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Ashkin-Teller phase transition and multicritical behavior in a classical monomer-dimer model
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We use Monte Carlo simulations and tensor network methods to study a classical monomer-dimer model on
the square lattice with a hole (monomer) fugacity z, an aligning dimer-dimer interaction u that favors columnar
order, and an attractive dimer-dimer interaction v between two adjacent dimers that lie on the same principal axis
of the lattice. The Monte Carlo simulations of finite size systems rely on our grand-canonical generalization of
the dimer worm algorithm, while the tensor network computations are based on a uniform matrix product ansatz
for the eigenvector of the row-to-row transfer matrix that work directly in the thermodynamic limit. The phase
diagram has nematic, columnar order and fluid phases, and a nonzero temperature multicritical point at which
all three meet. For any fixed v/u < ∞, we argue that this multicritical point continues to be located at a nonzero
hole fugacity zmc(v/u) > 0; our numerical results confirm this theoretical expectation but find that zmc(v/u) → 0
very rapidly as v/u → ∞. Our numerical results also confirm the theoretical expectation that the corresponding
multicritical behavior is in the universality class of the four-state Potts multicritical point on critical line of the
two-dimensional Ashkin-Teller model.
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I. INTRODUCTION

Dimer models provide interesting examples of entropy-
dominated physics [1]. On planar graphs in the fully packed
limit (i.e., with hole fugacity set to zero), they are exactly
solvable by Pfaffian methods [2–4]. These methods allow for
a detailed characterization of the critical power law correla-
tions of such fully packed dimer models on the square and
honeycomb lattices [5]. This critical behavior also admits an
interesting description in terms of a coarse-grained action for
a fluctuating height field [1].

The analogous fully packed dimer model in three dimen-
sions as well as two-dimensional bilayer models are not
exactly solvable even at full packing, nor are related models
with an admixture of hard squares. Several such models have
been studied using numerical simulations and coarse-grained
effective field theory ideas [6–9]. Connections to the physics
of quantum dimer models [10] and resonating valence bond
wave functions [11–13] have also been explored [14,15].

Interactions and nonzero hole fugacity also preclude the
possibility of an exact solution even in the simple square
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lattice case. Nevertheless, the phase diagram on the square
lattice in the presence of nonzero hole fugacity z and an
aligning interaction u that favors two parallel dimers on a
square plaquette has been studied in detail using numerical
simulations [16–18]. These studies reveal that the aligning
interactions drive a transition to columnar order at low tem-
perature T and fugacity z. In the columnar ordered phase,
both lattice rotational symmetry and translational symmetry
are spontaneously broken, and almost all dimers align in the
same direction.

In this system, the transition from this columnar ordered
state to the dilute high-temperature dimer fluid has a con-
tinuously varying correlation length exponent ν, although
the anomalous exponent associated with the columnar or-
der parameter remains fixed at η = 1/4 as long as the
transition remains second-order in nature [17,18]. For tem-
peratures below a tricritical value, the transition turns first
order [17,18]. In the regime with a continuously vary-
ing correlation length exponent ν, long distance properties
are controlled by the physics of the Ashkin-Teller fixed
line [19–21], for which the value of ν serves as a con-
venient universal coordinate [7]. Indeed, this particular
microscopic realization of Ashkin-Teller criticality is de-
scribed by the portion of the Ashkin-Teller fixed line
that starts at its Kosterlitz-Thouless endpoint (correspond-
ing to the transition in the fully packed dimer model,
with ν formally equal to infinity) and continues on to the
four-state Potts point (corresponding to the tricritical transi-
tion of this dimer model, with ν = 2/3) on this fixed line
[17,18].
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In related work [22], Papanikolaou et al also studied the ef-
fect of an additional dimer interaction v that competes with the
aligning interaction u and hole fugacity z on the square lattice.
The additional interaction represents an attraction between
two adjacent dimers on the same principal axis of the square
lattice and favors nematic order. In such a nematic state,
lattice translation symmetry is preserved, but the symmetry
of rotations by π/2 is spontaneously broken. As a result,
〈(Nh − Nv )2〉 ∼ L4 in the thermodynamic limit, where Nh is
the number of horizontal dimers, Nv is the number of vertical
dimers, and the angular brackets denote the equilibrium aver-
age. The presence of such a state at low enough temperature
and small enough hole fugacity z was also rigorously estab-
lished [23,24].

Consequently, the phase diagram in the presence of both
interactions u and v is rich, and supports three different phases
at nonzero hole density: A dilute fluid phase, a nematic phase,
and a columnar ordered phase. Previous work [22] charac-
terized the phase diagram in the T -z plane in some detail.
This analysis led to the following conclusion [22]: When both
interactions are nonzero and compete with each other, the
transition from the low-z low-T columnar solid to the fluid
proceeds in two steps, an Ising transition from columnar order
to nematic order, and a second Ising transition from nematic
order to fluid. In this scenario [22] for the phase diagram in
the z-T plane, there are thus two Ising lines emerging from
the z = 0 Kosterlitz-Thouless transition point when v and u
compete with each other. In the v/u → ∞ limit, the first of
these pivots coincides with the z = 0 temperature axis of the
z-T phase diagram, rendering the low-temperature columnar
order unstable to infinitesimal z.

Having two Ising transition lines emanate from the
Kosterlitz-Thouless transition point on the z = 0 temperature
axis throws up an interesting puzzle when considered from the
point of view the coarse-grained field theory ideas used earlier
in closely related contexts [7,17,18]. The issue is the fact that
the Kosterlitz-Thouless point on the z = 0 axis at T = TKT is
expected to continue on to an Ashkin-Teller line TAT(z) as one
turns on a small z and lowers the temperature slightly.

