we have rescaled coordinates r → kθr and the Hamil-
tonian, so the energies of (4) are measured in units of vF kθ .
The operators D and M are

D(r) =

⎛
⎜⎝

−2i∂̄ αU1(pr) 0

αU1(−pr) −2i∂̄ αU1(q(r − d))

0 αU1(q(d − r)) −2i∂̄

⎞
⎟⎠,

M(r) = wAA

wAB

⎛
⎜⎝

0 U0(pr) 0

U0(−pr) 0 U0(q(r − d))

0 U0(q(d − r)) 0

⎞
⎟⎠,

(5)

where ∂, ∂̄ = 1
2 (∂x ∓ i∂y) are complex derivatives and we de-

fined Um(r) = ∑3
n=1 ωm(n−1)e−iqnr with ω = eiφ . The Bloch
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states 	k(r) = (ψk(r), χk(r)) of (4) are parametrized by the
wave vector k from mBZ and satisfy the following boundary
conditions

	k(r + a1,2) = eik a1,2Uφ	k(r), (6)

where the matrix Uφ = 1AB ⊗ diag(ωp, 1, ω−q ).
Below we focus on the chiral limit wAA = 0. In this case

the Hamiltonian (4) is particle-hole symmetric {HpqTTG, σz ⊗
1} = 0. The chiral and antichiral zero-energy equations are

D(r)ψk(r) = 0, D†(r)χk(r) = 0, (7)

and they have solutions for every wave vector k of the mBZ
(flat bands) only at the special values (magic angles) of the
twist angle α. We can represent the chiral operator D(r) in (5)
in the form

D(r) = −2i∂̄ + αĀ(r), (8)

where we introduced the matrix vector-potential Ā(r). The
magic angles α can be found numerically as a generalized
eigenvalues of the operators −2i∂̄ and Ā(r) [64,65]. Generi-
cally the magic angles α form an infinite set of isolated points
in the entire complex plane. In order to have magic angles, it
is necessary for the chiral operator D(r) to adhere to specific
symmetries. Namely we would like the chiral operator to have
three Dirac zero modes ψK1 , ψK2 , and ψK3 at the Dirac points
K1 = pq1, K2 = 0, and K3 = −qq1 for an arbitrary twist angle
α. This is guaranteed by C3z symmetry together with the
particle-hole symmetry [29,36]. A nonzero displacement d
can break the C3z symmetry of the Hamiltonian. One can show
that spectrum of the Hamiltonian (4) is invariant under the
following shifts of the displacement

d → d + 1

pq
a1,2 (9)

and the inequivalent displacements that preserve the three
Dirac zero modes are d = 0 and d = ±d0, where

d0 = 1

3p|q| (a1 − a2). (10)

The magic angles of the the Hamiltonian are identical for the
displacements d = ±d0, because they are related to each other
by the C2zT symmetry, that exchanges the chiral and antichiral
components of the Bloch states.

III. ORIGIN OF THE FLAT BANDS

In this section we derive general properties of the zero
modes of the Hamiltonian (4) in the chiral limit wAA = 0.
As we discussed above, the chiral operator admits three Dirac
zero modes ψK1 , ψK2 and ψK3 at the Dirac points K1 = pq1,
K2 = 0, and K3 = −qq1

D(r)ψKi (r) = 0, i = 1, 2, 3 (11)

for the displacements d = 0,±d0 and an arbitrary twist angle
α. Since the hopping potential has only nonzero off-diagonal
elements we get TrĀ(r) = 0 and equations (11) one can derive
that the Wronskian of the Dirac spinors

W (r) ≡ det (ψK1 , ψK2 , ψK3 ) (12)

satisfies ∂̄W (r) = 0 [60,66]. [Note that the Wronskian in this
case is simply a triple product, W (r) = ψK1 · (ψK2 × ψK3 )].
Therefore we must conclude that the Wronskian is a constant
W (r) = W , since we can not have a nonconstant holomorphic
function on a compact manifold, which is a torus in our case.

First we prove that if W �= 0 there is no flat band. W �= 0
implies that ψKi (r), i = 1, 2, 3 as three-dimensional vectors
are linearly independent at each point r of the moiré unit cell,
and form a basis. Therefore any other chiral zero mode ψk(r)
(Dψk = 0) can be expanded as

ψk(r) = C1(r)ψK1 (r) + C2(r)ψK2 (r) + C3(r)ψK3 (r),

where the scalar functions C1,2,3 must depend on the wave
vector k in order for ψk to satisfy the the Bloch boundary
conditions (6). Applying the operator D(r) to both parts of the
above equality we conclude that ∂̄C1,2,3(r) = 0. And since ψk
and ψKi are finite everywhere Ci(r) can only be constants. But
then ψk would violate the boundary conditions (6). Therefore
if W �= 0 we can not have other zero-energy solutions (and
thus flat band) except the Dirac zero modes.

Now, we prove that if W = 0, we necessarily have a flat
band. W = 0 implies that the Dirac spinors ψKi (r) as vectors
are linearly dependent at every point r of the moiré unit cell.
We stress that it does not mean that they are linearly depen-
dent functions in the Hilbert space. There are two possible
scenarios.

Scenario 1. All Bloch spinors of the zero-energy flat bands
are collinear at every point r of the moiré unit cell. We refer to
such case as rank 1 flat bands. In this situation any flat band’s
wave spinor can be described by the following equation:

ψk(r) = C(r)ψK1 (r), (13)

where C(r) is some scalar function. If we apply the operator
D(r) to both sides of this equation we obtain ∂̄C(r) = 0 and
thus C is a constant, which violates the boundary conditions
(6) for the spinor ψk. Therefore Eq. (13) is impossible unless
ψK1 (r) has zeros. If ψK1 (r) has n zeros at the points rλ, λ =
1, . . . , n, we can construct n flat bands, using the following
wave functions:

ψ
(λ)
k (r) = fk−K1 (z − zλ)ψK1 (r), (14)

where zλ = (rλ)x + i(rλ)y and we introduced the following
meromorphic function:

fk(z) = ei ka1
a1

z ϑ1(z/a1 − k/b2|ω)

ϑ1(−k/b2|ω)ϑ1(z/a1|ω)
. (15)

Normalization of the function fk(z) is chosen such that
fk+b1,2 (z) = fk(z) and one can compute that the Chern number
of the flat bands in (14) is C = 1.

Scenario 2. The other case is that all wave spinors of the
flat bands form a two-dimensional vector space at every point
r of the moiré unit cell. We refer to such a case as rank 2 flat
bands. In this case we have

ψK3 (r) = C1(r)ψK1 (r) + C2(r)ψK2 (r), (16)

where C1(r) and C2(r) are some scalar functions. If we assume
that the spinors ψK1 (r) and ψK2 (r) are linearly independent
at every point r of the moiré unit cell and apply the operator
D(r) to both sides of Eq. (16) we obtain ∂̄C1,2(r) = 0 and thus
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C1,2 are constants, which violates the boundary conditions (6)
for the spinor ψK3 . Therefore we conclude that there exists
at least one point r0 where the vectors ψK1 (r0) and ψK2 (r0)
are linearly dependent. More generally, there could be n such
points rλ, λ = 1, . . . , n, where

c1λψK1 (rλ) + c2λψK2 (rλ) = 0, (17)

for λ = 1, . . . , n. [Notice that the coefficients c1,2λ are not
equal to C1,2(rλ)]. Now it is easy to see that for each zero
point rλ we can construct a chiral zero mode at every point k
of the mBZ,

ψ
(λ)
k (r) = (c1λ fk−K1 (z − zλ)ψK1 (r)

+ c2λ fk−K2 (z − zλ)ψK2 (r)). (18)

The function fk defined in (15) behaves as

fk(z − zλ) → a1

ϑ ′
1(0|ω)

1

z − zλ

, z → zλ (19)

and the poles of the functions fk−K1 (z) and fk−K2 (z) are can-
celled at the point rλ, thus ψ

(λ)
k is finite at every point of the

moiré unit cell. A similar construction within the context of
eTTG was proposed by Guerci et al. [60].

Since the function fk in (15) is periodic in the mBZ, but
has a pole at k = 0 the function ψ

(λ)
k can have two poles

in mBZ if both coefficients c1λ and c1λ are not zero. In this
case the flat band has the Chern number C = 2. If either of
the coefficients c1λ or c2λ is zero, the function ψ

(λ)
k has one

simple pole within the mBZ, we have a rank 1 flat sub-band
with the Chern number C = 1.

Thus, the rank 2 flat band is characterized by two wave
functions ψK1 (r) and ψK2 (r). These wave spinors are linearly-
independent vectors at every point in the moiré unit cell
besides n isolated points rλ. Among these points, there may
exist n1 points where either of the spinors ψK1 or ψK2 is zero.
These points give rise to n1 flat bands with the Chern number
C = 1. At the rest of n2 = n − n1 points ψK1 and ψK2 are
nonzero and linearly dependent. These points give rise to n2

flat bands with the Chern number C = 2.
We note that the above construction can be easily general-

ized for the case of twisted �-layer graphene in the chiral limit
and shows that one can have flat bands with the Chern number
up to C = � − 1.

Finally we note that we can have only a single Dirac cone
on top of the flat bands. To demonstrate this, we observe that
if there are two Dirac cones on top of the flat bands, their zero-
energy wave spinors must be linearly dependent at some point.
Consequently, these wave functions would generate a rank
2 flat band, contradicting the assumption that they constitute
distinct zero-energy states.

Below we elaborate more on the possible structures of the
flat bands in pqTTG. For this we separately consider cases of
d = 0 and d = ±d0 displacements. We summarize all possi-
ble configurations of the flat bands in the Figs. 5 and 6.

IV. STRUCTURES OF THE FLAT BANDS

In this section we discuss configurations of the flat bands
and their Chern numbers for two different cases of the dis-
placement: d = 0 and d = ±d0.

FIG. 5. A structure of the zero-energy flat bands in the case of
the displacement d = 0.

A. Displacement d = 0

Absence of the C = 2 flat bands. In the case of zero
displacement one can construct antichiral zero modes χk
(D†χk = 0) from chiral zero modes ψk (Dψk = 0) as

χk1,2 (r) = Qψ̄k1,2 (−r)

χk(r) = Q(ψ̄k1 (r) × ψ̄k2 (r)), (20)

where Q = diag(1,−1, 1), k = k∗ − k1 − k2 and k∗ = (p −
q)q1. By combining the above formulas we can also construct
an additional chiral zero mode ψk at the point k = k∗ − k1 −
k2,

ψk(r) = ψk1 (−r) × ψk2 (−r) . (21)

Moreover one can check that that the following function:

v(r) = ψk1 (r) · ψk2 (−r) (22)

satisfies ∂̄v(r) = 0 [29], therefore to obey the Bloch boundary
conditions v must be zero if k1 �= k2.

Now let us assume that we have a rank 2 flat band discussed
in the Scenario 2 in the previous section. This means that we
have two wave spinors ψk1 and ψk2 that are linearly indepen-

FIG. 6. Possible structures of the zero-energy flat bands in the
case of the displacement d = ±d0.
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dent as vectors at every point in the moiré unit cell besides
n isolated points. By virtue of (21) we have an additional
solution ψk. Let us take a point k3 in the mBZ such that
k3 �= k1,2, then it is easy to check that

ψk3 × ψk = ψk1 (ψk2 · ψk3 ) − ψk2 (ψk1 · ψk3 ) = 0, (23)

where we have used that ψk1,2 · ψk3 = 0. But it means
that ψk3 = C(r)ψk for some function C(r) (two spinors are
collinear). Since k3 can be arbitrary we conclude that each
wave function in the rank 2 flat band is linearly dependent to
each other. That is in contradiction with our initial assumption
that the flat band has rank 2. Therefore we conclude that for
d = 0 the flat bands can not realize Scenario 2 and thus have
the Chern number C = 2.

