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Improved local models and new Bell inequalities via Frank-Wolfe algorithms
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In Bell scenarios with two outcomes per party, we algorithmically consider the two sides of the membership
problem for the local polytope: Constructing local models and deriving separating hyperplanes, that is, Bell
inequalities. We take advantage of the recent developments in so-called Frank-Wolfe algorithms to significantly
increase the convergence rate of existing methods. First, we study the threshold value for the nonlocality of
two-qubit Werner states under projective measurements. Here, we improve on both the upper and lower bounds
present in the literature. Importantly, our bounds are entirely analytical; moreover, they yield refined bounds
on the value of the Grothendieck constant of order three: 1.4367 � KG(3) � 1.4546. Second, we demonstrate
the efficiency of our approach in multipartite Bell scenarios, and present local models for all projective
measurements with visibilities noticeably higher than the entanglement threshold. We make our entire code
accessible as a JULIA library called BellPolytopes.jl.
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I. INTRODUCTION

Long after the establishment of quantum mechanics, Bell
uncovered in 1964 the concept of nonlocality [1]. Arguably
one of the most striking features of the theory, this property
makes it possible to distinguish correlations that can be ob-
tained by classical or quantum means and since then has been
extensively studied [2]. Of particular interest is the question of
the relation between this notion and the one of entanglement:
Although entanglement is clearly necessary to observe any bi-
partite nonlocality, asking whether it is sufficient is a delicate
question. For pure states, this is indeed the case [3], but this
is not true for general states: In 1989, Werner exhibited mixed
states that are entangled but nonetheless local [4].

More precisely, for a specific one-parameter family of
states, by constructing an explicit local model recovering
the correlations observed, he showed that the nonlocality
threshold is different from the entanglement threshold. How-
ever, although he computed the latter exactly, his proof only
provided a bound on the former, sufficient to assess the above-
mentioned phenomenon, but far from the actual value. In
the two-qubit case, the nonlocality witnessed by the Clauser-
Horne-Shimony-Holt (CHSH) inequality for this family of
states gave a bound in the opposite direction [5]. The large
interval between these two bounds remained untouched for
almost two decades, until Acín, Gisin, and Toner [6] realized
that, owing to a connection already seen by Tsirelson [7] to an
equivalent mathematical problem, an improved bound already
existed [8], substantially reducing the gap. Soon after, Ref. [9]
improved on the CHSH bound.
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More recent works [10,11] have taken numerical ap-
proaches, by relying on an optimization algorithm by Gilbert
[12], and on the known fact that the set of classical correla-
tions is a polytope whose vertices are deterministic strategies
(see, e.g., Ref. [2]). These works employ Gilbert’s algorithm
to approximate a quantum point, by minimizing the dis-
tance to that point from this so-called local polytope. This
amounts to optimizing linear approximations of a quadratic
distance function, given by the local gradient, to iteratively
move towards one of the polytope vertices. The algorithm can
converge to a facet without the need to compute the corre-
sponding hyperplane. New bounds have then been attained
in Refs. [10,13,14] by combining this algorithm with other
techniques.

In this paper, we tackle the general membership problem
for the local polytope via methods from the field of

TABLE I. Successive refinements of the bounds on vWer
c , the

nonlocality threshold of the two-qubit Werner states under projective
measurements. Using m measurements to simulate all projective ones
is denoted by m ∼ ∞.

vWer
c Reference No. of inputs Year

0.7071 CHSH [5] 2 1969
0.7056 Vértesi [9] 465 2008
0.7054 Hua et al. [21] ∞ 2015
0.7012 Brierley et al. [10] 42 2016
0.6964 Diviánszky et al. [13] 90 2017
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constrained convex optimization, where it is known as
the approximate Carathéodory problem [15,16]. Specifically,
we rephrase the distance algorithm previously credited
to Gilbert as the original Frank-Wolfe (FW) algorithm
[17,18] (see Refs. [19,20] for recent reviews) to leverage the
improvements brought to this algorithm over the last decade.
We improve on the bounds for the nonlocality threshold of
the two-qubit Werner states under projective measurements
(see Table I), reducing the difference between the bounds by
about 40%. Moreover, we investigate multipartite scenarios
and establish new bounds for the nonlocality thresholds of the
tripartite Greenberger-Horne-Zeilinger (GHZ) and W states
[22]. These bounds considerably reduce the corresponding
intervals and show that the GHZ state is strictly more
robust than the W state when considering nonlocality under
projective measurements.

