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Quantum phase transitions between different topologically ordered phases exhibit rich structures and are
generically challenging to study in microscopic lattice models. In this paper, we propose a tensor-network
solvable model that allows us to tune between different symmetry enriched topological (SET) phases. Concretely,
we consider a decorated two-dimensional toric code model for which the ground state can be expressed as a
two-dimensional tensor-network state with bond dimension D = 3 and two tunable parameters. We find that
the time-reversal (TR) symmetric system exhibits three distinct phases: (i) an SET toric code phase in which
anyons transform nontrivially under TR, (ii) a toric code phase in which TR does not fractionalize, and (iii)
a topologically trivial phase that is adiabatically connected to a product state. We characterize the different
phases using the topological entanglement entropy and a membrane order parameter that distinguishes the
two SET phases. Along the phase boundary between the SET toric code phase and the toric code phase, the
model has an enhanced U (1) symmetry and the ground state is a quantum critical loop gas wavefunction whose
squared norm is equivalent to the partition function of the classical O(2) model. By duality transformations, this
tensor-network solvable model can also be used to describe transitions between SET double-semion phases and
between Z2 × ZT

2 symmetry protected topological phases in two dimensions.

DOI: 10.1103/PhysRevResearch.5.043078

I. INTRODUCTION

Over the past decades, significant progress has been made
in understanding quantum phases of matter [1–3]. In the ab-
sence of any symmetries, quantum systems in two or higher
spatial dimensions can host distinct topologically ordered
phases separated by quantum phase transitions (QPT) [4].
When (intrinsic) topological order is absent, the presence of
symmetries alone can lead to different symmetry protected
topological (SPT) phases [5–11]. If both topological order and
symmetries are present, distinct symmetry enriched topolog-
ical (SET) phases can emerge, which are characterized by
how symmetry operations act on the anyonic quasiparticle
excitations [12,13]. A remarkable experimental manifestation
of SET order is the ν = 1/3 Laughlin’s fractional quantum
Hall state [1,14], where the anyons carry fractional charges
under the global U (1) symmetry. The classification and char-
acterization of bosonic and fermionic SET phases have been
intensively investigated [12,13,15–21]. Certain phase transi-
tions between different SET phases can be understood via
anyon condensation [22–24], or as SPT phase transitions after
gauging the global symmetries [19,25]. Simple toy models
realizing different SET phases can be constructed in the
following way: Starting from a Z2 topologically ordered sys-
tem (for example, the toric code [26]), different SET phases
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protected by a global symmetry G can be constructed by
decorating the loops in the topologically ordered state with
one-dimensional (1D) SPT states protected by the symmetry
G [27–30]. As illustrated in Fig. 1, the resulting state is a
condensate of SPT loops and the symmetry will fractionalize
between the anyons in a similar fashion as the symmetry
fractionalizes at the boundaries of a 1D SPT chain with open
boundary conditions [12,27].

In the present paper, we follow this idea and construct
a parameterized tensor-network solvable model that realizes
a direct continuous transition between SET phases with an
antiunitary time-reversal symmetry ZT

2 . In particular, we de-
rive a tunable model for which the ground state is given by
a tensor-network state (TNS) [31,32]. This family of exact
TNS corresponds to states of decorated loops with string
tension and a tunable internal parameter, which are able to de-
scribe two distinct Z2 topologically ordered SET phases with
different symmetry fractionalization patterns and a continu-
ous phase transition between them (Fig. 1). We numerically
determine the phase diagram of the system by examining
the correlation length, the topological entanglement entropy
[33,34], and a membrane order parameter [29]. Along the
phase boundary between the two SET phases, the amplitudes
of the wavefunction can be exactly mapped to the partition
function of the classical O(2) loop model in the dense loop
phase, described by the compactified free boson conformal
field theory (CFT) with central charge c = 1. The model ex-
hibits an additional U (1) symmetry at the O(2) critical points.
The additional U (1) symmetry is an example of a pivot sym-
metry, which has recently been studied in the context of SPT
phase transitions [35]. These transition points are, similar to
the Rokhsar-Kivelson point on a square lattice [36], (2 + 0)D
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(a)

(b)

FIG. 1. Schematic illustration of distinct SET phases and the
transition between them. (a) The symmetry fractionalizes over the
edges in the 1D nontrivial SPT phase (red dots). By tuning a parame-
ter g, the nontrivial SPT phase becomes trivial through a topological
phase transition. (b) A state in the SET toric code (SET-TC) phase
or toric code (TC) phase with a pair of charge excitations at the ends
of the broken loops. The sum runs over all the configurations with
closed SPT loops and a broken SPT loop whose two ends are fixed.
The global symmetry fractionalizes over the charges. Notice that for
the ground state on a closed manifold, the configurations only contain
closed loops. Using the 1D SPT phase transition, we can construct a
direct continuous phase transition from the SET-TC phase to the TC
phase.

conformal critical points [37,38], which have also appeared
in several Abelian and non-Abelian topological phase transi-
tions described by TNS [39–45]. Finally, we discuss how the
constructed example is dual to tensor-network solvable paths
for the symmetry enriched double-semion model [46,47] and
(2 + 1)D SPT states protected by Z2 × ZT

2 .
The paper is organized as follows: In Sec. I, we review the

1D and 2D examples of phase transitions in TNS which are
used for the construction. In Secs. II and III, we construct the
decorated TNS for SET phase transitions. In Sec. IV, we show
the parent Hamiltonian for the decorated TNS. In Sec. V,
we show the numerical results of the phase diagram of the
model and the order parameters. In Sec. VI, we summarize the
result and discuss several generalizations beyond the current
example.

II. QUANTUM PHASE TRANSITIONS
IN TENSOR-NETWORK STATES

In this section, we review the two main ingredients for our
construction. We begin by first reviewing the 1D SPT phase
transition described by a family of 1D TNS, namely matrix-
product states (MPS) that will be used for the decoration
of the loops. We then recall the definition of the toric code
model with a tunable string tension on a honeycomb lattice.
In this paper, we use the standard notation {X, Z} for Pauli
matrices, and their eigenstates are denoted as Z |0〉 = |0〉,
Z |1〉 = − |1〉, X |±〉 = ± |+〉, where |±〉 = (|0〉 ± |1〉)/

√
2.

The Greenberger-Horne-Zeilinger (GHZ) state is defined as
(|00 · · · 0〉 + |11 · · · 1〉)/

√
2.

A. 1D ZT
2 -symmetric SPT phase transition in matrix

product states

We consider the antiunitary ZT
2 time-reversal symmetry

K
∏

i Xi, which is a combination of the global spin flip op-
erator and complex conjugation K . A Hamiltonian describing

a phase transition between two 1D SPT phases protected by
the ZT

2 symmetry is [48]

H (g) =
∑

i

[2(g2 − 1)ZiZi+1 − (1 + g)2Xi

+ (1 − g)2ZiXi+1Zi+2], (1)

where g ∈ [−1, 1] is the tuning parameter. When g = 1,
H = −4

∑
i Xi, and the ground state is a product state

|ψ (1)〉 = ⊗i|+〉i. When g = −1, H reduces to the cluster
model H = 4

∑
i Zi−1XiZi+1 with the ground state |ψ (−1)〉 =∏

i CZi,i+1
∏

i Zi|ψ (1)〉, where the control Z gate CZi,i+1 acts
on qubits i and i + 1, and CZi,i+1 = −1 if both qubits are
1 and CZi,i+1 = 1 otherwise. The two limits g = ±1 exactly
correspond to two fixed points of time-reversal symmetric
SPT phases [8,9]. A phase transition occurs at g = 0, which
is a multicritical point characterized by a dynamical critical
exponent z = 2 [48,49].

The ground states of this Hamiltonian are exactly described
by a one-parameter family of MPS with bond dimension χ =
2 [48],

|ψ (g)〉= 1√
N (g)

∑
{si}

Tr(M[s1]M[s2] · · · M[sN ] )|s1, s2, · · · , sN 〉,

(2)
where the MPS tensors are given by

M[0] =
(

0 0
1 1

)
, M[1] =

(
1 g
0 0

)
, (3)

and N (g) is the normalization coefficient (or simply squared
norm) of the MPS. Notice that at the phase transition point
g = 0, the MPS becomes a GHZ state.

