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Green’s functions of non-Hermitian systems play a fundamental role in various dynamical processes. Because
non-Hermitian systems are sensitive to boundary conditions due to the non-Hermitian skin effect, open-boundary
Green’s functions are closely related to the non-Bloch band theory. While the exact formula of open-boundary
Green’s functions in single-band non-Hermitian systems proves to be an integral along the generalized Brillouin
zone (GBZ), the proper generalization in generic multiband systems remains unclear. In this paper, we derive
a formula of open-boundary Green’s functions in multiband non-Hermitian systems by viewing the multiband
GBZ on the Riemann surface. This formula can be applied to describe directional amplification in multiband
systems, which can be verified at various experimental platforms.
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I. INTRODUCTION

Numerous intriguing properties emerging in non-
Hermitian systems have attracted increasing attention [1,2].
One of the fascinating non-Hermitian features is the non-
Hermitian skin effect (NHSE), where bulk states under open
boundary conditions (OBCs) accumulate at the boundaries
[3–15]. The NHSE invalidates the conventional Bloch-band
picture and leads to the non-Bloch band theory based
on the generalized Brillouin zone (GBZ) [3,16]. Initially
developed to elucidate non-Hermitian topology [3–5,16–
26], the non-Bloch band theory also underlies various
non-Hermitian dynamical phenomena [27–33].

To study the responses to external perturbations in a non-
Hermitian system with the NHSE, OBC Green’s functions in
one-dimensional (1D) single-band models and some simple
multiband models have been formulated as a contour integral
on the GBZ [34–36]. The GBZ-based formula can be easily
evaluated by the residue theorem, the results of which have
been applied to directional amplification [34] and topological
quantized response [37].

Despite the fundamental significance of non-Hermitian
Green’s functions, there is currently no proper generalization
of GBZ-based formulas in generic multiband non-Hermitian
systems. One of the difficulties is that energy bands are multi-
valued functions [18,38–40]. Additionally, a multiband GBZ
has complex substructures denoted by sub-GBZs [18]. As a
result, multiband systems with complicated sub-GBZs exhibit
many unique properties that are dramatically different from
single-band models whose GBZ is a single loop. These dif-
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ferences complicate the direct generalization of GBZ-based
Green’s functions.

To address this problem, we develop the theory of
non-Hermitian Green’s functions in generic multiband sys-
tems from the perspective of the Riemann surface attached
to the multivalued energy function. Let us consider a
generic multiband non-Hermitian Bloch Hamiltonian h(k) =∑m

n=−m aneikn, where a−m, . . . , am are l × l hopping matri-
ces between different unit cells, with l being the number of
orbitals in a unit cell. The real-space Hamiltonian H can be
easily generated by h(k). Our central result is the GBZ-based
formula of the OBC Green’s function G(ω) = 1

ω−H of multi-
band non-Hermitian systems:

〈x, a|G(ω)|y, b〉 =
l∑

j=1

∫
GBZ j

dβ

2π iβ
βx−y 〈a|Rj, β〉〈Lj, β|b〉

ω − Ej (β )
,

(1)
where x, y are the spatial locations of different unit cells
and a, b represent the internal orbitals in each unit cell.
In the above equation, with the definition h(β ) ≡ h(eik →
β ), we have h(β )|Rj, β〉 = Ej (β )|Rj, β〉 and 〈Lj, β|h(β ) =
〈Lj, β|Ej (β ) for the general complex β. Here, |Rj, β〉 and
|Lj, β〉 with j = 1, 2, . . . , l are biorthogonal eigenstates of
h(β ). Also, Ej (β ) is the eigenvalue of h(β ) on the jth Rie-
mann sheet of the Riemann surface. The Riemann surface
consists of all the solutions (β, E ) of the algebraic equa-
tion det[E − h(β )] = 0, which form a 1D complex subspace
of the two-dimensional (2D) complex (β, E ) space.

We shall derive this formula as an integral along sub-GBZs
[GBZ j in Eq. (1)], which is viewed on the Riemann sur-
face rather than simply on the complex β plane. To do this,
we first investigate the properties of the GBZ in multiband
non-Hermitian systems. Concretely, on the Riemann surface
determined by the characteristic equation det[E − h(β )] = 0,
the multiband GBZ divides into several sub-GBZs that are
attached to different Riemann sheets [18]. These sub-GBZs
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are denoted by GBZ j , with j being the sheet index. Each
sub-GBZ is associated with one non-Bloch band of the OBC
spectrum. Crucially, the sub-GBZs form a boundary on the
Riemann surface, separating the β roots of the characteristic
equation into two distinct groups.