II. PRELIMINARIES

Consider a bipartite scenario in which two parties, Alice
and Bob, upon receiving inputs x and y chosen in {1 . . . m},
provide outputs a and b being ±1, respectively. Here, we
are only interested in the correlation matrix arising from this
process, namely, the m × m real matrix whose (x, y) entries
are the expectation values of 〈ab〉 with inputs x and y. Our
setup indeed makes marginals, i.e., expectation values 〈a〉 and
〈b〉, irrelevant as they always vanish. This will no longer be
the case in multipartite scenarios, as discussed below.

Classical correlation matrices lie in the convex hull of the
deterministic strategies, which are rank-one matrices d�a,�b with

entries axby, where �a = (a1, . . . , am) and �b = (b1, . . . , bm)
have ±1 components. Since d−�a,−�b = d�a,�b, there are 22m−1

distinct deterministic strategies, which define the local corre-
lation polytope Lm [2].

Given a shared quantum state ρ, i.e., a positive semidefinite
Hermitian matrix with trace one, and traceless dichotomic ob-
servables Ax and By, i.e., Hermitian matrices of trace zero and
squaring to the identity, one can construct a correlation matrix
by letting Alice and Bob measure their half of the shared state
with their observables. By the Born rule, the resulting matrix
then has (x, y) entries of the form Tr[(Ax ⊗ By)ρ] [23].

The central problem we consider in this paper is the mem-
bership problem for the local polytope Lm, which is twofold.
On the one hand, given a correlation matrix inside Lm, we
seek to decompose it in terms of deterministic strategies, that
is, to find a local model. On the other hand, given a (quantum)
correlation matrix outside Lm, we want to produce an explicit
separating hyperplane to witness its nonlocality, that is, a Bell
inequality.

We focus on a family of two-qubit Werner states [4],

ρWer
v = v |ψ−〉〈ψ−| + (1 − v)

1

4
, (1)

where |ψ−〉 = (|01〉 − |10〉)/
√

2 is the two-qubit antisymmet-
ric (or singlet) state. Fixing the so-called visibility v in Eq. (1)
and applying qubit observables of the form Ax = �ax · �σ and
By = �by · �σ , where �ax and �by are real vectors on the unit
2-sphere (Bloch vectors) and �σ = (σX , σY , σZ ) contains Pauli
matrices, yields a correlation matrix whose (x, y) entries are
−v �ax · �by. When the number of inputs m goes to infinity, we

denote the different outputs directly by this Bloch vector: The
observables are then Ax̂ = x̂ · �σ and Bŷ = ŷ · �σ , where the hat
emphasizes the infinite scenario.

Question 1. With Werner states in Eq. (1), which critical
visibility vWer

c is the threshold between a local behavior and a
nonlocal one under projective measurements?

A. Previous works

Question 1 has gained attention after the publication of
Ref. [6], where it is linked with the computation of a math-
ematical constant. Increasingly more accurate bounds have
been obtained since then, as outlined in Table I.

On the one hand, to obtain an upper bound it is sufficient
to consider a scenario with a finite number of measurements
and to exhibit a Bell inequality and a quantum strategy with a
good robustness to noise with respect to this inequality.

On the other hand, methods to provide a lower bound
cannot be as direct, since a membership proof is required
for the infinite scenario with all projective measurements. To
go from a finite number of measurements to an infinite one,
Refs. [24,25] suggest to simulate, up to an approximation
factor, the infinite set of all measurements by means of a
finite number of them, then to algorithmically construct a
local model in this finite case, and eventually to convert the
membership proof obtained there to a certificate valid for all
projective measurements.

The approximation amounts to choosing m measurements
used both by Alice and Bob and to computing the radius
η of the largest sphere that fits in the polyhedron defined
by the vertices �ax and −�ax. Then any shrunk direction ηx̂
can be written as a convex mixture of the vectors �ax, i.e.,
ηx̂ = ∑

x px̂
x�ax; similarly, ηŷ = ∑

y qŷ
y �by. Now if we can de-

compose the correlation matrix with entries −v0 �ax · �by in
terms of deterministic strategies, then a decomposition for the
infinite scenario with visibility η2v0 arises from −η2v0 x̂ · ŷ =∑

x,y px̂
xqŷ

y(−v0 �ax · �by).
Reference [14] uses a polyhedron with m = 625 measure-

ments and finds a way to make the numerical decomposition
analytical at the expense of a factor ν1 discussed below. They
eventually obtain vWer

c � η2ν1v0 ≈ 0.6829 where

η � cos
( π

50

)2
≈ 0.9961, ν1 = 0.999, and v0 = 0.689.

In this paper, we improve on all three factors, for each of
them with a different theoretical reason: We first explain how
to obtain polyhedra with a better shrinking factor η, then
argue that our algorithm makes it possible to choose an initial
visibility v0 closer to the critical one, and refine the last step
to have ν2 > ν1 closer to 1.

B. Choosing the measurements

The first step is to select the m measurements that Alice
and Bob perform. The more measurements we consider, the
better the approximation of the set of all projective measure-
ments is. However, the optimization problem on the resulting
correlation polytope is also more difficult to solve, since the
dimension of the corresponding space grows quadratically
with m. Moreover, since we want the final result to be ana-
lytical, this η should have a closed form.
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Algorithm 1. Gilbert’s algorithm [12]

1: for t = 0 . . . T − 1 do
2: ωt = arg min�a,�b〈xt − v0p, d�a,�b〉
3: γt = arg minγ∈[0,1]‖γ xt + (1 − γ )dωt − v0p‖2

2

4: xt+1 = γt xt + (1 − γt )dωt

5: end for

In Ref. [14], this last necessity leads the authors to intro-
duce a family of measurements corresponding to quite regular
polyhedra and whose shrinking factors η enjoy a relatively
tight analytical lower bound. These shrinking factors, how-
ever, are not competitive compared to polyhedra with a similar
number of measurements.

Here, we take a different approach to improve the quality
of the shrinking factor while not losing the analyticity. For
this, we start by getting symmetric polyhedra with very good
shrinking factors [26]. Then we take rational approximations
of these polyhedra; importantly, we ensure that the rational
points are also on the unit sphere. Eventually we can compute
all faces analytically and hence obtain η2 as a rational. The
construction of this rational approximation is in Supplemental
Material Sec. I [27].

C. Frank-Wolfe algorithms

After selecting a polyhedron as outlined above, we can
construct the correlation matrix p with entries px,y = −�ax · �by,
where �ax and �by are pairs of antipodal points in the chosen
polyhedron; this corresponds to setting v = 1 in Eq. (1). To
obtain the distance between the local polytope Lm and a point
v0p on the line between 0 and p, we can choose a local point x0

and run Algorithm 1 [10,11]. There, ‖y‖2 denotes the 2-norm
of the vectorized matrix y.

As the number of deterministic strategies d�a,�b to explore in
line 2 is exponential in m (here, 22m−1), a heuristic approach
is performed, similarly to Refs. [10,11,14]; we refer to Sup-
plemental Material Sec. II [27]. Algorithm 1 can only supply
a reliable membership proof when v0p belongs to the local
polytope. In this case, the decomposition that the algorithm
produces is valid regardless of the potential suboptimality due
to the heuristic.

Although Ref. [10] credits Gilbert [12] for this algorithm,
this instance coincides with the original FW algorithm [17,18]
where the function to minimize is f (x) = 1

2‖x − v0p‖2
2 so

that ∇ f (x) = x − v0p. This projection-free first-order algo-
rithm has seen a regained interest in the last decade [28], and
several lines of improvement have been proposed to upgrade
its convergence in various settings. Of particular importance
is the mitigation of the so-called zigzagging behavior [29]:
When optimizing over polytopes, if the optimum is located
near or on a facet, the original algorithm alternately selects
the vertices defining this facet and moves towards them. This
leads to ever-smaller improvements in the objective function
value, as the gradient becomes more orthogonal to the steps
performed. This forces [14] picking v0 such that the starting
point v0p lies sufficiently deep inside the local polytope to
ensure convergence in a reasonable time. Here, we employ
a refined version of this algorithm which stores a subset of
the vertices of Lm to speed up the computations [30]. This

variant has two major benefits: The zigzagging behavior is
reduced and the final decomposition is sparser. We illustrate
the zigzagging and describe this improved algorithm in Sup-
plemental Material Sec. III [27].

We implemented our approach in JULIA [31], based on the
library FrankWolfe.jl [32]. Our code is freely accessible as
a JULIA library entitled BellPolytopes.jl [33]. Importantly, it
is not restricted to the case considered above but can tackle
scenarios with any numbers of parties and inputs (identical
for all parties), but only two outputs. We give a few results on
the multipartite case below.

D. Analytical decomposition

After choosing an initial visibility v0, we run our algorithm
until the last iterate xT satisfies ‖xT − v0p‖2 � ε for a cho-
sen precision ε. Since we need an exact decomposition of a
point vp to be able to certify that v � vWer

c , such a numerical
proximity is, however, insufficient. Reference [14] gives the
following solution to overcome this difficulty: Fix a factor
ν1 close to 1, write ν1v0p = ν1xT + (1 − ν1)y by suitably
defining y, and exhibit a local decomposition for y by using
the fact that its entries are, by construction, small.

More precisely, Ref. [14] shows that any point y such that
‖y‖1 � 1 has a local model. In Supplemental Material Sec. IV
[27] we tighten this result and demonstrate that this even
holds for ‖y‖2 � 1. This seemingly small change has in fact
practical consequences as it is less restrictive on the quality of
the algorithm output: For instance, the result from Ref. [14]
jumps from 0.6829 to 0.6836. Our factor ν2 reads

ν2 = 1

1 + ‖xT − v0p‖2
. (2)

E. Lower bound

Having outlined all steps of the proof, we can now give
the computational settings used to attain our lower bound on
vWer

c . We choose m = 406 measurements yielding a shrinking
factor of η ≈ 0.9968. We tested several initial visibilities v0

and selected v0 = 0.692; for this value, the objective func-
tion steadily decreases. Using our algorithm, we end up with
78 747 deterministic strategies (out of all 2811 of them) re-
producing the correlation matrix v0p up to ε = 2 × 10−4,
corresponding to a factor ν2 ≈ 0.9998 in Eq. (2). Finally,
we recompute the decomposition with rational weights (as in
Ref. [14]) to get an analytical expression of ν2. Combining all
the steps, we obtain the final analytical lower bound

vWer
c � vlow = η2ν2v0 ≈ 0.6875, (3)

whose analytical value is in the supplemental JULIA file.
The computation ran on a 64-core Intel� Xeon� Gold

6338 machine with 512 GB of RAM and took about 1 month.
This runtime is long because we want to test our methodology
extensively; this alone is not responsible for the improvement
over Ref. [14]. Owing to our theoretical improvements, we
can indeed reproduce the bound therein in about 20 h and with
only 181 measurements.

F. Upper bound

One can extract a separating hyperplane from the result
of FW algorithms, specifically, by taking the gradient at an
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TABLE II. Summarized history of the successive refinements of
the bounds on the nonlocality threshold for three-qubit GHZ (left)
and W (right) states under projective measurements. Importantly,
although the 16 measurements used for the GHZ state are exactly
the same as in Ref. [10] (a regular polygon on the XY plane), we can
reach a more robust Bell inequality owing to the improved algorithm
we are using. The 16 measurements used for the W state correspond
to a pentakis dodecahedron. Remarkably, vGHZ3

c < vW3
c arises as a

consequence of our bounds.