This fits in with the fact that Kosterlitz-Thouless critical-
ity is known to emerge as the limiting behavior at one end
of the Ashkin-Teller line when ν → ∞ as this end point is
approached. Additionally, it is also well-known that if a line
of Ashkin-Teller transitions bifurcates into two Ising lines at a
multicritical point, this multicritical point is expected to have
four-state Potts symmetry. As a result, one expects that the
correlation length exponent tends to ν = 2/3 as this point is
approached along the Ashkin-Teller line [20,21,25].

Having two Ising transition lines emanate from the
Kosterlitz-Thouless transition point on the z = 0 temperature
axis would violate both these expectations. Resolving this
puzzle is our principal motivation for revisiting this phase
diagram with a pair of complementary techniques, namely,
tensor network (TN) computations and large-scale Monte
Carlo (MC) simulations using our grand-canonical general-
ization of the dimer worm algorithm [17,26,27].

The tensor network computations use a matrix product
operator representation of the row-to-row transfer matrix
to obtain a variational uniform matrix product (uMPS) ap-
proximation to its top eigenvector (with largest eigenvalue)

[28–31]. This computational method allows efficient scans of
large swathes of the phase diagram as well as direct determi-
nation of the central charge and scaling dimensions at critical
points. Since it works directly in the thermodynamic limit,
the accuracy is only limited by the systematic error associated
with the finite internal bond dimension for the tensors used in
the matrix product representation; this error can be rendered
negligible by choosing a large enough bond dimension. In
contrast, the MC results only have statistical sampling errors,
but include finite-size effects. We comment on the conven-
tional transfer matrix method on a stripe. Although it can be
applied to the monomer-dimer model, the width of a stripe
is limited because the size of the transfer matrix grows expo-
nentially [16,17]. Since the maximum width is much smaller
than the correlation length obtained by our simulations near
the critical point, we do not adopt this method.

In the next section, we define the monomer-dimer model.
In Sec. III, we explain the numerical methods used in this
paper. Our numerical results are shown in Sec. V. The last
section is devoted to discussion and conclusions.

II. MONOMER-DIMER MODEL

We consider a classical hard-core monomer-dimer model
with two kinds of attractive dimer-dimer interactions on the
square lattice. The classical Hamiltonian in the grand canoni-
cal ensemble is given as

H = −
∑

r

∑
α=x,y

{u nα (r) nα (r + eβ �=α )

+ v nα (r) nα (r + 2eα )} − μ
∑

r

nm(r). (1)

Here, nα (r) denotes the dimer occupation number of a link
between neighboring sites, r and r + eα , and nm(r) is the
monomer occupation number at a site r. These occupation
numbers take the value 0 or 1, and should satisfy nx(r) +
ny(r) + nx(r − ex ) + ny(r − ey) + nm(r) = 1 because of the
hard-core constraint.

The u term in the first term of Eq. (1) is the interaction
between two dimers on a plaquette. On the other hand, the v

term acts on two adjacent dimers aligning in the dimer direc-
tion (Fig. 1). We call the former the plaquette interaction and
the latter the dimer-aligning interaction as well as Ref. [22].
We assume that u and v are non-negative, that is, both the
interactions are attractive. The last term of Eq. (1) is the
chemical potential of monomers. The fugacity of a monomer
at the temperature T is defined as z ≡ eβμ, where β = 1/T is
the inverse temperature. In this paper, we set u + v = 1 as a
unit of energy so that the perfectly columnar ordered state at
full packing has a constant energy per site, e = −(u + v)/2.

When the plaquette interaction u is sufficiently large, the
columnar ordered phase appears. This phase spontaneously
breaks the symmetry of lattice rotations about a site, as well
as lattice translational symmetry along one principal axis. In
contrast, in the nematic phase which is favored by the v term,
the system spontaneously choses to have macroscopically
more dimers of one orientation over the other. Translational
symmetries along both principal axes are preserved, but the
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FIG. 1. A typical configuration of dimers and monomers. Our
model has two kinds of dimer-dimer attractive interactions, u and
v. A monomer has the chemical potential μ.

system spontaneously breaks the symmetry of lattice rotations
about a site.

Typical configurations of three phases are shown in Fig. 2.
These are generated by the MC simulations at v = 0.9 and z =
0.2, using the method described in the next section for three
temperatures, T = 0.65, 0.75, and 0.85, which correspond
respectively to the columnar ordered, nematic and disordered
fluid phases. From this depiction, it is clear that the nematic
phase breaks the lattice rotational symmetry but does not
break translational symmetry, while the columnar state breaks
both lattice translation symmetry and rotational symmetry.

III. METHODS

As mentioned in Introduction, our computational study
of this monomer-dimer model uses complementary methods.
One employs our grand-canonical generalization of the dimer
worm algorithm to perform Monte Carlo simulations, while
the other uses tensor network methods. Below, we summarize
each in turn.

A. Monte Carlo method

The usual dimer worm algorithm [17,26,27] provides a
rejection-free nonlocal update scheme for interacting dimer

models at full packing. Here, we build on ideas developed in
Ref. [32] to generalize this dimer worm algorithm and obtain
an efficient grand-canonical algorithm for the monomer-dimer
model at nonzero monomer fugacity. In the first step of
our grand-canonical scheme, one chooses at random a site
jinit of the lattice. There are two possibilities at this first
step: Either the initially chosen site jinit has a monomer
on it, or it is covered by a dimer. Let us consider each in
turn.

