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Benchmarking noisy intermediate scale quantum error mitigation strategies for ground state
preparation of the HCl molecule
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Due to numerous limitations including restrictive qubit topologies, short coherence times, and prohibitively
high noise floors, few quantum chemistry experiments performed on existing noisy intermediate-scale quantum
hardware have achieved the high bar of chemical precision, namely energy errors to within 1.6 mHa of full
configuration interaction. To have any hope of doing so, we must layer contemporary resource reduction
techniques with best-in-class error mitigation methods; in particular, we combine the techniques of qubit tapering
and the contextual subspace variational quantum eigensolver with several error mitigation strategies comprised
of measurement-error mitigation, symmetry verification, zero-noise extrapolation, and dual-state purification.
We benchmark these strategies across a suite of eight 27-qubit IBM Falcon series quantum processors, taking
preparation of the HCl molecule’s ground state as our testbed.
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I. INTRODUCTION

We find ourselves in the era of noisy intermediate-scale
quantum (NISQ) computation, which is characterized by var-
ious obstacles including restrictive qubit topologies, short
coherence times, and imperfect quantum gates; these factors
compound to limit what is achievable using existing or near-
term quantum devices. The development of quantum error
mitigation (QEM) techniques has therefore been a necessary
pursuit, aiming to extract usable data from the raw output of
NISQ machines.

A plethora of techniques have been proposed that exploit
various properties of noise in NISQ devices. Some evaluate
collections of Clifford circuits (which are classically efficient
to simulate) either to mitigate against measurement errors
[1,2] or for learning-based approaches that aim to charac-
terize the noise model [3–5]. Others average over the effect
of noise by recompiling circuits at random [6–8] or make
predictions informed by the character of the noise and its be-
havior under amplification [6–12]. There are also techniques
that use problem-specific properties (e.g., known symme-
tries) to identify and discard invalid outcomes [13–15] and
purification-based approaches that promote some pure com-
ponent of the noisy states prepared in hardware [16–20]. We
refer the reader to the works of Endo et al. [21] and Cai et al.
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[22] for a comprehensive review of the QEM literature, and to
Resch and Karpuzcu [23] for an exposition of noise sources
in quantum computation.

While QEM has permitted some degree of success in ob-
taining usable results from NISQ computers, a number of
works have cautioned that QEM may be restricted by some
fundamentals limits [24–26]. With this in mind, it is not clear
whether “quantum advantage” will be feasible using QEM
alone, and we may still require partially error-corrected ma-
chines for this to be realized in practice.

In this work, we place an emphasis on scalable quantum
error mitigation techniques for the NISQ era. As such, we
benchmark the following:

(i) Measurement-error mitigation (MEM)—IV B,
(ii) non-Z2 symmetry verification (SV)—IV C,
(iii) zero-noise extrapolation (ZNE)—IV D,
(iv) dual-state purification (DSP)—IV E,
(v) tomography purification (TP) applied to DSP,

including every possible combination given by the compati-
bility matrix in Fig. 1. For a fixed shot budget, we intend to
identify which combined strategy is most effective in mitigat-
ing errors, executed across a suite of IBM quantum hardware.

The problem we take as a testbed for this QEM benchmark
is preparation of the HCl molecule ground state, with the
ultimate goal of measuring the corresponding energy to chem-
ical precision (errors within 1.6 mHa of full configuration
interaction). