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Zigzag materials: Selective interchain couplings control the coexistence of one-dimensional physics
and deviations from it
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The coexistence in the low-temperature spin-conducting phases of the zigzag materials BaCo2V2O8 and
SrCo2V2O8 of one-dimensional (1D) physics with important deviations from it is not well understood. The
studies of this paper account for an important selection rule that follows from interchain spin states being
coupled more strongly within the spin dynamical structure factor of such zigzag materials whenever they are
connected by a specific symmetry operation of the underlying lattice. In the case of excited states, this symmetry
operation is only a symmetry in spin space if no electronic spin flip is performed within the generation of such
states. The corresponding selective interchain couplings both protect the 1D physics and are behind important
deviations from it concerning the enhancement of the spectral-weight intensity of Szz(k, ω). Strong evidence is
provided that this justifies, beyond interchain mean-field theory and in contrast to 1D physics, the experimental
low-energy dominance in both zigzag materials of the longitudinal nuclear magnetic resonance relaxation rate
term 1/T ‖

1 for the whole magnetic field interval of the spin-conducting phases. To further understand the role of
selective interchain couplings concerning their contradictory effects in protecting the 1D physics and controlling
deviations from it, the physical-spins scattering processes behind the experimentally observed sharp peaks in
the dynamic structure factor components are investigated. Indeed, the experimentally observed Bethe strings in
S+−(k, ω) cannot be expressed in terms of configurations of usual spinons. We find that the line shape at and near
the sharp peaks of the spin dynamic structure factor experimentally observed in BaCo2V2O8 and SrCo2V2O8 is
fully controlled by unbound-unbound and unbound-bound scattering of singlet pairs of physical spins 1/2. Our
results on both the role of selective interchain couplings in protecting the 1D physics and being behind deviations
from it and on the dynamical properties being controlled by scattering of singlet pairs of physical spins 1/2 open
the door to a key advance in the understanding of the physics of the spin chains in BaCo2V2O8 and SrCo2V2O8.

DOI: 10.1103/PhysRevResearch.5.043058

I. INTRODUCTION

The spin chains in the zigzag materials BaCo2V2O8 and
SrCo2V2O8 are systems of considerable scientific interest
and intense study [1–19]. However, the coexistence in their
low-temperature spin-conducting phases of one-dimensional
(1D) physics with important deviations from it is not well
understood.

For instance, magnetization experimental results for these
materials are explained well in terms of a 1D spin-1/2
Heisenberg-Ising chain in longitudinal magnetic fields with
anisotropy � ≈ 2 [3–5,18]. In addition, for their low-
temperature spin-conducting phases, the magnetic field de-
pendencies of the energies of the sharp peaks both in the
transverse components of the spin dynamic structure factor
observed by optical experiments [13,15] and in the longitudi-
nal component S−+(k, ω) observed by neutron scattering [17]
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have been quantitatively described by that purely 1D chain.
Such spin-conducting phases occur for longitudinal magnetic
fields hc1 < h < hc2, where hc1 ≈ 3.8 T, hc2 ≈ 22.9 T for
BaCo2V2O8 and hc1 ≈ 3.8 T, hc2 ≈ 28.7 T for SrCo2V2O8.
The 1D physics of these zigzag materials also includes the
experimental identification of finite-energy sharp peaks in
the transverse component S+−(k, ω) associated with excited
states containing exotic complex Bethe strings of length two
and three [13,15,17] described by the exact Bethe-ansatz so-
lution [20–24] of the spin-1/2 XXZ chain.

Interchain mean-field theory [4] provides interesting qual-
itative information on the physics of BaCo2V2O8 and
SrCo2V2O8. However, some of the experimental observations
[12,14] highlight the complex magnetic properties in these
zigzag materials and evidence the inadequacy of that theory.
This is in part due to their complicated structure of individ-
ual nearest-neighbor (NN) and next-nearest-neighbor (NNN)
interchain couplings [10].

The zigzag materials BaCo2V2O8 and SrCo2V2O8 have
similar chain structures along the c axis, being almost iso-
structural. In this paper we use symmetries that follow from
the one-particle potential transforming according to the un-
derlying lattice symmetries to clarify issues concerning the
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coexistence in their low-temperature spin-conducting phases
of 1D physics with important deviations from it. This is
achieved by accounting for an important selection rule. It re-
sults from interchain spin states being coupled more strongly
within the spin dynamical structure factor whenever they are
connected by a specific symmetry operation of the underlying
lattice: In the case of excited states, this symmetry operation
is only a symmetry in spin space if no electronic spin flip is
performed within the generation of such states.

The corresponding selective interchain couplings protect
the 1D physics of the components S+−(k, ω) and S−+(k, ω),
which are associated with excited states that involve an elec-
tronic spin flip. For such states interchain coupling should
tend to zero or be very small. On the other hand, such se-
lective interchain couplings are found to be behind deviations
from the 1D physics associated with an enhancement of the
spectral-weight intensity of Szz(k, ω) whose excitations do not
involve electronic spin flips.

The latter enhancement is then found to be behind
the experimental low-energy dominance of the longitudi-
nal nuclear-magnetic resonance (NMR) relaxation rate term
1/T ‖

1 ∝ ∑
k |A‖(k)|2Szz(k, ω0) for the whole magnetic field

interval h ∈ [hc1, hc2] of the spin-conducting phases [10,19].
For magnetic fields h ∈ [h∗, hc2] where the transverse term

1
T ⊥

1
∝ ∑

k |A⊥(k)|2(S+−(k, ω0) + S−+(k, ω0)) is supposed to
dominate, this contradicts the 1D physics [25]. The ex-
perimental values of h∗ for BaCo2V2O8 and SrCo2V2O8

suggested by neutron scattering read h∗ ≈ 8.5 T and h∗ ≈
7.0 T, respectively [12,14].

To further understand the role of selective interchain cou-
plings concerning their contradictory effects in protecting the
1D physics and controlling deviations from it, the physical-
spins scattering processes behind the experimentally observed
sharp peaks in the dynamic structure factor components are
investigated. Our results clarify the microscopic processes
in terms of scattering of physical spins 1/2 configurations
that control and determine the line shape at and near the
experimentally observed sharp peaks of the spin dynamical
structure factor [13,15,17]. To describe such scattering pro-
cesses, we use an exact representation of the spin-1/2 XXZ
chain in a longitudinal magnetic field h ∈ [hc1, hc2] in terms
of both singlet pairs of physical spins 1/2 and unpaired
physical spins 1/2 that is valid for the whole Hilbert
space [24].

That physical-spins representation is a generalization for
anisotropy � > 1 of that used for the � = 1 isotropic point
of the spin-1/2 Heisenberg chain [26,27]. For anisotropy � >

1, the spin projection Sz remains a good quantum number
whereas spin S is not. It is replaced by the q-spin Sq in the
eigenvalue of the Casimir generator of the continuous SUq(2)
symmetry [28]. Concerning that symmetry, the issue that mat-
ters for our present study is that q-spin Sq has exactly the
same values for anisotropy � > 1 as spin S for � = 1. This
includes their relation to the values of Sz. Hence singlet and
multiplet refer in this paper to physical spins configurations
with zero and finite Sq, respectively.

One of the reasons for our use of the physical-spins rep-
resentation is that the S+−(k, ω)’s Bethe strings of lengths
two and three experimentally identified and realized in

SrCo2V2O8 and BaCo2V2O8 [13,15] cannot be expressed in
terms of configurations of usual spinons. On the other hand,
within the physical-spins representation the unbound elemen-
tary magnetic configurations described by n = 1 single real
Bethe rapidities and the n = 2, 3, ... bound elementary mag-
netic configurations described by Bethe n strings are singlet
Sz = Sq = 0 pairs of physical spins 1/2.

By the use of a dynamical theory that accounts for the
scattering processes of unbound-unbound pairs and unbound-
bound pairs of physical spins 1/2 [24] (see Appendix C for
a summary of that theory), we derive expressions for the line
shape near the sharp peaks that are experimentally observed
in the spin dynamic structure factor for BaCo2V2O8 and
SrCo2V2O8 [13,15,17].

That dynamical theory is similar to that used for the
isotropic point � = 1 [29]. The theory belongs to the same
general class as that introduced in Ref. [30] for another
integrable model. The latter is a generalization to the whole in-
teraction range of an approach used for the infinite interaction
limit [31]. For integrable problems, such a class of dynamical
theories is equivalent to the mobile quantum impurity model
scheme [32,33], accounting for exactly the same microscopic
elementary excitation processes [34]. In the low-energy limit,
that dynamical theory recovers the corresponding operator
description [35]. Momentum-dependent exponents in the ex-
pressions of dynamical correlation functions have also been
obtained by other methods [36,37].

Thus the motivation and main results of this paper are:
(1) The physical origin in terms of selective interchain cou-
plings of the coexistence in BaCo2V2O8 and SrCo2V2O8 of
1D physics with important deviations from it. (2) The further
understanding of the dynamical properties BaCo2V2O8 and
SrCo2V2O8 in the low-temperature spin-conducting phases by
clarifying the role in them of scattering of both unbound and
bound singlet pairs of physical spins 1/2.

It is convenient to start by comparing the experimental data
on the dynamical properties of BaCo2V2O8 and SrCo2V2O8

with their theoretical descriptions involving physical-spins
scattering to clarify which properties refer to 1D physics and
deviate from it, respectively. To reach this goal, we use the
above mentioned suitable physical-spins representation. After
handling such issues, we then address that of the role of selec-
tive interchain couplings in the physics of the zigzag materials
under study.

The paper is organized as follows. The physical-spins rep-
resentation used in our studies is introduced Sec. II. In Sec. III
the scattering processes in terms of physical spin 1/2 con-
figurations that control the line shapes at and near the sharp
peaks in the spin dynamical structure factor experimentally
observed in the zigzag materials for fields hc1 < h < hc2 are
studied. The effects of selective interchain couplings concern-
ing both the protection of the 1D physics of BaCo2V2O8 and
SrCo2V2O8 and important experimental deviations from it is
the issue addressed in Sec. IV. The concluding remarks are
presented in Sec. V. In addition, in Appendix A some basic
quantities needed for the studies of this paper are provided, in
Appendix B the applicability of the physical-spins represen-
tation to the whole Hilbert space is discussed, and a summary
of the dynamical theory used in our studies is presented in
Appendix C.
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II. THE PHYSICAL-SPINS REPRESENTATION

A. The 1D quantum problem and its representation

We start by describing the superexchange interactions
between the magnetic moments in the spin chains of
BaCo2V2O8 and SrCo2V2O8 by the Hamiltonian of the spin-
1/2 Heisenberg-Ising chain [13,17,23]. It describes N =∑

σ=↑,↓ Nσ physical spins 1/2 of projection σ =↑,↓. For
the anisotropy parameter range � = cosh η � 1 and thus η �
0, spin densities m = 2mz = (N↑ − N↓)/N ∈ [0, 1], exchange
integral J , and length L → ∞ for N/L finite, that Hamiltonian
in a longitudinal magnetic field h becomes

Ĥ‖ = Ĥ� + gμB h
N∑

j=1

Ŝz
j where

Ĥ� = J
N∑

j=1

(
Ŝx

j Ŝ
x
j+1 + Ŝy

j Ŝ
y
j+1 + � Ŝz

j Ŝ
z
j+1

)
. (1)

Here �̂S j is the spin-1/2 operator at site j = 1, ..., N with
components Ŝx,y,z

j and μB is the Bohr magneton. For � >

1, spin-insulating, spin-conducting, and fully-polarized fer-
romagnetic quantum phases occur for spin density m = 0
and magnetic fields 0 � h < hc1, spin densities 0 < m < 1
and fields hc1 < h < hc2, and spin density m = 1 and fields
h > hc2, respectively. The critical fields hc1 and hc2 have
known Bethe-ansatz expressions [22] given in Eq. (A12) of
Appendix A.

In this paper the h → hc1 and h → hc2 limits are from h >

hc1 and h < hc2 values, respectively, and we use natural units
in which the lattice spacing and the Planck constant are equal
to one.

By using the SUq(2) symmetry algebra, we find that each
energy eigenstate with q-spin in the range 0 � Sq � N/2 is
populated by physical spins 1/2 in two types of configurations
[24]: A set of M = 2Sq physical spins 1/2 that participate in
a multiplet configuration, and a complementary set of even
number 2� = N − 2Sq of physical spins 1/2 that participate
in singlet configurations. This holds for all 2N energy eigen-
states. The unpaired spins 1/2 and paired spins 1/2 are the
members of such two sets of M = 2Sq and 2� = N − 2Sq

physical spins 1/2, respectively.
Within the corresponding representation in terms of the N

physical spins 1/2 described by the Hamiltonian, Eq. (1), the
designation n-pairs refers both to 1-pairs and n-string-pairs
for n > 1:

(i) The internal degrees of freedom of a 1-pair corre-
spond to one unbound singlet pair of physical spins 1/2. It
is described by a n = 1 single real Bethe rapidity. Its trans-
lational degrees of freedom refer to the 1-band momentum
qj ∈ [q−

1 , q+
1 ] where j = 1, ..., L1 carried by each such a pair.

(ii) The internal degrees of freedom of a n-string-pair refer
to a number n > 1 of singlet pairs of physical spins 1/2. They
are bound within a configuration described by a corresponding
complex Bethe n-string. Its translational degrees of freedom
refer to the n > 1 n-band momentum qj ∈ [q−

n , q+
n ] where j =

1, ..., Ln carried by each such a n-pair.
For each n-band, the q j’s have for both n = 1 and n > 1

discrete values q j ∈ [q−
n , q+

n ] with separation q j+1 − q j = 2π
L .

Here j = 1, ..., Ln and Ln = Nn + Nh
n where Nn is the num-

ber of occupied q j’s and thus of n-pairs and Nh
n = 2Sq +∑∞

n′=n+1 2(n′ − n)Nn′ that of unoccupied q j’s and thus of n-
holes. The present results refer to the thermodynamic limit. In
that limit, the the number 2� = N − 2Sq of paired physical
spins 1/2 of an energy eigenstate can be exactly expressed as
[24] 2� = ∑∞

n=1 2n Nn.
The Bethe-ansatz quantum numbers [20] In

j are actually
the n-band momentum values qj = 2π

L In
j in units of 2π

L . They

are given by In
j = 0,±1, ...,± Ln−1

2 for Ln odd and In
j =

±1/2,±3/2, ...,± Ln−1
2 for Ln even. Such numbers and thus

the set {q j} of n-band discrete momentum values have Pauli-
like occupancies: The corresponding momentum distributions
read Nn(q j ) = 1 and Nn(q j ) = 0 for occupied and unoccupied
q j’s, respectively.

The energy eigenvalues are specified by the set of n =
1, ...,∞ distributions {Nn(q j )} and described by a correspond-
ing set of rapidity functions {ϕn(q j )} defined by Bethe-ansatz
equations [20,24]. Such functions are the real part of corre-
sponding n = 1 real and n > 1 complex rapidities [20,24].

The q j’s of ground states and excited states that contribute
to the dynamical properties can in the thermodynamic limit
be described by continuous variables q ∈ [q−

n , q+
n ]. Here q±

1 =
±kF↑ and q±

n = ±(kF↑ − kF↓) for n > 1 where kF↑ = π
2 (1 +

m) and kF↓ = π
2 (1 − m). Ground states refer to a 1-band

Fermi sea q ∈ [−kF↓, kF↓] with 1-holes for |q| ∈ [kF↓, kF↑]
and empty n-bands for n > 1 with n-holes for q′ ∈ [−(kF↑ −
kF↓), (kF↑ − kF↓)]. In real space, a ground-state 1-band mo-
mentum q occupied by one unbound singlet pair of physical
spins 1/2 refers to a superposition of local configurations with
the weight decreasing with increasing lattice distance between
the two paired physical spins.

In addition to the 2� = N − 2Sq paired physical spins
1/2 in the � = N/2 − Sq n-pairs singlet configurations, the
representation accounts for the remaining M = 2Sq unpaired
physical spins 1/2 of an energy eigenstate: The question is
where in the Bethe-ansatz solution are the M = 2Sq unpaired
physical spins 1/2? The clarification of this issue involves a
squeezed space construction [24,38].

This issue involves the description of the translational de-
grees of freedom and spin internal degrees of freedom of the
M = 2Sq unpaired physical spins 1/2, which is addressed in
Appendix B. That the physical-spins representation accounts
for the latter internal degrees of freedom in shown in that
Appendix to ensure it applies to the whole Hilbert space.

Indeed, the Bethe ansatz refers only to subspaces spanned
either by the highest weight states (HWSs) or the lowest
weight states (LWSs) of the SUq(2) symmetry [20,24]. For
such states, all the M = 2Sq unpaired physical spins 1/2 have
the same ↑ or ↓, respectively, spin projection. This implies
that Sz = Sq and Sz = −Sq, respectively. In this paper we use
a HWS Bethe ansatz.

Finally, concerning representations of spin chains other
than the physical-spins representation used in this paper, the
most often used are in terms of spinons [39] at vanishing
spin density m = 0 and psinons and antipsinons for finite spin
density 0 < m < 1 [40]. In the thermodynamic limit they are
well defined in subspaces with no n-strings or with a vanishing
density of n-strings.
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Spinons are 1-holes within excited energy eigenstates of
the m = 0 ground state. Psinons and antipsinons are 1-holes
that emerge or are moved to inside the 1-band Fermi sea and
1-pairs that emerge or are moved to outside that sea, respec-
tively. They occur in excited-energy eigenstates of ground
states corresponding to spin-conducting quantum phases for
hc1 < h < hc2.

However, such representations do not describe the spin
configurations of Bethe strings and the dynamical properties
of the present quantum system are naturally and directly de-
scribed by physical-spins n-pairs scattering.

B. The n-pair energy dispersions

Important quantities of the physical-spins representation
are the energy dispersions εn(q) of the n-pairs given in
Eqs. (A1)–(A8) of Appendix A. The expressions of the spectra
of the spin dynamic structure factor components considered
below in Sec. III are expressed in terms of such energy disper-
sions for n = 1, 2, 3. Indeed, only Bethe strings of length two
and three contribute to that factor. The corresponding n = 2
and n = 3 n-string-pair energy dispersions εn(q′) are plotted
in units of J in Figs. 12 and 13 of Appendix A, respectively,
as a function of q′/π for n-band momentum q′ ∈ [−(kF↑ −
kF↓), (kF↑ − kF↓)], spin densities m = 0.2, m = 0.5, m =
0.8, and several anisotropy values.

The energy dispersion ε1(q) is plotted in Fig. 1 of Ref. [24].
For n = 1, that dispersion ε1(q) > 0 and minus it −ε1(q) > 0
are for |q| ∈ [kF↓, kF↑] and q ∈ [−kF↓, kF↓] the energy re-
quired to create in a ground state for fields hc1 < h < hc2

one 1-pair and one 1-hole, respectively. As mentioned above,
ground states are not populated by n > 1 n-string pairs. Their
energy dispersion εn(q′) > 0 is the energy required to cre-
ate in a ground state one n-pair of n-band momentum q′ ∈
[−(kF↑ − kF↓), (kF↑ − kF↓)].

For n � 1 the zero-energy level of the dispersions εn(q)
refers to that of the ground state corresponding to a given fixed
value of the longitudinal magnetic field. The related n � 1
energy dispersions ε0

n (q) differ from εn(q) in the zero-energy
level: it corresponds to that of the h = 0 absolute ground state.
However, relative to a ground state for a given fixed field
value hc1 < h < hc2 of the spin-conducting phases, the energy
−E↑↓

1 (h) > 0, where

E↑↓
1 (h) = ε0

1 (kF↓) = −gμB h for hc1 < h < hc2, (2)

is the excitation energy for the annihilation of one 1-pair giv-
ing rise to two physical spins of opposite projection, whereas
−ε1(kF↓) = 0, where ε1(q) = ε0

1 (q) + gμB h for hc1 < h <

hc2, is the vanishing energy for the annihilation of one 1-pair
leading to two physical spins with the same ↑ projection.

On the other hand, the energy dispersions of n-string pairs
can for spin densities 0 � m � 1 be written as

εn(q′) = ε0
n (q′) + n gμB h where

ε0
n (q′) = Ebind,n + Tn(q′),

Ebind,n = ε0
n (0) < 0, and

Tn(q′) = ε0
n (q′) − ε0

n (0) = εn(q′) − εn(0) � 0. (3)

0 0.2 0.4 0.6 0.8 1
1/Δ

0

0.5

1

1.5

2

g
μ B

h
/Δ

Spin insulating

Spin conducting

Fully polarized ferromagnetic

Parallel

Transverse

FIG. 1. The spin-1/2 XXZ chain phase diagram of the mag-
netic energy over anisotropy, gμBh/�, in units of J versus
inverse anisotropy ε = 1/� ∈ [0, 1]. The energy absolute value
over anisotropy lines (a) |E↑↓

1 (h+
c1)|/� = limh→hc1 |E↑↓

1 (h)|/�,
(b) |E↑↓

1 (h∗)|/�, and (c) |E↑↓
1 (h−

c2)|/� = limh→hc2 |E↑↓
1 (h)|/� sep-

arate (a) the spin-insulating phase from the spin-conducting phase
with dominant longitudinal relaxation-rate fluctuations, (b) the
latter from the spin-conducting phase with dominant transverse
relaxation-rate fluctuations, and (c) the latter from the fully-polarized
ferromagnetic phase, respectively.

Here the binding energy Ebind,n and the energy Tn(q′) refer to
the internal and translation degrees of freedom, respectively,
of a n-string pair. Each of the n > 1 energy terms gμB h of the
additional magnetic energy n gμB h is associated with creation
of one physical spin pair. It can either result from the energy
−E↑↓

1 (h) = gμB h associated with the annihilation of one 1-
pair giving rise to two physical spins of opposite projection or
to the energy gμB h needed to flip one ground-state unpaired
physical spin 1/2, Eq. (B3) for nz = 1, which pairs with
another ground-state unflipped unpaired physical spin 1/2.

In the case of creation of one 2-pair and one 3-pair to
generate the 2-string and 3-string excited states, respectively,
considered below in Sec. III that contribute to S+−(k, ω), one
unpaired physical spin 1/2 is flipped and one 1-pair and two
1-pairs, respectively, are annihilated. In the case of creation of
one 2-pair to generate the 2-string excited states also consid-
ered in that section that contribute to Szz(k, ω), two 1-pairs are
annihilated and no unpaired physical spin 1/2 is flipped.

Analytical expressions valid in the two limiting cases (i)
h ∈ [0, hc1] and m = 0 and (ii) for h → hc2 and m → 1,
respectively, of the energy dispersions εn(q) and ε0

n (q) for
n � 1, binding energy Ebind,n for n > 1, and energy Tn(q′) for
n > 1 are given in Eqs. (A9)–(A11) of Appendix A.

It follows from the relation, Eq. (2), that the critical fields
hc1 and hc2 are given by hc1 = limm→0 |E↑↓

1 |/gμB and hc2 =
limm→1 |E↑↓

1 |/gμB, respectively. As illustrated in Fig. 1, such
two limits of |E↑↓

1 |/gμB fully control the spin-1/2 XXZ
chain phase diagram of the magnetic energy over anisotropy,
gμBh/�, versus ε = 1/� ∈ [0, 1]. The middle dashed line
in that diagram refers to gμBh∗/� where the magnetic field
h∗ = |E↑↓

1 |m∗/gμB and the corresponding spin density m∗ are
those at which for the purely 1D spin-1/2 XXZ chain the
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parameter ξ in Eq. (A15) of Appendix A reads ξ = 1/
√

2.
As discussed below in Sec. IV and illustrated in that figure,
h∗ separates the field regions hc1 < h < h∗ and h∗ < h < hc2

where the longitudinal and and transverse term of the NMR
relaxation rate 1/T1 dominates, respectively. Another refer-
ence magnetic field of interest is h1/2 = |E↑↓

1 |m=1/2/gμB. It
refers to spin density m = 1/2 and defines the field intervals
h ∈ [hc1, h1/2] and h ∈ [h1/2, hc2] for which some of the sharp
peaks studied below in Sec. III exist.

As in other 1D spin systems [41], the magnetic energy
gμBhc1 = limm→0 |E↑↓

1 | equals a minimum h = 0 spin energy
gap, in the present case that of the transverse spin dy-
namic structure factor [22,39]. The parameter sets � = 2.17,
J = 2.60 meV, and g = 6.2 for BaCo2V2O8 for BaCo2V2O8

and � = 2.00, J = 3.55 meV, and g = 6.2 for SrCo2V2O8

[3,6,7,13] have been chosen so that h(m) = |E↑↓
1 |/gμB gives

for m → 0, m = 1/2, and m → 1 the experimental values
for hc1, h1/2, and hc2, respectively. Indeed, E↑↓

1 (h) = ε0
1 (kF↓),

Eq. (2), can be expressed in terms of known Bethe-ansatz
quantities [20–22]: See Eqs. (A1), (A7), and (A8) of Ap-
pendix A for n = 1.

III. THE DYNAMICAL PROPERTIES OF THE TWO
ZIGZAG MATERIALS FOR FIELDS hc1 < h < hc2

A. Sharp peaks in the (k, ω) plane

Electronic spin resonance measurements can detect the
spin dynamic structure factor components of SrCo2V2O8 and
BaCo2V2O8 only at specific momentum values k = 0, k =
π/2, k = π , and k = 3π/2 [13,15]. Due to inversion sym-
metry, the momentum values k = π/2 and k = 3π/2 are
equivalent. In addition, the excitations that are allowed in
such optical experiments obey the selection rules δSz = ±1,
which limits the corresponding studies to sharp peaks in the
transverse components S+−(k, ω) and S−+(k, ω). On the other
hand, sharp peaks of Szz(k, ω) have been studied by neutron
scattering in SrCo2V2O8 [17].

In Refs. [13] and [15] it was shown that for the parameter
sets suitable to SrCo2V2O8 and BaCo2V2O8, respectively,
the frequencies/energies of the sharp peaks experimentally
observed in S+−(k, ω) and S−+(k, ω) by high-resolution
terahertz spectroscopy agree with those predicted for the spin-
conducting phases of the spin-1/2 XXZ in a longitudinal
magnetic field. The same applies to the sharp peaks observed
in Szz(k, ω) by neutron scattering [17]. However, no analytical
expressions for the line shapes at and near the sharp peaks
were given in previous studies for finite-size systems, only the
energies of such peaks [13,15,17,23].

In Figs. 2(a)–2(c), 3(a)–3(c), and 4(a)–4(c) we show the
regions in the (k, ω) plane where there is significant spectral
weight in S+−(k, ω), S−+(k, ω), and Szz(k, ω), respectively,
for anisotropy � = 2. Very similar spectra are obtained for
anisotropy � = 2.17. The panels (a), (b), and (c) of these
figures refer to spin densities m = 0.209 ≈ 0.2, m = 0.514 ≈
0.5, and m = 0.793 ≈ 0.8, respectively. The field h values
corresponding to the above spin densities given in these fig-
ures are in units of J/(gμB). In these units the critical fields
and the intermediate field h1/2 that refers to spin density m =

1/2 read hc1 = 0.39, h1/2 = 2.53, and hc2 = 3.00 for � = 2
and hc1 = 0.52, h1/2 = 2.69, and hc2 = 3.17 for � = 2.17.