B. 2D toric code with string tension

Let us now consider a honeycomb lattice with qubits on
the edges, as shown in Fig. 2. Each vertex v is a set of three
edges and each plaquette p is a set of six edges. The toric code
Hamiltonian is a sum of local and commuting projectors [26]

HTC =
∑

v

Av +
∑

p

Bp, (4)

where the star projector around each vertex v is Av = 1
2 (1 −∏

e∈v Ze). The plaquette projectors have the form Bp = 1
2 (1 −∏

e∈p Xe). The Hamiltonian has a ground-state energy of zero.
As shown in Fig. 2, an edge of state |1〉 is said to be oc-
cupied by a loop segment (or a string) and the state |0〉 is
empty (vacuum). The ground state of the toric code is then
an equal-weight superposition of closed-loop configurations
on the edges of the lattice. The excitations in the toric code
are denoted as electric e with 〈Av〉 = 1 and magnetic m with
〈Bp〉 = 1. Their composite forms a fermion, which we denote
by f . We further denote the trivial (null) excitation as 1.

As we will discuss in Sec. II, it turns out to be convenient
to introduce a tunable string tension η > 0 on the loops in the
toric code [50,51]. The ground state is then modified to be a
weighted superposition of closed-loop configurations

|�(η)〉 ∝
∑

C

ηL(C) |C〉 , (5)
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FIG. 2. A snapshot of an excited state. The system is defined on
a honeycomb lattice, the circles are two sets of physical qubits on the
edges and vertices, respectively. Red (blue) circles represent edge
qubits in the state 1(0), and black circles are vertex qubits. A loop in
the toric code is formed by a string of edge qubits with state 1 along
which the 1D SPT states are decorated. Ends of open loops (the open
loop can deform freely except the endpoints) correspond to anyons
a, which can be e or f anyons of the toric code. The qubits in the
grey regions support the plaquette projector Bp, star projector Av ,
and vertex projector Qv of the parent Hamiltonian (14), respectively.

where C denotes the closed loop configurations on the hon-
eycomb lattice and L(C) is the total length of all loops in C.
A parent Hamiltonian of the modified ground state is given in
Sec. IV. For η = 1, we recover the toric code ground state
|�(1)〉 = |�TC〉. At large string tension (η → 0), the state
becomes fully polarized. The amplitude ηL(C) can be mapped
to the Boltzmann weight of the 2D classical Ising model and
the critical string tension can be identified from the critical
temperature of the Ising model as ηc = 3−1/4 [51].

Moreover, the one-parameter family of wavefunctions in
Eq. (5) can be expressed in terms of the “single-line” TNS,

|�(η)〉 = 1√
N (η)

∑
{se}

tTr(⊗
v

V ⊗
e

E [se](η))| · · · se · · · 〉 (6)

with bond dimension D = 2 [52], where the superscripts (sub-
scripts) are the physical (virtual) indices which take 0 or 1, tTr
denotes the tensor contraction over all virtual indices and

Vαβγ = δmod(α+β+γ ,2),0, E [s]
αβ (η) = ηsδαβδαp, (7)

are tensors placed at the vertices and edges of the honeycomb
lattice, respectively. N (η) is the squared norm of the TNS.
The tensor V imposes the Z2 Gauss law on each vertex, and
the tensor E promotes the virtual degrees of freedom to the
physical level and implements the string tension.

III. DECORATING THE TORIC CODE

Next, we consider the same honeycomb lattice on which
the toric code ground state with string tension |�(η)〉 is

prepared on the qubits at the edges of the lattice. To deco-
rate the loops, we add to each vertex v a qubit as shown in
Fig. 2. The decoration is carried out with a simple procedure:
Whenever a loop is formed on the edges, we contract the MPS
tensors (3) on the vertices along the closed loop. The vertices
away from the loops are set to the product state |+ · · · +〉. The
resulting decorated 2D state |�(g, η)〉 is thus a superposition
of MPS-loop configurations and has a global ZT

2 symmetry
generated by K

∏
v Xv , i.e., global spin flips on all vertices

followed by complex conjugation.
At g = 1 and η = 1 (no string tension), the ground state is

a tensor product of the toric code ground state and a product
state on all vertex qubits

|�(g = 1, η = 1)〉 = |�TC〉 ⊗
(

⊗
v

|+〉v
)

, (8)

which has a trivial SET order, where the time-reversal symme-
try fractionalizes trivially over the anyons of the toric code.
We will simply refer to the phase it belongs to as the toric
code (TC) phase. At g = −1, the system can be obtained
from the toric code limit by a constant-depth quantum circuit
|�(−1, 1)〉 = U |�(1, 1)〉, where U is defined as

U =
⎛
⎝ ∏

〈v,v′〉
CCZvv′e(v,v′ )

⎞
⎠

⎛
⎝∏

〈e,e′〉
CCZee′v(e,e′ )

⎞
⎠, (9)

which is a 2D analog of how we obtained |ψ (−1)〉 from
|ψ (1)〉 in the 1D SPT model. The first product goes over all
distinct pairs of nearest-neighboring vertices with 〈v, v′〉 =
〈v′, v〉, and the second product goes over all different pairs of
nearest-neighboring edges 〈e, e′〉. We use e(v, v′) (or v(e, e′))
to denote the edge (or vertex) between the nearest-neighboring
pair 〈v, v′〉 (or 〈e, e′〉), as shown in Fig. 2. The CCZ gate
satisfies

CCZabc =
{−1, if all qubits at a, b, c are 1,

1, otherwise. (10)

The wavefunction |�(−1, 1)〉 is the fixed point for a nontrivial
SET phase [53], where the symmetry fractionalizes nontriv-
ially over the e and f anyons of the toric code. We refer to the
phase as SET-TC.

IV. TNS REPRESENTATION

Away from the fixed points, the state |�(g, η)〉 can be con-
veniently represented as a 2D TNS by decorating the MPS (3)
onto the single-line TNS. The resulting decorated single-line
TNS, similar to the TNS in Eq. (6), consists of tensors with
a bond dimension of D = 3, which are placed at the vertices
and edges of the honeycomb lattice. The virtual degrees of
freedom are spanned by the basis {|0), |1), |2)}. We apply a
Z2 grading on this virtual space such that the parity of |0) is
even and the parity of |1) and |2) is odd, so the dimension of
the odd parity subspace is 2.

The decorated vertex tensor Ṽ is schematically shown in
Fig. 3(a). In contrast to the vertex tensor V in Eq. (7), the
decorated vertex tensor Ṽ has a physical leg of dimension
2 corresponding to a vertex qubit. The Z2 Gauss law at the
vertex tensor Ṽ implies that either the vertex is not covered by
any string or the vertex is covered by a closed loop segment.
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FIG. 3. (a) The local tensors ṼA and Ẽ of the decorated TNS and
their nonzero entries, ṼB is obtained by replacing MA in ṼA with MB.
(b) The TEE and MOP on an infinitely long cylinder, where the
anyon flux α penetrating inside the cylinder gives rise to the MES
|�α〉. The TEE comes from the reduced density matrix obtained by
tracing out all physical qubits on half of the cylinder, and the MOP
is obtained by applying the symmetry operator to the vertices on half
of the cylinder and evaluating the expectation value.

In the former case, the physical vertex qubit is
√

2 |+〉 and
the three virtual legs are |0). In the latter case, the entries
of Ṽ given by the physical leg together with the two odd
virtual legs are exactly defined by the MPS tensor M[i], as
shown in Fig. 3(a). To construct the single-line TNS with a
bond dimension D = 3, the MPS matrices M[i] used for the
decoration have to be symmetric under the swapping of the
two virtual indices (transpose). This ensures that there is no
ambiguity in the direction of contracting the MPS along a
loop within the TNS [54]. While the original MPS matrices (3)
are not symmetric under transpose, in Appendix E, we utilize
the gauge redundancy in the MPS representation to obtain a
set of equivalent MPS tensors MA and MB in a two-site unit
cell, which have the desired property. Since the honeycomb
lattice is a bipartite lattice, we use MA and MB to define two
vertex tensors ṼA and ṼB for the two sublattices A and B of the
honeycomb lattice, separately. In summary, the tensor ṼA(g)
on the A sublattice is

Ṽ [i]
A,αβγ (g) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, if α = β = γ = 0;

M[i]
A,αβ (g), if p(α) = p(β ) = 1, γ = 0;

M[i]
A,αγ (g), if p(α) = p(γ ) = 1, β = 0;

M[i]
A,βγ (g), if p(β ) = p(γ ) = 1, α = 0;

0, otherwise,
(11)

where p(α) denotes the parity of |α). The construction works
analogously for the tensor ṼB(g).

