
PHYSICAL REVIEW RESEARCH 5, 043057 (2023)

Continuous-variable nonclassicality certification under coarse-grained measurement
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Coarse graining is a common imperfection of realistic quantum measurement, obstructing the direct ob-
servation of quantum features. Under highly coarse-grained measurement, we experimentally certify the
continuous-variable nonclassicality of both Gaussian and non-Gaussian states. Remarkably, we find that this
coarse-grained measurement outperforms the conventional fine-grained measurement for nonclassicality cer-
tification: it detects nonclassicality beyond the reach of the variance criterion, and furthermore, it exhibits
stronger statistical significance than the high-order moments method. Our work demonstrates the usefulness of
coarse-grained measurement by providing a reliable and efficient way of nonclassicality certification for quantum
technologies.
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I. INTRODUCTION

A continuous-variable (CV) quantum state of light is a
versatile quantum resource for quantum information tech-
nologies: quantum states encoded in the continuous field
quadratures are used for quantum computing [1–6], quan-
tum communication [7,8], and quantum metrology [9,10].
In particular, even a single-mode CV quantum state—where
entanglement is absent by construction—can show quan-
tum enhancement, e.g., in quantum parameter estimation
[10,11] and quantum key distribution [12]. Furthermore, a
single-mode CV quantum state (e.g., a squeezed state and a
Gottesman-Kitaev-Preskill state [13]) is a basic building block
to construct a large-scale entangled system [1,2,14–16]. To
exploit such quantum resources in practice, it is essential to
certify the nonclassicality of experimentally generated states.

A nonclassical state is defined as a state which can-
not be expressed as a statistical mixture of coherent states
[16]. Nonclassicality can in principle be certified by per-
forming quantum state tomography, but it is a demanding
process requiring informationally complete measurements
and maximum-likelihood reconstruction [17–19]. Alterna-
tively, measuring the variance of a single quadrature alone can
detect nonclassicality [20]; however, its application is gener-
ally limited to Gaussian states. For the case of non-Gaussian
states, there are methods of measuring high-order moments
[21,22] or a characteristic function [23,24], but these require
substantial data collection to achieve sufficient statistical sig-
nificance. Even worse, under coarse-grained measurement, all
of these methods are subject to false-positive certification of
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nonclassicality, and thus careful considerations must be made
[25–27].

Coarse graining commonly occurs in realistic quantum
measurement [28], where nearby measurement outcomes are
grouped together as a single bin, thereby producing the same
result. It originates from a finite resolution in measurement,
for example, when using image pixels [26] and quadrature
[29] and photon-number [30] detection. Coarse graining, like
decoherence processes, makes it hard to observe quantum
features by inducing a quantum-to-classical transition [30].
In dealing with realistic situations, it is therefore necessary
to establish reliable nonclassicality criteria compatible with
coarse-grained measurement.

In this work, we demonstrate reliable certification of CV
nonclassicality, even under considerable coarse graining in
measurement. In the experiment, we show that the non-
classicality of squeezed vacuum states is directly certified
under coarse-grained quadrature measurement, which is ob-
tained only at a single quadrature (namely, the x̂ quadrature),
i.e., no complete information is required. Interestingly, our
method based on coarse-grained measurement can detect
the nonclassicality of a non-Gaussian state of a phase-
diffused squeezed vacuum, where the conventional variance
measurement—even without coarse graining—fails to detect
[20]. Furthermore, the simplicity of our method, requir-
ing only multiplication and division of experimental data,
considerably reduces the sampling error for nonclassicality
certification. Consequently, the coarse-graining method rather
outperforms the conventional moments method (which re-
quires matrix decompositions [21,22]) in terms of statistical
significance for nonclassicality certification; we will show
that this superiority becomes more pronounced with higher
squeezing and phase diffusion.