The (k, ω)-plane continua in such figures are classified as
n-continua where n = 1, n = 2, and n = 3, respectively. This
is according to the corresponding excited states having no
n > 1 Bethe n-strings, a single 2-string, and a single 3-string,
respectively. In terms of singlet pairs of physical spins 1/2,
this corresponds to such states having no n-string-pairs, a
single 2-string-pair, and a single 3-string-pair, respectively.
The 2-continuum and the 3-continuum are gapped.

In the following we show that the 1-pair phase shifts result-
ing from physical-spins 1-pair − 1-pair and 1-pair − n-pair
scattering whose scattering centers are 2n-physical-spins n-
pairs for n = 1, 2, 3 and 1-holes control the line shape at and
near the experimentally observed sharp peaks in S+−(k, ω),
S−+(k, ω), and Szz(k, ω) that are located in the n-continua
lower thresholds. This applies to the two zigzag materials
under study. We calculate and plot the negative momentum
dependent exponents that control such a line shape for the
parameter sets suitable to both such materials.

The main aim of Figs. 2(a)–2(c), 3(a)–3(c), and 4(a)–4(c)
is to provide the location in the (k, ω) plane of the marked
n-continua lower thresholds k intervals where there are sharp
peaks. The experimentally observed sharp peaks refer to spe-
cific momentum and energy values in these lower thresholds
k intervals. However, the figures do not provide detailed in-
formation on the relative intensities of the spectral-weight
distribution over the n-continua. The shapes of these continua
are to be compared with those in the following figures of Ref.
[23]: Figs. 3(a1)–3(c1) for S−+(k, ω), Figs. 3(a2)–3(c2) for
S+−(k, ω), and Figs. 8(d)–8(f) for Szz(k, ω) for a finite-size
system, which also provide this information.

Within the dynamical theory used in our studies, the
line shapes of S+−(k, ω), S−+(k, ω), and Szz(k, ω) have for
extended k intervals the general power-law form given in
Eqs. (C1) and (C3)–(C5) of Appendix C. The general expres-
sion, Eq. (C1) of that Appendix, applies at and just above
the (k, ω)-plane n-continua lower thresholds k intervals for
n = 1, 2, 3 where there are sharp peaks.

That line shape is controlled by exponents ζ ab
n (k) whose

general expression is given in Eqs. (C3) and (C5) of Ap-
pendix C. They are negative in the lower thresholds k intervals
marked in Figs. 2(a)–2(c), 3(a)–3(c), and 4(a)–4(c). These
figures refer to lines of sharp peaks located in k intervals much
beyond the few momentum values in these lines of the sharp
modes experimentally observed [13,15,17]. The latter were
considered in studies of finite-size systems [23].

The k dependence of the corresponding negative expo-
nents is shown in Figs. 2(d)–2(f), 3(d)–3(f), and 4(d)–4(f) for
the components S+−(k, ω), S−+(k, ω), and Szz(k, ω), respec-
tively. The exponent values plotted in these figures refer to
anisotropy � = 2. Very similar exponent values are obtained
for anisotropy � = 2.17.

Within the physical-spins 1-pair − 1-pair and 1-pair − n-
pair scattering that controls the line shape at and near the sharp
peaks located in the (k, ω)-plane n-continua lower thresholds,
the 1-pairs at the 1-band Fermi points q = ±kF↓ are the
scatterers and the 1-holes and 1-pairs created under the tran-
sitions to excited states at 1-band momenta q ∈ [−kF↓, kF↓]
and |q| ∈ [kF↓, kF↑], respectively, and the n-string-pairs
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FIG. 2. The (k, ω) plane (a) n = 1, (b) n = 2, and (c) n = 3 n-continua where in the thermodynamic limit there is significant spectral weight
in S+−(k, ω) for the spin-1/2 Heisenberg-Ising chain with anisotropy � = 2 in a longitudinal magnetic field. Very similar spectra are obtained
for anisotropy � = 2.17. The corresponding negative k-dependent exponents that control the line shape S+−(k, ω) ∝ (ω − E+−

n (k))ζ
+−
n (k) in

the k intervals near the lower thresholds of such continua (d)–(f). The spin densities in (a), (b), and (c) are m = 0.209 ≈ 0.2, m = 0.514 ≈ 0.5,
and m = 0.793 ≈ 0.8, respectively. The corresponding h values are given in units of J/(gμB ). The exponents are negative in the k intervals of
the n-continua lower thresholds marked in the spectra (a)–(c) and near the branch line running through the 1-continuum in (b) and (c). On the
marked lines in the (k, ω) plane S+−(k, ω) displays sharp peaks.
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FIG. 3. The (k, ω) plane 1-continuum where in the thermodynamic limit there is significant spectral weight in S−+(k, ω) for the spin-1/2
Heisenberg-Ising chain with anisotropy � = 2 in a longitudinal magnetic field (a)–(c). As in the case of Fig. 2, very similar spectra are obtained
for anisotropy � = 2.17. The corresponding negative k-dependent exponent that controls the line shape S−+(k, ω) ∝ (ω − E−+

1 (k))ζ
−+
1 (k) at

and near the lower threshold of such 1-continuum for its whole k interval (d)–(f). The spin densities in (a), (b), and (c) are m = 0.209 ≈ 0.2,
m = 0.514 ≈ 0.5, and m = 0.793 ≈ 0.8, respectively. The corresponding h values are given in units of J/(gμB ). On this 1-continuum lower
threshold S−+(k, ω) displays sharp peaks.

created under such transitions at n-band momenta q′ ∈
[−(kF↑ − kF↓), (kF↑ − kF↓)] are the scattering centers.

Important n-pair scattering quantities that control the mo-
mentum dependent exponents of the spin dynamic structure

factor components are the corresponding phase shifts acquired
by a 1-pair at the 1-band Fermi momentum ιkF↓ = ±kF↓ (i)
2π�1,n(ιkF↓, q) where n = 1, 2, 3 and (ii) −2π�1,1(ιkF↓, q).
Those are due to creation (i) of one n-pair at n-band
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FIG. 4. The (k, ω) plane n = 1 and n = 2 n-continua where in the thermodynamic limit there is significant spectral weight in Szz(k, ω)
for the spin-1/2 Heisenberg-Ising chain with anisotropy � = 2 in a longitudinal magnetic field (a)–(c). As in the case of Fig. 2, very similar
spectra are obtained for anisotropy � = 2.17. The corresponding negative k dependent exponents that control the line shape Szz(k, ω) ∝
(ω − Ezz

n (k))ζ
zz
n (k) in the k intervals at and near the lower thresholds of such continua (d)–(f). The spin densities in (a), (b), and (c) are m =

0.209 ≈ 0.2, m = 0.514 ≈ 0.5, and m = 0.793 ≈ 0.8, respectively. The corresponding h values are given in units of J/(gμB ). The exponents
are negative in the k intervals of these lower thresholds marked in the spectra. On the marked lines in the (k, ω) plane Szz(k, ω) displays sharp
peaks.
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momentum q and (ii) of one 1-hole at 1-band momentum
q, respectively, under a transition to an excited state. [See
Eq. (A13) of Appendix A with q = ιkF↓ and Eq. (A15) of
Appendix A.]

B. Selected sharp peaks at fixed momenta k = 0, π/2, π in the
(h, ω) plane

Besides momentum dependencies, our study includes ex-
tracting the longitudinal magnetic field h dependencies in the
thermodynamic limit of the negative exponents that control
the line shape at and near the sharp peaks in S+−(k, ω),
S−+(k, ω), and Szz(k, ω) at the momentum values k = 0, k =
π/2, and k = π at which they were experimentally observed
[13,15,17]. This is carried out by using Eqs. (C1) and (C3)–
(C5) of Appendix C. In order to provide information on the
frequency/energy ω values of the sharp peaks under study, we
also plot their energies, which are to be compared with those
obtained by finite-size methods [23] used in previous studies
[13,15,17].

The momentum values k = 0, k = π/2, and k = π of the
sharp peaks observed experimentally [13,15,17] belong to the
marked k intervals of the n-continua lower thresholds shown
in Figs. 2(a)–2(c), 3(a)–3(c), and 4(a)–4(c). When at such
momenta the corresponding lower threshold is not marked,
the exponent is not negative and there is no sharp peak.

The following thermodynamic-limit results are for the
spin-1/2 Heisenberg-Ising chain in a longitudinal field hc1 <

h < hc2 with anisotropies � = 2 and � = 2.17 representative
of the 1D physics of SrCo2V2O8 and BaCo2V2O8, respec-
tively. At and near the sharp peaks denoted by R+−

0 , R+−
π/2,

R−+
π/2, Rzz

π , χ
(2)
0 , χ

(2)
π/2, χ (2)

π , and χ
(3)
π/2 in Refs. [13,15], except

for Rzz
π , which is called RPAP(zz)

π in Fig. 5(b) of Ref. [17], the
dynamical theory used in our study gives for small values
of the energy deviation (ω − Eab

n (k, h)) � 0 from the ab =
−+,+−, zz n-continuum lower-threshold energy Eab

n (k, h) at
momentum k and field h a line shape of power-law form

Rab
k = Sab(k, ω) = C̄ab

1 (k)

(
ω − Eab

1 (k, h)

)ζ ab
1 (k,h)

,

χ
(n)
k = S+−(k, ω) = C̄+−

n (k)

(
ω − E+−

n (k, h)

)ζ+−
n (k,h)

,

where

C̄ab
n (k) = Cn

ab(k)
(
4π Bab

1 v1(kF↓)
)ζ ab

n (k,h)
for n = 1, 2, 3. (4)

These line shapes refer to zero temperature. Hence we expect
that the sharp modes observed in low-temperature experi-
ments [13,15,17] to be a bit smeared by thermal fluctuations
and coupling to phonons.

According to the set of sharp peaks experimentally
observed in SrCo2V2O8 and BaCo2V2O8, the excitation mo-
mentum k, spin component ab, and n-pair number n in Eq. (4)
have the values k = 0, π/2 for ab = +− and n = 1, k = π/2
for ab = −+ and n = 1, k = π for ab = zz and n = 1, k =
0, π/2, π for +− and n = 2, and k = π/2 for +− and n = 3.
In that equation, v1(kF↓) is the 1-band group velocity v1(q) =
∂ε1(q)/∂q at q = kF↓, the η and m dependent parameter Bab

1

has values in the range 0 < Bab
1 � 1, and Cn

ab(k) is given in
Eq. (C4) of Appendix C.

The n = 1, 2, 3 lower threshold energies E+−
n (k, h), n =

1 lower threshold energy E−+
1 (k, h), n = 1 lower threshold

energy Ezz
1 (k, h), and exponents ζ ab

n (k, h) appearing in the
expressions, Eq. (4), of the line shape at and near the sharp
peaks at anisotropies � = 2 and � = 2.17 representative
of SrCo2V2O8 and BaCo2V2O8, respectively, are given in
Eqs. (C6)–(C13) of Appendix C.

The sharp peaks R+−
π/2 and Rzz

π whose energy interval in
Eqs. (C9) and (C11) of Appendix C, respectively, was not
given for anisotropy � = 2.17 have not been experimen-
tally studied for BaCo2V2O8. The same applies to the sharp
peak χ

(2)
0 . However, as it is associated with 2-string states,

its energy interval was given for � = 2.17 in Eq. (C10) of
Appendix C.

For simplicity, we do not discuss here a spectral feature de-
noted by R+−,b

π/2 within finite-size studies [23]: It is not among
the sharp modes experimentally observed that are displayed
in Fig. 4 of Ref. [13] for SrCo2V2O8 and in Fig. 4(b) of
Ref. [15] for BaCo2V2O8.

All above sharp peaks are located in n-continua lower
thresholds. On the other hand, the momentum k = π/2 sharp
peak Rzz

π/2 called RPAP(zz)
π/2 in Fig. 5(a) of Ref. [17] is located

in the 1-continuum upper threshold of Szz(π,ω). The line
shape at and near it is for small values of the energy deviation
(ω − Ezz

1 (π/2, h)) � 0 provided in Eq. (C14) of Appendix C.
A discussion of the processes behind that sharp peak is given
in a text below that equation.

As given in Eqs. (C6)–(C14) of Appendix C, depending
on which specific sharp peaks, they occur for four ranges of
magnetic fields: h ∈ [hc1, hc2], h ∈ [hc1, h1/2], h ∈ [h1/2, hc2],
and h ∈ [hc1, h�]. The theoretical dependencies on the mag-
netic field h in units of J/(gμB) of the energies in units of J
and of the corresponding exponents given in Eqs. (C6)–(C13)
of Appendix C of the transverse sharp peaks R+−

0 , R+−
π/2, R−+

π/2,

χ
(2)
0 , χ

(2)
π/2, χ (2)

π , and χ
(3)
π/2 are plotted in Figs. 5(a) and 5(b),

respectively, for anisotropy � = 2. Corresponding results for
anisotropy � = 2.17 are very similar. The specific energy
lines h ranges in these figures are those for which in the ther-
modynamic limit the corresponding exponents are negative.
Only for such ranges there are sharp peaks.

While the field dependencies of the longitudinal sharp
peaks Rzz

π and Rzz
π/2 are discussed below in Sec. III C, the en-

ergy of the peak Rzz
π obeys the equality Ezz

1 (π, h) = E+−
1 (0, h)

for the whole magnetic field interval h ∈ [hc1, hc2], so that it
is also plotted in Fig. 5(a).

The overall behavior of the (h, ω)-plane energy versus
field lines of the sharp peaks plotted in Fig. 5(a) for � = 2
are to be compared with those shown in Fig. 5 of Ref. [23]
for a finite-size system with N = 200 spins and anisotropy
� = 2.00. There is agreement concerning the general trends
of the h dependencies of the lines associated with the sharp
peaks common to the two figures. In the present case, each
point of the solid lines refers to an existing sharp peak.