The edge tensor Ẽ of the decorated TNS is shown in
Fig. 3(a) and it maps the parity of the virtual degree of free-
dom to the physical degree of freedom and implements the
string tension,

Ẽ [s]
i j (η) = ηsδi jδp(i),s. (12)

With these local tensors, the decorated TNS can be con-
structed as

|�(g, η)〉 = 1√
N (g, η)

∑
{se,iv}

tTr
(⊗

v
Ṽ [iv ](g)

⊗
e

Ẽ [se](η)
)|{se, iv}〉, (13)

where Ṽ can be ṼA or ṼB depending on which sublattice the
vertex belongs to, and N (g, η) is the squared norm of the
decorated TNS.

V. PARENT HAMILTONIAN

So far, we have obtained a continuously parameterized
family of TNS that interpolates between different fixed-point
wavefunctions. We can also show that the states in Eq. (13) are
indeed ground states of a local Hamiltonian, which depends
smoothly on the same set of parameters. More precisely, there
exists a frustration-free, ZT

2 -symmetric parent Hamiltonian
that is a sum of local projectors,

H (g, η) =
∑

v

Av +
∑

p

Bp(g, η) +
∑

v

Qv (g), (14)

where g ∈ [−1, 1] and η > 0. Each vertex projector Av , analo-
gous to those in Eq. (4), projects onto the +1 eigenspace of the
product of Pauli Z around the vertex v. The plaquette projector
Bp(g, η) and the vertex projector Qv (g) act on the spins of a
plaquette and around a vertex, respectively (see Fig. 2). Let
v(e), v′(e) be the two vertices connected via the edge e, the
projectors are explicitly given by

Bp(g, η) = Kp

2
sech

⎛
⎝∑

e∈p

[τ (g)Ze(1 − Zv(e)Zv′(e) ) + λ(η)Ze]

⎞
⎠,

Qv (g) = (1 − Av )Mv

2
sech

(
τ (g)

∑
e∈v

(1 − Ze)Zv(e)Zv′(e)

)
,

(15)

with

Kp = −
∏
e∈p

Xe +
∏
e∈p

e−τ (g)Ze(1−Zv(e)Zv′ (e) )η−Ze ,

Mv = −Xv +
∏
e∈v

e−τ (g)(1−Ze )Zv(e)Zv′ (e) , (16)

where λ(η) = log(η) and τ (g) = − log(g)/4. Although for
g � 0, the complex-valued logarithmic function τ (g) encoun-
ters a singularity and branch points, the plaquette and the
vertex projectors in Eq. (15) remain analytic in g for g ∈
(−1, 1), i.e., all the singularities are removable. We present
the details of the derivation in Appendix A.
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At g = 1 and η = 1, we recover Bp(1, 1) = Bp as in
Eq. (4). The vertex term Qv (1) = (1 − Av )(1 − Xv )/2 fixes
the spin on the vertex v to be in the state |+〉 in the ground
state. The Hamiltonian is thus the same as the toric code
Hamiltonian Eq. (4) with the additional vertex terms. For g =
1 and η > 0, when removing the Qv term, the Hamiltonian is a
parent Hamiltonian for the toric code ground state with string
tension shown in Eq. (5). An alternative parent Hamiltonian
is given in Ref. [50]. At g = −1 and η = 1, we recover the
fixed-point Hamiltonian for the SET-TC phase,

Bp(−1, 1) = 1

2

⎛
⎝1 −

∏
e∈p

Xee−iπZe(1−Zv(e)Zv′ (e) )/4

⎞
⎠,

Qv (−1) = 1 − Av

2

(
1 − Xv

∏
e∈v

eiπ (1−Ze )Zv(e)Zv′ (e)/4

)
. (17)

Note that the projector (1 − Av ) in Qv (−1) is necessary for
Qv (−1) being Hermitian.

The Hamiltonian also has the duality H (−g, η) =
UH (g, η)U † = e−iπHpivot/8H (g, η)eiπHpivot/8, where U is a
finite-depth local quantum circuit given in Eq. (9) and Hpivot is
an example of a pivot Hamiltonian [35]

Hpivot =
∑
e∈E

(1 − Ze)(1 − Zv(e)Zv′(e) ), (18)

where E denotes the set of all the edges. The Hamiltonians
at g > 0 and g < 0 thus share the same spectrum. At the line
g = 0, the Hamiltonian has an enhanced U (1) pivot symmetry
generated by Hpivot, i.e., [exp(iθHpivot ), H (0, η)] = 0,∀θ ∈ R,
see Appendix B for the proof. The U (1) symmetry manifests
itself in the O(2) criticality along the SET transition line,
which we discuss in the next section (see Fig. 4).

By tuning the parameter g from −1 to +1, the system can
change from one SET phase to another SET phase. However,
an intermediate phase generically exists between the two SET
phases. The parameter η can be tuned to avoid such an inter-
mediate phase so that a direct transition between the two SET
phases is possible.

VI. PHASE DIAGRAM AND ORDER PARAMETERS

To obtain the phase diagram of the system, we extract
the correlation length of the ground state by the corner
transfer matrix renormalization group algorithm [56,57] (see
Appendix F for details), and the resulting phase diagram is
shown in Fig. 4(a). The system hosts three distinct phases,
the SET-TC phase with Z2 topological order and a nontrivial
ZT

2 symmetry fractionalization, the TC phase with Z2 topo-
logical order and trivial symmetry fractionalization, and a
totally trivial phase without topological order. Note that the
norm of each MPS loop inside the wavefunction |�(g, η)〉
contributes weight to the amplitude of the configuration (an
explicit expression for the amplitude is given in Appendix C).

The universality class of the phase boundaries can be deter-
mined by mapping the squared norm of the decorated TNS to
the partition function of classical statistical models. As shown
in Appendix C, along g = ±1, the decorated TNS can be
mapped to the 2D classical Ising model, the two critical points
are located at (g, η) = (±1, 3−1/4). For g �= 0 and g �= ±1, the
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FIG. 4. (a) Phase diagram of the decorated TNS spanned by the
string tension η and a tuning parameter g. The central charge is
denoted by c. The phase transitions along vertical lines at g = ±1,
highlighted by the blue dots, occur at η = 3−1/4. The tricritical point
is at (g, η) = (0, 21/4). (b) The topological entanglement entropy of
a minimally entangled state along η = 1. (c) The membrane order
parameters from the minimally entangled states 1 and e.

model is mapped to an anisotropic Ashkin-Teller model (see
Appendix D). The phase boundary between the TC (SET-TC)
phase and the trivial phase is thus described by the (2 + 0)D
Ising CFT with a central charge c = 1/2. Along g = 0, the
decorated TNS can be mapped to the classical O(2) loop
model, which has a high-temperature gapped phase and a
low-temperature critical phase described by the compactified
free boson CFT with central charge c = 1 [58–60]. The tran-
sition between low- and high-temperature phases at η = 21/4

is of the Kosterlitz-Thouless (KT) type. Therefore, the phase
boundary between the SET-TC and the TC phase, including
the tricritical point, has a central charge c = 1.

We further characterize these phases using nonlocal order
parameters. The presence of an intrinsic topological order can
be detected by the topological entanglement entropy (TEE)
[33,34]. The entanglement entropy of a topological state sat-
isfies S ∼ aN − γ , where γ is a universal correction called
TEE, a is a nonuniversal coefficient from the area law, and
N is the length of the entanglement bipartition. On a torus,
the TEE has to be extracted from the minimally entangled
states (MES) [61], which are topologically degenerate ground
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states in a special basis such that the entanglement entropy
is minimal. There are four MES |�α〉 labeled by the anyons
α = 1, e, m, f .