II. NONCLASSICALITY TEST

Let us start by explaining our nonclassicality test for CV
quantum states. We consider a single-quadrature probability

2643-1564/2023/5(4)/043057(8) 043057-1 Published by the American Physical Society

https://orcid.org/0009-0009-7176-7739
https://orcid.org/0000-0001-7660-6541
https://orcid.org/0000-0002-3870-5714
https://orcid.org/0000-0001-8566-4794
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.5.043057&domain=pdf&date_stamp=2023-10-18
https://doi.org/10.1103/PhysRevResearch.5.043057
https://creativecommons.org/licenses/by/4.0/


ROH, YOON, PARK, AND RA PHYSICAL REVIEW RESEARCH 5, 043057 (2023)

distribution p(x) of a quantum state, i.e., a marginal distribu-
tion of a Wigner function. We construct a nonclassicality test
by noticing that the probability distribution of any classical
state cannot exhibit a narrower structure than that of a coher-
ent state; this is because a classical state should be expressed
by a statistical sum of coherent states. Consequently, a non-
classicality test can be formulated by comparing the widths of
probability distributions by a given state and a coherent state:

R(s) = p(s)p(−s)

p(0)2
es2

, (1)

where R < 1 certifies nonclassicality [31]. We choose three
points of x ∈ (−s, 0, s), where s > 0, for the test, which is
favorable for a probability distribution having a peak at the
origin, but the method can be generalized to detect nonclassi-
cality of generic quantum states [31]. In our convention, the
bosonic commutation relation of quadrature operators x̂ and p̂
is given by [x̂, p̂] = 2i. The nonclassicality test in Eq. (1) can
be adapted for coarse-grained measurement [31]:

R = CdC−d

(C0)2
eσ 2d2

. (2)

Cm represents the count of measurement outcomes in a bin
index of an integer m, which has a range of x = [(m −
1/2)σ, (m + 1/2)σ ] with a bin size σ . Similar to Eq. (1),
three indices of m ∈ (−d, 0, d ) are chosen, where d is a
positive integer. R < 1 certifies the nonclassicality of a given
state, which is applicable for both Gaussian states and non-
Gaussian states, and the value of R provides a lower bound
on the nonclassical depth [31]. Note that R can be estimated
from simple multiplication and division of obtained counts Cm

together with a predetermined value eσ 2d2
; the estimation error

of R is thus attributed to the statistics of Cm only. We call this
nonclassicality test, Eq. (2), a three-bin test.

III. EXPERIMENT

We first experimentally demonstrate the three-bin test
on squeezed vacuum states with various phase diffusions.
Figure 1(a) describes the experimental setup. A mode-locked
Ti:sapphire laser produces a 75-fs pulse train with a repeti-
tion rate of 80 MHz and a central wavelength of 800 nm.
In the second harmonic generation (SHG), a pulse laser of
400 nm wavelength is generated, which is used for the pump
of the synchronously pumped optical parametric oscillator
(SPOPO). SPOPO has a free spectral range of 80 MHz to
match the repetition rate of the Ti:sapphire laser, its finesse
is 27.4, and it contains a 2-mm-thick BiBO crystal for type-I
spontaneous parametric down-conversion. SPOPO generates
squeezed light as operating below its threshold [3,32].

To measure the generated squeezed light, we employ ho-
modyne detection (HD) shown in Fig. 1(a). A local oscillator
(LO) beam, determining the mode of homodyne detection, is
engineered by a pulse shaper for spectral mode matching with
SPOPO [3,32]. The visibility and the clearance of the homo-
dyne detection are 95% and 15 dB, respectively. We measure
two sideband frequencies simultaneously (1 MHz and 2 MHz
with a sampling rate of 100 kHz for each): the former is for
obtaining a quadrature outcome x, and the latter is for phase
information θ . By varying the phase θ with a piezoelectric

FIG. 1. (a) Experimental setup. Ti:sapphire laser produces
femtosecond pulses, which are used for SHG and LO. HD mea-
sures squeezed light generated from a SPOPO. (b) Histogram of x̂
quadrature outcomes by a squeezed state; the variance is −2.3 ±
0.1 dB. (c) Histogram of x̂ quadrature outcomes by a phase-diffused
squeezed state; the variance is 0.23 ± 0.07 dB, being larger than the
vacuum variance. The data number is 104 for both (b) and (c). The
red line is the vacuum distribution as a reference.

transducer, we obtain a pair of data (θi, xi ) for each measure-
ment i. For choosing x̂ quadrature measurement, we select
data within a small range of phase θi ∈ (−0.087, 0.087) rad.

Figure 1(b) shows the obtained outcomes for x̂ quadrature.
Compared with the vacuum state, the squeezed state shows
a narrower distribution, resulting in −2.3 ± 0.1 dB variance.
We further characterize the amount of phase diffusion present
in the generated state. For this purpose, we use the variance
and the kurtosis of x̂ quadrature measurement and the variance
of p̂ quadrature measurement (see Appendix A for details).
The estimated phase diffusion is �0 = 0.15 ± 0.02 rad, which
originates from interferometer instability and the phase esti-
mation noise. To increase the phase diffusion further, we add
a random noise in a normal distribution ε ∼ N (0,�2

e ) to the
estimated phase θi:

(θi, xi ) → (θi + ε, xi ), (3)

which increases the phase diffusion to � =
√

�2
0 + �2

e . After
adding the phase noise, we select data in the same way as
before for x̂ quadrature measurement. We have confirmed that
the resulting phase diffusion agrees well with the prediction
(see Appendix A.). Figure 1(c) shows the obtained quadrature
outcomes, resulting in a variance of 0.23 ± 0.07 dB (i.e., no
squeezing) and a phase diffusion of 0.37 ± 0.01 rad. Note that
this phase-diffused state is still nonclassical while the variance
criterion (〈δx̂2〉 < 1) fails to detect its nonclassicality.

Now we consider coarse-grained quadrature measurement.
As the first example, we make binning on the data for the
squeezed state in Fig. 1(b). The result is shown in Fig. 2(a),
where the bin size σ is 1. The three-bin test with d = 1 detects
the nonclassicality of the state under coarse-grained measure-
ment, showing R = 0.60 ± 0.04 < 1. Next, we investigate
the phase-diffused squeezed state in Fig. 1(c), where neither
variance nor Wigner function negativity methods can detect its
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FIG. 2. Nonclassicality certification with coarse-grained quadrature measurement. Quadrature outcomes (total number: 104) are coarse
grained with a bin size σ of one: (a) the squeezed state in Fig. 1(b); (b) and (c) the phase-diffused state in Fig. 1(c). For the nonclassicality test
using Eq. (2), the three hatched bins are selected [d = 1 for (a) and (b), and d = 3 for (c)]. (d)–(f) Effect of the bin size (i.e., the coarse-graining
level) on nonclassicality certification for (a)–(c), respectively. Blue dots are experimental data with error bars of one standard deviation. To
obtain the statistics, we use the bootstrap method by sampling 104 data from the total 4 × 104 experimental data. Red lines are theoretical
curves, where the shaded areas represent statistical errors by considering a finite data number (104). Black horizontal lines are the thresholds
for nonclassicality certification (nonclassical if R < 1).

nonclassicality. Figure 2(b) shows the result of coarse graining
with σ = 1. By conducting the three-bin test, we again find a
clear evidence of nonclassicality, R = 0.81 ± 0.04 < 1. The
three-bin test successfully detects the nonclassicality of both
the squeezed state and the phase-diffused state.