Based on these properties, we then formulate the multi-
band Green’s functions by using contour deformation on
each Riemann sheet. In the end, we obtain the GBZ-based
formula Eq. (1), which provides asymptotically exponential
behaviors that are analogous to those found in single-band
systems or in simple multiband systems with overlapping sub-
GBZs [34]. The formula is independent of artificial choices
of frequency-dependent integral contours. It unveils the vital
role of multiband sub-GBZs in non-Hermitian dynamics and
elucidates the response properties of all energy bands in multi-
band systems. Given that Green’s functions are closely related
to experiments, our results are readily applicable to various
experimental platforms where NHSE is observed [8–12].

This paper is organized as follows. In Sec. II, we first dis-
cuss the basic facts of the multiband GBZ from the perspective
of the Riemann surface. Next, in Sec. III, we elucidate that
the multiband GBZ on the Riemann surface is a geometric
boundary separating the roots of the characteristic equation.
Then in Sec. IV, we derive the formula of multiband non-
Hermitian Green’s functions as an integral on the sub-GBZs.
Finally, we make several concluding remarks in Sec. V.

II. MULTIBAND GBZ AND RIEMANN SURFACE

To begin with, we consider a general multiband non-
Hermitian model and discuss its OBC band structure within
the framework of non-Bloch band theory. Specifically, we
elucidate that the multiband nature of the OBC spectrum can
be effectively represented by a Riemann surface associated
with the non-Hermitian system. From this point of view, the
sub-GBZ of each OBC energy band lives on one of the Rie-
mann sheets.

Without loss of generality, we consider a multiband model
with l energy bands. The l × l Bloch Hamiltonian is given by
h(k) = ∑m

n=−m aneikn, with a−m, . . . , am being 2m + 1 hop-
ping matrices of dimension l × l . A Hermitian multiband
model is obtained if a−n = a†

n. In the non-Bloch band theory, it
is convenient to define a non-Bloch Hamiltonian by replacing
eik with a complex number β:

h(β ) =
m∑

n=−m

anβ
n. (2)

Immediately, the characteristic equation of the OBC
eigenequation H |ψ〉 = E |ψ〉 is given by

det[E − h(β )] = 0. (3)

This is an algebraic equation of both β and E . With a specific
E , there are 2ml roots of β which are sorted by their norms:
|β1(E )| � |β2(E )| � · · · � |β2ml (E )|. For later convenience,
we define M = ml . The OBC spectrum of this multiband sys-
tem can be determined by the non-Bloch band theory, where
the GBZ is given by [3,16]

|βM (E )| = |βM+1(E )|. (4)

This GBZ equation originates from the requirement that OBC
wave functions should fulfill boundary conditions at two
edges [3,16]. With this equation, we are ready to obtain the
OBC spectrum and the localization length of skin modes.

While the results in this paper are quite general in multi-
band non-Hermitian systems, we employ a particular model
as an illustrative example:

h(β ) =
(

(t1 + γ1)β + t1−γ1

β
+ V δ

δ (t2 + γ2)β + t2−γ2

β
− V

)
.

(5)

The real-space Hamiltonian is presented in Fig. 1(a). This
model describes two Hatano-Nelson models coupled by intra-
cell hoppings. It was proposed to illustrate the critical NHSE
when δ → 0 [38,41,42]. If δ = 0, the two Hatano-Nelson
chains will decouple, and we must separately apply the non-
Bloch band theory to each chain. In this paper, we focus on the
general choices of parameters with nonzero δ and develop its
multiband OBC Green’s functions below. The characteristic
equation det[E − h(β )] = 0 of this two-band model has four
roots |β1(E )| � |β2(E )| � |β3(E )| � |β4(E )|. Thus, the GBZ
equation becomes |β2(E )| = |β3(E )|. A typical GBZ of this
model is shown in Fig. 1(c), which has substructures called
sub-GBZs [18] (labeled by red/blue lines in the plot).

