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Multimode character of quantum states released from a superconducting cavity
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Quantum state transfer by propagating wave packets of electromagnetic radiation requires tunable couplings
between the sending and receiving quantum systems and the propagation channel or waveguide. The highest
fidelity of state transfer in experimental demonstrations so far has been in superconducting circuits. Here, the
tunability always comes together with nonlinear interactions, arising from the same Josephson junctions that
enable the tunability. The resulting nonlinear dynamics correlates the photon number and spatiotemporal degrees
of freedom and leads to a multimode output state, for any multiphoton state. In this work, we study as a generic
example the release of complex quantum states from a superconducting resonator, employing a flux tunable
coupler to engineer and control the release process. We quantify the multimode character of the output state and
discuss how to optimize the fidelity of a quantum state transfer process with this in mind.
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I. INTRODUCTION

The exchange of quantum states between distant locations
is an important ingredient in secure communication networks
and in scalable architectures for quantum computing [1,2].

Quantum bits encoded in the higher dimensional oscillator
modes of superconducting cavities have been demonstrated
to withstand photon losses and permit elementary error cor-
rection [3–8]. It would be desirable to use such multiphoton
quantum states also for quantum communication purposes
[9,10].

While a linear mapping between a single oscillator mode
and the continuum of propagating field modes, in principle,
transfers the quantum state of the former to a traveling single-
mode pulse, the temporal control of the release process is
not trivial. In superconducting circuits, tunable couplers based
on Josephson junctions are employed to control the evolu-
tion and release process in different architectures, such as
fixed-frequency transmons, flux tunable transmons, or tunable
transmission line resonators [11–20]. While the nonlinearity
of the Josephson junction enables tunable coupling, it also
adds effective self-Kerr and cross-Kerr terms to the oscillator
Hamiltonian. These nonlinear terms may entangle the spa-
tiotemporal release with the photon number contents of the
pulse, and thus the emission becomes multimode in character
and it may not function properly in a quantum network.
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In this article, we present a general analysis that takes
the multi-mode character of the emission process fully into
account. We employ a master equation approach that readily
incorporates both the coherent coupling to the output field and
decay and decoherence channels, and we use the quantum
regression theorem to assess the mode decomposition of the
emitted radiation.

For the more quantitative discussion, we consider super-
conducting circuits. With low loss rates and strong coupling,
these are promising platforms to efficiently prepare and emit
quantum states into propagating modes [21,22]. Different
studies and experiments have been done with a low number
of photons [13,23]. In this paper, we theoretically analyze an
experimentally relevant superconducting circuit architecture
for which we can control the out-coupling strength and com-
pute the accompanying nonlinear couplings. The propagation
transfer and the recapture of the field by downstream circuit
components can then be analyzed by the method presented
in [24].

The article is structured as follows: In Sec. II, we provide
the formalism determining the characteristics of the output
field of the quantum system. In Sec. III, we describe the
superconducting emitter and tunable out-coupler in detail, in
Sec. IV we provide numerical results and study the quantita-
tive effects of the nonlinearity on the multimode character of
different bosonic quantum states released from the circuit, and
in Sec. V, we characterize the quantum state of the most popu-
lated mode and optimize the drive on the system to encode our
desired quantum state into that mode. Finally, we summarize
the paper in Sec. VI.

II. MULTIMODE THEORY

To assess the consequence of emitting a field from a non-
linear system, we consider a single nonlinear resonator as a
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FIG. 1. Time-dependent spectra of the output field from a nonlinear (a) and a linear (b) resonator. Panel (a) shows the radiation from a
non-linear resonator with constant frequency ω0, outcoupling rate 1/κ = 1 µs, and Kerr coefficient χ/2π = 0.47 MHz prepared in an initial
Fock state |n〉 = |5〉. The inset in panel (a) shows that the emitted radiation occupies several eigenmodes. In panel (b) we assume a vanishing
Kerr coefficient χ = 0 and a time-dependent oscillator frequency ω(t ) = ω0 + max(0, 2χ [n exp(−κt ) − 1]). As shown in the inset of panel
(b), the output field is a single-mode Fock state with n = 5.

toy model for a nonlinear emitter with the Hamiltonian

HS (t ) = ω(t )a†a + χ (t )a†2a2, (1)

having time-dependent frequency ω(t ) and self-Kerr coeffi-
cient χ (t ), using angular frequency units of energy (h̄ = 1).
If we assume the emitter is coupled to a waveguide with con-
stant strength

√
κ , the evolution of the reduced density matrix

�(t ) of the resonator is described by the Lindblad master
equation with a single Lindblad operator

√
κa, describing the

dissipation to the waveguide,

∂�(t )

∂t
= −i[HS (t ), �(t )] + κ

(
a�(t )a† − 1

2
{a†a, �(t )}

)
.

(2)

The expectation value and higher order correlation functions
of the field leaking from the cavity are given by the equivalent
expectation value and correlation functions of the intracav-
ity (Heisenberg picture) field operators

√
κa†(t ) and

√
κa(t ).