We further investigate the effects of the bin size and the bin
distance on the nonclassicality certification. For the squeezed
state, we find that the three-bin test works for a wide range of
bin sizes [Fig. 2(d)], where σ = 1.4 is close to the optimum,
showing R = 0.51 ± 0.03 < 1. The increase of R for a large
σ is due to a substantial coarse-graining effect, and for a
small σ , the standard deviation of R increases due to the
limited number of counts collected in a single bin. For the
phase-diffused squeezed state, we also find a similar behavior,
as shown in Fig. 2(e). To investigate the bin distance effect, we
perform the three-bin test by increasing the distance to d = 3
for the phase-diffused squeezed state, as shown in Fig. 2(c). In
this case, R = 4.53 ± 0.74 > 1 for σ = 1, but we can again
certify nonclassicality by decreasing σ [Fig. 2(f)], where even
a larger deviation from the classical limit (R = 1) is found
compared with Fig. 2(e): R = 0.62 ± 0.05 < 1 at σ = 0.5.
The three-bin test can detect nonclassicality with a wide range
of σ without elaborate optimization.

IV. PERFORMANCE COMPARISON

Going beyond the demonstration of the three-bin test,
we further highlight the advantages of using the coarse-
graining method over the conventional moments method
without coarse graining [21,22]. We consider a realistic non-
classicality certification scenario where only a finite number
of samples by measurement are available. In the conventional

moment method, an n × n correlation matrix is constructed
by up to nth order moments (for detailed explanations, re-
fer to Appendix B). If its smallest eigenvalue is negative
[λ(n) < 0], then the given state is nonclassical; in principle,
this method can detect nonclassicality for any quantum state
if a sufficiently large n with an infinite number of data is avail-
able [21]. In practice, however, because the number of data
is finite, the standard deviation [δλ(n)] increases rapidly as
n increases, which makes it difficult to attain sufficient
statistical significance for nonclassicality certification. To
quantitatively compare the statistical significances of the
three-bin test (bin) and the moment method (moment), we
introduce a violation degree V , which is defined as the ratio
between the distance from the classical limit and its standard
deviation:

Vbin = 1 − R̄
δR

Vmoment (n) = −λ̄(n)

δλ(n)
. (4)

The upper bar and δ denote the mean value and the standard
deviation, respectively. The classical limits of 1 and 0 have
been used for R and λ(n), respectively. A positive (negative)
V shows detection (no detection) of nonclassicality, and the
larger V indicates the stronger statistical significance of non-
classicality certification.

Figure 3 compares the violation degrees of the two
methods, Vbin and Vmoment, tested for initial squeezing of
(a) −1.6 ± 0.1 dB, (b) −2.3 ± 0.1 dB, and (c) −5.1 ± 0.1 dB.
The moment method by n = 2 is equivalent to the variance
criterion: Vmoment (2) > 0 leads to 〈δx̂2〉 < 1. One can find in
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FIG. 3. Performance comparison between the three-bin test (bin)
and the moment method (moment). In (a), the initial state has (x̂, p̂)
quadrature variances of (−1.6 ± 0.1, 7.0 ± 0.1) dB with � = 0.18 ±
0.02 rad, and in (b), the corresponding conditions are (−2.3 ± 0.1,
7.0 ± 0.1) dB with � = 0.15 ± 0.02 rad. In (c), the initial state has
(x̂, p̂) quadrature variances of (−5.1 ± 0.1, 10.6 ± 0.1) dB with � =
0.06 ± 0.06 rad [33]. The violation degree V quantifies the statistical
significance of nonclassicality certification, as defined in Eq. (4).
The horizontal dashed lines represent V = 1, where the standard
deviation is as large as the mean value to detect nonclassicality.
When V is negative (i.e., a failure of nonclassicality certification),
the corresponding plot is omitted for clarity. Note that V is plotted
on a logarithmic scale. The three-bin test uses d = 3, and σ has
been optimized to achieve the maximum V . The insets plot the EP of
the states under investigation. Error bars, representing one standard
deviation, are obtained from five repeated experiments.

FIG. 4. Performance comparison between the three-bin test (red)
and the variance test (gray) as increasing the x̂-quadrature squeezing.
Each point represents the violation degree (V) by 1000 quadrature
outcomes, which are generated by numerical simulations. We use
the experimental conditions in Ref. [36] (phase diffusion: 1.7 mrad,
optical loss: 2.5%) by considering squeezing up to 15 dB. V is
estimated by averaging 50 repeated simulations, where the error bar
represents one standard deviation of the estimation. Note that V is
plotted on a logarithmic scale. The parameters used for the three-bin
test are d = 3 and σ =

√
〈δx̂2〉. Lines serve as a visual guide.