Interestingly, Eq. (3) is also a high-order algebraic equa-
tion of the complex energy E . From this point of view, we can
rewrite this equation as

det[E − h(β )] =
l∏

j=1

[E − Ej (β )] = 0, (6)

where E1(β ), E2(β ), . . . , El (β ) are the solutions of E at a
given β. They are the l Riemann sheets of the Riemann sur-
face. As a direct application, we point out that, when β goes
around the unit circle, Ej (eik ) provides the Bloch spectrum of
the jth energy band under periodic boundary conditions.

The collection of pairs {β, Ej (β )}, where β is an arbitrary
complex variable, constitutes the jth sheet of the Riemann
surface. From this point of view, we observe that each energy
band within a non-Hermitian multiband system finds its place
on a distinct Riemann sheet [18]. Furthermore, it is crucial
to note that each band is accompanied by a corresponding
sub-GBZ. For simplicity, we label the sub-GBZ on the jth
sheet as GBZ j . The non-Bloch band theory reveals that the
complex variable β moving along the GBZ j gives rise to
the jth non-Bloch energy band Ej (β ) of the OBC spectrum
(Fig. 1). This is the non-Bloch generalization of the Bloch
band structure.

We consider the characteristic equation [Eq. (6)] for an
arbitrary energy E . The characteristic equation has 2M roots
β1(E ), . . . , β2M (E ). At each root, β̃ ≡ βk (E ), with the root
index k running in {1, . . . , 2M}, Eq. (6) has l different energy
solutions E1(β̃ ), . . . , El (β̃ ). Among these, there should be a
unique Ej (β̃ ) that satisfies Ej (β̃ ) = E , where we ignore acci-
dental degeneracy. The correspondence between the energy E
and the sheet index j indicates that the solution set {βk (E ), E}
stays on the jth Riemann sheet. In other words, this procedure
attaches a unique sheet index j to each β root of Eq. (3).
Therefore, we can label the root as β

( j)
k (E ), where k is the

043073-2



GREEN’S FUNCTIONS OF MULTIBAND NON-HERMITIAN … PHYSICAL REVIEW RESEARCH 5, 043073 (2023)

FIG. 1. (a) The model. (b) Two non-Bloch energy bands under open boundary condition. (c) The generalized Brillouin zone (GBZ) with
two sub-GBZs. Red/blue lines in (b) and (c) represent the sheet indexes of the Riemann surface. (d) The Riemann surface of these two bands,
with colored lines being sub-GBZs on each Riemann sheet. The two black points are the branch points (exceptional points) connecting two
sheets. Parameters: t1 = 1, γ1 = −0.3, t2 = 1, γ2 = 0.5, δ = 1, and V = 0.8. We keep these parameters throughout this paper.

root index, and j is the sheet index determined by k. It is worth
noting that, for the 2M roots of a specific E , the sheet index j
does not necessarily cover all elements in {1, 2, . . . , l} but the
root index k always runs from 1 to 2M. Furthermore, the GBZ
equation [Eq. (4)] can be written as∣∣β ( j)

M (E )
∣∣ = ∣∣β ( j′ )

M+1(E )
∣∣, (7)

where j and j′ can take different sheet indexes. Indeed, al-
though they share the same OBC energy, {β ( j)

M (E ), E} and

{β ( j′ )
M+1(E ), E} satisfying the above equation can belong to

different Riemann sheets, contributing to GBZ j and GBZ j′ ,
respectively.

As an illustration, we apply the multiband GBZ theory to
the model in Fig. 1. The two-band model has two sub-GBZs,
labeled by red and blue curves, respectively, in Fig. 1(c). The
two Riemann sheets are shown in Fig. 1(d). We label the
sheet with the blue (red) sub-GBZ as the first (second) sheet
E1(β ) [E2(β )]. Similarly, the blue (red) sub-GBZ is denoted
by GBZ1 (GBZ2). When β goes around GBZ1 (GBZ2), the
OBC spectrum E1(β ) [E2(β )] in Fig. 1(b) is shown by solid
lines with the same colors. It is worth highlighting that there
is an overlap between certain parts of the red and blue OBC
spectra. When extracting energy values from this particular
loop, the associated GBZ equation takes the form of Eq. (7),
where j �= j′.

III. GEOMETRIC ASPECT OF MULTIBAND GBZ

After placing the multiband GBZ on the Riemann surface,
we are now prepared to elucidate a significant geometric fea-
ture: the multiband GBZ is a boundary that distinguishes the
roots of the characteristic equation when the energy E lies
outside the OBC spectrum.