Of particular importance is the first-order, two-time auto-
correlation function G (1)(t1, t2) = κ〈a†(t2)a(t1)〉, as it permits
expansion on an orthogonal set of temporal modes vi(t ),

G (1)(t1, t2) =
∑

i

niv
∗
i (t1)vi(t2), (3)

with mean photon occupation number ni. This procedure
which is also applied to noisy classical signals is known as
the Karhunen-Loève expansion and it has been extensively
used in quantum optics; see [25]. The autocorrelation function
G (1)(t1, t2) can be calculated using the quantum regression
theorem [26,27]

G (1)(t1, t2) = κTr[a†L(t2, t1)[aL(t1, 0)�s(0)]], (4)

where L(t ′, t ) represents the linear time evolution map of the
master equation (2) from time t to t ′. We shall use the mode
decomposition (3) to identify the most populated output mode
of the cavity and subsequently determine the quantum state
occupying this particular mode.

The time-dependent spectrum related to the autocorrelation
function in Eq. (4) is found by the Fourier transform

I (ω, t ) =
∫ +∞

−∞
dsG (1)

(
t + s

2
, t − s

2

)
e−iωs, (5)

which provides information about the time-dependent fre-
quency content of the output field.

Output field spectra for a nonlinear resonator and a lin-
ear resonator are shown in Fig. 1, where in both cases the
resonator is initialized in the Fock state |ψ〉 = |5〉. For the
parameters in the figure caption, the time-dependent spectra
show the emission of a wide range of frequencies for both
linear and nonlinear resonators. The spectrum in Fig. 1(a)
shows a visible gap between the frequency pertaining to each
emitted photon, proportional to the amount of the Kerr non-
linearity 2χ . The inset shows that multiple output field modes
are populated in the field emitted by the nonlinear resonator.

For comparison, in Fig. 1(b), we assume a linear resonator,
χ = 0, with a time-dependent frequency ω(t ) chosen to give a
similar frequency range of the emitted field as in (a). The inset
in panel (b) shows that the output field in this case only occu-
pies a single (chirped) mode. In the next section, we model
a realistic quantum emitter implemented in superconducting
circuits and we assess how the nonlinear elements used for
tuning the emission process affect the mode character and
purity of the emitted quantum state.

III. PHYSICAL MODEL

Several approaches have been used to map a stationary
resonator mode to a propagating pulse mode. To optimally
control the release of a quantum state, we consider the storage
system (cavity), initiated in the desired quantum state |ψ〉,
described by the creation and annihilation operators a†, a and
frequency ωa. The storage cavity is dispersively coupled to
a flux-tunable transmon [22,28–30] described by the oper-
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FIG. 2. Schematic of the emitter. The nonlinear coupler interacts
with both the storage and the leakage cavity. By driving the coupler at
the frequency ωa

01 − ωb
01, it implements a frequency conversion and

resonant transfer of quanta between the storage and leakage cavity,
as governed by a beam splitter interaction Hbs(t ) between the two
cavities at frequencies ωa

01 and ωb
01. Due to the nonlinearity of the

coupler, the beam splitter interaction is accompanied by self-Kerr
and cross-Kerr nonlinear interactions; see Eq. (10), which leads to
an output field populating several modes v1(t ), v2(t ), v3(t ), . . . .

ators c†, c and frequency ωc, through the coupling strength
gac � |ωc − ωa|. In addition to the storage cavity, the coupler
is also dispersively coupled to a leakage cavity, described by
frequency ωb and operators b†, b, with the coupling gbc �
|ωb − ωc|; see Fig. 2.

The entire system is described by the effective Hamiltonian

HS (t ) = ωaa†a + ωbb†b + ωcc†c

+ 2EJ

[
cos

(
ϕext (t )

2

)
− cos

(
ϕdc

2

)]
ϕ2

c

2

− 2EJ cos

(
ϕext (t )

2

)
ϕ4

c

4!
, (6)

where ϕc and EJ correspond to the reduced flux operator of
the transmon and the energy of the junction, respectively. The
AC flux drive on the coupler is ϕext (t ) = ϕdc + F (t ) sin(ωdt )
which is described by the time-dependent amplitude F (t ) ≡
δ tanh (t/t0) � 1 and frequency ωd , where δ and t0 correspond
to the amplitude and duration of turning on the drive, respec-
tively. For more details on the derivation of the Hamiltonian
(6) see Appendix A.

In the dispersive regime, the reduced flux of the coupler is
found as the superposition of all dressed modes [31,32]

ϕc = 2π

φ0
φc,

φc = λa(a + a†) + λb(b + b†) + λc(c + c†)√
2

≡ A + A†

√
2

,

(7)

where φc is the flux of the coupler and the coefficients λa,b,c

are described in Eq. (A18). Using the Taylor expansion (A10),
we insert Eq. (7) in the Hamiltonian (6), thus the second line

of Eq. (6) is obtained as

Hl (t ) = −2EJπ
2

φ2
0

[
sin

(
ϕdc

2

)
F (t ) sin(ωdt )

2

+ cos
(

ϕdc

2

)
8

F (t )2 sin(ωdt )2

]
(2A†A + λ̄), (8)

where λ̄ = [A, A†]. The third line of Eq. (6) (fourth order
of the flux operator), provides the nonlinear interactions as
follows:

Hnl ≈−π4EJ cos
(

ϕext (t )
2

)
3φ4

0

[12λ̄A†A + 6A†A†AA], (9)

where we keep only the terms conserving the number of
quanta.