Other sharp peaks included in Fig. 5 of Ref. [23] refer to
specific (k, ω)-plane points that correspond to the momenta
k = 0, π/2, π on the lines marked in Figs. 2(a)–2(c) and 3(a)–
3(c). The line shape at and near such other sharp peaks is also
of the form given in Eq. (C1) of Appendix C.
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FIG. 5. The energies in units of J of the sharp peaks R+−
0 ,

R+−
π/2, R−+

π/2, χ
(2)
0 , χ

(2)
π/2, χ (2)

π , and χ
(3)
π/2 in the transverse compo-

nents S+−(k, ω) and S−+(k, ω) versus the magnetic field h for h ∈
[hc1, hc2] in units of J/(gμB ) (a). The corresponding magnetic field h
dependencies of the negative exponents that control the line shape
near such sharp peaks (b). The expressions of these energies and
exponents are given in Eqs. (C6)–(C13) of Appendix C. The energy
curves plotted here are to be compared with those shown in Fig. 5 of
Ref. [23] for a finite-size system.

C. The sharp peaks experimentally observed in SrCo2V2O8

and BaCo2V2O8

Here the parameter sets � = 2.00, J = 3.55 meV, and
g = 6.2 suitable to SrCo2V2O8 and � = 2.17, J = 2.60 meV,
and g = 6.2 suitable to BaCo2V2O8 are again used. Our re-
sults concerning the sharp peaks experimentally observed in
SrCo2V2O8 and BaCo2V2O8 refer to the line shape at and
near them and to scattering processes that control it. In the fol-
lowing we also confirm that our thermodynamic-limit results
for their energies agree with those experimentally observed
in SrCo2V2O8 and BaCo2V2O8, as already reported in Refs.
[13,15,17] by use of finite-size algebraic Bethe-ansatz theo-
retical results.

Our thermodynamic-limit theoretical dependencies on the
magnetic field h in Tesla for the ranges of the frequencies in
THz corresponding to the lower-threshold energies given in
Eqs. (C6)–(C13) of Appendix C of the subset of sharp peaks
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FIG. 6. The dependencies on the magnetic field h ∈ [hc1, hc2] in
Tesla of the frequencies in units of THz associated with the ener-
gies of the transverse sharp peaks R+−

0 , R−+
π/2, χ

(2)
0 , χ (2)

π , and χ
(3)
π/2,

respectively, experimentally observed in SrCo2V2O8 (a). The corre-
sponding negative exponents (b). Expressions both of the energies
corresponding to these frequencies and of the latter exponents are
given in Eqs. (C6), (C7), (C10), (C12), and (C13) of Appendix C.
Such theoretical frequency dependencies on h ∈ [hc1, hc2] are to be
compared with those of the corresponding sharp peaks points exper-
imentally observed in SrCo2V2O8 also shown in (a), which are those
displayed in Fig. 4 of Ref. [13] with hc1 = Bc and hc2 = Bs.

R+−
0 , R−+

π/2, χ
(2)
0 , χ (2)

π , and χ
(3)
π/2 experimentally observed in

SrCo2V2O8 by optical experiments are plotted in Fig. 6(a).
The corresponding experimental points in the (h, ω) plane that
describe the h dependencies of the frequencies displayed in
Fig. 4 of Ref. [13] for SrCo2V2O8 are also shown in Fig. 6(a).
The negative exponents that control the line shape near such
peaks that have not been previously studied by other authors
and whose expressions are given in Eqs. (C6)–(C13) of Ap-
pendix C are plotted as a function of the magnetic field h in
Fig. 6(b).

Comparison with the experimental dependence on h ∈
[hc1, hc2] of the frequencies of the sharp peaks displayed in
Fig. 4 of Ref. [13] for SrCo2V2O8 with those plotted in
Fig. 6(a) for the spin-1/2 chain with � = 2 and J = 3.55 meV
confirms the excellent quantitative agreement previously re-
ported in Ref. [13].
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FIG. 7. The (h, ω)-plane lines of energy versus magnetic field
h ∈ [hc1, hc2] = [3.76 T, 22.97 T] in meV and Tesla, respectively, of
the transverse sharp peaks R+−

0 , R−+
π/2, χ (2)

π , and χ
(3)
π/2, Eqs. (C6),

(C7), (C12), and (C13) of Appendix C, respectively, experimentally
observed in BaCo2V2O8 plus those of the sharp peak χ

(2)
0 , Eq. (C10)

of Appendix C, (a). The corresponding negative exponents (b).

The (h, ω)-plane lines of the energy in meV versus mag-
netic field in Tesla of the sharp peaks R+−

0 , R−+
π/2, χ

(2)
0 ,

χ (2)
π , and χ

(3)
π/2 that, except for χ

(2)
0 , have been experimen-

tally observed in BaCo2V2O8 by optical experiments [15]
are plotted for the parameter set suitable to that material
in Fig. 7(a) for h ∈ [hc1, hc2] = [3.76 T, 22.97 T]. The cor-
responding field dependencies of the ab = +−,−+, n =
1, 2, 3, and k = 0, π/2, π negative exponents ζ ab

n (k), Eq. (C1)
of Appendix C, that have not been previously studied by other
authors are plotted in Fig. 7(b).

The experimental studies of Ref. [15] have only consid-
ered (h, ω)-plane points for magnetic fields up to 7 T in the
spin-conducting phase subinterval h ∈ [5 T, 7 T]. For the sake
of comparison with corresponding experimental results for
BaCo2V2O8, our theoretical (h, ω)-plane sharp-peak energy
versus field lines are also plotted up to 7 T in Fig. 8, for
the field subinterval h ∈ [hc1, 7 T] = [3.76 T, 7 T]. The cor-
responding negative exponents h dependencies refer for that
field subinterval to those plotted in Fig. 7(b) for h ∈ [hc1, hc2].
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FIG. 8. The same sharp-peaks (h, ω)-plane lines of energy ver-
sus field as in Fig. 7 for the smaller magnetic field interval h ∈
[hc1, 7 T] = [3.76 T, 7 T]. After shifting upward the energies of the
sharp peaks R+−

0 and R−+
π/2 by δE1 = 0.30 meV and those of the sharp

peaks χ (2)
π and χ

(3)
π/2 by δE2 = δE3 = 0.50 meV, their obtained energy

vs field lines quantitatively agree with those experimentally observed
in BaCo2V2O8 for h ∈ [5 T, 7 T] displayed in Fig. 4(b) of Ref. [15].

To reach agreement with the experimental values of the
sharp peak energies, the corresponding theoretical values as
obtained by the finite-size algebraic method of Ref. [23] were
in Ref. [15] shifted upward by the energy δE = 0.50 meV,
which is smaller than the lower-energy limit of the spec-
troscopy of that reference. After shifting upward the energies
of the lines plotted in Fig. 8 of the sharp peaks R+−

0 and
R−+

π/2 by δE1 = 0.30 meV and those of the sharp peaks χ (2)
π

and χ
(3)
π/2 by δE3 = 0.50 meV, their obtained energy versus

field lines indeed quantitatively agree with those experimen-
tally observed in BaCo2V2O8 for h ∈ [5 T, 7 T] displayed in
Fig. 4(b) of Ref. [15].

Finally, the (h, ω)-plane lines of the energy in meV versus
field in Tesla of the sharp peaks Rzz

π and Rzz
π/2 experimentally

observed in SrCo2V2O8 by neutron scattering are plotted in
Fig. 9(a). The negative exponent that controls the line shape
near the former sharp peak is plotted as a function of the
field h in Fig. 9(b). As reported in Appendix C, the sharp
peak Rzz

π/2 exists for spin densities m ∈ [0, m�] and magnetic
fields h ∈ [hc1, h�] where for anisotropy � = 2 one has that
m� = 0.627 and h� = 2.76 in units of J/(gμB) that for J =
3.55 meV corresponds to h� = 27.30 T.

The experimental studies of Ref. [17] have considered
(h, ω)-plane lines for magnetic fields up to 15 T in the spin-
conducting phase subinterval h ∈ [3.8 T, 15.0 T]. Comparison
with the experimental dependence on the magnetic field h
of the energies of the sharp peaks RPAP(zz)

π/2 and RPAP(zz)
π dis-

played in Figs. 5(a) and 5(b), respectively, with those plotted
in Fig. 9(a) for the spin-1/2 chain with � = 2 and J =
3.55 meV confirms again the quantitative agreement previ-
ously reported in Ref. [17]. Note that in the larger field interval
h ∈ [3.8 T, 27.3 T] of Fig. 9(a) for which the sharp peak Rzz

π/2
exists its energy is not independent of the magnetic field
h, as suggested from its dependence up to 15 T shown in
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FIG. 9. The dependencies on the magnetic field h ∈ [hc1, hc2]
in Tesla of the energies in meV of the sharp peak Rzz

π and of the
sharp peak Rzz

π/2 for the fields h ∈ [hc1, h�] for which it exists, both
such peaks being experimentally observed in SrCo2V2O8 by neutron
scattering (a). The corresponding negative exponent of Rzz

π given in
Eq. (C9) of Appendix C (b). Expressions of such peaks energies are
provided in Eqs. (C9) and (C14) of Appendix C, respectively.

Fig. 5(a) of that reference. Indeed and as shown in Fig. 9(a)
for anisotropy � = 2 and J = 3.55 meV, upon increasing the
magnetic field h within that interval, the theoretical energy of
the sharp peak Rzz

π/2 decreases from 6.66 meV at h = 3.8 T to
5.79 meV at h = 27.3 T.

Importantly, the experimental intensity of the longitudinal
sharp peak RPAP(zz)

π/2 and particularly of the longitudinal sharp
peak RPAP(zz)

π shown in Fig. 5(b) of Ref. [17] is larger than
those of the transverse sharp peaks. This is an issue discussed
in the ensuing section.

IV. EFFECTS OF SELECTIVE INTERCHAIN COUPLINGS

Here we clarify issues concerning the coexistence
in BaCo2V2O8 and SrCo2V2O8’s low-temperature spin-
conducting phases of 1D physics with important deviations
from it invoking the symmetry space group of their crystal
structure. Both such zigzag materials have similar chain struc-
tures along the c axis, being almost isostructural: BaCo2V2O8

has a centro-symmetric crystal structure (I41/acd , nonpolar),
while SrCo2V2O8 has a noncentrosymmetric crystal structure
(I41/cd , polar) [9].

Hopping-matrix elements associated with interchain cou-
plings are obtained by the overlap between the wave functions
of the excited states and the one-particle potential that trans-
forms according to the underlying lattice symmetries. The
overlap is largest and spin states are coupled more strongly
whenever they are connected by a symmetry operation of the
underlying lattice. The fourfold rotation with additional trans-
lation of 1/4th of the unit cell of these zigzag materials allows
for a coupling between different chains and antiferromagnetic
intrachain coupling naturally leads to antiferromagnetic NN
and NNN interchain couplings.

The additional translation takes care of the change of chi-
rality between adjacent chains and for an antiferromagnetic
spin order, only states with the same spin-projection yield a

finite overlap. On the contrary, for excitations that involve
a spin-flip the interchain coupling should tend to zero. In
the case of excited states, the symmetry operation involving
the fourfold rotation with additional translation of 1/4th of the
unit cell is thus only a symmetry in spin space if no electronic
spin flip is performed within the generation of such states.

We provide strong evidence that this explains why in-
terchain couplings can be neglected concerning the spin
dynamical structure factor transverse components S+−(k, ω)
and S−+(k, ω): The transverse excitations contributing to
them involve an electronic spin flip. This though does not
apply to the longitudinal component Szz(k, ω) whose longi-
tudinal excitations do not involve such a spin flip.

This selection rule is thus expected to be behind selec-
tive interchain couplings that both protect the 1D physics
of BaCo2V2O8 and SrCo2V2O8 and lead to deviations from
it, mainly associated with the enhancement of the spectral-
weight intensity of Szz(k, ω).

A. 1D physics preserved by selective interchain couplings

We start by discussing which low-temperature 1D physics
is preserved and protected by selective interchain couplings
based on available experimental data on the two zigzag
materials. It is well known that the 1D physics of quasi-
1D spin-chain compounds occurs for the spin-conducting
phases at low temperatures above a very small critical tem-
perature Tc(h) below which interchain couplings lead to
three-dimensional (3D) ordered phases [4].

Magnetization experimental results for BaCo2V2O8 and
SrCo2V2O8 are explained well in terms of a 1D spin-1/2
Heisenberg-Ising chain in longitudinal magnetic fields with
anisotropy � ≈ 2 [3–5,18]. The same applies to the magnetic
field dependence of the sharp peaks energies experimentally
observed in the dynamic structure factor [13,15,17], as we
have discussed above in Sec. III.

Other experimental studies refer for instance to the NMR
relaxation rate. For both BaCo2V2O8 [10] and SrCo2V2O8

[19] they have been performed on 51V nuclei. The NMR
relaxation rate can be expressed as [25]

1

T1
= 1

T ‖
1

+ 1

T ⊥
1

where

1

T ‖
1

= γ 2

2

∑
k

|A‖(k)|2Szz(k, ω0) and

1

T ⊥
1

= γ 2

2

∑
k

|A⊥(k)|2(S+−(k, ω0) + S−+(k, ω0)). (5)

Here ω0 is the NMR frequency, γ is the gyromagnetic ratio,
and A‖(k) and A⊥(k) are the longitudinal and transverse hy-
perfine form factors, respectively. In the case of the zigzag
materials under study, these two hyperfine form factors are
peaked at k = 2kF↓ and k = π , respectively [10,19].