To see this point, we first review the results in single-
band non-Hermitian systems [43,44]. Given a typical

single-band non-Bloch Hamiltonian h(β ) = ∑M
n=−M tnβn,

with tn being complex numbers, the characteristic equa-
tion E − h(β ) = 0 has 2M roots |β1(E )| � · · · � |β2M (E )|
ordered by their norms. An elegant theorem states that
the single-band GBZ is a boundary between the small-
est M roots {β1(E ), β2(E ), . . . , βM (E )} and the largest M
roots {βM+1(E ), βM+2(E ), . . . , β2M (E )} for arbitrary E . This
theorem comes from the fact that the OBC spectrum has a van-
ishing winding number. That is, W (E ) ≡ 1

2π

∫
GBZ

d
dβ

ln[E −
h(β )]dβ = 0, when E is not on the OBC spectrum. Since
the polynomial E − h(β ) has an order-M pole at the ori-
gin, there must be M roots of E − h(β ) = 0 inside the
GBZ. A more careful analysis shows that the GBZ encircles
the smallest M roots {β1(E ), β2(E ), . . . , βM (E )}, while the
other M roots with larger norms stay outside. In the end,
the single-band GBZ is a boundary between the smallest
M roots {β1(E ), β2(E ), . . . , βM (E )} and the largest M roots
{βM+1(E ), βM+2(E ), . . . , β2M (E )}, when E is not on the OBC
spectrum.

Now we discuss the analogous property for the GBZ in
multiband non-Hermitian systems. While the fact that differ-
ent sub-GBZs belong to different sheets makes it subtle to
consider winding numbers of sub-GBZs, we can bypass this
subtlety via the following argument.

Starting from Eq. (3), we consider a large E far away
from the OBC spectrum (|E | → +∞). In this limit, the
characteristic equation has M roots {β ( j1 )

1 (E ), . . . , β ( jM )
M (E )}

close to the origin. Meanwhile, the other M roots
{β ( jM+1 )

M+1 (E ), . . . , β ( j2M )
2M (E )} go to infinity, no matter what

sheets they belong to. Consequently, all sub-GBZs on dif-
ferent Riemann sheets naturally separate these 2M points
{β ( jk )

k (E ), E} into two groups.
Let us pull E back from infinity. At the same time, these

2M roots {β ( jk )
k (E ), E} will move on the Riemann surface.

During this process, the sheet indexes j of these roots may
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FIG. 2. The upper row shows generalized Brillouin zones (GBZs) and the distribution of roots of det[ω − h(β )] = 0. Different colors of
roots and sub-GBZs represent their sheet indexes. The fourth root is outside the plot. The circular gray region is |βM (ω)| < R < |βM+1(ω)|.
The lower row displays the multiband Green’s functions 〈x, 1|G(ω)|50, 1〉, where the index 1 means the first orbital in the unit cell. Black dots
come from numerical results on an open chain with L = 100; yellow lines are obtained by integrating Eq. (1). Each column is labeled by a
different frequency shown above.

change when E crosses some branch cuts on the Riemann
surface. The order indexes k may also exchange within
{β ( j1 )

1 (E ), . . . , β ( jM )
M (E )} or {β ( jM+1 )

M+1 (E ), . . . , β ( j2M )
2M (E )}. If the

path of E does not cross the OBC spectrum on the complex
energy plane, any point {β ( jk )

k (E ), E} on the jkth sheet cannot

cross the GBZ jk . Although a point {β ( jk′ )
k′ (E ), E} on the jk′ th

sheet may have the same β as points on GBZ jk with jk �= jk′ ,
this point does not belong to GBZ jk . In other words, there
is no path on the Riemann surface to move a β from the
neighbor of the origin to infinity without crossing sub-GBZs.
Since this case is smoothly deformed from the aforementioned
case |E | → ∞, we conclude that all sub-GBZs together sep-
arate the roots of the characteristic equation into two distinct
groups: the smallest M roots {β ( j1 )

1 (E ), . . . , β ( jM )
M (E )} and the

largest M roots {β ( jM+1 )
M+1 (E ), . . . , β ( j2M )

2M (E )}.
When the deformation path of E crosses the OBC spec-

trum, there must be a point {β ( jM )
M (E ), E} on the jM th sheet

moving out of GBZ jM while another point {β ( jM+1 )
M+1 (E ), E} on

the jM+1th sheet moves into GBZ jM+1 . Then they exchange
their root indexes M and M + 1. Eventually, all sub-GBZs
on the Riemann surface still contain {β ( j1 )

1 (E ), . . . , β ( jM )
M (E )}

inside. In conclusion, the sub-GBZs on the Riemann surface
form a boundary separating two groups of β roots of the
characteristic equation Eq. (3).