If jinit has a monomer on it, we have five options at our
disposal. The first four options consist of placing a dimer
connecting the initial site to one of its four neighbors. The
fifth option is to exit without doing anything. Each of these
possibilities is assigned a probability from a probability ta-
ble. We will discuss the construction of this probability table
in some detail below. For now we simply introduce some
language that will subsequently be useful in describing the
construction of this probability table: The initial site is our
first “pivot” site π0, which we have “entered” from the “entry”
σ0 = 0, i.e., from “outside the lattice” (Fig. 3). Aborting our
attempted worm move at this step itself without doing any-
thing corresponds to “exiting the pivot” π0 via “exit” σ ′

0 = 0.
On the other hand, if we opt to place a dimer connecting
the pivot π0 to its kth neighbor, this option corresponds to
exiting the pivot via exit σ ′

0 = k (so k can take on values
from 1 to 4). If the chosen exit is σ ′

0 �= 0, we now move to
the site corresponding to the chosen exit and continue the
construction.

Before we describe what is done next, we need to specify
the procedure to be used if the initially chosen site jinit has
a dimer covering it. In this case, one walks to the other end
of this dimer; the site covered by this other end becomes our
first pivot π0, which we have “entered” from the entry σ0 cor-
responding to jinit . Now, the choices available are again five
in number: One can delete this dimer that connects the pivot
site π0 to the entrance site j0. This introduces two monomers
in the system and concludes the worm move. As before, this
corresponds to “exiting” the first pivot π0 via exit σ ′

0 = 0. Or,
one can pivot the dimer covering π0 so that it now connects
π0 to its k-th neighbor. If one of these latter four options is
chosen, we say the pivot π0 is exited via exit number σ ′

0 = k,
and we move to the site corresponding to the chosen exit to
proceed further as described below.

FIG. 2. A typical monomer-dimer configuration of the (a) columnar ordered, (b) nematic, and (c) disordered fluid phases. These are a part
of snapshots generated by the MC simulations of the L = 256 system at (u, v, z) = (0.1, 0.9, 0.2). A color of dimers corresponds to a value
of the local order parameter Eqs. (9) and (11). Blue, orange, green and purple dimers have (�col(r), �nem(r)) = (1, 1), (−1, 1), (i,−1), and
(−i, −1), respectively. Monomers are indicated by a empty site.
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FIG. 3. The label s labels the different allowed states of a site
in our monomer-dimer model. Other dimer states (s = 2, 3, 4) not
shown here are generated by the counter-clockwise 90◦ rotations.
The label σ (σ ′) labels the different entrance (exit) configurations
corresponding to a pivot, as defined in our grand-canonical worm
algorithm. In the latter context of the worm algorithm, the configu-
rations shown provide a pictorial illustration of the local information
needed for calculating the reduced weights given in Eq. (3), which
enter the detailed balance constraint equations Eq. (2). Thus en-
trance/exit σ = 0 is schematically depicted with two monomers at
the pivot in question to emphasize that the corresponding reduced
weight is z2, not z. This is appropriate since entrance/exit σ = 0
(σ ′ = 0) corresponds to a configuration that has one less dimer
compared to the configurations associated with other entrances/exits.

At this stage of our worm construction, we are at the site
corresponding to exit σ ′

0 of the previous pivot, having arrived
there because we chose to place a dimer connecting the previ-
ous pivot point π0 to this exit site. If this site does not already
have another dimer covering it, we have reached an allowed
configuration and the worm move ends. On the other hand,
if this exit site does have another dimer already covering it,
this site becomes the current “overlap site” o0. We now walk
along this pre-existing dimer from o0 to its other end. The site
at this other end becomes our next pivot site π1, which has
been “entered” via entry number σ1 that corresponds to the
overlap site o0.

At this step, there are again five choices for σ ′
1, the exit to

be used to exit the current pivot site π1. As before, exit σ ′
1 = 0

corresponds to deleting the dimer covering the current pivot
site π1. If this is chosen, the worm move ends. On the other
hand, exits numbered σ ′

1 = 1 through σ ′
1 = 4 correspond to

pivoting the dimer covering π1 so that it now connects π1 to
the site corresponding to σ ′

1. If this exit site does not already
have a dimer covering it, we have reached an allowed config-
uration and the move ends. Otherwise, this exit site becomes
the next overlap site o1, and the procedure is repeated.

It is easy to see that this worm construction yields a valid
rejection-free algorithm if we choose the probability table
Pσ→σ ′ for transition probabilities in a way that it satisfies local
detailed balance at each step. This amounts to requiring that
the probability obeys the constraint equations:

ωσ Pσ→σ ′ = ωσ ′Pσ ′→σ . (2)

Here, Pσ→σ ′ is the conditional probability for exiting a pivot
via exit σ ′ given that we have entered it via entrance σ ,
Pσ ′→σ is the conditional probability for the reverse process,
and the weights ωσ and ωσ ′ represent the Boltzmann weights
of the configurations corresponding to the choices σ and σ ′,
respectively. These Boltzmann weights are to be calculated
ignoring the violation of the hard-core constraint on dimers in
the configurations that arise during the worm construction.

The simplest choice of solution is the heat-bath solu-
tion (sometimes called the Gibbs sampler) given as Pσ→σ ′ =
ωσ ′/

∑
σ ′ ωσ ′ . In practice, we use the iterative Metropolized

Gibbs sampler to reduce the bounce process [33], i.e., reduce
the magnitude of the diagonal elements of the probability
table. Note also that the computation of the weights ωσ and
ωσ ′ is simplified by the fact that they only differ due to factors
arising from the contribution of the immediate neighborhood
of the pivot. Since the equation set is homogenous, we can
cancel all common factors to define reduced weights that only
depend on the local environment of the pivot, and use these in
Eq. (2).