Instead of the von Neumann entropy, we consider the
Renyi entropy, which is easier to calculate using tensor-
network methods. As shown in Fig. 3(b), for a system on
an infinitely long cylinder with circumference N , the n-Renyi
entropy is

S(n)
α = 1

1 − n
log Tr

(
ρn

α

)
, ρα = TrR |�α〉 〈�α| , (19)

where TrR is the partial trace over all physical degrees of
freedom of the MES |�α〉 on the right half of the infinite
cylinder. The topological Renyi entropy is independent of n
[62], we choose n = 2 for our calculation. In Appendix H, we
exploit the tensor-network approach to calculate the TEE γ

directly in the limit N → ∞ without extrapolation. The TEE
obtained from a boundary MPS with bond dimension χ = 20
is shown in Fig. 4(b). In the SET-TC phase and the TC phase,
the four MES |�α〉 give the same TEE γ = log 2 as expected
from the Z2 topological order. In the trivial phase, the ground
state of the system becomes unique on a torus and the MES
states are no longer well-defined. In this unique ground state,
we indeed obtain γ = 0, indicating the absence of topological
order.

As the SET-TC phase and the TC phase share the same
TEE, we can further distinguish the two using the membrane
order parameter (MOP), which captures the symmetry frac-
tionalization pattern of SET phases [29]. In our case, the
system has an additional Z2 symmetry generated by a global
spin flip on the vertices

∏
v Xv [it follows from the additional

global spin flip symmetry in the 1D model Eq. (1)]. This
allows us to define a MOP on an infinitely long cylinder as

Oα = lim
N→∞

(
〈�α|

∏
v∈R

Xv |�α〉
)1/N

, (20)

where |�α〉 is an MES, N is the circumference of the cylinder,
and R is the set of vertices of the right part of the cylinder. It
can be shown that the MOP has a selection rule and dictates
that Oα = 0 if the symmetry fractionalizes nontrivially on
the anyon α [63]. As shown in Appendix G, the calculation
of the MOP is similar to that of the TEE, and we can use
tensor-network methods to directly calculate Oα in the limit
N → ∞ without extrapolation. Figure 4(c) shows the MOP
obtained from a boundary MPS with χ = 20. Since the sym-
metry fractionalization on 1 and e is identical to that on m
and f , we have O1 = Om and Oe = O f . We only show O1
and Oe in Fig. 4(c). In the TC phase, O1 and Oe are nonzero,
implying no symmetry fractionalization on the anyons. In the
SET-TC phase, Oe vanishes, indicating that the symmetry
fractionalizes on the e and f anyons.

An alternative way to distinguish the SET-TC phase from
the TC phase is by examining the entanglement spectrum. In
the SET-TC phase, the time-reversal symmetry represented
by T on ρ1 and ρm satisfies T 2 = 1, whereas the time-
reversal symmetry on ρe and ρ f is represented projectively,
i.e., T 2 = −1, due to symmetry fractionalization, as shown in
Appendix H. Therefore, from Kramers’ theorem, each level

of the entanglement spectra in the e and f sectors is evenfold
degenerate in the SET-TC phase, which is an important feature
inherited from 1D nontrivial SPT states [6].

VII. DISCUSSION AND OUTLOOK

In this paper, we construct a family of 2D TNS that
corresponds to the exact ground states of ZT

2 -symmetric
Hamiltonians. In particular, the system describes a direct con-
tinuous quantum phase transition between two distinct SET
phases with ZT

2 time-reversal symmetry. Although we expect
that these constructed ground states require fine tuning to
be reached, they serve as a useful starting point for a more
general understanding of the SET phase transitions.

Along the phase boundary separating the two SET phases,
we obtain a particularly interesting class of toy states, which
are ground states of local Hamiltonians. For example, one
of these states is |�(0,

√
2)〉 ∝ ∑

C 2N (C)/2 |C〉, where C la-
bels the configurations of closed loops decorated with GHZ
states, and N (C) denotes the total number of loops in C. The
power-law decay of correlation functions is revealed by non-
local operators [65]. Moreover, these states have an area-law
entanglement entropy up to a subleading logarithmic correc-
tion [66]. They serve as interesting examples for studying
topological critical phases [65,67,68], whose universality is
characterized by nonlocal correlators.

The phase diagram of the system can be further extended.
As we discuss in Appendix D, by introducing Ising cou-
plings to vertex spins, it is possible to continuously tune the
system along a tensor-network solvable path to ferromag-
netic or antiferromagnetic phases, where the ZT

2 symmetry
is spontaneously broken. By the quantum-classical mapping
mentioned in Sec. V, the phase boundaries of these transi-
tions can be shown to align with the critical regimes of an
anisotropic Ashkin-Teller model.

The construction can be straightforwardly generalized to
enrich the double-semion model [46,47]. When restricted to
the closed loop subspace, the toric code model and the double-
semion model are related by a diagonal unitary transformation
UTC-DS = ∑

C (−1)N (C) |C〉 〈C|, where C is a configuration of
decorated loops. Because UTC-DS commutes with the decora-
tion procedure (we state this more precisely in Appendix A),
the phase diagram in Fig. 4(a) is preserved under the unitary
transformation. In the nontrivial SET double-semion phase,
the symmetry fractionalizes over the semions and the anti-
semions. For the gauge group Z2 and the global symmetry
ZT

2 , the SET classification based on Abelian Chern-Simons
theories is given by the third cohomology group H3(Z2 ×
ZT

2 ,U (1)) = Z2 × Z2 [12,16]. Here the first Z2 index orig-
inates from the Dijkgraaf-Witten classification and it labels
two topological orders described by the toric code and double-
semion theories. The second Z2 labels different symmetry
fractionalization patterns over the anyons under time-reversal
symmetry. Our construction thus generates direct phase tran-
sitions between all of those with the same topological order.

By a similar procedure, decorating the domain walls in
2D Z2 SPT phases gives rise to SPT phases protected by
the symmetry Z2 × ZT

2 [27]. By a duality transformation,
the SET-TC and the TC phases can be mapped to the 2D
Z2 × ZT

2 SPT phases (see Ref. [25] and Appendix D), the

043078-6



QUANTUM PHASE TRANSITION BETWEEN SYMMETRY … PHYSICAL REVIEW RESEARCH 5, 043078 (2023)

tensor-network solvable phase diagram Fig. 4(a) is thus dual
to a Z2 × ZT

2 -protected phase diagram, where the two SET
phases are replaced by two 2D Z2 × ZT

2 SPT phases and the
trivial phase is replaced by a ferromagnetic phase in which the
Z2 symmetry is spontaneously broken.

A key ingredient for the construction is the existence of
an MPS path that interpolates between the 1D SPT phases
with a constant bond dimension. It will be interesting to apply
the proposed construction to the generalization of such MPS
paths, such as the MPS skeletons [49], to obtain a broader
class of SET phases and their phase transitions. The simplicity
of the TNS description of the ground states raises the question
of whether these states admit an efficient quantum circuit
representation and are easy to study on a quantum computer,
similar to the 1D MPS path [69]. While the SET fixed points
may be efficiently prepared [70,71], the existence of an effi-
cient state preparation near or at the critical points remains an
intriguing open question.

Data and materials availability: Raw data and simulation
codes are available in Zenodo [72].
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APPENDIX A: PARENT HAMILTONIANS AWAY
FROM THE FIXED POINTS

In this Appendix, we construct a frustration-free parent
Hamiltonian, whose ground states are exactly the decorated
TNS. The parent Hamiltonian depends smoothly on the TNS
parameters.