We assume that the coupler is initiated in the ground state
and mediates the resonant frequency conversion without itself
being excited. This permits the elimination of its quantum
degrees of freedom at all times. If we consider ωd = ωb − ωa

and utilize the rotating wave approximation and transform to
the rotating frame interaction picture with respect to ωaa†a +
ωbb†b + ωcc†c, the Hamiltonian is obtained as

HS (t ) = Sa(t )a†a + Sb(t )b†b + χaa2†a2 + χbb2†b2

+ χaba†ab†b − igswap(t )(b†a − a†b), (10)

where the parameters are as follows:

χa(b) = −2π4EJ cos
(

ϕdc

2

)
φ4

0

λ4
a(b),

χab = −8π4EJ cos
(

ϕdc

2

)
φ4

0

λ2
aλ

2
b,

gswap(t ) =
(

π2

φ2
0

− λ̄π4

φ4
0

)
EJ sin

(ϕdc

2

)
λaλbF (t ),

Sa(b)(t ) =
(

λ̄π4

φ4
0

− π2

φ2
0

)
EJ cos

(
ϕdc

2

)
λ2

a(b)

4
F (t )2, (11)

and Sa(b)(t ) are the Stark shifts induced by the flux drive.
The dressed mode coefficients λa(b) in Eqs. (7) and (11) are
proportional to the ratio λa(b) ∝ ga(b),c/a(b),c, where ga(b),c

and a(b),c correspond to the coupling strength and detuning
between the coupler and the storage (leakage) cavity. The
coupler is coupled to the storage (leakage) cavities through
the coupling capacitance Cac (Cbc), where by changing the
capacitance strengths different values of the conversion rates
gswap and also nonlinear terms χab, χa(b) will be obtained; see
Fig. 3. As shown in Fig. 3, the reduction (increase) of the
non-linearities χa(b) ∝ λ4

a(b) yields a similar effect on the swap
rate gswap(t ) ∝ λaλb; as mentioned, λa(b) ∝ ga(b),c ∝ Ca(b)c. It
is worth noting that a higher amplitude of the drive F (t ) makes
a stronger swap rate gswap(t ) and accelerates the transfer and
release process, but in this regime the Hamiltonian of the
system acquires higher-order nonlinear interactions.

The leakage cavity is coupled to the waveguide and decays
with a constant rate κ . The analysis of the emitted radiation
is equivalent to the one presented for the toy model in Sec. II,
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FIG. 3. The change of the nonlinear parameters χa, χab, swap
rate g, detuning from resonant interaction χab − 2χa, and Purcell
rate 4g2/κ as functions of the value of the coupling capacitance Cac,
where 1/κ = 0.2 µs. The vertical black dashed line corresponds to
the parameters used to simulate the lower panels in Fig. 4.

with the master equation,

∂�(t )

∂t
= −i[HS (t ), �(t )] + κ

(
b�(t )b† − 1

2
{b†b, �(t )}

)
,

(12)

where HS (t ) is given in Eq. (10), and the Lindblad operator√
κb describes the dissipation of the leakage cavity to the

waveguide. As for the toy model in Eq. (4), the mode de-
composition of the first-order correlation function of the field
operator

√
κb determines the most populated orthonormal

output modes.
As we saw in Sec. II, nonlinear terms in the Hamilto-

nian cause the output field to populate several temporal field
modes of the waveguide. Since the self-Kerr and cross-Kerr
terms (χaa†2a2, χbb†2b2 and χaba†b†ab) are inevitable conse-
quences of the tunable coupling in our system, the output field
will indeed populate many temporal modes, as will be seen in
the next section.

In the limit where κ is much larger than the other couplings
in the master equation, it is possible to adiabatically eliminate
the leakage cavity and obtain an effective Markovian master
equation for the storage cavity mode with a Purcell damping
rate � 4g2

swap/κ; green dots in Fig 3. While we do not rely
on the quantitative validity of this effective treatment in our
numerical studies, we will refer to the value of the Purcell rate
in the analysis of the results.

Here, we also note that, due to the presence of other
dissipation channels, the release process cannot be made
arbitrarily slow. Hence, in the experiment, there will be a
tradeoff between the loss to many less populated modes in
the rapid-release regime and to other dissipation channels in
the slow-release regime.

IV. RELEASE OF FOCK STATES AND CAT STATES

As illustrated in Sec. II, a linear resonator emits any initial
quantum state into a single spatiotemporal mode determined

by the time-dependent out-coupling strength. However, the
temporal shape of the output field from a nonlinear emitter is
correlated with the photon number contents. In this section,
we expand such analysis to investigate how the multimode
character of the output field of the emitter in Fig. 2 is af-
fected by different values of the coupling strength between
the coupler and the storage cavity. As discussed in the pre-
ceding section, the coupling capacitance Cac controls both the
coherent swap strengths between the cavities, the cavity non-
linearities, and the effective Purcell decay rate of the storage
cavity, as shown in Fig. 3.

In Fig. 4, we investigate the output field of the emitter for
the release of different quantum states such as a Fock state
(FS) |ψ〉 = |n〉, a two-component cat state (TCCS)

|ψ〉 ∝ |α〉 + |−α〉 ∝
∞∑

n=0

α2n

√
(2n)!

|2n〉, (13)

which is a promising candidate for correcting dephasing errors
[33,34], and a four-component cat state (FCCS)

|ψ〉 ∝ |α〉 + |−α〉 + |iα〉 + |−iα〉 ∝
∞∑

n=0

α4n

√
(4n)!

|4n〉, (14)

which can be used for quantum storage and communication in
the presence of photon loss [35,36].