These reduced weights can be written as

ωσ = z2δσ,0 + eβ(un+vm)(1 − δσ,0), (3)

where n (m) denotes the number of nearest neighbor dimers
parallel in the transverse (longitudinal) direction to the dimer
that covers the pivot when the configuration corresponds to
entrances/exits σ �= 0. These numbers n, m ∈ {0, 1, 2} can be
calculated by checking the direction of dimers on eight sites
around rh, that is, rh ± ex, rh ± ey, rh ± 2ex, rh ± 2ey. The
number of valid configurations in these eight sites is 65089,
much smaller than 58 = 390625.

The factor of z2 in the first term of Eq. (3) reflects the
fact that configuration σ = 0 has one fewer dimer, i.e., two
additional holes (monomers) in comparison with the configu-
rations with σ �= 0.

Finally, we note for completeness that this worm construc-
tion and its detailed balance property generalizes straightfor-
wardly to lattices with arbitrary coordination number. The
“out-of-plane” entrance/exit in the general case is numbered 0,
and the other entrances/exits are numbered from 1 to nc, where
nc is the coordination number of the pivot site in question
(nc can be different for different sites, and there is thus no
restriction of regularity for this algorithm to remain valid).

Using this algorithm, we perform the MC simulations of
N = L × L systems with periodic boundary conditions for
system size L up to L = 512. The number of the worm updates
nw used per Monte Carlo step is chosen for each set of control
parameters to be such that nw〈lw〉 = N , 〈lw〉 is the mean num-
ber of sites visited during the construction of a single worm.
We perform 103 × N worm updates to estimate 〈lw〉 and to
thermalize the system before measuring physical quantities.
With this convention defining a MC step, we ensure that we
obtain at least 2 × 106 MC configurations of the system from
which we can calculate equilibrium properties.

B. Tensor network method

The tensor network representation of our model is based
on the singular value decomposition of the local Boltzmann
weight on a bond. The partition function is rewritten as the
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contraction of the tensor network,

Z = tTr
⊗

i

A. (4)

The tensor A is located on sites of the square lattice and has
four indices representing links to the nearest neighbor sites.
An element of A has the form

Axyx′y′ =
4∑

s=0

(Xr )sx(Xl )sx′ (Xt )sy(Xb)sy′Ys, (5)

where s denotes the local configuration at a site as shown in
Fig. 3. The matrices X ’s are determined by the singular value
decomposition of the local Boltzmann weight on a bond. The
Boltzmann weight on a horizontal bond is represented as a
5 × 5 matrix,

Wh =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 1
0 0 0 1 0
1 1 eβu/2 0 1
1 eβv 1 0 1
1 1 1 0 eβu/2

⎞
⎟⎟⎟⎟⎟⎟⎠

, (6)

where the row (column) index of Wh corresponds to a state at
r (r + ex), respectively. Elements with a value of zero indicate
a configuration prohibited by the hard-core constraint. The
singular value decomposition, Wh = UhShV T

h , defines Xr ≡
UhS1/2

h and Xl ≡ VhS1/2
h . We note that Uh and Vh can be chosen

to be real orthogonal 5 × 5 matrices since Wh is a real square
matrix. Similarly we obtain the Boltzmann weight on a verti-
cal bond between r (row) and r + ey (column) as

Wv =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 0
1 eβu/2 1 1 0
0 0 0 0 1
1 1 1 eβu/2 0
1 1 eβv 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

= UvSvV
T
v , (7)

and we define Xt ≡ UvS1/2
v and Xb ≡ VvS1/2

v . The chemical
potential of a monomer acts as the external field and gives
the corresponding on-site factor as

Ys = z δs,0 + (1 − δs,0). (8)

The first term has the factor of z in contrast to Eq. (3). The
former corresponds to the Boltzmann weight for valid config-
urations of our monomer-dimer model, while tha latter is for
extended configurations containing one doubly occupied site.

The row-to-row transfer matrix with infinite width is rep-
resented as a uniform matrix product operator with a local
tensor A. Using the variational uniform matrix product state
algorithm (VUMPS) [28–31], we calculate the eigenvector
corresponding to the largest eigenvalue of the transfer matrix.
The uniform matrix product state (uMPS) obtained in this way
approximates this eigenvector with accuracy that is controlled
by the bond dimension χ of the uMPS. We increase χ up
to 128 to ensure sufficient accuracy. In practice, we assume
that the uMPS has a 2 × 2 unit-cell structure [31] as is appro-
priate for a description of the columnar ordered state. After
calculating the horizontal uMPS in this way, we also calculate

the vertical uMPS, which approximates the corresponding
eigenvector of the column-to-column transfer matrix. A good
initial guess for the vertical uMPS can be given by the fixed
point tensor of the horizontal uMPS [28]. We have confirmed
that the physical quantities calculated from the horizontal and
vertical uMPS agree with each other to machine precision
even in the ordered phases.

IV. OBSERVABLES AND INTERPRETATION

We now summarize the definitions and physical signif-
icance of the various observables of interest to us in this
problem, and indicate how they may be accessed in either of
the computational methods we use.