We emphasize that the sub-GBZs are not a natural bound-
ary if we view them as close curves on the complex β plane.
Whereas the sub-GBZs may intersect with each other when
viewed on the complex β plane, they belong to different
Riemann sheets and therefore are disconnected from the per-
spective of the Riemann surface.

For example, in Figs. 2(a) and 2(c), it seems that the red
sub-GBZ encloses β3 when viewed on the complex β plane.
However, the blue point β3 belongs to the other sheet and stays
outside of the blue sub-GBZ. This is fundamentally different

from the situation in single-band models where there is only
a single energy sheet and, consequently, a single GBZ loop.
In multiband non-Hermitian systems, it is more natural to
discuss the root distributions on the Riemann surface, instead
of the complex β plane.

From the perspective of the Riemann surface, we con-
clude that all sub-GBZs form a natural boundary dividing
{β ( j1 )

1 (E ), . . . , β ( jM )
M (E )} and {β ( jM+1 )

M+1 (E ), . . . , β ( j2M )
2M (E )} for

arbitrary E not being on the OBC spectrum. We will use this
fact to formulate multiband non-Hermitian Green’s functions
in the next section.

IV. MULTIBAND NON-HERMITIAN GREEN’S FUNCTIONS

Based on the last section, we can now construct Green’s
functions for multiband non-Hermitian systems. Considering
a real-space OBC Hamiltonian H generated by Eq. (2), the
Green’s function is defined as

〈x, a|G(ω)|y, b〉 = 〈x, a| 1

ω − H
|y, b〉, (8)

where x, y are the spatial locations of different unit cells and
a, b are the internal orbitals in each unit cell. For convenience,
we take a complex frequency ω, whose imaginary part is inter-
preted as the total loss or gain added to the OBC Hamiltonian.
Additionally, ω is not taken from the OBC spectrum.

A. Green’s functions as a contour integral

We shall make a connection between the OBC Green’s
function and an integral on the multiband GBZ. To do this,
we first show that the OBC Green’s function can be expressed
as the following contour integral:

〈x, a|G(ω)|y, b〉 =
∫

|β|=R

dβ

2π iβ
βx−y〈a| 1

ω − h(β )
|b〉. (9)
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The integral contour is a circle with a radius R, which should
satisfy |βM (ω)| < R < |βM+1(ω)|, with βM (ω) and βM+1(ω)
being the middle two roots of det[ω − h(β )] = 0 (gray region
in Fig. 2). It is important to note that this integral contour is
not equivalent to the conventional Brillouin zone |β| = 1.

Why is this circular region so special? To answer this ques-
tion, we use the language of Teoplitz matrices and generalize
the argument in Ref. [34] into multiband systems. A more
formal proof can be found in Ref. [26].

Given a matrix-valued Laurent polynomial f (β ) =∑
n cnβ

n, with cn being l × l coefficient matrices, a
block Teoplitz matrix T ( f ) is defined as Tjk ( f ) = ck− j =∫
|β|=R

dβ

2π iβ β j−k f (β ) for an arbitrary R. We denote an l × l
block of the whole Teoplitz matrix as Tjk ( f ). In other words,
T ( f ) is expressed as the following block structure:

T ( f ) =

⎛
⎜⎜⎜⎜⎝

c0 c1 c2 · · ·
c−1 c0 c1

. . .

c−2 c−1 c0
. . .

...
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎠. (10)

This is just a real-space Hamiltonian if we interpret f (β ) as
a non-Bloch Hamiltonian h(β ) in Eq. (2). The OBC Hamilto-
nian H is obtained by truncating T (h) as an Ll × Ll matrix,
with L being the number of unit cells.