In case that for magnetic fields hc1 < h < hc2 and small
temperatures just above the very small critical temperature
Tc(h) the zigzag materials BaCo2V2O8 and SrCo2V2O8 were
fully described by the 1D spin-1/2 XXZ chain in a longi-
tudinal magnetic field, the longitudinal and transverse terms
in Eq. (5) of their NMR relaxation rate would have for
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FIG. 10. The dependence of the pre-factors A0
x (a) and A1

z (b) of
the static spin correlation functions on M = mz = m/2 for spin den-
sity m ∈ [0, 1] at different anisotropy values � for the spin-1/2 XXZ
chain in a longitudinal magnetic field. The lines of importance for
this study refer to anisotropy � = 2. From Ref. [4].

low-energy ω/(kBT ) � 1 the following expression [25]:

1

T ‖
1

= γ 2 |A‖(2kF↓)|2
2

Az
1 cos(πξ 2)

v1
B(ξ 2, 1 − 2ξ 2)

×
(

2π T

v1

)ζ‖
and

1

T ⊥
1

= γ 2 |A⊥(π )|2
2

Ax
0 cos

(
π

4ξ 2

)
v1

B

(
1

4ξ 2
, 1 − 1

2ξ 2

)

×
(

2π T

v1

)ζ⊥
. (6)

Here ξ is the phase shift related parameter in Eq. (A15) of
Appendix A whose direct relation to the usual Tomonaga-
Luttinger liquid (TLL) parameters is discussed below, the
coordination number cn reads cn = 4 for 3D, J ′ is the effective
interchain coupling, v1 = v1(kF↓) is the 1-pair group velocity
at q = kF↓, and B(x, y) is the Euler beta function that can
be expressed in terms of the gamma function as B(x, y) =
�(x)�(y)/�(x + y).

The nonuniversal TLL prefactors Ax
0 and Az

1 of the static
spin correlation functions also appearing in Eq. (6) can be
numerically computed [42]. They are plotted in Fig. 10 (a)
and (b), respectively, as a function of M = mz = m/2 for spin
density m ∈ [0, 1] and several � values. Upon increasing m
and the magnetic field h for anisotropy � = 2 of interest
for the zigzag materials, Ax

0 first increases from Ax
0 = 0 or a

very small finite value for m → 0 and h → hc1, goes through
a maximum Ax

0 ≈ 0.1 at around m = 1/2 and h = h1/2, and
then continuously decreases with final limiting behavior Ax

0 =
cx

2
√

2π

√
1 − m for (1 − m) � 1 and small (hc2 − h) where

cx = π
√

e/(21/3A6) = 0.92418... and A is the Glaisher’s con-
stant. Also at � = 2 the prefactor Az

1 diverges as m → 0 and
h → hc1. It continuously decreases upon increasing the spin
density m and the magnetic field h, going through a minimum
Az

1 ≈ 0.045 at m ≈ 0.875 and then increasing to Az
1 = 1

2π2 ≈
0.05 for m → 1 and h → hc2.
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FIG. 11. The exponents ζ‖ and ζ⊥, Eq. (7), plotted as a function
of the magnetic field h ∈ [hc1, hc2] for anisotropies � = 2 and � =
2.17.

The exponents ζ‖ and ζ⊥ in the expressions of Eq. (6) are
given by

ζ‖ = 2ξ 2 − 1 and ζ⊥ = 1

2ξ 2
− 1. (7)

They are plotted in Fig. 11 as a function of the magnetic field
h ∈ [hc1, hc2] for anisotropies � = 2 and � = 2.17. Their
limiting behaviors are

ζ‖ = −1/2 and ζ⊥ = 1 for h → hc1,

ζ‖ = ζ⊥ = 0 for h = h∗, (8)

ζ‖ = 1 and ζ⊥ = −1/2 for h → hc2,

where the magnetic field h∗ is that where the lines for the
exponents ζ‖ and ζ⊥ cross each other in Fig. 11, at which they
read ζ‖ = ζ⊥ = 0.

The clarification above in Sec. III and in Appendix C of the
physical-spins scattering processes behind the 1D physics’s
dynamical properties of the zigzag materials is important for
the discussion of which low-temperature 1D physics is pre-
served and protected by selective interchain couplings. For
instance, the phase-shift related parameter ξ and its inverse
ξ−1 = 1/ξ appearing in Eq. (11) and also in the expressions
of the exponents ζ‖ and ζ⊥ given in Eq. (7) are determined
by physical-spins 1-pair − 1-pair scattering. Indeed, they
are directly expressed in terms of the 1-pair phase shift
2π�1,1(q, q′), Eqs. (A13) and (A14) of Appendix A, in units
of 2π as follows:

ξ±1 = 1 + �1,1(kF↓, kF↓) ∓ �1,1(kF↓,−kF↓), (9)

where in �1,1(kF↓, kF↓) the two momenta differ by 2π/L.
Importantly, it follows that the usual TLL parameters

[16] K and η = 1/(2K ) (where here η is not the anisotropy
parameter in � = cosh η) are determined by physical-spins
1-pair - 1-pair scattering. Indeed, they are directly related
to the phase-shift parameters ξ±1, Eq. (9), as K = ξ 2 and
η = ξ−2/2, so that in terms of phase shifts in units of
2π they read K = (1 + ∑

ι=±1(ι)�1,1(kF↓, ι kF↓))2 and η =
1
2 (1 + ∑

ι=±1 �1,1(kF↓, ι kF↓))2, respectively.
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On the one hand and as discussed below in Sec. IV B, an
important deviation from 1D physics is that only the longi-
tudinal relaxation rate term 1/T ‖

1 is experimentally observed
in both zigzag materials [10,19]. On the other hand, compar-
ing the theoretical behavior 1/T1 = 1/T ‖

1 ∝ (2π T/v1)2ξ 2−1

of that term with the corresponding experimental data for the
whole field interval h ∈ [hc1, hc2], the excellent quantitative
agreement for η = 1

2 (1 + ∑
ι=±1 �1,1(kF↓, ι kF↓))2 plotted in

Fig. 3(a) of Ref. [10] for BaCo2V2O8 and in Fig. 4(d) of
Ref. [19] for SrCo2V2O8 was reached. Also for the velocity
called here v1 = v1(kF↓) there is excellent quantitative agree-
ment between theory and experiments, as reported in Fig. 3(b)
of Ref. [10] for BaCo2V2O8.

Hence, the 1D physics phase-shift related parameters
ξ±1 = 1 + ∑

ι=±1(ι)
1∓1

2 �1,1(kF↓, ι kF↓) and the 1-pair group
velocity v1 = v1(kF↓) appearing in Eq. (6) for the NMR re-
laxation rate at low-energy ω/(kBT ) � 1 as well as that rate
exponent ζ‖ = 2ξ 2 − 1 are preserved by selective interchain
couplings.

There is overall agreement between the 1D physics dis-
tribution over the (k, ω) plane of the k intervals for which
the sharp-peak exponents ζ ab

n (k), Eqs. (C3) and (C5) of
Appendix C, are negative and the (k, ω)-plane location of
the corresponding experimental observed sharp peaks. As
confirmed above in Sec III, the same applies to the distribu-
tion over the (h, ω) plane of the sharp peaks experimentally
observed at the specific momenta k = 0, π/2, π by optical ex-
periments in S+−(k, ω) and S−+(k, ω) [13,15] and by neutron
scattering in Szz(k, ω) [17]. All such agreements reveal that
the sharp-peak energies and the phase shifts 2π�1,n(kF↓, q)
for n = 1, 2, 3 in the expressions of the exponents that control
the line shape at and near them are also preserved by selective
interchain couplings.

B. Deviations from 1D physics due to selective
interchain couplings

In case that for fields h ∈ [hc1, hc2] and low temperatures
above the small critical temperature Tc(h) the 1D physics fully
applied to BaCo2V2O8 and SrCo2V2O8, the dependence on
the magnetic field h of the exponents ζ‖ and ζ⊥ shown in
Fig. 11 would imply that the NMR spin-lattice relaxation rate
1/T1 = 1/T ‖

1 + 1/T ⊥
1 , Eq. (6), was dominated by its divergent

longitudinal term 1/T ‖
1 for fields h ∈ [hc1, h∗] when ζ‖ < 0

and ζ⊥ > 0 and by its divergent transverse term 1/T ⊥
1 for

h ∈ [h∗hc2] when ζ‖ > 0 and ζ⊥ < 0. Here h∗ = 1.441 for
� = 2 and h∗ = 1.664 for � = 2.17 in units of J/gμB, which
for J = 3.55 meV gives h∗ = 14.25 T and for J = 2.60 meV
leads to h∗ = 12.06 T, respectively. The corresponding mag-
netic energy gμBh∗ refers to the middle dashed line in the
spin-1/2 XXZ chain phase diagram of the magnetic energy
over anisotropy, gμBh/�, versus ε = 1/� ∈ [0, 1] shown in
Fig. 1.

In contrast to 1D physics, NMR experimental results of
Ref. [10] for BaCo2V2O8 and of Ref. [19] for SrCo2V2O8

though reveal that the longitudinal term 1/T1 = 1/T ‖
1 ∝

T ζ‖ = T 2ξ 2−1 dominates for the whole magnetic field interval
h ∈ [hc1, hc2] of the spin-conducting phases, including for
h ∈ [h∗, hc2] when 1/T ⊥

1 should dominate.

Note that the 1D value of h∗ at which ζ‖ = ζ⊥ = 0 is
typically larger that than that of the field h = h∗ at which
the two (T, h)-plane critical-temperature T z

c (h) and T x
c (h)

lines associated with longitudinal and transverse orders, re-
spectively, considered below cross each other in a system of
weakly coupled chains [4]. The experimental values of h∗ for
BaCo2V2O8 and SrCo2V2O8 suggested by neutron scattering
are indeed lower and read h∗ ≈ 8.5 T and h∗ ≈ 7.0 T, respec-
tively [12,14].

One can calculate within interchain mean-field theory [4]
expressions for such critical temperatures T z

c (h) and T x
c (h),

which read [4]

T z
c (h) = v1

2π

(
cn � J ′Ãz

1

sin(πξ 2)

v1
B2

(
ξ 2

2
, 1 − ξ 2

)) 1
2(1−ξ2 )

,

T x
c (h) = v1

2π

(
cn J ′Ax

0

sin
(

π
4ξ 2

)
v1

B2

(
1

8ξ 2
, 1 − 1

4ξ 2

)) 2ξ2

4ξ2−1

.(10)

Here the coordination number cn reads cn = 4 for 3D, J ′ is
the effective interchain coupling, and the other quantities are
those appearing in the relaxation rate expressions, Eq. (6).
However, as justified below, in the expression for T z

c (h) given
in Eq. (10), we have replaced the TLL prefactor Az

1 plotted in
Fig. 10(b) by a prefactor Ãz

1, which is sensitive to effects of
selective interchain couplings. The dependence on J ′ of that
prefactor Ãz

1 is beyond interchain mean-field theory. The cor-
responding replacement of Az

1 by Ãz
1 is physically important

for the following reason. It implies that in the expression,
Eq. (6), for the longitudinal relaxation rate term 1/T ‖

1 the
prefactor Az

1 is also replaced by Ãz
1, so that

1

T ‖
1

= γ 2 |A‖(2kF↓)|2
2

Ãz
1 cos(πξ 2)

v1
B(ξ 2, 1 − 2ξ 2)

×
(

2π T

v1

)ζ‖
. (11)

Note that in contrast to the critical temperatures shown
in Eq. (10), for the purely 1D spin-1/2 XXZ chain the low-
energy NMR relaxation rate expressions given by Eq. (6) do
not depend explicitly on the effective interchain coupling J ′.
However, the component 1/T ‖

1 as given in Eq. (11) implicitly
depends on J ′ through the pre-factor Ãz

1 = Ãz
1(J ′) that obeys

the boundary condition Ãz
1(0) = Az

1. This is again beyond
interchain mean-field theory.

On the other hand, it was confirmed above in Sec. IV A in
the basis of experimental data for the zigzag materials under
study that, except for Az

1, all TLL quantities in expression of
1/T ‖

1 , Eq. (11) in units of γ 2 |A‖(2kF↓) = 1, refer to those
predicted by the 1D physics.

Fits of the magnetization measurements [4,5,7] lead to
J ′/J = 0.00138 for BaCo2V2O8. Consistently, it was found
in Ref. [10] by the use of the expression for T z

c (h) given
in Eq. (10) with Ãz

1 replaced by Az
1 that for fields h > hc1

up to 8.5 T the effective interchain coupling in that ex-
pression reads J ′/KB = 0.042 K and thus J ′ = 0.0036 meV.
For J = 2.60 meV this gives J ′/J = 0.00139, consistently
with the magnetization measurements value J ′/J = 0.00138.
Nonetheless, a giant variation of the effective interchain cou-
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pling J ′(h) by a factor up to 24 was found upon increasing the
magnetic field h from h = 8.5 T towards h = hc2 [10].

The prefactors Az
1 and Ax

0 in the expressions of 1/T ‖
1

and 1/T ⊥
1 given Eq. (6) are controlled by matrix element’s

overlaps within the dynamic structure factor’s components
Szz(k, ω0) and S+−(k, ω0) + S−+(k, ω0), respectively, in the
NMR relaxation expression, Eq. (5). According to the se-
lection rule associated with selective interchain couplings,
Ax

0 remains insensitive to the latter. Such selective interchain
couplings though affect the spin-states quantum overlaps that
control the prefactor Az

1 associated with Szz(k, ω), which are
sensitive to the variation of J ′(h).