A. The order parameters and Binder ratios

We detect columnar order using a complex order parameter
constructed from the following local order parameter field
defined at each site r = (rx, ry) as

�col(r) ≡ (−1)rx {nx(r) − nx(r − ex )}
+ i (−1)ry{ny(r) − ny(r − ey)}. (9)

The corresponding order parameter,

mcol ≡ 1

N

∑
r

�col(r), (10)

takes ±1 or ±i when the state has the complete columnar
order.

Nematic order, which breaks the symmetry of π/2 rota-
tions, can be detected by comparing the number of horizontal
and vertical dimers. With this motivation, we define the local
nematic order parameter field as

�nem(r) ≡ nx(r) + nx(r − ex ) − ny(r) − ny(r − ey), (11)

The corresponding order parameter,

mnem ≡ 1

N

∑
r

�nem(r) = 2

N

∑
r

{nx(r) − ny(r)}, (12)

takes on values ±1 both in the nematic and columnar states.
The corresponding Binder ratios [34] are defined in the

usual way:

Ucol ≡ 〈|mcol|4〉
〈|mcol|2〉2 , Unem ≡

〈
m4

nem

〉
〈
m2

nem

〉2 . (13)

As is well-known, the Binder ratios converge in the ordered
phase to 1 as the denominator and numerator take on the same
limiting value in the thermodynamic limit. On the other hand,
in a phase without symmetry breaking, the limiting value de-
pends on the nature of fluctuations of the order parameter. Ucol

in the nematic and Unem in the disordered fluid phase are both
expected to converge to 3 in the thermodynamic limit because
the fluctuations of the corresponding order parameters obey
a one-dimensional Gaussian distribution in these regimes.
On the other hand, Ucol → 2 in the disordered fluid phase
because the fluctuations of mcol obey a two-dimensional Gaus-
sian distribution. We note that the conventional and Ising
definition of the Binder parameter for the frustrated Ising
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model discussed in Ref. [35] correspond Ucol and Unem, re-
spectively. Since the Binder ratio is a dimensionless quantity
in the sense of the renormalization group, curves that repre-
sent the dependence of a Binder ratio on a control parameter
(z or T ) for systems of different sizes L are all expected to
cross at the critical value of the control parameter. This allow
us to locate the phase transitions involving loss of order in a
convenient way.

B. Correlation length and entanglement entropy

The correlation length is obtained as

ξ = − 2

ln(λ1/λ0)
, (14)

where λ0 (λ1) is the (second) largest eigenvalue of the transfer
matrix defined by the uMPS. We note that the uMPS is always
normalized such that λ0 = 1, and the factor 2 comes from
the unit-cell size of the uMPS. Since we calculate the uMPS
in both the horizontal and vertical directions, two kinds of
correlation length exist in a phase that breaks the symmetry
of lattice rotations. The “transverse” correlation length ξ⊥
is measured along the direction perpendicular to the dimers,
while the “longitudinal” correlation length ξ‖ is in the direc-
tion parallel to the dimers. In the disordered fluid phase, both
correlation lengths are the same as expected. In the nematic
phase, a level crossing of λ1 occurs, and ξ⊥ takes a smaller
value than ξ‖ below a certain temperature. In the columnar
ordered phase, we always have ξ⊥ < ξ‖. In other words, the
correlation length scale along the dimers become larger than
in the perpendicular direction. Thus the transverse correlation
length seems to be suitable for studying the phase transition
between the columnar ordered and disordered fluid phases.
We also note that ξ corresponds to the truncated correlation
function and takes a finite value even in the ordered phase.

The entanglement entropy is defined as

SEE = −
∑

i

σ 2
i ln σ 2

i , (15)

where σi denotes the singular value of the core matrix in the
mixed canonical form of the uMPS. Since we calculate the
horizontal and vertical uMPS with a 2 × 2 unit-cell structure,
SEE may depend on direction and position in the unit cell. In
the disordered and nematic phases, we find that the all SEE

are equal to each other. On the other hand, in the columnar
ordered phase, we find that SEE takes on two values, depending
on whether the core matrix of the horizontal uMPS is on a
dimer or between dimers. The former always yields the larger
SEE. In our analysis below, we use the largest entanglement
entropy thus obtained.

C. Connection with coarse-grained Ashkin-Teller description

It is instructive to think in terms of a coarse-grained version
ψ of our local complex columnar order parameter field �col

and write

ψ ∝ (τ1 + τ2) + i(τ1 − τ2). (16)

Clearly, the corresponding coarse-grained version φ of the
local nematic order parameter field �nem satisfies

φ ∝ Re(ψ2)

∝ τ1τ2. (17)

The τ defined in the above are two coarse-grained Ising
fields. In the columnar ordered phase, both τ1 and τ2 are
ordered; this correctly accounts for the four-fold symmetry
breaking in the columnar ordered state. Nematic order corre-
sponds to the product τ1τ2 being ordered, without any long
range order in the individual τ . From the symmetries of the
original problem, we see that interchanging the τ is a sym-
metry of the theory. Thus the natural description is in terms
of a symmetric Ashkin-Teller theory with two Ising fields τ1

and τ2.
This connection to the physics of the Ashkin-Teller model

[19–21] yields a wealth of information. For instance, along a
line of continuous transitions from the columnar ordered state
to the disordered fluid state, we expect the critical behavior
to controlled by the critical properties of the corresponding
fixed line in the Ashkin-Teller model. Along this line, both
the Ising fields τ1 and τ2 have a fixed anomalous dimension
of η = 1/4 [19–21]. Since the columnar order parameter is
linear in the Ising fields τ1/2, we expect it to also scale with an
anomalous exponent η = 1/4 all along the line of continuous
transitions between columnar ordered and disordered fluid
phases.