Now let us take two block Teoplitz matrices T ( f1)
and T ( f2) generated by two l × l matrix-valued Lau-
rent polynomials f1(β ) = ∑

n anβ
n and f2(β ) = ∑

n bnβ
n,

respectively. There is a simple identity T ( f1)T ( f2) =
T ( f1 f2) coming from

∑
k Tik ( f1)Tk j ( f2) = ∑

k ak−ib j−k =
( f1 f2) j−i = Ti j ( f1 f2). Strictly speaking, the identity is an ap-
proximation without considering the boundary contributions.
Such a boundary correction is exponentially small in the
bulk compared with ( f1 f2) j−i. Hence, we take the thermo-
dynamic limit and ignore the boundary effect. An immediate
consequence of the identity is that T ( f )T ( f −1) = 1, namely,
[T ( f )]−1 = T ( f −1).

To get the OBC Green’s functions, we replace f (β )
with ω − h(β ) to obtain the expression {T [ω − h(β )]}−1 =
T [ 1

ω−h(β ) ]. The matrix elements 〈x, a|{T [ω − h(β )]}−1|y, b〉
are given by the Laurent expansion of 〈a| 1

ω−h(β ) |b〉, as shown

in Eq. (9). Because 1
ω−h(β ) has poles at the roots of det[ω −

h(β )] = 0, our next step is to specify which R is proper for
the Laurent expansion.

Consider a smooth interpolation fs(β ), where fs=1(β ) =
f (β ) and fs=0(β ) = Il×l . The Teoplitz matrix generated by
fs=0(β ) = Il×l trivially satisfies T ( fs=0)T ( f −1

s=0) = 1. Then
the smooth interpolation of [ fs(β )]−1 from s = 0 to 1 pro-
vides the proper expansion of [ fs=1(β )]−1. This requires
that fs(β ) �= 0 on the integral circle |β| = R. The topo-
logical winding number Ws = 1

2π

∫
|β|=R d ln{det[ fs(β )]} = 0

remains unchanged during smooth interpolation because it
has a vanishing value at s = 0. Now we take fs=1(β ) = ω −
h(β ) to discuss multiband non-Hermitian Green’s functions.
Considering that det[ω − h(β )] = CM

βM

∏2M
k=1[β − βk (ω)], with

βk=1,...,2M (ω) being 2M roots ordered by their norms, the
requirement of a zero winding number leads to radius R

satisfying |βM (ω)| < R < |βM+1(ω)|. In the end, we get back
to the integral form of Eq. (9).

B. GBZ-based formula

The above discussion indicates that the allowed values of
R in Eq. (9) depend on ω, which is a shortcoming of the
formula. To use this formula, we need to first specify the ω-
dependent R before calculating the integral. It is more natural
to find a unique integral contour that is independent of ω. The
work has been done in single-band non-Hermitian systems
and some simple multiband systems with overlapping sub-
GBZs. In these systems, it has been proved that OBC Green’s
functions are obtained from a contour integral on the GBZ
[34]. Consequently, we expect that a similar integral exists in
non-Hermitian multiband systems, where the multiband GBZ
plays an indispensable role.

One possible way for the generalization is that we may
substitute the integral contour |β| = R in Eq. (9) by a specific
sub-GBZ. However, this is problematic (see Appendix for a
detailed discussion). This is because non-Hermitian Green’s
functions describe the response of the whole system to ex-
ternal perturbations, instead of just one of the energy bands.
Therefore, we expect to obtain a formula that considers all
sub-GBZs.

A natural way to relate the circle |β| = R to the sub-GBZs
is to continuously deform the integral contour on the Riemann
surface. To see this, we express Eq. (9) as

〈x, a|G(ω)|y, b〉 =
∫

|β|=R

dβ

2π iβ
βx−y

l∑
j=1

〈a|Rj, β〉〈Lj, β|b〉
ω − Ej (β )

.

(11)
In the above equation, h(β )|Rj, β〉 = Ej (β )|Rj, β〉 and
〈Lj, β|h(β ) = 〈Lj, β|Ej (β ). Here, Ej (β ) is the eigenvalue of
h(β ) on the jth Riemann sheet. The left and right eigenvec-
tors constitute the biorthogonal basis with 〈Lj, β|Rj′ , β〉 =
δ j, j′ and

∑l
j=1 |Rj, β〉〈Lj, β| = Il×l . For later convenience,

we define Pj,ab(β ) = 〈a|Rj, β〉〈Lj, β|b〉, which is the matrix
element of the projection operators. Note that the integrand
Pj,ab(β )
ω−Ej (β ) is defined on the jth sheet of the Riemann surface.
Thus, the poles on other sheets will not contribute to the
integral on the jth sheet.

In Sec. III, we already learn that sub-GBZs form
a boundary that separates {β1(ω), . . . , βM (ω)} and
{βM+1(ω), . . . , β2M (ω)} on the Riemann surface. The same is
true for the circle |β| = R, with |βM (ω)| < R < |βM+1(ω)|,
if we view this circle as a collection of l identical copies on
different sheets of the Riemann surface. Now we can freely
deform the integral contour continuously from the |β| = R
loop to the corresponding sub-GBZ on the same sheet.
Namely,

∫
|β|=R

dβ

2π iβ βx−y Pj,ab(β )
ω−Ej (β ) → ∫

GBZ j

dβ

2π iβ βx−y Pj,ab(β )
ω−Ej (β ) .

The integral contour will not pass any poles when we track
the deformation process on each Riemann sheet.

For example, as shown in Fig. 2, if we start from a circle in
the gray region, where |βM (ω)| < R < |βM+1(ω)|, deforming
this loop to the red sub-GBZ will not pass any poles on the
same sheet labeled by red points. While this deformation may
cross the blue poles on the other sheet [Figs. 2(a), 2(c), and
2(e)], these blue poles will not contribute to the integral on
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FIG. 3. The ratios between matrix elements of multiband Green’s
functions. We fix ω = −0.55 + 0.45i. Black points are numerical
results of an L = 200 chain, and we take x0 = L/2. We define
Gab(x − x0 ) = 〈x, a| 1

ω−H |x0, b〉 for the fixed frequency. The matrix

elements of the jk th projection operator at β
( jk )
k (ω) are Pjk ,ab(βk ) =

〈a|Rjk , βk〉〈Ljk , βk |b〉 with (a) k = M + 1 and (b) k = M.

the sheet with the red sub-GBZ. The same argument is true
for the deformation into the blue sub-GBZ, with examples in
Figs. 2(e) and 2(g).

In the end, the OBC Green’s functions of multiband non-
Hermitian systems can be expressed as an integral on all
sub-GBZs, as shown in Eq. (1), which is a central result of
this paper. Remarkably, unlike Eq. (9), this formula is free
of artificially choosing ω-dependent integral contours. This
formula depends only on all sub-GBZs, unveiling that sub-
GBZs play a fundamental role in the dynamics of multiband
non-Hermitian systems.

The formula Eq. (1) goes back to the integral on the
conventional Brillouin zone if the underlying system is
Hermitian. It also naturally goes back to the single-band
models [34]. If all the sub-GBZs of some simple multiband
systems are overlapping on the β plane, the formula in Eq. (1)
goes back to Eq. (9) via replacing R by the coincident GBZ
[34].

C. Asymptotic behaviors

To facilitate applications of the formula Eq. (1), it is easy to
show that the OBC Green’s functions exhibit the asymptotic
behaviors:

〈x, a|G(ω)|y, b〉

∼
{

PjM ,ab[βM (ω)][βM (ω)]x−y, x 
 y;

PjM+1,ab[βM+1(ω)][βM+1(ω)]−|x−y|, x � y.
(12)

This is the multiband generalization of the asymptotic
behaviors of single-band Green’s functions [34]. Notably,
in addition to the asymptotically exponential behaviors, our
formula also provides the ratios between different matrix el-
ements of the multiband Green’s function. Concretely, the
ratios between 〈x, a|G(ω)|y, b〉 with fixed x, y are given by
the matrix elements of the projection operator Pjk ,ab[βk (ω)] =
〈a|Rjk , βk (ω)〉〈Ljk , βk (ω)|b〉 at the pole βk (ω), with k = M +
1 if x � y and k = M if x 
 y. As defined in Sec. II, jk is
the sheet index of {βk (ω), ω}. The numerical results in Fig. 3
show excellent agreement between the ratios 〈x,a|G(ω)|y,b〉

〈x,a′ |G(ω)|y,b′〉 and

PjM+1,ab[βM+1(ω)]

PjM+1,a′b′ [βM+1(ω)] when x � y (or
PjM ,ab[βM (ω)]

PjM ,a′b′ [βM (ω)] when x 
 y).

Therefore, our formula faithfully resolves the fine structures
of multiband Green’s functions between different orbitals.
These fine structures cannot be seen from the formula Eq. (9).

V. DISCUSSION

We study the multiband GBZ from the perspective of the
Riemann surface and propose a proper formula for OBC
Green’s functions in multiband non-Hermitian systems. The
exact formula Eq. (1) is an integral on the Riemann surface,
with the integral contours being the sub-GBZs on the Riemann
sheets. These contours are independent of the frequency in the
Green’s functions. In fact, they are intrinsic geometrical con-
structions of multiband non-Hermitian systems. The formula
explicitly provides not only the asymptotic behaviors at a long
distance but also the ratios between different orbitals.

The GBZ-based formula of multiband Green’s functions
has significant implications in various fields of non-Hermitian
physics. From an experimental point of view, a variety of
phenomena related to the NHSE have already been observed
in experiments [8–12]. Our formula can provide insights into
the dynamical responses within these experimental systems.
Furthermore, like its single-band counterparts, the asymptotic
behaviors in Eq. (12) offer a simple approach to predict the
directional amplification of input signals in multiband bosonic
open quantum systems [34,35]. Meanwhile, the exponential
growth of non-Hermitian Green’s functions can also serve to
detect nontrivial spectral winding in multiband non-Hermitian
systems [37,45,46].

From a theoretical perspective, it is known for Hermitian
systems that the topological properties of multiband systems
can be effectively characterized by Green’s functions [47].
Therefore, one can expect that the GBZ-based formula has
potential applications in the non-Bloch bulk-boundary cor-
respondence of multiband non-Hermitian systems. Another
interesting direction is to extend the non-Hermitian Green’s
functions to higher-dimensional systems, for which the re-
cently developed amoeba formulation could be useful [26].
Furthermore, it is also intriguing to investigate Green’s func-
tions for many-body non-Hermitian systems [48–52].
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APPENDIX: THE FAILURE OF THE FORMULAS
BASED ON A SPECIFIC SUB-GBZ

In the main text, we mention that substituting the integral
contour |β| = R in Eq. (9) by a specific sub-GBZ is problem-
atic. According to this approach, the Green’s function formula

043073-6



GREEN’S FUNCTIONS OF MULTIBAND NON-HERMITIAN … PHYSICAL REVIEW RESEARCH 5, 043073 (2023)

FIG. 4. The failure of the formulas based on a specific
sub-generalized Brillouin zone (sub-GBZ). The index 1 in
〈x, 1|G(ω)|50, 1〉 labels the first orbital in the unit cell. The yel-
low line is calculated by Eq. (9) with a circle contour R =√|βM (ω)βM+1(ω)|, which is in excellent agreement with numerical
results from an L = 100 chain. The blue (red) line comes from
Eq. (A1) by choosing GBZ1 (GBZ2) to be the integral contour. The
artificial choice of sub-GBZs fails to predict non-Hermitian Green’s
functions.

would be an integral on GBZ j for a certain j [53]:

〈x, a|G(ω)|y, b〉 ?=
∫

GBZ j

dβ

2π iβ
βx−y〈a| 1

ω − h(β )
|b〉. (A1)

In this Appendix, we demonstrate the failure of this plau-
sible formula in more detail. The results in Fig. 4 show that
integrating along a specific sub-GBZ does not predict the nu-
merical values of multiband non-Hermitian Green’s functions.
This mismatch can be explained by contour deformation on
the complex β plane.

As shown in Fig. 2, |β| = R lies in the gray circular region
between |β2(ω)| and |β3(ω)|. Deforming |β| = R on the com-
plex β plane into the red sub-GBZ in Figs. 2(a) and 2(c) or
into the blue sub-GBZ in Fig. 2(g) will inevitably cross the
poles of 1

ω−h(β ) at β3(ω) or β2(ω), respectively. This process
changes the integral results of Eq. (A1). The situation is even
worse in Fig. 2(e) (the same parameter as Fig. 4), where the
deformation to the red or blue sub-GBZ will always cross
poles. Then Eq. (A1), with artificially choosing one of the
sub-GBZs, will yield problematic results.

A more physical reason for the failure of the above
extension is that non-Hermitian Green’s functions describe
the response of the whole system to external perturbations
instead of just one of the energy bands. Therefore, the
formula based on a specific sub-GBZ fails in predicting
the Green’s functions in general multiband non-Hermitian
systems.

The formula Eq. (A1) is only applicable to special cases
such as Fig. 2(i). In these cases, there is no pole between
different sub-GBZs viewed on the complex β plane. Hence,
all sub-GBZs are equivalent to each other when we calculate
the integral along them.
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