Hence we propose that beyond interchain mean-field the-
ory [4] in the expression for T z

c (h) [Eq. (10)], the giant
enhancement of J ′(h) for h > h∗ = 8.5 T detected in Ref. [10]
is actually distributed between J ′ and Ãz

1. This implies that
such a giant variation refers to the product J ′ × Ãz

1 rather than
to J ′ alone. It then follows that the effective interchain cou-
pling of Ref. [10], which we denote by J ′

Ref.10(h), is replaced
by the quantity

Cz
1 C′ J ′

min where Cz
1 = Ãz

1

Az
1

and C′ = J ′

J ′
min

, (12)

such that Cz
1 C′ J ′

min = J ′
Ref.10(h). Here J ′

min = 0.00139J , J ′ =
J ′(h) < J ′

Ref.10(h) is the enhanced effective coupling, and Az
1

is the nonuniversal TLL longitudinal prefactor of the static
spin correlation functions plotted in Fig. 10(b). While both
Ãz

1 and J ′ are enhanced, we cannot access the precise values
of their separate enhancement factors Cz

1 = Ãz
1/Az

1 and C′ =
J ′/J ′

min, respectively, although we know that their product
gives Cz

1(h) × C′(h) ∈ [1, 24] for h ∈ [h∗, hc2].
The field interval h ∈ [h∗, hc2] for which the enhancement

of Cz
1 C′ J ′

min = J ′
Ref.10(h) was found in Ref. [10] is precisely

that for which in contrast to the 1D physics there is unexpected
experimental dominance of the relaxation rate longitudinal
component 1/T ‖

1 ∝ T ζ‖ relative to 1/T ⊥
1 ∝ T ζ⊥ , in spite of

ζ‖ > 0 and ζ⊥ < 0. This is thus consistent with the corre-
sponding enhancement by Cz

1 = Ãz
1/Az

1 of the prefactor Ãz
1

in the 1/T ‖
1 ’s expression, Eq. (11). Indeed, due to selective

interchain couplings that act on Szz(k, ω), also the ratio Ãz
1/Ax

0

of the pre-factors Ãz
1 and Ax

0 of the expressions of T ‖
1 and

1/T ⊥
1 in Eq. (11), respectively, is enhanced relative to the

corresponding ratio of the 1D physics, Az
1/Ax

0.
The unexpected experimental low-temperature dominance

of the longitudinal NMR relaxation rate term 1/T1 =
T ‖

1 ∝ T ζ‖ for magnetic fields h ∈ [h∗, hc2] found both in
BaCo2V2O8 [10] and in SrCo2V2O8 [19] is thus here asso-
ciated with the enhancement of Ãz

1 by Cz
1 = Ãz

1/Az
1 in both

such zigzag materials. That dominance is not mainly due to
the relative values of the hyperfine form factors A‖(k) and
A⊥(k) in Eqs. (5) and (11): It rather mainly follows from
the effects of selective interchain couplings on the quantum
overlaps within the matrix elements of Szz(k, ω).

Note though that the weaker effects of transverse stag-
gered fluctuations are behind the experimental studies of
SrCo2V2O8 showing a NMR line splitting that indicates
the onset of transverse fluctuations [19] at h = h∗ ≈ 7.0 T.
This confirms that the transverse NMR form factor A⊥(k)
does not vanish. Consistently, transverse fluctuations and

corresponding peaks have been observed by neutron scat-
tering for magnetic fields h ∈ [h∗, hc2] both in BaCo2V2O8

[12] and in SrCo2V2O8 [14]. This suggests some degree of
coexistence of both longitudinal and transverse orders [12], in
spite of the experimental dominance of the longitudinal NMR
relaxation rate term 1/T1 = T ‖

1 ∝ T 2ξ 2−1.
Importantly, the additional Szz(k, ω)’s spectral-weight in-

tensity brought about by selective interchain couplings also
applies to higher energy scales. Indeed, it is also clearly vis-
ible by neutron scattering in Szz(k, ω) for larger ω values, as
shown in Fig. 5(b) of Ref. [17] for the magnetic field interval
h ∈ [3.8 T, 15 T], in what the longitudinal sharp peak RPAP(zz)

π

(called in this paper Rzz
π ) is concerned. The intensity of such

a sharp peak’s spectral weight and that of the longitudinal
sharp peak RPAP(zz)

π/2 (called here Rzz
π/2) shown in Fig. 5(a) of

that reference for fields larger than hc1, called Bc in these
figures, is larger than that of the transverse sharp peaks. Note
that for higher energies the enhancement occurs for a larger
field interval than reported above for low energy.

V. CONCLUDING REMARKS

In this paper we have explained the coexistence in the low-
temperature spin-conducting phases of the zigzag materials
BaCo2V2O8 and SrCo2V2O8 of 1D physics with important
deviations from it as a result of selective interchain couplings.
Those involve a selection rule that follows from interchain
spin states being coupled more strongly within the spin dy-
namical structure factor whenever they are connected by
a symmetry operation of the underlying lattice reported in
Sec. IV. In the case of excited states, this symmetry operation
is only a symmetry in spin space if no electronic spin flip is
performed within the generation of such states.

Deviations from 1D physics due to selective interchain
couplings are behind the enhancement of the spectral-weight
intensity of the longitudinal component Szz(k, ω) and the cor-
responding dominance at low energy ω/(kBT ) � 1 and for
fields h ∈ [h∗, hc2] of the longitudinal NMR relaxation rate
term 1/T1 = 1/T ‖

1 ∝ T 2ξ 2−1 of both BaCo2V2O8 [10] and
SrCo2V2O8 [19], in contrast to the 1D physics.

Concerning the 1D physics protected by such selective
interchain couplings, the excellent quantitative agreement be-
tween theoretical results and the experimentally observed
(k, ω)-plane and (h, ω)-plane locations of the sharp peaks
confirmed by our study is consistent with the physical-spins
1-pair − 1-pair and 1-pair − n-pair scattering controlling the
(k, ω)-plane line shape at and in the vicinity of the sharp
peaks in S+−(k, ω), S−+(k, ω), and Szz(k, ω) experimentally
observed in SrCo2V2O8 and BaCo2V2O8 [13,15,17]. In Ap-
pendix B we have also identified the spin carriers behind the
spin transport properties of the spin conducting phases.

In the case of Szz(k, ω) it is found that selective inter-
chain couplings enhance its spectral-weight intensity without
changing its sharp peaks’s energies and the 1-pair scattering
phase shifts in the expressions of the exponents that control
the line shape at and near the sharp peaks. We suggest neutron
scattering experiments in Szz(k, ω) for magnetic fields above
15 T to search for further effects of the selective interchain
couplings in what the enhancement of its spectral-weight in-
tensity is concerned.
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The main results of this paper are: (1) The physical
origin of the coexistence of 1D physics with deviations
from it results in the low-temperature spin-conducting phases
of BaCo2V2O8 and SrCo2V2O8 from selective interchain
couplings, which are behind the enhancement of the spectral-
weight intensity of Szz(k, ω) and of the resulting dominance at
low energy ω/(kBT ) � 1 of the longitudinal NMR relaxation
rate term for fields h ∈ [h∗, hc2]. (2) The scattering of the
physical-spins 1-pair − 1-pair, 1-pair − 2-pair, and 1-pair −
3-pair directly controls the line shape at and near the sharp
peaks in S+−(k, ω), S−+(k, ω), and Szz(k, ω) of these zigzag
materials. These insights have opened the door to a key ad-
vance in the understanding of the physics of the spin chains in
BaCo2V2O8 and SrCo2V2O8.
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APPENDIX A: n-PAIRS QUANTITIES

For the spin-1/2 XXZ chain with anisotropy � � 1, the
n-pairs energy dispersions that appear in the expressions of
the spin dynamic structure factor spectra have the following
general form for n � 1 [24]:

εn(q) = ε̄n(ϕn(q)) and ε0
n (q) = ε̄0

n (ϕn(q)) where

ε̄n(ϕ) = ε̄0
n (ϕ) +

(
n − δn,1

1

2

)
gμB h for h ∈ [0, hc1],

ε̄n(ϕ) = ε̄0
n (ϕ) + n gμB h for h ∈]hc1, hc2]. (A1)

Here the n-band momenta read q ∈ [−kF↑, kF↑] for n = 1
and q ∈ [−(kF↑ − kF↓), (kF↑ − kF↓)] for n > 1, ϕ = ϕn(q) ∈
[−π, π ] are for n � 1 the ground-state rapidity functions that
are solutions of Bethe-ansatz equations [20,24], B = ϕ1(kF↓),
and the rapidity-dependent dispersions ε̄0

n (ϕ) are defined
below.

The n-string-pair energy dispersion εn(q′), Eq. (A1), in
units of J is plotted in Figs. 12 and 13 for n = 2 and n = 3,
respectively, as a function of q′/π for n-band momentum q′ ∈
[−(kF↑ − kF↓), (kF↑ − kF↓)], spin densities m = 0.2, m =
0.5, m = 0.8, and several anisotropy values. The n = 2 and
n = 3 n-string-pairs are associated with Bethe strings of
length two and three, respectively.

For simplicity, we provide here expressions of the rapid-
ity functions ϕn(q) for the limiting cases of spin density
values m = 0 and m = 1. In the spin-insulating quantum

-0.2 0 0.2
q'/ π

0

2

4

6

8

10

12

ε 2

-0.5 0 0.5
q'/ π

0

2

4

6

8

10

12

-0.8 0 0.8
q'/ π

0

2

4

6

8

10

12

Δ=2
Δ=4
Δ=6
Δ=8
Δ=10

m=0.2 m=0.5

m=0.8

FIG. 12. The 2-string-pair energy dispersion ε2(q′) in units of J
is plotted as a function of q′/π for 2-band momentum q′ ∈ [−(kF↑ −
kF↓), (kF↑ − kF↓)], spin densities m = 0.2, m = 0.5, m = 0.8, and
anisotropies � = 2, 4, 6, 8, 10. It is associated with a Bethe string of
length two.

phase for fields h ∈ [0, hc1] and m = 0, the interval q′ ∈
[−(kF↑ − kF↓), (kF↑ − kF↓)] of the n > 1 rapidity functions
ϕn(q′) ∈ [−π, π ] argument collapses to q′ = 0. On the other
hand, the expression of the n = 1 function ϕ1(q) where q ∈
[−π/2, π/2] simplifies to

ϕ1(q) = π
F (q, uη )

K (uη )
. (A2)

Here F (q, uη ) and K (uη ) = F (π/2, uη ) are the elliptic inte-
gral of the first kind and the complete elliptic integral of the
first kind given by

F (q, uη ) =
∫ q

0
dθ

1√
1 − u2

η sin2 θ

, (A3)
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FIG. 13. The same as in Fig. 12 for the 3-string-pair energy
dispersion ε3(q′) associated with a Bethe string of length three.
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and

K (uη ) = F (π/2, uη ) =
∫ π

2

0
dθ

1√
1 − u2

η sin2 θ

, (A4)

respectively. The dependence of the function uη in them on the
parameter η associated with anisotropy � = cosh η is defined
by its inverse function as

η = π
K (u′

η )

K (uη )
where u′

η =
√

1 − u2
η. (A5)

In the opposite limit of h = hc2 and m = 1, the rapidity
function ϕn(q) has the following closed-form expression valid
for n � 1:

ϕn(q) = 2 arctan
(

tanh
(n η

2

)
tan

(q

2

))
for q ∈ [−π, π ].

(A6)
The rapidity-dependent dispersions ε̄0

n (ϕ) in Eq. (A1) are
defined by the equations

ε̄0
n (ϕ) =

∫ ϕ

0
dϕ′2Jγn(ϕ′) + A0

n where

A0
1 = −J (1 + cosh η)

+ 1

π

∫ B

−B
dϕ′ 2Jγ1(ϕ′) arctan

(
coth η tan

(
ϕ′

2

))
and

A0
n = −J

sinh η

sinh(n η)
(1 + cosh(n η))

+ 1

π

∑
ι=±1

∫ B

−B
dϕ′ 2Jγ1(ϕ′)

× arctan

(
coth

(
(n + ι) η

2

)
tan

(
ϕ′

2

))
, (A7)

for n > 1. The distribution 2Jγn(ϕ) obeys the following equa-
tion for n � 1:

2Jγn(ϕ) = J
sinh η sinh(n η) sin(ϕ)

( cosh(n η) − cos(ϕ))2

+
∫ B

−B
dϕ′ Gn(ϕ − ϕ′) 2Jγ1(ϕ′), (A8)

where Gn(ϕ) = − 1
2π

∑
ι=±1

sinh((n+ι) η)
cosh((n+ι) η)−cos(ϕ) .

For h ∈ [0, hc1] and m = 0 and for h = hc2 and m = 1, the
energy dispersions εn(q) and ε0

n (q) have the following simple
analytical expressions:

ε1(q) = ε0
1 (q) + 1

2
gμB h,

ε0
1 (q) = − J

π
sinh η K (uη )

√
1 − u2

η sin2 q

for q ∈ [−π/2, π/2] and h ∈ [0, hc1]

and

ε1(q) = ε0
n (q) + J (1 + �) = J (1 − cos q),

ε0
1 (q) = −J (� + cos q)

for q ∈ [−π, π ] and h = hc2, (A9)

at n = 1 and

εn(q′) = ε0
n (q′) + n gμB h,

ε0
n (q′) = −gμB h

for q′ = 0 and h ∈ [0, hc1]

and

εn(q′) = ε0
n (q′) + n J (1 + �),

ε0
n (q′) = −J

sinh η

sinh(n η)
(cosh(n η) + cos q′)

for q′ ∈ [−π, π ] and h = hc2, (A10)

for n > 1. For the same magnetic field h and m values, the
n > 1 binding energy Ebind,n and energy Tn(q′), Eq. (3), read

Ebind,n = −gμB h, Tn(q′) = 0

for q′ = 0 and h ∈ [0, hc1] and

Ebind,n = −J
sinh η sinh(n η)

cosh(n η) − 1

Tn(q′) = J
sinh η

sinh(n η)
(1 − cos q′)

for q′ ∈ [−π, π ] and h = hc2. (A11)

The use of the expression of ε0
1 (q) in E↑↓

1 = ε0
1 (kF↓),

Eq. (2), confirms that |E↑↓
1 |/(gμB) gives in the m → 0 and

m → 1 limits the known Bethe ansatz expressions [22] of the
critical magnetic fields,

hc1 = lim
m→0

|E↑↓
1 |/(gμB)

= 2J

π gμB
K (uη )

√
(�2 − 1)

(
1 − u2

η

)
and

hc2 = lim
m→1

|E↑↓
1 |/(gμB) = J

gμB
(� + 1), (A12)

respectively, where
√

�2 − 1 = sinh η.
The momentum-dependent exponents that control the line

shape of the dynamic structure factor components at and near
their sharp peaks involve the 1-pair phase shifts. They are
given by

2π �1,n(q, q′) = 2π �̄1,n(ϕ1(q), ϕn(q′)) for n � 1, (A13)

where the rapidity-dependent phase shifts 2π �̄1,n(ϕ, ϕ′) are
in units of 2π defined by the following integral equations:

�̄1,1(ϕ, ϕ′) = 1

π
arctan

(
coth η tan

(
ϕ − ϕ′

2

))

+
∫ B

−B
dϕ′′ G1(ϕ − ϕ′′) �̄1,1

(
ϕ′′, ϕ′),

and

�̄1,n
(
ϕ, ϕ′) = 1

π

∑
ι=±1

arctan

(
coth

(
(n + ι) η

2

)
tan

(
ϕ − ϕ′

2

))

+
∫ B

−B
dϕ′′ G1(ϕ − ϕ′′) �̄1,n(ϕ′′, ϕ′), (A14)

for n > 1. The kernel reads G1(ϕ) = − 1
2π

sinh(2η)
cosh(2η)−cos(ϕ) .
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Specifically, the following phase shifts in units of 2π and
phase-shift parameters given by

�1,n(ι kF↓, q) = �̄1,n(ι B, ϕn(q)),

ξ = 1 +
∑
ι=±1

(ι) �1,1(kF↓, ιkF↓),

ξ 0
1 n = 2�1,n(kF↓, 0) for n = 2, 3, (A15)

where ι = ±1 appear in the expressions given below in
Appendix C of the exponents that control the power-law be-
haviors of the spin dynamic structure factor components at
and near their sharp peaks.