vGHZ3
c Reference No. of inputs Year

0.5 GHZ [22] 2 1989
0.4961 Vértesi and Pál [38] 5 2011
0.4932 Brierley et al. [10] 16 2016

U
pp

er

0.4916

0.4688
This work

16

61∼∞
2023

0.232 Cavalcanti et al. [24] 12∼∞ 2016
EntanglementL

ow
er

0.2 Dür and Cirac [39] 2000
threshold

vW3
c Reference No. of inputs Year

0.6442 Sen(De) et al. [40] 2 2003
0.6007 Gruca et al. [41] 5 2010
0.5956 Pandit et al. [42] 6 2022

U
pp

er

0.5482

0.4917
This work

16

61∼∞
2023

0.228 Cavalcanti et al. [24] 12∼∞ 2016
EntanglementL

ow
er

0.2096 Szalay [43] 2011
threshold

approximately optimal solution. This property is already used
in Refs. [10,13] to construct Bell inequalities with a high
resistance to noise. The difficulty to improve on these works
lies in the computation of the local value of the Bell inequality
provided by the algorithm [34–36]. Interestingly, however,
this problem can be converted into a quadratic unconstrained
binary optimization (QUBO) instance, a class of problems
which has seen some recent improvements (see Ref. [37] and
references therein).

We had access to a version of the solver from Ref. [37].
With m = 97 measurements, we ran our algorithm starting
from v0 = 0.6964 and fed the QUBO solver with the resulting
hyperplane to obtain, in about 30 min, the bound

vWer
c � vup ≈ 0.6961, (4)

whose analytical value is in the supplemental JULIA file
together with the corresponding Bell inequality. The formu-
lation of the local bound computation as a QUBO is in
Supplemental Material Sec. II [27]. Importantly, this bound is
also analytical as the Bell inequality used has integer entries,
so that the decisions made in the QUBO solver used are exact.

G. Multipartite case

The entire procedure naturally generalizes to multipar-
tite scenarios. One important difference, however, is that

marginals no longer vanish; hence, we must take them into
account and reproduce them in the local model. Computation-
ally, it is also harder to compute a good direction in the larger
correlation space, hence we are restricted to a smaller number
of measurements. We summarize our results in the tripartite
case in Table II. Notably, we show that the three-qubit GHZ
state is more robust to noise than the three-qubit W state
for nonlocality under projective measurements. We refer to
Supplemental Material Sec. V [27] for details.

III. OBSERVATIONS

Our bounds in Eqs. (3) and (4) have two immediate con-
sequences, already described in Ref. [14] and which we only
summarize here.

First, our local model for projective qubit measurements
can be extended to qubit positive operator-valued measures
(POVMs), as the latter can be simulated by the former up to
a factor of

√
2/3 (see Lemma 2 in Ref. [14] or Ref. [44]).

Therefore, the nonlocality threshold for POVMs admits the
lower bound 2/3 · vlow ≈ 0.4583.

Second, there is a formal correspondence between the con-
struction of local hidden variable models for two-qubit Werner
states and the Grothendieck constant of order three KG(3). Our
results in Eqs. (3) and (4) directly translate into the following
analytical bounds:

1.4367 ≈ 1

vup
� KG(3) � 1

vlow
≈ 1.4546, (5)

whose exact values are in the supplemental JULIA file.
Other applications directly benefit from the improvement

of the bounds on vWer
c , such as quantum key distributions [45]

or prepare-and-measure scenarios [46].

IV. CONCLUSION

In this paper, we construct local models and Bell inequal-
ities by using FW algorithms in local polytopes with binary
outcomes and arbitrarily many inputs and parties. Our main
application is to improve the bounds on the nonlocality thresh-
old of the two-qubit Werner states, hence on the Grothendieck
constant of order three. We also investigate multipartite states
and find new bounds for GHZ and W states, far above their en-
tanglement thresholds. This opens a practical way to a better
understanding of the nonlocality properties of these states. To
facilitate the reuse of our method, we provide a JULIA library
with our implementation [33].

A natural extension would be to increase the number of
outcomes of the scenario, the algorithm working exactly the
same way in the probability space. In the qubit case, the range
of the nonlocality threshold of two-qubit Werner states under
POVMs indeed remains wide open and a good approximation
of the set of general measurements may help reduce this gap.
In higher dimensions, this extension would also require a
suitable approximation of the set of projective measurements,
a difficulty that was already mentioned in Ref. [25]. Following
our approach here to construct good polyhedra in the Bloch
sphere, we expect symmetric measurements such as those in
Ref. [47] to provide good seeds for the exploration of this
direction.
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More generally, the progress made in the constrained con-
vex optimization community and leveraged in this paper could
benefit all existing applications of FW algorithms, e.g., for
entanglement detection [48,49], and could also help finding
different utilizations, for instance, for large-scale semidefinite
programming problems.
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