Fig. 3 that, for a large phase diffusion, the moment method
at n = 2 cannot detect nonclassicality [Vmoment (2) < 0, thus
omitted in the figure], which agrees with the previous discus-
sion for Fig. 1(c). Higher-order moments (n � 4) can detect
the nonclassicality of such non-Gaussian states; however, for a
larger n, due to the increased standard deviation δλ(n), Vmoment

generally decreases as shown in Fig. 3. On the other hand,
the three-bin test reliably detects nonclassicality in the entire
range of phase diffusions, outperforming the moment method.
The three-bin test generally becomes more powerful than the
moment method for a larger phase diffusion.

We examine the operational significance of the phase-
diffused squeezed states (naturally arising by optical propa-
gation) as quantum resources. We place three insets in Fig. 3
to display the dynamics of the squeezed vacuum’s entangle-
ment potential [16] under phase diffusion, where we provide
the detailed method to calculate entanglement potential in
Appendix C. The entanglement potential of a quantum state
quantifies the amount of quantum entanglement producible by
injecting the quantum state through a passive beam splitter.
Notably, such quantum entanglement is essential in multi-
partite quantum information tasks [34,35]. The insets exhibit
that the entanglement potential remains positive under strong
phase diffusions, which reveals the complex and robust nature
of CV quantum resources beyond quantum squeezing.

Furthermore, the superiority of the three-bin test becomes
even more pronounced with increasing squeezing. Figure 4
compares the violation degrees by the two methods, as
obtained through numerical simulations. As the squeezing
increases, the three-bin test outperforms the moment method
even more significantly, showing the practicality of our
method in the state-of-the-art experiment as well [36]. Note
that for higher squeezing, coarse graining becomes a more
critical issue because, with a finite number of bits available for
analog-to-digital conversion, it becomes more challenging to
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detect a broad range of signals required for quantum technolo-
gies [37–39] without losing the fine resolution for capturing
the narrow structure of squeezing.

V. CONCLUSIONS

In conclusion, we have experimentally certified CV non-
classicality of both Gaussian and non-Gaussian states under
coarse-grained measurement. Remarkably, we have found
that—in the realistic case of a finite sample number—our
coarse-grained measurement can outperform the conven-
tional moments method based on fine-grained measurement
[21,22], revealing the usefulness of coarse-grained measure-
ment for a practical application to nonclassicality certification.
This striking result is attributed to the facts that (i) for
coarse-grained measurements, a large number of measure-
ment outcomes are accumulated in the same bin, increasing
the signal-to-noise ratio for probability estimation, and (ii)
the three-bin test employed consists only of simple arithmetic,
leaving little room for error propagation.

Our method employs coarse-grained data from single-
quadrature measurement, which directly captures a phase-
space structure narrower than the vacuum fluctuation, thereby
showing no false detection of nonclassicality under coarse
graining. We have tested the phase-diffused squeezed vacuum
to compare the performances of the coarse-graining method
and the conventional moments method. In the experiment, the
coarse-graining method detected nonclassical states beyond
the reach of the variance criterion, and more importantly,
it outperformed the moments methods in the statistical sig-
nificance with a finite number of samples. This advantage
becomes more distinct for increasing squeezing and phase
diffusion. It is remarkable because the coarse-graining method
does not require fine-grained measurements and complex data
processing. We have also addressed the operational relevance
of the witnessed nonclassicality by examining the entangle-
ment potential. Such nonclassicality can also be converted to
quantum squeezing [40,41].