1. Warm-up: 1D case

Let us illustrate the idea of the parent Hamiltonian con-
struction with a 1D example, which will later be generalized
to the 2D case. One can verify that the MPS |ψ (g)〉 in Eq. (2)
that smoothly depends on some parameter g ∈ [−1, 1] can
be reparameterized as an imaginary-time evolved state. More
precisely, when g ∈ (0, 1] it satisfies that |ψ (g)〉 = |φ(τ (g))〉,
where τ (g) = − log(g)/4 and the 1D imaginary-time evolved
state is given by

|φ(τ )〉 ∝ eτ
∑

i ZiZi+1 |+ + · · · +〉 . (A1)

By a direct substitution, we find the relation

Ki |φ(τ )〉 = 0, ∀i; Ki = −Xi + e−2τZi−1Zi−2τZiZi+1 . (A2)

Notice that Ki satisfies

K2
i = 2 cosh (2τZi−1Zi + 2τZiZi+1)Ki, (A3)

and

[cosh (2τZi−1Zi + 2τZiZi+1), Ki] = 0. (A4)

This suggests that we can define a projector

Pi = 1
2 sech(2τZi−1Zi + 2τZiZi+1)Ki, (A5)

such that P2
i = Pi and Pi |φ(τ )〉 = 0. One choice of a local

parent Hamiltonian for τ � 0 is, therefore, h = ∑
i Pi with a

ground-state energy of zero.
To obtain a Hamiltonian smooth in g ∈ [−1, 1], we evalu-

ate Pi in Eq. (A5) in terms of g, this yields

2(1 + g2)Pi − 2(1 + g2)

= −gxXi − gzz

2
(Zi−1Zi + ZiZi+1) + gzxzZi−1XiZi+1, (A6)

where gx = (1 + g)2, gzz = 2(1 − g2) and gzxz = (1 − g)2. A
parent Hamiltonian analytic in g is therefore given by

H (g) = 2(1 + g2)
∑

i

(Pi − 1)

= −gx

∑
i

Xi − gzz

∑
i

ZiZi+1 + gzxz

∑
i

Zi−1XiZi+1,

(A7)

with a ground-state energy density of −2(1 + g2). This
Hamiltonian is exactly Eq. (1) found in Ref. [48]. While in
the derivation we assume g ∈ (0, 1], since all the functions
depend analytically on g for g ∈ {a + iε|a ∈ R, ε ∈ (−1, 1)},
by analytic continuation H (g) remains to be a valid parent
Hamiltonian for g ∈ [−1, 1].

2. 2D parent Hamiltonian

Since each configuration in the 2D wavefunction consists
of loops of 1D chains (A1), the 2D ground state also admits
a representation in terms of imaginary time evolution starting
from the fixed point of the TC phase,

|�(g, η)〉 ∝
(∏

e∈E

eτ (g)[(1−Ze )Zv(e)Zv′ (e)+Ze]/2ηZe/2

)
|�(1, 1)〉 ,

(A8)
where τ (g) = − log(g)/4 � 0 and g ∈ (0, 1]. Note that the
alternative interpretation implies that the decoration (imagi-
nary time evolution) commutes with any operators diagonal in
the computational basis, including the unitary transformation
UTC-DS discussed in Sec. VI that maps between the toric code
ground state and the double-semion ground state. A phase
diagram of the same structure as Fig. 4(a) can, therefore, also
be obtained by enriching the double-semion model.

Analogously to the 1D case shown in Eq. (A2), it can be
verified that

Kp |�(g, η)〉 = 0, ∀p;

Kp = −
∏
e∈p

Xe +
∏
e∈p

e−τ (g)Ze(1−Zv(e)Zv′ (e) )η−Ze . (A9)
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Similar to Eqs. (A3) and (A4), we can obtain a local plaquette
projector for each plaquette p,

Bp(g, η)

= 1

2
sech

⎛
⎝∑

e∈p

[τ (g)Ze(1 − Zv(e)Zv′(e) ) + λ(η)Ze]

⎞
⎠Kp,

(A10)

where λ(η) = log(η). The ground state |�(g, η)〉 satisfies
Bp(g, η) |�(g, η)〉 = 0 for all p. Recall that |�(g, η)〉 can be
understood as a linear combination of closed-loop configu-
rations weighted by some loop tension, where each loop is
the 1D MPS state that depends smoothly on a parameter for
g ∈ [−1, 1].

The operators

sech

⎛
⎝τ

∑
e∈p

Ze(1 − Zv(e)Zv′(e) ) + λZe

⎞
⎠,

and

sech

⎛
⎝∑

e∈p

[
τZe(1 − Zv(e)Zv′(e) ) + λZe

]⎞⎠
×

∏
e∈p

e−τZe(1−Zv(e)Zv′ (e) )−λZe ,

are both diagonal in the computational basis with di-
agonal elements of the form 1/ cosh(4n1τ + 2n2λ) and
e−4n1τ−2n2λ/ cosh(4n1τ + 2n2λ) for some integers n1, n2 ∈
[−3, 3]. Inserting the reparameterization τ (g) = − log(g)/4,
the matrix elements can be written as

1

cosh(4n2τ + 2n2λ)
= 2gn1

η2n2 + g2n1η−2n2
,

(A11)
e−4n1τ−2n2λ

cosh(4n2τ + 2n2λ)
= 2g2n1η−2n2

η2n2 + g2n1η−2n2
,

which are analytic functions of g for all η > 0 and g = a + iε,
where a, ε ∈ R and |ε| < δ(λ). Here δ(λ) is the positive real
number that corresponds to the smallest distance between the
real line and the zeros of cosh(4n1τ + 2n2λ) in the complex
plane. Therefore, the projector Eq. (A10) can be analytically
continued to η > 0 and g ∈ [−1, 1]. For g < 0, the logarith-
mic function τ (g) will encounter a branch cut. As we have
shown, all the singularities are removable regardless of how
the function is defined across the branch cut.

A similar analysis can be performed for the vertex opera-
tors. We have the relation

(1−Av )Mv |�(g, η)〉 = 0, ∀v; (A12)

Mv = −Xv +
∏
e∈v

e−τ (g)(1−Ze )Zv(e)Zv′ (e) . (A13)

Note that we include an additional projector (1 − Av ) to
project out the terms that violate the closed-loop constraint.

The vertex projector at vertex v is given by

Qv (g) = (1 − Av )

2
sech

(
τ (g)

∑
e∈v

(1 − Ze)Zv(e)Zv′(e)

)
Mv.

(A14)

Similar to the plaquette projectors, inserting τ (g) =
− log(g)/4 in Eq. (A14) results in a form analytic for g
close to the real axis, allowing us to analytically continue
the function to g ∈ [−1, 1]. We can define the analytically
continued projector for g ∈ [−1, 1].

Therefore, a parent Hamiltonian for η � 0 and g ∈ [−1, 1]
is, as claimed in the main text,

H (g, η) =
∑

v

Av +
∑

p

Bp(g, η) +
∑

v

Qv (g), (A15)

with a ground-state energy of zero. At the fixed points (g, η) =
(±1, 1), we recover the fixed-point Hamiltonians as given
in the main text. As a consistency check of the analytic
continuation, using the relation Eq. (B14), it can be shown
that the imaginary time-evolved state Eq. (A8) satisfies the
relation |�(−g, η)〉 = U |�(g, η)〉, where g ∈ [−1, 1] and U
is the quantum circuit defined in Eq. (9). It follows that the
analytically continued state (A8) is proportional to the TNS
defined in the main text when g < 0.

Indeed, the parent Hamiltonian is not unique. For example,
Eqs. (A9) and (A12) suggest that we may use (g3Kp)2 and
(1 − Av )(gMv )2 to construct another parent Hamiltonian that
depends smoothly on g and has a ground-state energy of zero.
Nonetheless, the parent Hamiltonians will share the same low-
energy physics.

APPENDIX B: U (1) PIVOT SYMMETRY AT g = 0

In Ref. [35], it is found that the 1D Ising-cluster model
shown in Eq. (1) has a U (1) pivot symmetry at g = 0. In this
subsection, we show that the 2D Hamiltonian in Eq. (14) also
has a U (1) pivot symmetry at g = 0. We first derive the U (1)
pivot symmetry for the 1D case as a warm-up.