Figure 4(a) shows the relative population of the most pop-
ulated mode n1/nout as a function of the Kerr nonlinearities.
The ratio n1/nout reveals the multimode character of the output
field released from a three-photon FS and TCCS and FCCS,
composed of coherent states with amplitude α = √

3. As one
expects, the output field becomes more multimode with higher
values of nonlinearity. Figure 4(b) shows n1/nout as a function
of the initial mean photon number of the storage cavity for the
same states using fixed nonlinear parameters, corresponding
to the dashed vertical line in Fig. 3. As expected, with a
higher number of photons, the resonator nonlinearity leads to
an output field occupying more modes.

We observe that the FS and the FCCS yield a higher
single-mode content than the TCCS with the same photon
number. This difference arises because the FCCS and TCCS
populate the Fock components |0〉 + |4〉 and |0〉 + |2〉 + |4〉,
respectively. Since the Fock component |0〉 represents a vac-
uum state in all modes, and hence also the modes occupied
by the release of |4〉, we retain a superposition of zero and
four photons in the most populated mode, while the two Fock
components |2〉, |4〉 of the TCCS may populate very different
modes and hence not produce the TCCS in any single output
mode.

In Fig. 4, panel (a), the output field is almost single mode,
n1/nout � 1, until χab/2π exceeds the value −0.23 MHz or
equivalently the value Cac � 4.5 fF in Fig. 3. This can be
ascribed to the release process of each photon from storage
cavity to the leakage cavity and then to the waveguide. For
each Fock component |n〉a of the storage cavity, the trans-
formation of a photon to the leakage cavity is meditated

by the beam splitter interaction process, |n, 0〉a,b
beam splitter−−−−−−→

|n − 1, 1〉a,b, where, consequently by decaying to the waveg-

uide |n − 1, 1〉a,b
decay to waveguide−−−−−−−−−→ |n − 1, 0〉a,b, the photon is
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FIG. 4. The characteristics of the output field for different initial quantum states such as a FS |n〉, a TCCS (13), and a FCCS (14). The
upper panels show (a) the relative occupation of the most populated mode, (c) the state fidelity of the state occupying that mode with respect
to the optimal target state, see Eq. (17), and (e) the value of the cat state amplitude α̃ that has the maximum fidelity with the state occupying
the most populated mode. The results are shown for the initial FS |n = 3〉 and FCCS and TCCS with amplitude parameter α = √

3. They are
calculated as a function of the nonlinear coupling strengths χab and χa indicated along the lower and upper axes, which in turn correspond to
a varying capacitance between the storage cavity and the coupler in the physical system (see Fig. 3). The self-Kerr χb is not specified as the
leakage cavity is mostly occupied by the vacuum and the occasional one-photon state. In the lower panels, we assume nonlinear interaction
parameters χab/2π = −0.11 MHz, χa/2π = −0.017 MHz, and χb/2π = −0.04 MHz, and we show the same quantities as in the upper panels
but for different values of the initial mean photon number 〈a†a〉(t = 0); see Sec. V for details.

released. It is worth noting that, due to the large decay rate
κ the population of Fock components n � 2 of the leakage
cavity is suppressed. The energy difference between the states
|n, 0〉a,b, |n − 1, 1〉a,b is En = (n − 1)(2χa − χab), where a
small additional shift is omitted; see Eq. (10). If χab � 2χa,
the transfer is resonant and faster, which results in a more
single-mode character. According to Fig. 3, the energy dif-
ference En is limited until Cac � 4.5 fF, and thereafter it
rapidly increases and the transition of a photon between the
states becomes nonresonant and slow, which in combination
with the nonlinearity causes the increasing multimode char-
acter, witnessed by the reduction of the population n1/nout

and similar reductions in the other quantifiers of the output
field.

V. CHARACTERIZING THE MOST POPULATED MODE

In order to investigate how well the initial state of the
storage cavity is transferred to the waveguide, the quantum
state of the output modes needs to be considered. This sec-
tion addresses the quantum state contents of the most occupied
mode v1. This is done by the formalism introduced in [24],
which, for the theoretical calculation assumes a downstream
ideal linear cavity with mode operators d, d†, coupled to the

system by the interaction Hamiltonian

Hb,v1 (t ) = i
√

κ

2
[g∗

v1
(t )b†d − gv1 (t )d†b]. (15)

The time-dependent coupling between the cavity and
waveguide,

gv (t ) = − v∗
1 (t )√∫ t

0 dt ′|v1(t ′)|2
, (16)

ensures that the cavity captures the contents of the temporal
mode v1(t ). The dynamics of the cascaded system is described
by the Lindblad master equation with total Hamiltonian HT =
HS (t ) + Hb,v1 (t ) and a single Lindblad operator describes
dissipation to the waveguide, L0(t ) = √

κb + g∗
v1

(t )d , rep-
resenting the interference between the emitted field of the
leakage cavity and the ideal downstream cavity. This form
of the master equation ensures the cascaded nature of the
propagation of the fields, [37,38]. Here, we stress that the
capturing cavity is a theoretical tool for analyzing the mode
content of the field. For an experimental realization of the
capturing cavity, we would encounter the same issues with
nonlinearity as for the emission process.
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FIG. 5. Wigner function of the initial FCCS (a), TCCS (c), and of
the state of the most populated modes of emission in the two respec-
tive cases (b,d). The amplitude of the initial cat states is |α| = √

2
and the nonlinear interactions are χab/2π = −0.19 MHz, χa/2π =
−0.065 MHz, and χb/2π = −0.034 MHz. The amplitude of the sin-
gle mode output FCCS that most resembles the state in panel (b) has
|α̃| = √

1.96 with a corresponding fidelity F4cat = .97. The state
shown in panel (d) has a fidelity F2cat = 0.85 with the TCCS with
amplitude |α̃| = √

1.66 and it is obtained with the optimal rate t0

and the fixed amplitude δ for the flux drive F (t ) = δ tanh(t/t0); see
Sec. V A for more explanation.

In the three oscillator description (a, b, d), the ideal state
transformation is |ψ, 0, 0〉a,b,d → |0, 0, ψ〉a,b,d . While the a
and b oscillators may, indeed, be emptied with certainty, cav-
ity d , will, in general, be occupied by a mixed state �d , as it is
correlated with other modes of the output field.

Because the output field is not a single mode, the number
of photons in the most populated output mode v1 is less than
the initial number of photons in the storage cavity. As shown
in Figs. 5(b) and 5(d), the output state in that mode may still
be a catlike state |ψ̃〉, but with a modified amplitude α̃. We
thus vary the parameter α̃ in order to maximize the fidelity

F = 〈ψ̃ |�d(T )|ψ̃〉, (17)

over TCCS and FCCS cat states |ψ̃〉, where T is a time well
after the emission of the temporal mode v1(t ). For the Fock
state fidelities, we calculate the population of the same Fock
state |ψ̃〉 = |ψ〉 as the initial state of the storage cavity.

Figure 4(c) shows the fidelity F of the quantum state
occupying the most populated mode v1 as a function of the
Kerr nonlinearities. For all three initial states, the fidelity is
higher in the low Kerr regime; however, the fidelity of TCCS
is affected more than the other quantum states, which we
ascribe to the TCCS occupying more Fock components. In
Fig. 4(c), in addition to the rapid reduction of the fidelity, a
revival of the fidelity of the TCCS is observed in the higher
nonlinear regime. This can be explained by considering the
different phases θ2 and θ4 induced by the self-Kerr and cross-
Kerr coefficients χa, χab on the Fock components |2〉 and |4〉,
respectively. For a certain amount of the nonlinearities, the

phases can be related by θ4 ≈ θ2 + 2πk, recovering fidelity of
the TCCS; see Fig. 8 in Appendix C for visualizations of the
Wigner functions corresponding to Fig. 4(c).

Figures 4(e) and 4(f) show the size of the cat states with the
highest fidelity α̃ of the mode v1 as a function of the nonlinear-
ities and the initial photon number, respectively. In Fig. 4(e),
for both cat states, the amplitude α̃ decreases with increasing
nonlinearity as fewer photons populate the most populated
mode; see Fig. 4(a). Figure 4(d) shows the fidelity of the
FS, TCCS, and FCCS as functions of the initial mean photon
number, where the higher photon numbers, as expected, yield
more reduction in the fidelity.

In the low photon number regime, n < 2, the loss of
photons to other modes is noticeable [Fig. 4(b)], but is not
dominating over the reduction of the fidelity coming from
the Kerr rotation. In the recent experiment [17], transferring
TCCS and FCCS between a sender and a receiver, the dy-
namics is determined by a Hamiltonian similar to Eq. (10).
In the supplementary material of [17], the fidelity reduction
due to an effective Kerr rotation combined with photon loss is
discussed. Our formalism gives a very similar picture, where
we can quantify the cavity dephasing due to the population
of multiple output modes. We find a 1% reduction of the
population of the most populated output mode, which agrees
with the analysis in [17].

A. Optimal drive to encode cat states into
the most populated mode

As discussed in the previous section, the Kerr rotations
affect the FCCS less, as only two Fock components |0〉, |4〉 are
essentially populated and the effect can to a large extent be de-
scribed by an effective phase acquired by |4〉. One realization
of the initial and the released FCCS is shown in Fig. 5, panels
(a) and (b), respectively. The initial amplitude is |α| = √

2
and the most occupied emitted mode has the highest fidelity
with a FCCS with amplitude |α̃| = √

1.96 and the fidelity
of F4cat = 0.97, with the same drive shape and parameters
F (t ) = δ tanh (t/t0), as employed in Fig. 4.

In contrast to FCCS, the TCCS has three main Fock com-
ponents |0〉, |2〉, and |4〉, thus involving two different effective
phases on |2〉 and |4〉, which in general cannot be modeled
by a single rotation of the Wigner function. To improve the
fidelity for a specific set of nonlinear parameters, we opti-
mize the flux drive on the coupler to minimize the effect of
the nonlinear rotations and find an approximate TCCS with
relation θ4 ≈ θ2 + 2πk and amplitude |α̃| < |α|. To this end,
according to the drive shape F (t ) = δ tanh (t/t0), we consider
a fixed drive amplitude for parameter δ in the weak drive
regime and we optimize the other variable, which is t0, the
rate of turning on the drive. We have optimized the drive
according to the condition θ4 ≈ θ2 + 2πk to immunize the
TCCS from nonlinear rotations and also large reduction in the
fidelity. Figure 5(c) shows an initial TCCS with |α| = √

2, and
Fig. 5(d) shows the state released in the most occupied mode
using the optimal drive rate t0 = 7.3 µs, which is almost 5
times slower than the one employed for Figs. 4, 5(a), and
5(b). A TCCS with amplitude |α̃| = √

1.66 (up to a linear
rotation) shows the largest fidelity F2cat = 0.85 with the state
illustrated in Fig. 5(d).
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VI. SUMMARY

We studied the characteristics of the quantum state released
from a realistic nonlinear emitter. To optimally release the
desired quantum states into a propagating mode, we utilized
a flux-tunable coupler to transfer the quantum state from the
storage cavity to the waveguide. We have shown, that due to
the nonlinear interactions in the emitter, the output field ob-
tains a multimode character, where the shape of the modes and
their photon population become correlated. We investigated
the output field for Fock states and two- and four-component
cat states. We also studied the adjustment of the flux drive
to emit an optimal cat state into the most populated mode.
Our results showed that in the low photon number regime the
fidelity reduction due to the nonlinear interactions is clearly
noticeable (on the percent level), but it is not the dominant
contribution to the experimentally observed reduction in fi-
delity, seen in recent experiments [16,17].

Our calculation and simulation results illustrate a tradeoff
between the speed of emission and the effective nonlinearities
of the emitter. This may suggest that using more elaborate
couplers with more tunability, e.g., a superconducting non-
linear asymmetric inductive element (SNAIL) based coupler
[39], may improve the fidelity of the beam-splitter gate ∝
Hbs(t ) [40]. However, according to our formalism, in aiming
for high-fidelity state transfer of multiphoton states, the mul-
timode aspects of the transmitted field are unavoidable and
need to be taken into account.

Lastly, it is worthwhile to note that, to actually catch a
single mode using a linear receiver, it is enough to use the
time-inverted drive compared to the one used in a linear trans-
mitter [41]. A realistic nonlinear emitter, however, generates
a multimode output field, and we would need a nonlinear
receiver to optimally reabsorb the output field. The concept
of time reversal can be used as a guiding principle, but how to
find such a receiver in practice is still an open question.
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APPENDIX A: LAGRANGIAN OF THE QUANTUM
CIRCUIT OF THE EMITTER

The quantum circuit of Fig. 2 is shown in detail in Fig. 6.
We consider the two cavities as lumped elements including
capacitances Ca(b) in parallel with the inductances La(b). The
coupler is described by the total capacitance Cc, junction
energy Ej , and the AC flux drive ϕext (t ). The coupler capac-
itively is coupled to the storage and leakage cavity through
the capacitances Cac,Cbc, respectively. The capacitance CbL is
the coupling between the leakage cavity and the transmission
line, which gives rise to a minor frequency shift of the leakage
cavity. The red dots show the flux of each system with which
the Lagrangian and the Hamiltonian of the system can be
evaluated.

FIG. 6. Quantum circuit of the emitter. The coupler is derived to
properly transfer a quantum state from storage to the leakage cavity.
Both cavities are shown by lumped elements which capacitively are
coupled to a symmetry flux tunable transmon.

To properly drive the effective Hamiltonian we first evalu-
ate the lagrangian of the quantum circuit L = T − V where T
and V correspond to the kinetic and potential energy, respec-
tively.

According to Fig. 6, the kinetic energy is evaluated as

T = 1
2

[
Caφ̇

2
a + Cacφ̇

2
Cac

+ Ccφ̇
2
c + Cbcφ̇

2
Cbc

+ Cbφ̇
2
b + CbLφ̇2

CbL

]
(A1)

and the potential is

V = 1

2

[
φ2

a

La
+ φ2

b

Lb

]
− 2EJ cos

(
πφext (t )

φ0

)
cos

(
2πφc

φ0

)
,

(A2)

where the detail of the derivation of the coupler potential is
provided in Appendix B. Using Kirchoff’s voltage laws

φ̇Cac = φ̇c − φ̇a, φ̇Cbc = φ̇b − φ̇c, φ̇CbL = −φ̇b, (A3)

and the conjugate relation

Qi = ∂L
∂φ̇i

, i = a, c, b, (A4)

the kinetic energy in the charge basis [Qa, Qc, Qb] is obtained
as

T = 1

2
�QC �QT , (A5)

where

C ≈

⎡
⎢⎢⎢⎢⎢⎣

1
Ca

Cac
CaCc

0

Cac
CaCc

1
Cc

Cbc
CbCc

0 Cbc
CbCc

1
Cb

⎤
⎥⎥⎥⎥⎥⎦. (A6)

In the capacity matrix, Ca = Ca + Cac, Cc = Cc + Cbc + Cac,
Cb = Cb + Cbc + CbL. According to the capacitance matrix,
the coupling strength between the coupler and the stor-
age(leakage) cavity depends on gac ∝ Cac

CaCc
, gbc ∝ Cbc

CbCc
, re-

spectively, where we assume the coupling is weak, Cac,Cbc �
Ca,Cb,Cc.
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1. Linear and nonlinear potential of the coupler

From Eq. (A2), the potential energy of the coupler includes
the contribution of the nonlinear flux operators and the exter-
nal drive as

Ucoupler = − 2EJ cos

(
πφext

φ0

)
cos

(
2πφc

φ0

)

= −2EJ cos

(
ϕext (t )

2

)
cos(ϕc), (A7)

where the reduced flux is considered as ϕc = 2πφc

φ0
and

ϕext (t ) = ϕdc + F (t ) sin(ωdt ). Using the Taylor expansion

cos(ϕc) = 1 − ϕ2
c

2
+ ϕ4

c

4!
+ O

(
ϕ6

c

)
, (A8)

the potential energy of the transmon can be decomposed into
a linear U l

C and nonlinear U nl
C terms as (the constant terms are

dropped)

Ucoupler = U l
C + U nl

C ,

U l
C = −2EJ cos

(
ϕext (t )

2

)[
1 − ϕ2

c

2

]
,

U nl
C = −2EJ cos

(
ϕext (t )

2

)[
ϕ4

c

4!

]
. (A9)

By expanding the flux drive term

cos

(
ϕext (t )

2

)
= cos

(
ϕdc

2

)
− sin

(
ϕdc

2

)
F (t ) sin(ωdt )

2

− cos
(

ϕdc

2

)
8

F (t )2 sin(ωdt )2 + O(F (t )3),

(A10)

the quadratic part of the potential, second line of (A9), can
be decomposed into time-independent and time-dependent
terms as

U l
C = EJ

[
cos(

ϕdc

2
)

]
ϕ2

c − EJ

[
sin

(
ϕdc

2

)
F (t ) sin(ωdt )

2

+ cos
(

ϕdc

2

)
8

F (t )2 sin(ωdt )2

]
ϕ2

c . (A11)

Consequently one can easily find the time-independent poten-
tial matrix V ′ in basis φ = (φa, φc, φb)x:

V ′ =

⎡
⎢⎢⎢⎢⎢⎢⎣

1
LA

0 0

0
8π2EJ

[
cos

(
ϕdc

2

)]
φ2

0
0

0 0 1
LB

⎤
⎥⎥⎥⎥⎥⎥⎦

, (A12)

which makes the potential energy V = 1
2
�φV ′ �φT . Using the

linear potential V and the kinetic energy T , the dressed mode
of the circuit can be evaluated. In the dressed mode, the time-
dependent and nonlinear terms of the potential of the coupler
provide the value of the effective nonlinear interaction on the
cavities and the optimal swap operator between the cavities,
which are discussed in the next section.

2. Dressed modes and the effective Hamiltonian

To calculate the dressed mode of the circuit in Fig. 6, one
can define the linear and time-independent Hamiltonian as

Hl = 1
2

�QC �QT + 1
2
�φV ′ �φT , (A13)

where C,V ′ are evaluated in Eqs. (A6) and (A12), respec-
tively. The equation of motion for the Heisenberg operator is
given by

∂2
t

�QT = −V ′C �QT ,

∂2
t

�φT = −CV ′ �φT , (A14)

and can be solved by making the ansatz

�QT = i
∑

n

√
h̄ωn

2

1√
C

�ζ T
n (a†

neiωnt − ane−iωnt )

�φT =
∑

n

√
h̄

2ωn

√
C�ζ T

n (a†
neiωnt + ane−iωnt ). (A15)

The frequency of the modes ωn and its corresponding orthog-
onal mode functions �ζn follow from the eigenvalue equation(√

CV ′√C − ω2
nI

)�ζ T
n = 0, (A16)

which yields the uncoupled Hamiltonian

Hl/h =
3∑

n=1

ωna†
nan. (A17)

The phase operator of the coupler φc, in the new basis ai, can
be expressed as

φc =
3∑

n=1

λn√
2

(â†
n + ân) =

3∑
n=1

An + A†
n√

2

−→ λn =
√

h̄

ωn
�ec

√
C�ζ T

n , (A18)

where indices i = 1, 2, 3 correspond to a, c, b, respectively
and we a introduce new parameters representation:

λa ≡ λ1, λc ≡ λ2, λb ≡ λ3

a = a1, c = a2, b = a3,

ωa = ω1, ωc = ω2, ωb = ω3. (A19)

Considering a compact form of the flux of the tunable coupler
[31,32],

φc = 1√
2

(Aa + A†
a + Ab + A†

b + Ac + A†
c ) = A + A†

√
2

,

(A20)

and defining λ̄ = [A, A†] = |λa|2 + |λb|2 + |λc|2, the time-
dependent part of Eq. (A11) is obtained as

Hl (t ) = −2EJπ
2

φ2
0

[
sin

(
ϕdc

2

)
F (t ) sin(ωdt )

2

+ cos
(

ϕdc

2

)
8

F (t )2 sin(ωdt )2

]
(2A†A + λ̄), (A21)
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which provides the swap operator and the Stark shifts. In
addition, the fourth order of the flux operator, U nl

C in Eq. (A9),
provides self-Kerr and cross-Kerr interaction, and also Stark
shifts which in the dressed mode of Eq. (A20) are obtained as

U nl
C = Hnl ≈ −π4EJ cos

(
ϕext (t )

2

)
3φ4

0

(A + A†)4

Hnl ≈ −π4EJ cos
(

ϕext (t )
2

)
3φ4

0

[12λ̄A†A + 6A†A†AA].