Along the fixed line of the Ashkin-Teller theory, τ1τ2

scales with an anomalous dimension η2 that varies contin-
uously [19–21] and is related to the continuously varying
correlation length exponent by the Ashkin-Teller relation
η2 = 1 − 1/2ν. Since the nematic order parameter φ ∼
τ1τ2, we expect it to have an anomalous dimension η2

[7] given by this relation all along the line of continuous
transitions between columnar ordered and disordered fluid
phases.

In the Ashkin-Teller model, the point at which Ashkin-
Teller line splits into two lines of Ising transitions is
known to have the symmetries for the four-state Potts model
[19–21,25]; in the phase between these two Ising transition
lines, τ1τ2 is ordered although τ1 and τ2 remain individually
disordered. The enhanced Potts symmetry at this multicrit-
ical point implies that τ1, τ2, and τ1τ2 all have the same
anomalous exponent. Thus η2 = η = 1/4 at this point, and
the Ashkin-Teller relation implies ν = 2/3. Given the corre-
spondence made above, this implies that the nematic order
parameter is expected to have an anomalous exponent of 1/4
at the multicritical point at which the Ising phase bound-
aries of the nematic phase meet the line of continuous
transitions between columnar ordered and disordered fluid
phases.

From this perspective, it is clear that the value of ν (or
equivalently η2) serves as a universal coordinate for the line of
continuous transitions from the columnar ordered phase to the
disordered fluid phase. At full packing, i.e., z = 0, the system
has a description in terms of a coarse-grained Gaussian height
action for a scalar height h, and the transition from the power-
law ordered high-temperature state to the low-temperature
state is expected to be governed by a Kosterlitz-Thouless
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FIG. 4. Phase diagram at z = 0.2 and u + v = 1 calculated by
the TN simulation. The nematic phase exists between diamond and
square symbols. The transition temperature between the columnar
and nematic phases becomes zero at v = 1. The finite bond-
dimension effect is smaller than the symbol size.

transition at which the leading cosine nonlinearity cos(8πh)
becomes relevant. As a result, one expects ν → ∞ as z → 0
along the line of continuous transitions between the columnar
ordered state and the disordered fluid state. From this it is clear
that the multicritical point at which the two Ising lines meet
cannot be at z = 0, since this multicritical point corresponds
to a value of ν = 2/3.

This theoretical perspective and the resulting expectations
informs much of the data analysis we present in the next
section.

V. NUMERICAL RESULTS

Before getting into the details, it is useful to provide a
summary of our results for representative slices through the
phase diagram, as these slices clarify the overall picture and
help answer the question raised in Introduction.

A. Overview

To this end, we first consider a fixed z = 0.2 slice and
display the computed two-dimensional phase diagram in the
T -v plane (with u = 1 − v). This is shown in Fig. 4.

For v � 0.7, there is a direct temperature driven phase
transition between the columnar ordered and disordered fluid
phases. As v is increased further, this phase boundary splits
slightly below v = 0.8 into two transition lines and the ne-
matic phase appears as an intermediate phase beyond this
multicritical point at which three transition lines meet. We
have also checked that a corresponding slice at somewhat
larger z reduces the temperature scale of the transitions. The
transition temperatures shown in Fig. 4 is determined from the
peak position of the correlation length estimated by the TN
method. The result of the MC method agrees with it within
errors that are smaller than the symbol sizes used.

Next we consider slices with fixed v = 0.9 and v = 0.8
(with u = 1 − v) and display the computed two-dimensional
phase diagram in the T -z plane. This is shown in Fig. 5. The

FIG. 5. Phase diagram on the T -z plane obtained by the TN
simulation with χ = 128. The open (filled) symbols with the solid
(dashed) line indicate transition points at v = 0.9 (0.8) with u =
1 − v. The direct phase transition between the columnar ordered and
disordered fluid phases is shown by a blue circle as well as Fig. 4.
The inset is a magnified view for v = 0.9.

transition points are determined in the same way as Fig. 4.
Since the fully packed z = 0 system is particularly challeng-
ing for TN computations, we do not extend our study all
the way to z = 0. Nevertheless, we are able to go to low
enough z to demarcate the essential features of the phase
diagram. It would be difficult to obtain this phase diagram
using the MC method because the phase boundaries can-
not be calculated with such precision due to the finite size
effect.

At v = 0.8, the low-temperature nematic phase is quite
narrow and disappears below the multicritical value of z which
is close to z = 0.1. On the other hand, for v = 0.9, the nematic
phase is very broad and seems to exist even at very low values
of z. However, our detailed computations reveal that there is
no nematic state below a multicritical threshold value of z
which is close to z = 0.002 (Fig. 5). The actual monomer den-
sities associated with these multicritical points are extremely
small: For v = 0.8, the multicritical monomer density is about
δ = 0.005. At v = 0.9, the multicritical monomer density is a
much lower value of 5 × 10−5.

This conclusion is contrary to that of Ref. [22]. However,
it is entirely consistent with our understanding of the phase
boundaries based on the coarse-grained effective field theory.
Indeed, as we have already reviewed earlier, the multicritical
point is expected to have rather different universal behavior
from the transition at full packing since the former is ex-
pected to correspond to a η2 = 1/4 and the latter corresponds
to η2 = 1 (where η2 is the anomalous exponent associated
with the nematic order parameter). As a result, for v/u < ∞,
there is no consistent scenario in which the multicritical point
coincides with the transition at full packing. The resolution
is of course that the multicritical value of z approaches z = 0
extremely rapidly as v/u is increased, but does not reach z = 0
at any finite v/u.

In the rest of this section, we display our results for a
few representative values of v and z, and provide a detailed
account of the analysis that leads to these phase diagrams and
this overall conclusion.
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FIG. 6. The square of order parameters at (a) (u, v, z) =
(0.4, 0.6, 0.2) and (b) (0.1, 0.9, 0.2). The filled (open) symbols de-
note the columnar (nematic) order parameter. The statistical error is
smaller than the symbol size. The results by TN with χ = 128 are
also shown by the small dots connected by a line.

B. Detailed analysis

We use both tensor network (TN) and Monte Carlo (MC)
methods to obtain the nematic and columnar order parameters,
since these two complementary methods provide a nontrivial
consistency check on each other. Figure 6 shows the tem-
perature dependence of the order parameters at v = 0.6 and
v = 0.9 with z = 0.2.

At v = 0.6, both the order parameters take on nonzero
values below T = 0.7714, signaling the onset of columnar
order. On the other hand, at v = 0.9, we find that a nematic
phase exists between T1 = 0.722 and T2 = 0.790, as is clear
from the fact that the columnar order parameter vanishes
but the nematic order parameter takes on a nonzero value.
The transition temperatures are estimated by identifying the
crossing points of the Binder ratios, as shown in Fig. 7 for the
Binder ratios calculated by the MC simulations at v = 0.9 and
z = 0.2. These crossing points are found to be consistent with
the transition temperature estimated by the TN method.

We obtain the scaling dimensions of various quantities at
these transitions by performing a finite-size scaling (FSS)
analysis, using the following FSS form for the columnar and

FIG. 7. The Binder ratio for columnar and nematic orders at
(u, v, z) = (0.1, 0.9, 0.2). The dashed vertical lines denote the criti-
cal temperature obtained by the TN method.

nematic order parameters,

〈|ma|2〉 ∼ L2xa f ((T − Tc)L1/ν ), (18)

where xa denotes the scaling dimension of the correspond-
ing operator �a (a = col, nem); these scaling dimensions are
related to the anomalous exponents introduced earlier via
xcol = η/2, xnem = η2/2. Likewise, the scaling dimension of
the energy operator is related to the correlation length expo-
nent introduced earlier: xt = 2 − 1/ν.

We use the kernel method [36] to infer the critical
exponents and the critical temperature and estimate their
confidential intervals. At the best fit value of the scaling di-
mensions and the transition point, all data collapse reasonably
well onto a single curve as shown in Fig. 8.

The scaling dimensions are plotted in Fig. 9. Below the
multicritical point, i.e., along the line of continuous phase
transitions between the columnar ordered and disordered fluid
states, the scaling dimensions xnem and xt are seen to con-
tinuously change with v, while xcol remains constant at a
value consistent with the theoretical expectation of xcol = 1/8.
We have checked that the corresponding exponents η2 and ν

satisfy the Ashkin-Teller relation η2 = 1 − 1/2ν, i.e., xt/4 =
xnem within our errors. On the other hand, we have xt/4 �= xnem

for v � 0.8. This discontinuous change in the critical index
ratio strongly suggests the change from the single transition
to the two separate transitions, i.e., the existence of the multi-
critical point. The expected η = η2 = 1/4 at the multicritical
point is actually realized at about v = 0.7. Parenthetically, we
note that we find a decoupled Ising point at about v = 0.3 in
the z = 0.2 plane, where we have xnem = 0.25 and xt = 1.0.

The scaling dimension of the energy operator can also be
estimated from the FSS analysis of the Binder ratio as shown
in Fig. 8. Although the nonmonotonic behavior of the Binder
ratio for columnar order and the relatively closely spaced suc-
cessive transitions makes this difficult, we obtain almost the
same results for xt from this analysis, as we do using the ear-
lier analysis in terms of the order parameters. We emphasize
that nonmonotonicity has to do with the differing character
of the columnar order parameter fluctuations in the nematic
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FIG. 8. The FSS plots at (u, v, z) = (0.4, 0.6, 0.2) for (a) the
columnar order parameter, (b) the nematic order parameter, (c) the
columnar Binder ratio, and (d) the nematic Binder ratio.

and the disordered fluid phases, and the related presence of
a proximate multicritical point. Similar nonmonotonicity has
been noted in the J1-J2 Ising model earlier [37]. In contrast
to other examples of such behavior in frustrated Ising mod-
els, which is associated with a proximate weakly first order
transition, we do not find evidence of any first-order transi-
tions for the values of v studied here.

Although it is difficult to completely exclude possibility of
the weakly first-order phase transition around the multicritical
point in our simulations, the weight of evidence suggests
that the presence of a sizable v term replaces the first order
transition found in Refs. [16,17] by an intermediate nematic
phase flanked by two second-order Ising phase boundaries.
This is consistent with the fact that generalized four-state
clock models, which serve as a discrete hard-spin analog of
the coarse-grained description in terms of order parameter
fields ψ and φ, are known for some parameter values to have
such an intermediate phase flanked by two Ising lines that
meet at a multicritical point with enhanced four-state Potts
symmetry at the end of a line of Ashkin-Teller transitions [25].

The multicritical point at v = vc(z) is expected to have
the four-state Potts universality. It is difficult to determine
accurate location of the multicritical point because of the
finite-size or finite bond-dimension effect. To make matters

FIG. 9. The scaling dimensions estimated by the FSS analysis
of the order parameters (18) at z = 0.2. The horizontal dashed lines
indicate xh = 1/8 and xt = 1 in the Ising universality class. The red
crosses indicate xt/4, which should be equal to xnem on the Ashkin-
Teller line.

worse, one also expects that a logarithmic correction appears
at the four-state Potts model. Our data, however, support the
S4 symmetry at the multicritical point. The order parameters
satisfy mnem > mcol below vc, while mnem > mcol for v > vc

(Fig. 6). Thus we expect that mcol � mnem at v = vc, which
indicates the emergent S4 symmetry.

By definition, the scaling dimension also appears in
the corresponding critical two-point correlation function as
Ca(r) ∝ r−2xa . We consider the correlation function along an
axis because the uMPS can easily calculate it. The correlation
function between the local quantities is defined as

Ca(r) ≡ 1

N

∑
ρ

〈�a(ρ)�∗
a (ρ + reα )〉. (19)

In our TN simulation, ρ runs over sites in the 2 × 2 unit
cell, which corresponds to a value of N = 4. For correlation
between monomers, the truncated correlation function,

Cmono(r) ≡ 1

N

∑
ρ

{〈nm(ρ)nm(ρ + reα )〉

− 〈nm(ρ)〉〈nm(ρ + reα )〉}, (20)

is expected to scale as r−2xt . As shown in Fig. 10, the scaling
dimensions extracted by the linear fitting of the correlation
functions agree with the results obtained by the FSS analysis.

The central charge is another important universal property
of a critical point. According to the conformal field theory,
the correlation length ξ and the entanglement entropy SEE are
related by the Calabrese-Cardy formula at criticality:

SEE = c

6
ln ξ + const., (21)

where c denotes the central charge.
One of the advantages of the TN method is that these two

quantities can be calculated naturally. Figure 11 clearly shows
that the values obtained from the TN method are consistent
with the Cardy-Calabrese formula (21). Based on the theoreti-
cal framework outlined in the previous section, the continuous
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FIG. 10. The correlation functions at T = 0.77138 and (u, v, z)
= (0.4, 0.6, 0.2) calculated by the TN method with χ = 128. The
monomer-monomer truncated correlation function is shown in the
inset. The dashed lines are obtained by the linear fitting.

FIG. 11. The entanglement entropy SEE vs the transverse correla-
tion length ξ⊥ at (a) (u, v, z) = (0.4, 0.6, 0.2) and (b) (0.2, 0.8, 0.2).
The peaks of SEE are shown by a large symbol. The dashed lines are
guides to the eye and its slope is equal to c/6 corresponding to the
Calabrese-Cardy formula (21).

FIG. 12. (a) The eighth power of the order parameters and (b) the
inverse of the correlation length at (u, v, z) = (0.1, 0.9, 0.2). The
linearity of them around the transition points agrees with the Ising
universality class.

phase transition between the columnar ordered and disordered
fluid phases is expected to have a central charge of c = 1.
On the other hand, the continuous Ising phase boundaries of
the nematic phase are expected to have a central charge of
c = 1/2. From the results displayed in Fig. 11, we see that
our results do indeed conform to both these expectations.

Above the multicritical point (v > vc), there are two phase
transitions, the columnar-nematic and nematic-disorder ones.
Although the FSS result of xt deviates from the expected
value (Fig. 9), we believe that it is due to the correction to
scaling and effects from another critical point. The TN result
at v = 0.9 shows that the eighth power of the order parameters
and the inverse of the correlation length are linear to the
temperature near the criticality (Fig. 12). This fact strongly
indicates that these critical exponents satisfy β = 1/8 and
ν = 1, which is consistent with the Ising universality.

Finally, we comment on the approach of the multicriti-
cal point to z = 0 as v/u is increased. This happens very
rapidly, and simultaneously, the phase boundary between the
columnar and nematic phases, shown by orange squares in
Fig. 5, approaches the vertical temperature axis as v/u in-
creases. This is clear from monitoring the relative values of
mcol and mnem as in our earlier discussion about the symmetry
of the multicritical point. Eventually, in the limit v/u → ∞,
the columnar phase vanishes and only the phase boundary
between the nematic and disordered phases remains.

VI. DISCUSSIONS AND SUMMARY

In this paper, we have studied the classical grand-canonical
monomer-dimer model on the square lattice with two types
of attractive interactions. We have determined the phase di-
agrams and analyzed the nature of the phase transitions
using MC and TN methods. The phase transition between
disordered and columnar ordered phases shows the same
feature as the Ashkin-Teller transition, where the critical
exponents change continuously. On the other hand, both
nematic-disordered and columnar-nematic phase transitions
belong to the Ising universality class. Our numerical results
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show that the multicritical point, where three phases meet, has
a positive fugacity when v/u < ∞.

Our conclusions and the theoretical framework within
which they are situated has already been discussed at length.
Here, we confine ourselves to highlighting one aspect of the
phase diagram that appears to be worth further study. This has
to do with the rapidity with which the multicritical point (at
which the two Ising transitions meet the Ashkin-Teller line)
moves towards z = 0 as we increase v/u. The proximity to
the full packing limit raises the possibility that aspects of this
could be understood by expanding about the full packing limit
in some way. It would be interesting to explore this in future
work. A related question has to do with the extent of the
nematic phase itself in the T -z phase diagram at large v/u.
As noted in Ref. [22], one expects that the low-temperature
phase at full packing will be columnar ordered for any finite
value of v/u, no matter how large. However, the extent of this
phase in z decreases very rapidly with increasing v/u, until,
at asymptotically large values of v/u, the columnar state only

exists at full packing. Again, it would be interesting if some
small z expansion method could yield a more quantitative
characterization of this phenomenon, which is very challeng-
ing to study by numerical methods.
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