Dirac cone on top of the flat bands. Now we prove that if
we have rank 1 flat bands then we must have a Dirac cone
on top of them. Namely we prove that we have an additional
zero-energy mode of the chiral (and thus also zero-energy
mode of the antichiral) operator at an isolated point of the
mBZ. We consider a case of a single chiral flat band, when the
corresponding wave function ψk(r) has only one zero. We can
pick such k0 for which ψk0 (0) = 0. Using discussion below
(22) one can notice that ψk0 (r) · ψk0 (−r) = 0. Due to this fact
the following equation:

ψk0 (r) = φ̂k∗−2k0 (−r) × ψk0 (−r) (24)

has a finite solution φ̂k∗−2k0 at the point k∗ − 2k0 of the mBZ.
Then if we apply the operator D(r) to both sides of this
equation we get

0 = (D(−r)φ̂k∗−2k0 (−r)) × ψk0 (−r), (25)

which leads to

D(r)φ̂k∗−2k0 (r) = C(r)ψk∗−2k0 (r). (26)

Since ψk∗−2k0 has a zero at some point we can always find a
periodic function g(r) [66] such that

(C(r) + ∂̄g(r))ψk∗−2k0 (r) = 0 (27)

and therefore we can construct a solution φk∗−2k0 (r) =
φ̂k∗−2k0 (r) + g(r)ψk∗−2k0 (r) that belongs to a specific point of
the mBZ and satisfies the equation

D(r)φk∗−2k0 (r) = 0 . (28)

This concludes the classification of the flat bands structures
for d = 0. In summary, we can have only chiral and antichi-
ral flat bands of rank 1 with the Chern numbers C = 1 and
C = −1 with a single Dirac cone on top of them. This is
schematically depicted in Fig. 5.

B. Displacement d = ±d0

Possible topologies of the flat bands. In the case of nonzero
displacement d = ±d0 we can construct an antichiral zero
mode by taking cross product of two chiral zero modes,

χk∗−k1−k2 (r) = Q(ψ̄k1 (r) × ψ̄k2 (r)). (29)

Even though we can not construct an antichiral mode from
a chiral one using complex conjugation and inversion as in
(20), the number of antichiral flat bands must be equal to
the number of the chiral ones, because of the particle-hole
symmetry.

Also similarly to the d = 0 case one can show that the
following function:

v(r) = χ̄k1 (−r)Qψk2 (r) (30)

satisfies ∂̄v(r) = 0 and thus is equal to zero if k1 �= k2.
Unlike the case d = 0, when d = ±d0 there are no ob-

stacles preventing the existence of rank 2 flat bands. Let us
assume that we have a rank 2 chiral flat band, thus we have
two linearly independent (besides n points) wave spinors ψk1

and ψk2 . Using (29) we construct an antichiral zero mode χk.
The number of zeros of χk is equal to the number of points
where ψk1 and ψk2 are linearly dependent. If we assume that
there is some other antichiral zero mode χk3 with k3 �= k1, k2

we have

χk(r) × χk3 (r) = Q(Q(ψk1 × ψk1 ) × χ̄k3 ) = 0, (31)

where we used (30). Therefore the antichiral flat band must
have rank 1. From that it follows that we can not have at the
same time rank 2 chiral and antichiral flat bands. Also one can
prove that the Dirac cone on top of the flat bands is prohibited
in this case.

Finally, if we assume that we have a rank 1 chiral flat band
ψk and one Dirac cone on top of it with its zero mode φk0 .
Then using (29) for φk0 and ψk we can construct a rank 1
antichiral flat band. And vice versa, using the same argument
as in the previous subsection we can prove that if we have rank
1 chiral and antichiral flat bands, we must have a single Dirac
cone on top of them. We show schematically in Fig. 6 all the
possible cases for d = ±d0.
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