(A22)

It is worth noting that the dressed mode coefficients λa(b) ≈
ga(b),c/(ωa(b) − ωc) � 1, which allows us to neglect the con-
tribution of the higher order nonlinearities in the effective
Hamiltonian. In addition, we consider a weak drive which
allows us to neglect higher order terms in the drive amplitude.
However, in experiments it might be essential to go beyond
this, e.g., see the calculations of the effective Hamiltonian in
[42]. Furthermore, we have considered a flux driven coupler,
but we note that also other coupling schemes qualitatively
render similar effective Kerr terms [40]. If we consider the
drive frequency ωd = ωb − ωa, the total Hamiltonian H =
(A17)+(A21)+(A22), in the rotating frame ωaa†a + ωbb†b +
ωcc†c, is obtained:

H = −igswap(t )[b†a − a†b]

+ gStark (t )
[
λ2

aa†a + λ2
bb†b + λ2

cc†c
]

+ gselfKerr
[
λ4

aa2†a2 + λ4
bb2†b2 + λ4

cc2†c2
]

+ gcrossKerr
[
λ2

aλ
2
bb†ba†a + λ2

aλ
2
cc†ca†a + λ2

cλ
2
bb†bc†c

]
,

(A23)

where the coefficients are evaluated as

gswap(t ) =
(

π2

φ2
0

− λ̄π4

φ4
0

)
EJλaλb sin

(
ϕdc

2

)
F (t ), (A24)

gStark (t ) =
(

λ̄π4

φ4
0

− π2

φ2
0

)
EJ cos

(
ϕdc

2

)
4

F (t )2, (A25)

gselfkerr = −2π4EJ cos
(

ϕdc

2

)
φ4

0

, (A26)

gcrosskerr = −8π4EJ cos
(

ϕdc

2

)
φ4

0

. (A27)

It is worth noting that because the coupler is ini-
tialized in the ground state, the Hamiltonian (A23), de-
couples the coupler from both cavities which means the
terms (c†ca†a, c†cb†b, c†2c2) vanish at all times. Comparing
Eqs. (10) and (A23)–(A27), the following parameters are in-
troduced

χa(b) = −2π4EJ cos
(

ϕdc

2

)
φ4

0

λ4
a(b),

χab = −8π4EJ cos
(

ϕdc

2

)
φ4

0

λ2
aλ

2
b,

Sa(b)(t ) = gStark (t )λ2
a(b). (A28)

FIG. 7. Schematic of a flux-tunable coupler. Two Josephson
junction E 1

J , E 1
J are in parallel with two parasitic (small) capacitance

Cj,1,Cj,2 and shunted by a large capacitance Ct [30]. The flux drive
in the small loop is ϕext (t ) and the bigger loop is described by the
flux operator φC .

APPENDIX B: CALCULATION OF THE POTENTIAL
OF THE COUPLER

In general, we can consider each junction coupled in paral-
lel with parasitic capacitance (Cj,1,Cj,2), and the total system
is shunted by a large capacitance Ct ; see Fig. 7. The Kinetic
and potential energy of this simple circuit is

T = 1

2

[
Ct φ̇

2
C + Cj,1φ̇

2
j,1 + Cj,2φ̇

2
j,2

]
V = −EJ,1 cos

(
2πφ j,1

φ0

)
− EJ,2 cos

(
2πφ j,2

φ0

)
(B1)

According to the number of nodes in the circuit, it can be
described by one degree of freedom which we consider φC .
Using the Kirchhoff voltage low, the small loop of junctions
obeys the following equation

φ j,1 − φ j,2 = φext. (B2)

In the following, we introduce the independent parameter φC

as the function of the two fluxes across the junctions

m1φ j,1 + m2φ j,2 = φC (B3)

Using Eq. ((B2),(B3)) the fluxes are obtained as

φ j,1 = φC + m2φext

m1 + m2

φ j,2 = φC − m1φext

m1 + m2
, (B4)

where subsequently, the kinetic part of Eq. (B1) can be rewrit-
ten as

T = 1

2

[[
Cj,1 + Cj,2

(m1 + m2)2
+ Ct

]
φ̇2

C

+ 2(m2Cj,1 − m1Cj,2)

(m1 + m2)2
φ̇Cφ̇ext + O(φ̇ext )

2

]
. (B5)
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FIG. 8. Different realizations of the Wigner functions of the single output mode TCCS in Fig. 4(c).

We do not take the second order of the flux fluctuation into
account, as we assume the flux drive is slow in time. To
remove the effect of the flux drive fluctuation φ̇ext, one can
utilize the following two conditions

m1 + m2 = 1

m2Cj,1 − m1Cj,2 = 0, (B6)

where lead to

m1 = Cj,1

Cj,1+Cj,2

m2 = Cj,2

Cj,1+Cj,2
.

Hence T ,V are obtained as

T = Cj,1 + Cj,2 + Ct

2
φ̇2

C

V = −EJ,1 cos

(
2π [φC + m2φext]

φ0

)

− EJ,2 cos

(
2π [φC − m1φext]

φ0

)
. (B7)

If we consider symmetry junction with EJ,1 = EJ,2 = EJ and
Cj,1 = Cj,2, consequently m1 = m2 = 1/2 and the potential
energy can be simplified as

V = −2EJ cos

(
2πφC

φ0

)
cos

(
πφext

φ0

)
, (B8)

which is equivalent to Eq. (A2). Introducing Cc ≡ Cj,1 +
Cj,2 + Ct , the same kinetic energy as in Equation (A1) is
obtained.

APPENDIX C: WIGNER FUNCTION OF FIG. 4(C)

Figure 8 shows different realizations of the Wigner func-
tion of the most populated output mode for TCCS shown in
Fig. 4(c). As discussed in the main text, the nonlinear interac-
tions have different effective phases on the Fock component
|2〉, |4〉 which reduce the fidelity of the released TCCS into
the most occupied mode.
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