1. U (1) pivot symmetry for 1D Hamiltonian

We start from a local term Pi(g = 0) for the 1D parent
Hamiltonian shown in Eq. (A5). At g = 0, τ → ∞, it can be
derived that

Pi ≡ lim
τ→∞ sech(2τZi−1Zi + 2τZiZi+1) = 1 − Zi−1Zi+1

2
,

(B1)
and Pi(g = 0) = PiKi/2, [Pi, Ki] = 0. Moreover, notice that
Pi(Zi−1Zi + ZiZi+1) = 0 and Pi only acts on three sites, we
have [

Pj (g = 0),
∑

i

ZiZi+1

]
= 0, ∀ j. (B2)

Above equation implies that the generator of the U (1) pivot
symmetry can be defined as HIsing = ∑

i ZiZi+1, such that

[HIsing, H (g = 0)] = 0, H (g = 0) =
∑

i

Pi(g = 0). (B3)
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The U (1) pivot symmetry is Upivot(θ ) = eiθHIsing , θ ∈ R. The
Hamiltonian at g = 0 is invariant under Upivot(θ ),

Upivot(θ )H (g = 0)U †
pivot(θ ) = H (g = 0), ∀θ. (B4)

When θ = π/4, one can check that

Upivot

(
π

4

)
= e

π i
4

∑
n ZnZn+1 = e

π i
4

∑
n(1−2sn )(1−2sn+1 )

= e
π iN

4 e−π i
∑

n sn eπ i
∑

n snsn+1

= e
π iN

4

∏
n

Zn

∏
n

CZn,n+1,

where N is the length of the 1D chain and si = (1 − Zi )/2 is
the transformation from Ising spins Zi = ±1 to qubits si =
0, 1. Therefore the pivot symmetry at θ = π/4 transforms
between the trivial and nontrivial SPT state,

Upivot

(
π

4

)
H (g)U †

pivot

(
π

4

)
= H (−g). (B5)

2. U (1) pivot symmetry for 2D parent Hamiltonian

For the 2D case, the U (1) pivot symmetry can be derived
similarly. We begin from Bp(g, η) shown in Eq. (A10). At g =
0, τ → ∞, we have

Pp ≡ lim
τ→∞ sech

⎛
⎝τGp + λ(η)

∑
e∈p

Ze

⎞
⎠

= sech

⎛
⎝∑

e∈p

λ(η)Ze

⎞
⎠δGp,0,

where

Gp =
∑
e∈p

Ze(1 − Zv(e)Zv′(e) ). (B6)

Therefore, Bp(g = 0, η) = PpKp/2, [Pp, Kp] = 0. Moreover,
using PpGp = 0, it follows that

[
Bp(g = 0, η),

∑
e∈E

Ze(1 − Zv(e)Zv′(e) )

]
= 0, ∀p. (B7)

We can deal with the vertex terms Qv (g) shown in
Eq. (A14) similarly. At g = 0, τ → ∞, another projector can
be derived,

Pv ≡ lim
τ→∞ sech(τGv ) = δGv ,0, Gv =

∑
e∈v

(1 − Ze)Zv(e)Zv′(e).

(B8)

Analogous to the derivation of Eq. (B7), we find

[
Qv (g = 0),

∑
e∈E

(1 − Ze)Zv(e)Zv′(e)

]
= 0. (B9)

To construct the U (1) symmetry generator, we make use of
the additional observation that[

Bp(g, η),
∑
e∈E

(1 − Zv(e)Zv′(e) )

]

=
[

Qv (g),
∑
e∈E

(1 − Ze)

]
= 0. (B10)

Therefore, the generator H (2D)
pivot of the U (1) pivot symmetry

can be constructed as

H (2D)
pivot =

∑
e

(1 − Ze)(1 − Zv(e)Zv′(e) ),

[
H (2D)

pivot , H (g = 0, η)
] = 0. (B11)

The 2D parent Hamiltonian H (g = 0, η) is invariant under the
transformation U (2D)

pivot (θ ) = exp(iθH (2D)
pivot ),

U (2D)
pivot (θ )H (g = 0, η)U (2D)†

pivot (θ ) = H (g = 0, η), θ ∈ R.

(B12)

Analogous to the 1D case, at θ = π/8, the U (1) pivot
symmetry realizes a unitary transformation,

U (2D)
pivot

(
π

8

)
H (g, η)U (2D)†

pivot

(
π

8

)
= H (−g, η). (B13)

Via the transformation from Ising spins to qubits se = (1 −
Ze)/2 and sv = (1 − Zv )/2, U (2D)

pivot (π/8) can be expressed in
terms of CCZ gates,

U (2D)
pivot

(π

8

)
= exp

[
π i

8

∑
e

(1 − Ze)(1 − Zv(e)Zv′(e) )

]

= exp

[
π i

2

∑
e

se(sv(e) + sv′(e) − 2sv(e)sv′(e) )

]

= exp

[
π i

2

∑
e

se(sv(e) + sv′(e) )

] ∏
e

CCZv(e)v′(e)e

=
∏
v

exp

(
iπ

2
sv

∑
e∈v

se

) ∏
e

CCZv(e)v′(e)e

=
∏
〈ee′〉

exp (iπsv(e,e′ )sese′ )
∏

e

CCZv(e)v′(e)e

=
∏
〈ee′〉

CCZv(e,e′ )ee′
∏
〈vv′〉

CCZvv′e(v,v′ ). (B14)

The second to last line is obtained by substituting the re-
lation

∑
e∈v se = 2

∑
〈ee′〉∈v sese′ , which is only valid in the

closed-loop subspace, into the third last line. We prove that
U (2D)

pivot (π/8) is equivalent to the unitary transformation (9) in
the main text.

APPENDIX C: MAPPING THE SET TNS NORM
TO A PARTITION FUNCTION

In this Appendix, we show that along g = ±1, the deco-
rated TNS can be mapped to the 2D classical Ising model,
and along g = 0 they can be mapped to the 2D classical O(2)
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FIG. 5. (a) Reduction of the double tensor bond dimension from
D2 = 9 to 3. (b) The nonzero entries of the reduced double tensor,
where blue dashed lines represent the one-dimensional odd bond and
red solid lines represent the two-dimensional even bond.

loop model. The essence of the quantum-classical mapping is
identifying the squared norm of the decorated TNS with the
partition function of an exactly solved 2D classical statistical
model.

When decorating the MPS onto the loops of the toric
code, the norm of the MPS, which depends on the length
of the MPS, will affect the coefficients in the 2D decorated
wavefunction. We first derive the norm of the MPS defined in
Eqs. (2) and (3). The transfer operator can be defined from the
MPS tensor

T =
∑

i

M[i] ⊗ M̄[i], (C1)

whose eigenvalues are (1 + g, 1 − g, 0, 0). The squared norm
of the periodic MPS (2) with a length L isN (g) = (1 + g)L +
(1 − g)L.

Then, let us consider the norm of the decorated TNS, which
is a tensor network generated by the double tensor in Fig. 5(a).
We duplicate the physical degrees of freedom at the edges
so that the tensor looks more symmetric. Because the virtual
degrees of freedom in the bra and ket layers have the same
parity, we can reduce the bond dimension of the double tensor
from D2 = 9 to 5. The bond dimension 5 is a direct sum of a
one-dimensional even bond and a four-dimensional odd bond.
The four-dimensional odd bonds support the MPS transfer
operator (C1). However, since the MPS transfer operator has
two zero eigenvalues, we can further reduce the dimension of
an even bond from 4 to 2 by diagonalizing the MPS transfer
operator. Finally, the bond dimension of the double tensor is
reduced to 3 and its nonzero entries are given in Fig. 5(b).

From the reduced double tensor shown in Fig. 5, there
are two kinds of loops with labels α = 1, 2 and loop tension
(1 ± g)η2, respectively. Therefore, the squared norm of the
decorated TNS (13) is given by

N (g, η) = 2Nv

∑
C

∏
c∈C

[(
η2 + gη2

2

)lc

+
(

η2 − gη2

2

)lc
]
,

(C2)

where Nv is total number of vertices, C is a given closed loop
configuration, and c ∈ C is a closed loop in C, and lc is the
length of a given loop c.