APPENDIX B: THE PHYSICAL-SPINS REPRESENTATION
APPLIES TO THE WHOLE HILBERT SPACE

On the one hand, the translational degrees of freedom of
the M = 2Sq unpaired physical spins 1/2 are described within
the Bethe ansatz: They are described by a number M = 2Sq of
n-band momentum values, q j = 2π

L In
j , out of the Nh

n = 2Sq +∑∞
n′=n+1 2(n′ − n)Nn′ unoccupied such values, i.e., n-holes, of

each n-band with finite Nn > 0 occupancy. Note that for states
without n-string-pairs one has that Nh

1 = 2Sq = M.
On the other hand, the spin internal degrees of freedom

of such M = 2Sq unpaired physical spins 1/2 is an issue
beyond the Bethe ansatz. We confirm in the following that
the physical-spins representation applies to the whole Hilbert
space because it accounts for their spin internal degrees of
freedom.

Let |lr, Sq, Sz,�〉 be an energy eigenstate of the Hamilto-
nian Ĥ , Eq. (1), whose quantum numbers beyond Sq, Sz, and
� = cosh η > 1 needed to specify it are here denoted by lr.
Consider a HWS |lr, Sq, Sq,�〉. A number 2Sq of SUq(2) sym-
metry non-HWSs outside the Bethe-ansatz solution referring
to different multiplet configurations of the M = 2Sq unpaired
physical spins 1/2 are generated from that HWS as

∣∣lr, Sq, Sq − nz, η
〉 = 1√

Cη

(Ŝ−
η )nz

∣∣lr, Sq, Sq, η
〉
. (B1)

Here nz ≡ Sq − Sz = 1, ..., 2Sq so that Sz = Sq − nz and

Cη =
nz∏

l=1

sinh2 (η (Sq + 1/2)) − sinh2 (η (l − Sq − 1/2))

sinh2 η
,

(B2)
for nz = 1, ..., 2Sq. Similarly to the � = 1 bare ladder spin
operators Ŝ±, the action of the � = cosh η > 1 q-spin ladder
operators Ŝ±

η on Sq > 0 energy eigenstates flips an unpaired
physical spin 1/2 projection. (The expression of the operators
Ŝ±

η is given in Ref. [24].)
For the non-HWSs, Eq. (B1), the two sets of nz ≡ Sq −

Sz = 1, ..., 2Sq and 2Sq − nz = Sq + Sz unpaired physical
spins 1/2 have opposite ↓ and ↑ spin projections, respectively.
Hence, the multiplet configurations that involve the internal
degrees of freedom of the M = 2Sq unpaired physical spins
1/2 are generated as given in Eq. (B1). An important property
that follows from the SUq(2) symmetry is that all 2Sq + 1
states of the same q-spin tower have exactly the same n-pairs
occupancy configurations and thus the same values for the set

of n = 1, ...,∞ distributions {Nn(q j )} and rapidity functions
{ϕn(q j )}.

Let Er,Sq,� be the energy eigenvalue of a HWS
|lr, Sq, Sq,�〉 relative the Hamiltonian Ĥ , Eq. (1). Then the
energy eigenvalue Elr,Sq,Sz,� of a corresponding non-HWS,
Eq. (B1), reads, Elr,Sq,Sz,� = Elr,Sq,� + nz gμBh. This reveals
that a ↑→↓ spin flip requires an excitation energy gμBh. The
excitation energy for a ↓→↑ spin flip is actually −gμBh, i.e.,
it is an energy release process.

A ground state of energy EGS
lr,Sq,�

is for 0 < m < 1 and
hc1 < h < hc2 a HWS. Hence the excitation energy of non-
HWSs generated from it as given in Eq. (B1) reads

Elr,Sq,Sz,� − EGS
lr,Sq,�

= nz gμBh. (B3)

The M = 2Sq unpaired physical spins 1/2 whose transla-
tional and internal degrees of freedom we have just identified
play an important role for spin transport [43]: As shown in the
following, they are the spin transport carriers whereas n-pairs
do not couple to a vector potential and thus do not carry spin
current. This results from their singlet nature.

To show this one considers the Hamiltonian, Eq. (1), in
the presence of a uniform vector potential [44], Ĥ = Ĥ (�/L)
where � = �↑ = −�↓. It remains solvable by the Bethe
ansatz [45,46]. After some straightforward algebra using the
corresponding � �= 0 Bethe-ansatz equations [34], one finds
that the momentum eigenvalues for HWSs in the thermody-
namic limit read

P = π

Ln∑
j=1

Nn +
∞∑

n=1

Ln∑
j=1

Nn(q j ) q j + �

L

(
N −

∞∑
n=1

2n Nn

)
.

(B4)
The number of physical spins 1/2 that couple to the vector
potential is given by the factor that multiplies �

L in Eq. (B4).
From the use of the thermodynamic-limit exact sum rule,
2� = N − 2Sq = ∑∞

n=1 2n Nn, one finds that such a number
actually reads 2Sq = N − 2� = N − ∑∞

n=1 2n Nn.
The term �

L N in �
L 2Sq = �

L (N − ∑∞
n=1 2n Nn) refers to

all N physical spins 1/2 coupling to the vector potential in
the absence of physical-spins pairing. Indeed, the negative
coupling counter terms −∑∞

n=1 2n Nn refer to the number 2n
of paired physical spins 1/2 in each n-pair both for n = 1
and n > 1. They exactly cancel the positive coupling of the
corresponding 2n paired physical spins 1/2 in each n-pair.
As a result of such counter terms, only the M = 2Sq = N −∑∞

n=1 2n Nn unpaired physical spins 1/2 couple to the vector
potential and thus carry spin current.

A similar analysis for non-HWSs, Eq. (B1), gives Eq. (B4)
with �

L 2Sq = �
L M replaced by �

L (M+1/2 − M−1/2). Here
M±1/2 = N/2 − ∑∞

n=1 n Nn ∓ Sz where M±1/2 = Sq ∓ Sz is
the number of unpaired physical spins of projection ±1/2
that couple to the vector potential. This again confirms that
only the M = 2Sq = N − ∑∞

n=1 2n Nn unpaired physical spins
1/2 couple to a uniform vector potential and thus carry spin
current, so that they are indeed the spin transport carriers.
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APPENDIX C: DYNAMICAL THEORY FOR THE 1-PAIR −
1-PAIR AND 1-PAIR − n-PAIR SCATTERING

Here we provide some basic information on the dynamical
theory for the 1-pair − 1-pair and 1-pair − n-pair scattering
that involves the 2n-physical-spins n-pairs [24] used in the
studies of this paper. In addition, the expressions of spectra
and exponents associated with the set of sharp peaks studied in
this paper are given. The theory is valid in the thermodynamic
limit and provides the line shape of the spin dynamic structure
factor ab = +−,−+, zz components Sab(k, ω) at and just
above the (k, ω) plane n = 1, 2, 3 n-continua lower thresh-
olds where there are sharp peaks. Such continua are shown
in Figs. 2(a)–2(c), 3(a)–3(c), and 4(a)–4(c) for S+−(k, ω),
S−+(k, ω), and Szz(k, ω), respectively.

At fixed excitation momentum k and small values of the
energy deviation (ω − Eab

n (k)) � 0, the spin dynamic struc-
ture factor ab = +−,−+, zz components have the power-law
form

Sab(k, ω) = Cn
ab(k)

(
ω − Eab

n (k)

4π Bab
1 v1(kF↓)

)ζ ab
n (k)

. (C1)

Here Eab
n (k) denotes the n-continua lower-threshold spectra

of the excited states. Their expressions for the experimentally
observed sharp peaks at fixed momenta k = 0, π/2, π are
given below in Eqs. (C6)–(C13). They involve simple com-
binations of the n-band energy dispersions εn(q), Eq. (A1) of
Appendix A. In Eq. (C1), v1(kF↓) denotes the 1-pair group
velocity v1(q) = ∂ε1(q)/∂q at q = kF↓, 0 < Bab

1 � 1 is a η

and m dependent constant, and expressions for the exponents
ζ ab

n (k) and factor functions Cn
ab(k) are given below. Such ex-

ponents are fully controlled by the 1-pair − 1-pair, 1-pair −
2-pair, and 1-pair − 3-pair scattering involving 2-physical-
spins 1-pairs and n-string-pairs with n = 2 and n = 3 pairs
of physical spins 1/2 bound within them.

The (k, ω)-plane n = 1, 2, 3 n-continua of S+−(k, ω), 1-
continuum of S−+(k, ω), and the n = 1, 2 n-continua of
Szz(k, ω) shown in Figs. 2(a)–2(c), 3(a)–3(c), and 4(a)–4(c),
respectively, are those where in the thermodynamic limit
there is significant spectral weight. Such figures refer to the
anisotropy � = 2 suitable to the spin chains in SrCo2V2O8

and spin densities m = 0.209 ≈ 0.2, m = 0.514 ≈ 0.5, and
m = 0.793 ≈ 0.8. The k intervals of the lines marked in these
figures refer to the location of sharp peaks of form, Eq. (C1),
for which ζ ab

n (k) < 0. Corresponding figures for anisotropy
� = 2.17 suitable to the spin chains in BaCo2V2O8 are very
similar.

The singlet nature of the pairs of physical spins 1/2 con-
tained in the 1-pairs and n > 1 n-string-pairs determines the
form of the S matrices associated with the general physical-
spins n-pair - n′-pair scattering where n, n′ � 1. They are
dimension-one scalars of the form

Sn(q j ) =
∞∏

n′=1

Ln′∏
j′=1

Sn,n′ (q j, q j′ ) where

Sn,n′ (q j, q j′ ) = ei δNn′ (q j′ ) 2π�n,n′ (q j ,q j′ ). (C2)

Here δNn′ (q j′ ) are deviations from the ground-state n′-band
momentum distributions Nn′ (q j′ ) suitable to specific excited

states. The quantities 2π�n,n′ (q j, q j′ ) in Eq. (C2) are n-pair
phase shifts and n′ refers to the corresponding n′-pair scatter-
ing centers.

For the line shape at and near the sharp peaks in Sab(k, ω)
only the phase shifts 2π�1,1(q, q′) and 2π�1,n(q, q′) where
n = 1, 2, 3 play an active role. They are defined by Eqs. (A13)
and (A14) of Appendix A. Indeed, ground states are not
populated by n-string-pairs. Hence only the ground-state pre-
existing 1-pairs play the role of scatterers. 1-pairs, 1-holes,
and n-string-pairs created under transitions to excited states
play the role of scattering centers.

The corresponding 1-pair S matrix then determines the
momentum k dependence of the exponents ζ ab

n (k) and pref-
actor functions Cn

ab(k) in Eq. (C1). They read

ζ ab
n (k) = −1 +

∑
ι=±1

�2
ι (k), (C3)

and

Cn
ab(k) = 1∣∣ζ ab

n (k)
∣∣

×
∏
ι=±1

e− f ab
0 + f ab

2 (2�̃ι)2− f ab
4 (2�̃ι)4

�(�2
ι (k))

, (C4)

respectively. Here ab = +−,−+, zz, the index n = 1, 2, 3
refers the (k, ω)-plane n-continua shown in Figs. 2(a)–2(c),
3(a)–3(c), and 4(a)–4(c), the l = 0, 2, 4 coefficients 0 <

f ab
l < 1 depend on η and are different for each spin dynamic

structure factor component, and �̃ι = − i
2π

ln S1(ιkF↓) is the
scattering part of the general functional,

�ι = ι δNF
1,ι − i

2π
ln S1(ιkF↓)

= ι
δNF

1

2
+ δJF

1 − i

2π
lnS1(ιkF↓) where

S1(ιkF↓) =
3∏

n=1

Ln∏
j=1

ei δNn(q j ) 2π�1,n(ιkF↓,q j ). (C5)

It involves the S matrix S1(q) at the 1-band Fermi points q =
ιkF↓ = ±kF↓. Its dependence on the excitation momentum k
occurs through its direct relation to the n-band momenta qj in
the phase shifts 2π�1,n(ιkF↓, q j ). The index ι = ±1 in ιkF↓
refers to the left (ι = −1) and right (ι = +1) 1-band Fermi
points and δNF

1 = ∑
ι=±1 δNF

1,ι and δJF
1 = 1

2

∑
ι=±1 ι δNF

1,ι are
deviations under the ground-state - excited state transitions.
Here δNF

1,ι is the deviation in the number of 1-pairs at and
very near such ι = ±1 1-band Fermi points.