Our results strongly suggest that systematic and rig-
orous approaches to coarse-graining models may provide
fundamental and practical tools in quantum information tech-
nologies [1–10,10–12]. We expect that our contributions will
facilitate future studies to uncover the rich structure of CV
quantum resources. For instance, it may be interesting to test
quantum non-Gaussianity [42,43] with coarse-grained data,
e.g., three bins, by using energy information [44,45] or more
quadratures [46].
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APPENDIX A: MEASURING THE PHASE DIFFUSION
FROM HOMODYNE DATA

We explain how we jointly determine the initial squeezing
parameter r, optical loss l , and phase diffusion � in the exper-

iment. The initial quantum state is a pure x-squeezed vacuum
with variances of 〈δx̂2

0〉 = e−2r and 〈δ p̂2
0〉 = e2r , where r > 0.

An optical loss is modeled as a beam-splitting interaction
between a quantum state and a vacuum state with a reflectance
of l . The phase diffusion is described as an incoherent mixing
of phase rotation to a quantum state ρ̂:

ρ̂ �→
∫ ∞

−∞
dθ

e−θ2/2�2

√
2π�

ein̂θ ρ̂e−in̂θ , (A1)

where � determines the amount of phase diffusion. Let
us investigate the variance of squeezing and antisqueezing
quadrature, i.e., 〈δx̂2〉 and 〈δ p̂2〉, for an x-squeezed vacuum
under the presence of optical loss and phase noise. We obtain

〈δx̂2〉 =
∫ ∞

−∞
dθ Var(r, θ, l )

e−θ2/2�2

√
2π�

= l + (1 − l )e−�2
(e−2r cosh �2 + e2r sinh �2), (A2)

and

〈δ p̂2〉 =
∫ ∞

−∞
dθ Var(r, θ + π

2
, l )

e−θ2/2�2

√
2π�

= l + (1 − l )e−�2
(e2r cosh �2 + e−2r sinh �2), (A3)

where δô = ô − 〈ô〉 denotes the deviation operator for ô,
and Var(r, θ, l ) = l + (1 − l )(e−2r cos2 θ + e2r sin2 θ ) is the
variance of a rotated quadrature x̂ cos θ + p̂ sin θ for the
x-squeezed vacuum under the presence of optical loss only.
Similarly, we derive the kurtosis K of the squeezing quadra-
ture as

K ≡ 〈(δx̂)4〉
〈(δx̂)2〉2

= 3

〈(δx̂)2〉2

∫ ∞

−∞
dθ [Var(r, θ, l )]2 e−θ2/2�2

√
2π�

= 3 + 6(1 − l )2e−4�2
sinh2(2�2) sinh2(2r)

〈(δx̂)2〉2
, (A4)

where we have used that kurtosis of a normal distribution is
always three [47]. In the experiment, we obtain the variances
〈(δx̂)2〉 and 〈(δ p̂)2〉, and the kurtosis K using the measured
homodyne outcomes. We can then numerically calculate the
squeezing parameter r, optical loss l , and phase diffusion
amplitude � using Eqs. (A2)–(A4).

In the experiment, we collected 40 000 x̂ (squeezing)
quadrature and p̂ (antisqueezing) quadrature data of each
phase-diffused squeezed vacuum and generated 10 sets of
10 000 data using the bootstrap method. Following the pro-
cedure described in the previous paragraph, we obtained the
initial squeezing r, the optical loss l , and the phase diffusion
�. Figure 5 displays the estimated parameters as introducing
an additional phase noise �e. The estimated phase diffusion
agrees well with the theoretical prediction � =

√
�2

0 + �2
e ,

which can be derived from the fact that the variance of the
sum of independent random variables is simply the sum of the
variance of the random variables. The initial squeezing and
the loss also behave as expected, exhibiting no changes due to
the added noise.
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FIG. 5. Estimated parameters of the (a) phase diffusion �, (b) initial squeezing r, and (c) total optical loss l . �e is the standard deviation
of an added Gaussian phase noise. Red points are estimated parameters from quadrature data of the phase-diffused squeezed vacuum, and blue
lines are expected theoretical values. Error bars are obtained by the bootstrap method.