When g = 0,±1, the squared norm of the decorated TNS
becomes the partition function of the classical O(n) loop mod-
els [58,60]

Z(n, K ) =
∑

C

nN (C)KL(C), (C3)

where N (C) is the total number of loops in C, L(C) is the total
length of all loops in C, n is called the loop fugacity and K is
the loop tension. The position of the critical point Kc and the
central charge c at the critical point are [59]

Kc = (2 + √
2 − n)−1/2, c = 1 − 6(h − 1)2

h
,

h = − 1

π
arccos

(
− n

2

)
+ 1. (C4)

When g = ±1, the squared norm (C2) of the decorated
TNS is equivalent to the partition function of the O(1) loop
model

N (g = ±1, η) ∝
∑

C

η2L(C) = Z(1, η2), (C5)

which is also equivalent to the Ising model on a triangular lat-
tice. The critical point is at ηc = 3−1/4 ≈ 0.7598 and c = 1/2.
When g = 0, the squared norm (C2) of the decorated TNS is
equivalent to the partition function of the O(2) loop model,

N (g = 0, η) ∝
∑

C

2N (C)(η2/2)L(C) = Z(2, η2/2). (C6)

It is well known that the O(2) loop model is qualitatively
equivalent to the classical XY model. The critical point ηc =
21/4 ≈ 1.189 is a Kosterlitz-Thouless phase transition point
with central charge c = 1. When η < ηc, it is the gapped
dilute loop phase. When η > ηc, it is the gapless dense loop
phase described by a compactified free boson CFT with c = 1.
The O(2) symmetry of the loop model is consistent with the
U (1) pivot symmetry of the parent Hamiltonian shown in
Appendix B.

APPENDIX D: 2D Z2 × ZT
2 SPT STATES AND

CORRESPONDING PARTITION FUNCTION

A duality transformation exists between the 2D trivial
(nontrivial) Z2 SPT model and the toric code (double-semion)
model [25], which is given by

Ze = Zp(e)Zp′(e),
∏
e∈p

Xe = Xp, (D1)

where the Zp, Xp are Pauli operators located at plaquettes and
p(e), p′(e) are two plaquettes adjacent to edge e. Applying the
duality transformation to the imaginary time evolved wave-
function (A8) describing ZT

2 SET phase transitions gives rise
to the following wavefunction describing Z2 × ZT

2 SPT phase
transitions:

|�SPT〉
∝

∏
e∈E

e
τ
2 Zv(e)Zv′ (e)+( τ

2 −λ)Zp(e)Zp′ (e)− τ
2 Zv(e)Zv′ (e)Zp(e)Zp′ (e) |+〉v |+〉p ,

(D2)
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where |+〉v (|+〉p) is a product state |+ + · · · +〉 of all vertex
(plaquette) qubits. The duality transformation preserves the
structure of the phase diagram, as shown in Ref. [40]. The TC
phase is mapped to the trivial Z2 × ZT

2 SPT phase and the
SET-TC phase is mapped to a nontrivial Z2 × ZT

2 SPT phase.
The trivial phase of the phase diagram shown in Fig. 4(a) is
mapped to the symmetry broken phase, in which the Z2 spin
flip symmetry of plaquette spins is spontaneously broken.

The squared norm of the wavefunction (D2) can be ex-
pressed as

|| |�SPT〉 ||2

∝
∑

{Zp,Zv}

∏
e∈E

eτZv(e)Zv′ (e)+(τ−2λ)Zp(e)Zp′ (e)−τZv(e)Zv′ (e)Zp(e)Zp′ (e) .

(D3)

It can be interpreted as the partition function of the Ashkin-
Teller model, which consists of two coupled Ising models, one
has Ising spins {Zv} on the honeycomb lattice and the other has
Ising spins {Zp} on the triangular lattice. This partition func-
tion is equivalent to the partition function (C2). This suggests
that we can also add the additional deformation

∏
e eβZv(e)Zv′ (e)

to the original SET model and obtain a ferromagnetic phase or
antiferromagnetic phase in which the ZT

2 symmetry is broken
spontaneously.

APPENDIX E: REAL SYMMETRIC TENSORS
AND SYMMETRY FRACTIONALIZATION

Here, we show that the MPS tensors have a real and sym-
metric form under exchanging two virtual indices such that
the single-line tensors of the decorated TNS are real and have
a bond dimension D = 3. This lowers the numerical cost. We
apply a gauge transformation to MPS tensors in the two-site
unit cells

(E1)

where the gauge transformation is given by

N =
(

g −g
−g 1

)
, N−1 = 1

g(1 − g)

(
1 g
g g

)
. (E2)

The real and symmetric MPS tensors in a two-site unit cell are

M[0]
A = M[0]N =

(
0 0
0 1 − g

)
,

M[1]
A = M[1]N =

(
g(1 − g) 0

0 0

)
,

M[0]
B = N−1M[0] = 1

g(1 − g)

(
g g
g g

)
,

M[1]
B = N−1M[1] = 1

g(1 − g)

(
1 g
g g2

)
. (E3)

At g = 0 and 1, because the MPS is noninjective, the gauge
transformation N is not well defined.

Next, we consider the ZT
2 symmetry of the MPS tensors

MA and MB in a unit cell. By applying the ZT
2 symmetry to the

MPS, we find ∑
i

(X )i jM̄
[i]
A = sgn(g)UM[ j]

A U T ,

∑
i

(X )i jM̄
[i]
B = sgn(g)(U T )−1M[ j]

B U −1,

∑
ik

(X )i j (X )kl M̄
[i]
A M̄[k]

B = UM[ j]
A M[l]

B U −1, (E4)

where

U =
(

0 sgn(g)
√|g|

1/
√|g| 0

)
, U −1 = sgn(g)U . (E5)

U is the representation of the symmetry operator on the virtual
level. Because UŪ = sgn(g), it is a projective representation
when g < 0.

With the MPS tensors MA and MB, we can construct the
tensors of the decorated TNS shown in Fig. 3(a) and Eq. (11).
The tensors of the decorated TNS have two symmetries, one
originates from the topological order and the other comes
from the ZT

2 symmetry. The symmetry from the topological
order is

(E6)

where Z̃ = 1 ⊕ (−1). Because of Eq. (E4), it can be found
that applying the ZT

2 symmetry to the decorated TNS tensor
gives rise to

(E7)

where Ũ = 1 ⊕ U . Because Ũ is not a symmetric matrix,
we use arrows to differentiate its row and column indices.
Considering that in a unit cell, sign(g) will be canceled, we
have

(E8)

where X ⊗2
v acts on two physical degrees of freedom of two

vertices. Applying the ZT
2 symmetry twice, it can be found

that Ũ ¯̃U = Z̃ . Because a single-line tensor carrying an anyon
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e satisfies

(E9)

applying the ZT
2 symmetry twice on an e anyon gives rise to a

minus sign. The ZT
2 symmetry fractionalizes on the e anyons

(and also on the f anyons).
Note that the decorated TNS can be made to satisfy the

MPO injectivity [73] by grouping the edge and vertex ten-
sors appropriately. The set of virtual matrix-product-operator
(MPO) symmetries corresponding to the action of the phys-
ical symmetry group, including the product MPO symmetry
consisting of Ū , encodes the universal labels of the quantum
phase of the system [24,74].

APPENDIX F: CTMRG AND CORRELATION LENGTH

In this Appendix, we show the basic idea of the CTMRG
algorithm and the results of the correlation length. At first, we
use a simplified notation of the double tensors

(F1)

Since the above tensor is not symmetric under exchanging left
and right (or upper and lower) indices, the transfer operator
of the decorated TNS is non-Hermitian. Therefore, we ap-
proximate the environment of the blocked double tensor in
terms of four edge tensors and four corner tensors with a bond
dimension χ [56],

(F2)

These edge tensors and corner tensors can be obtained us-
ing the CTMRG algorithm [57]. The correlation length ξi =
−1/ log(t̂i/t̂0) can be calculated from the largest eigenvalue t̂0
and the (i + 1)th largest eigenvalue t̂i of the transfer operator
T̂ shown in Eq. (F2).