The exponent expressions for specific types of excited
states are determined by the corresponding values of the de-
viations δNF

1 , δJF
1 , and δNn(q j ) for n = 1, 2, 3 in Eqs. (C3)

and (C5). Specific values for such deviations determine for
instance the exponents plotted in Figs. 2(d)–2(f), 3(d)–3(f),
and 4(d)–4(f) for the spin dynamical structure factor com-
ponents S−(k, ω), S−+(k, ω), and Szz(k, ω), respectively. The
same applies to the exponents whose specific expressions are
given below in Eqs. (C6)–(C13). They control the line shape at
and in the vicinity of the sharp peaks experimentally observed
in BaCo2V2O8 and SrCo2V2O8 at momentum values k = 0,
k = π/2, and k = π .
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In (i) the spectra and (ii) the exponents given in the follow-
ing, (i) εn(q) are for n = 1, 2, 3 the n-pair energy dispersions,
Eqs. (A1)–(A8) of Appendix A, whose limiting behaviors are
provided in Eqs. (A9) and (A10) of that Appendix for n = 1
and n > 1, respectively, and (ii) �1,1(ι kF↓, q) where ι = ±1
and {ξ, ξ 0

1 n} for n = 2, 3 are the phase shifts in units of 2π

and related phase-shift parameters, respectively, Eq. (A15) of
Appendix A. In the cases of sharp peaks in (a) S+−(k, ω) and
Szz(k, ω) and (b) S−+(k, ω) located in the lower thresholds of
the corresponding n-continua, the smallest and largest values
given in the following for the energy intervals refer to (a) the
smallest and largest magnetic field and to (b) the largest and
smallest magnetic field, respectively.

The n = 1, 2, 3 lower threshold energies E+−
n (k, h), n = 1

lower threshold energy E−+
1 (k, h), n = 1 lower threshold en-

ergy Ezz
1 (k, h), and exponents ζ ab

n (k, h), Eqs. (C3) and (C5),
appearing in the expressions, Eq. (4), of the line shape at
and near the sharp peaks at anisotropies � = 2 and � = 2.17
representative of SrCo2V2O8 and BaCo2V2O8, respectively,
are given by

E+−
1 (0, h) = ε1(kF↑) ∈ [0, 2J] at � = 2 and � = 2.17,

ζ+−
1 (0, h) = −1 +

∑
ι=±1

(
−ξ

2
+ �1,1(ιkF↓,−kF↑)

)2

for h ∈ [hc1, hc2], (C6)

E−+
1 (π/2, h) = −ε1

(
(kF↑ − kF↓)

2

)
∈ [0, 1.876J] at � = 2

∈ [0, 2.153J] at � = 2.17,

ζ−+
1 (π/2, h) = −1

+
∑
ι=±1

(
− ξ

2
− �1,1

(
ιkF↓,

(kF↑ − kF↓)

2

))2

for h ∈ [hc1, h1/2], (C7)

E+−
1 (π/2, h) = ε1

(
(kF↑ − kF↓)

2

)
∈ [0, J]

at � = 2 and � = 2.17,

ζ+−
1 (π/2, h) = −1

+
∑
ι=±1

(
− ξ

2
+ �1,1

(
ιkF↓,− (kF↑ − kF↓)

2

))2

for h ∈ [h1/2, hc2], (C8)

Ezz
1 (π, h) = ε1(kF↑) ∈ [0, 2J] at � = 2,

ζ zz
1 (π, h) = −1

+
∑
ι=±1

(
− ι

2ξ1 1
+ ξ1 1

2
+ �1,1(ιkF↓, kF↑)

)2

for h ∈ [hc1, hc2], (C9)

E+−
2 (0, h) = ε2(0) ∈ [0.389J, 4J] at � = 2

∈ [0.518J, 4.170J] at � = 2.17,

ζ+−
2 (0, h) = −1 + 1

2

(
1

2ξ
− ξ 0

1 2

)2

for h ∈ [hc1, hc2], (C10)

E+−
2 (π/2, h) = ε2(0) − ε1

(
(kF↑ − kF↓)

2

)
∈ [2.265J, 3.190J] at � = 2,

ζ+−
2 (π/2, h) = −1

+
∑
ι=±1

(
ι
ξ 0

1 2

2
+ ξ

2
− �1,1

(
ιkF↓,− (kF↑ − kF↓)

2

))2

for h ∈ [hc1, h1/2], (C11)

E+−
2 (π, h) = ε2(kF↑ − kF↓) ∈ [0.389J, 4.5J] at � = 2

∈ [0.518J, 4.631J] for � = 2.17,

ζ+−
2 (π ) = −1

+
∑
ι=±1

(
− ι

2ξ
+ ξ + �1,2(ιkF↓, kF↑ − kF↓)

)2

for h ∈ [hc1, hc2], (C12)

and

E+−
3 (π/2, h) = ε3(0) − ε1

(
(kF↑ − kF↓)

2

)
∈ [2.654J, 5.891J] at � = 2

∈ [2.912J, 6.165J] at � = 2.17,

ζ+−
3 (π/2, h) = −1

+
∑
ι=±1

(
− ι

2ξ
+ ι

ξ 0
1 3

2
+ ξ

2
− �1,1

(
ιkF↓,

(kF↑ − kF↓)

2

))2

for h ∈ [hc1, h1/2]. (C13)

Finally, the line shape at and near the momentum k = π/2
sharp peak Rzz

π/2 called RPAP(zz)
π/2 in Fig. 5(a) of Ref. [17] is for

small values of the energy deviation (ω − Ezz
1 (π/2, h)) � 0

of the form

Szz(π/2, ω) ∝
(

ω − Ezz
1 (π/2, h)

)−1/2

where

Ezz
1 (π/2, h) = (ε1(q + π/2) − ε1(q))δv1(q+π/2),v1(q)

∈ [1.632 J, 1.876 J]

for h ∈ [hc1, h�]. (C14)

Here the limiting energies 1.632 J and 1.876 J refer to mag-
netic fields h� and h = hc1, respectively, at anisotropy � = 2,
the field h� is given below, Ezz

1 (π/2, h) is the 1-continuum
upper-threshold energy of Szz(k, ω) at k = π/2, and v1(q) is
the 1-band group velocity, v1(q) = ∂ε1(q)/∂q.

The line shape at and in the vicinity of the sharp peak
Rzz

π/2 is controlled by a field-independent classical exponent
−1/2. Indeed, the origin of this sharp peak is a density of
states singularity of a spectrum associated with the creation of
one 1-hole and one 1-pair with the same group velocity in
the intervals q ∈ [0, kF↓] and q + π/2 ∈ [π/2, kF↓ + π/2],
respectively. Here q continuously increases upon increasing
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m from q = 0 for m → 0 and h → hc1, reaching q = kF↓ at a
maximum spin density that for anisotropy � = 2 reads m� =
0.627 and a magnetic field h� = 2.76 in units of J/(gμB).

For J = 3.55 meV it corresponds to h� = 27.30 T. Indeed, the
sharp peak Rzz

π/2 exists only for fields h ∈ [hc1, h�] for which
the relation v1(q) = v1(q + π/2) is satisfied.
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[29] J. M. P. Carmelo, T. Čadež, and P. D. Sacramento, Bethe strings
in the dynamical structure factor of the spin-1/2 Heisenberg
XXX chain, Nucl. Phys. B 960, 115175 (2020).

043058-21

https://doi.org/10.1021/cm050760e
https://doi.org/10.1103/PhysRevB.73.212406
https://doi.org/10.1103/PhysRevLett.99.087602
https://doi.org/10.1103/PhysRevB.76.224411
https://doi.org/10.1103/PhysRevLett.100.057202
https://doi.org/10.1143/JPSJ.77.074717
https://doi.org/10.1103/PhysRevB.87.054408
https://doi.org/10.7566/JPSJ.82.033706
https://doi.org/10.1016/j.phpro.2015.12.101
https://doi.org/10.1103/PhysRevB.92.060408
https://doi.org/10.1103/PhysRevLett.114.017201
https://doi.org/10.1103/PhysRevB.92.134416
https://doi.org/10.1038/nature25466
https://doi.org/10.1088/1367-2630/ab2b7a
https://doi.org/10.1103/PhysRevLett.123.067202
https://doi.org/10.1103/PhysRevB.101.220406
https://doi.org/10.1038/s41567-020-0835-7
https://doi.org/10.1007/s00723-020-01296-w
https://doi.org/10.1103/PhysRevB.105.174428
https://doi.org/10.1103/PhysRevLett.26.1301
https://doi.org/10.1103/PhysRevB.100.184406
https://doi.org/10.1016/j.nuclphysb.2021.115610
https://doi.org/10.1103/PhysRevB.94.144409
https://doi.org/10.1103/PhysRevB.92.165133
https://doi.org/10.1016/j.nuclphysb.2016.10.021
https://doi.org/10.1016/0550-3213(90)90122-T
https://doi.org/10.1016/j.nuclphysb.2020.115175


J. M. P. CARMELO et al. PHYSICAL REVIEW RESEARCH 5, 043058 (2023)

[30] J. M. P. Carmelo, K. Penc, and D. Bozi, Finite-energy spectral-
weight distributions of a 1D correlated metal, Nucl. Phys. B
725, 421 (2005); 737, 351(E) (2006).

[31] K. Penc, K. Hallberg, F. Mila, and H. Shiba, Spectral functions
of the one-dimensional Hubbard model in the U → ∞ limit:
How to use the factorized wave function, Phys. Rev. B 55,
15475 (1997).

[32] A. Imambekov and L. I. Glazman, Universal theory of nonlinear
Luttinger liquids, Science 323, 228 (2009).

[33] A. Imambekov, T. L. Schmidt, and L. I. Glazman, One-
dimensional quantum liquids: Beyond the Luttinger liquid
paradigm, Rev. Mod. Phys. 84, 1253 (2012).

[34] J. M. P. Carmelo and P. D. Sacramento, Pseudoparticle approach
to 1D integrable quantum models, Phys. Rep. 749, 1 (2018).

[35] J. M. P. Carmelo, A. H. Castro Neto, and D. K. Campbell,
Perturbation theory of low-dimensional quantum liquids. II.
Operator description of Virasoro algebras in integrable systems,
Phys. Rev. B 50, 3683 (1994).

[36] S. Sorella and A. Parola, Anomalous diffusion properties of
wave packets on quasiperiodic chains, Phys. Rev. Lett. 76, 4604
(1996).

[37] S. Sorella and A. Parola, Theory of hole propagation in one-
dimensional insulators and superconductors, Phys. Rev. B 57,
6444 (1998).

[38] H. V. Kruis, I. P. McCulloch, Z. Nussinov, and J. Zaanen,
Geometry and the hidden order of Luttinger liquids:? The
universality of squeezed space, Phys. Rev. B 70, 075109
(2004).

[39] J. S. Caux, J. Mossel, and I. P. Castillo, The two-spinon
transverse structure factor of the gapped Heisenberg antiferro-
magnetic chain, J. Stat. Mech. (2008) P08006.

[40] M. Karbach, D. Biegel, and G. Müller, Quasiparticles governing
the zero-temperature dynamics of the one-dimensional spin-1/2
Heisenberg antiferromagnet in a magnetic field, Phys. Rev. B
66, 054405 (2002).

[41] P. D. Sacramento, Thermodynamics of the attractive Hubbard
chain, J. Phys.: Condens. Matter 7, 143 (1995).

[42] T. Hikihara and A. Furusaki, Correlation amplitudes for the
spin- 1

2 XXZ chain in a magnetic field, Phys. Rev. B 69, 064427
(2004).

[43] P. N. Jepsen, J. Amato-Grill, I. Dimitrova, W. W. Ho, E.
Demler, and W. Ketterle, Spin transport in a tunable Heisen-
berg model realized with ultracold atoms, Nature 588, 403
(2020).

[44] B. S. Shastry and B. Sutherland, Twisted boundary conditions
and effective mass in Heisenberg-Ising and Hubbard rings,
Phys. Rev. Lett. 65, 243 (1990).

[45] X. Zotos, Finite temperature drude weight of the one-
dimensional spin-1/2 Heisenberg model, Phys. Rev. Lett. 82,
1764 (1999).

[46] J. Herbrych, P. Prelovšek, and X. Zotos, Finite-temperature
Drude weight within the anisotropic Heisenberg chain, Phys.
Rev. B 84, 155125 (2011).

Correction: A grant number in the Acknowledgments
contained an error and has been fixed.

043058-22

https://doi.org/10.1016/j.nuclphysb.2005.07.002
https://doi.org/10.1016/j.nuclphysb.2006.01.001
https://doi.org/10.1103/PhysRevB.55.15475
https://doi.org/10.1126/science.1165403
https://doi.org/10.1103/RevModPhys.84.1253
https://doi.org/10.1016/j.physrep.2018.06.004
https://doi.org/10.1103/PhysRevB.50.3683
https://doi.org/10.1103/PhysRevLett.76.4604
https://doi.org/10.1103/PhysRevB.57.6444
https://doi.org/10.1103/PhysRevB.70.075109
https://doi.org/10.1088/1742-5468/2008/08/P08006
https://doi.org/10.1103/PhysRevB.66.054405
https://doi.org/10.1088/0953-8984/7/1/013
https://doi.org/10.1103/PhysRevB.69.064427
https://doi.org/10.1038/s41586-020-3033-y
https://doi.org/10.1103/PhysRevLett.65.243
https://doi.org/10.1103/PhysRevLett.82.1764
https://doi.org/10.1103/PhysRevB.84.155125