APPENDIX B: NORMALLY ORDERED MOMENT
METHOD FOR NONCLASSICALITY CERTIFICATION

The normally ordered moment method [21] employs an
n × n matrix of normally order moments M(n) as

M(n) =

⎡
⎢⎢⎢⎣

1 〈: x̂ :〉 · · · 〈: x̂n−1 :〉
〈: x̂ :〉 〈: x̂2 :〉 · · · 〈: x̂n :〉

...
...

. . .
...

〈: x̂n−1 :〉 〈: x̂n :〉 · · · 〈: x̂2n−2 :〉

⎤
⎥⎥⎥⎦, (B1)

where 〈: x̂ j :〉 represents the normally ordered moment of the
jth order. For any classical state, the matrix M(n) has no
negative eigenvalue with all n ∈ {2, 3, 4, . . . }. Therefore, if
there exists at least one negative eigenvalue of the matrix
M(n) for some n, a given state is certified to be nonclassical.
We note that the normally ordered moment 〈: x̂ j :〉 can be
rewritten as [48]

〈: x̂ j :〉 = 1

2 j/2
〈Hj (x̂/

√
2)〉, (B2)

where Hj (x) is the Hermite polynomial of the jth degree.
It is straightforward to observe that the negative eigenvalue
of M(2) detects the existence of squeezing. Furthermore, the
eigenvalues of M(n) with n � 3 generally involve higher-
order moments. This is why M(n) with n � 3 can detect
nonclassical states without squeezing. To use the moment
method for nonclassicality certification, the following sam-
pling expression is used:

〈: x̂ j :〉 � 1

2 j/2N

N∑
i=1

Hj (xi/
√

2), (B3)

where xi is the ith quadrature measurement, and N is the total
number of data.

APPENDIX C: ENTANGLEMENT POTENTIAL
OF PHASE-DIFFUSED SQUEEZED VACUUM

To determine whether the phase-diffused squeezed vac-
uum can produce quantum entanglement through a beam
splitter, we calculate the entanglement potential (EP) [16]
of the phase-diffused squeezed vacuum states that are cer-

tified in the experiment. We first reconstruct the density
operator of the phase-diffused squeezed vacuum using the
maximum-likelihood estimation method [49], which is based
on quadrature measurement by rotating the quadrature angle.
The reconstructed density operator is expressed as

σ̂ =
Nc∑

n=0

Nc∑
m=0

σnm|n〉〈m|, (C1)

where |n〉 is the n-photon Fock state, and Nc is the cutoff
dimension. Here we choose Nc = 10 because the populations
in the Fock basis are concentrated in low photon-number Fock
states for the case of weekly squeezed vacuum. Then, we
calculate the EP of the phase-diffused squeezed vacuum by
using the following expression:

EP(σ̂ ) = log2||ρ̂TA
σ̂ ||, (C2)

where ρ̂σ̂ = ÛBS(σ̂ ⊗ |0〉〈0|)Û †
BS represents a two-mode

quantum state generated by coherently mixing σ̂ and vacuum
|0〉〈0| through a 50:50 beam splitter ÛBS:

ρ̂σ̂ =
Nc∑

n=0

Nc∑
m=0

n∑
j=0

m∑
k=0

× σnm

√
1

2n+m

(
n

j

)(
m

k

)
| j〉〈k| ⊗ |n − j〉〈m − k|, (C3)

and the superscript TA denotes the partial transpose of the
density operator, which yields

ρ̂
TA
σ̂ =

Nc∑
n=0

Nc∑
m=0

n∑
j=0

m∑
k=0

σnm

√
1

2n+m

(
n

j

)(
m

k

)
| j〉〈k| ⊗ |m − k〉〈n − j|. (C4)

Here ||ô|| ≡ tr
√

ô†ô is the trace norm of the Hermitian oper-
ator ô which equals with the absolute sum of the eigenvalues
for ô. Therefore, we can compute EP in Eq. (C2) by solving
the eigenvalue problem for the partially transposed density
operator in Eq. (C4).
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