We scan the whole phase diagram by calculating the cor-
relation length ξ1 using the CTM environment with bond
dimension χ = 20. The results shown in Fig. 6(a) clearly in-
dicate the phase boundaries. We notice that the position of the
tricritical point obtained from the correlation length is not very
close to the exact result (g, η) = (0, 21/4) ≈ (0, 1.1892). This
is reasonable because it is notoriously hard to numerically
determine the KT phase transition point. The reason is that
there is a logarithmic correction to the position of the KT
phase transition point due to the finite bond dimension χ [75],

ηc(χ ) = ηc + a log
[
ξ−2

1 (χ )
]
, (F3)

(a)

0

10

20

(b) (c)

(d) (e)

FIG. 6. (a) The correlation length ξ1 obtained from T̂ shown
in Eq. (F2). (b) The correlation length ξ1 obtained from T̂ along
g = 0. (c) The correlation length ξ2 obtained from T̂ along g = 0.
(d) The entanglement entropy S obtained from corner matrices. (e)
Extrapolating the position of the tricritical point. ηc(χ ) is obtained
from the peaks in (c).

where ξ1(χ ) is the correlation length from a finite bond di-
mension χ , ηc(χ ) is the location of the phase transition from
a finite χ , and a is a constant. We can calculate the correlation
length ξi(χ ) along g = 0 for various large bond dimensions
χ using the reduced tensor shown in Fig. 5. As shown in
Fig. 6(b), no signature of the phase transition can be found in
ξ1(χ ) and we can not determine ηc(χ ). However, we find that
ξ2(χ ) exhibits peaks, which move towards the exact critical
point with increasing χ [see Fig. 6(c)], indicating that it could
be used to determine ηc(χ ). An alternative way to determine
ηc(χ ) is to use the entanglement entropy S from boundary
MPS or corner tensors of the CTMRG environment [75,76].
As shown in Fig. 6(d), the locations of the peaks in ξ2 and
S coincide, the differences are smaller than 0.0005. Using
Eq. (F3), the position of the tricritical point can be extrapo-
lated, and the result is shown in Fig. 5(e), indicating that a
larger bond dimension is needed to get a more accurate result.

APPENDIX G: CALCULATION OF MEMBRANE ORDER
PARAMETERS USING TENSOR NETWORKS

In this Appendix, we show how to simplify the calculation
of the MOP shown in Eq. (20) using tensor networks. We
define a modified double tensor that sandwiches the symmetry
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operator X ⊗2
v ,

(G1)

Since there is no canonical form, a given 2D TNS is usually
unnormalized, and the MOP has to be expressed as a ratio of
two tensor networks. The tensor network in the numerator of
the ratio is

(G2)

and the tensor network in the denominator of the ratio repre-
sents the norm of the decorated TNS,

(G3)

The entries of the tensors generating the vertical matrix prod-
uct operator (MPO) are

and the matrices inserted along the horizontal lines are

The vertical MPO and horizontal matrices are used to generate
MES in the bra and ket layers. Explicitly, a vertical MPO is a
projector

P± = 1
2 (1⊗N ± Z̃⊗N ), P2

± = P±, (G4)

where P+ (P−) corresponds to the red dot being 1/2 (Z̃/2),
respectively, and N is the circumference of the cylinder.

Then we can contract the tensor networks for the numerator
and denominator. We define the left fixed point σL and the
right fixed points σR of the transfer operators T [see Eq. (G2)],
as well as the left fixed point σ̃L and the right fixed points σ̃R of
the transfer operator T̃ [also see Eq. (G2)]. These fixed points
can be approximated by the MPS

(G5)

where the tensor L and R come from the edge tensors of the
CTM environment shown in Eq. (F2), the tensors represented
by the green dots are Ũ = 1 ⊕ U and U is defined in Eq. (E5).
The fixed points σ̃L and σ̃R of T̃ are derived from the fixed
points σL and σR of T using Eq. (E7). The matrices repre-
sented by blue boxes in Eq. (G5) come from the two horizontal
Z̃ strings in Eq. (G2). However, due to the Z2 Gauss law on
every vertex tensor, the Z̃ strings in the bra and ket layers
cancel each other, and the matrices represented by the blue
boxes become the identity matrix.

With the above fixed points, we can contract the tensor
networks of the numerator and denominator in Eqs. (G2) and
(G3) from the left and right,

(G6)
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The above tensor networks can be further simplified using the
relation P±σL/R = σL/RP±,

(G7)

The channel operators T̃ and T can be defined from the above
tensor networks, and it is easy to find their fixed points,

〈Ũn|T̃ = t̃〈Ũn|, T̃ |D̃n〉 = t̃ |D̃n〉,
〈Un|T = t〈Un|, T |Dn〉 = t |Dn〉. (G8)

Here t, t̃ ∈ R are the dominant eigenvalues of the channel
operators T and T̃ respectively, and we specify the degenerate
channel fixed points with a subscript n. Notice that the channel
fixed points have to be biorthonormalized: 〈Un|Dm〉 = δnm.
Finally, by contracting the tensor networks using the chan-
nel fixed points from above and below, the MOP can be
expressed as

Oα = lim
N−→∞

[(
t̃

t

)N F̃α

Fα

]1/N

=
{

0, if F̃α/Fα = 0
tv/t, if F̃α/Fα �= 0,

(G9)

where

(G10)

In the trivial phase, we find that Fe and Ff are zero, which is
consistent with the fact that e and f are confined and the MES
is no longer well-defined: 〈�e|�e〉 = 〈� f |� f 〉 = 0.

APPENDIX H: DEGENERACY OF ENTANGLEMENT
SPECTRUM AND CALCULATION OF TEE USING

TENSOR NETWORKS

The key object for investigating entanglement properties
of a quantum many-body wavefunction is the reduced density
operator ρ from bipartition. From Ref. [77], it is known that
the spectrum of a reduced density operator ρ of a TNS is
identical to the spectrum of σ = σ T

L σR, where σL and σR are
the fixed points of the transfer operator T of the TNS. The
entanglement spectrum can be obtained by applying minus
the logarithm to eigenvalues of σ . Moreover, considering the
topological sectors, we have

σ1 = σm = P+σ, σe = σ f = P−σ, (H1)

where P± is defined in Eq. (G4). In the SET-TC phase, ap-
plying the ZT

2 symmetry on the TNS reveals the symmetry
transformations on σα,

Ũ ⊗N σ̄α(Ũ −1)⊗N = σα, Z̃⊗NσαZ̃⊗N = σα. (H2)

Since Z̃⊗N P± = ±P±, we have

Ũ ⊗N ˜̄U ⊗N =
{

1, α = 1, m
−1, α = e, f . (H3)

Therefore, we can apply Kramers’ theorem to σe and σ f , and
derive that the entanglement spectra of the e and f sectors are
even-fold degenerate in the SET-TC phase.

In the following, we show a method of directly calculating
the TEE in the limit N → ∞, which is similar to the MOP
calculation. Since the transfer operator T is non-Hermitian,
we calculate the second Renyi entropy using tensor networks.
From Eq. (19), the second Renyi entropy is

S[2]
α = 2 log Tr(σα) − log Tr

(
σ 2

α

)
, (H4)

where there is an extra term 2 log Tr(σα) since usually σα is
not normalized in tensor-network calculations. Tr(σ 2

α ) can be
expressed in terms of a tensor network,

(H5)

The tensor network of Tr(σα) is the right hand side of
Eq. (G7). Defining another channel operator T [2], as shown
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in Eq. (H5), its fixed points U [2]
n , D[2]

n can be found

〈
U [2]

n

∣∣T [2] = t[2]
〈
U [2]

n

∣∣, T [2]
∣∣D[2]

n

〉 = t[2]

∣∣D[2]
n

〉
, (H6)

where the subscript n specifies the degenerate fixed points and
we impose the biorthonormality condition 〈U [2]

k |D[2]
m 〉 = δkm.

We can contract the tensor networks of Tr(σ 2
α ) and Tr(σα)

using their channel fixed points

Tr(σ 2
α ) = lim

N→+∞
tN
[2]F

[2]
α , Tr(σα) = lim

N→+∞
tN Fα, (H7)

where

(H8)

and Fα is defined in Eq. (G10). Substituting these relations into
Eq. (H4), we obtain the second Renyi entanglement entropy in
the limit N → ∞,

S[2]
α = lim

N→∞
N log

t2

t [2]
− log

F [2]
α

F 2
α

, (H9)

from which we can identify the TEE γ = log F [2]
α /F 2

α .
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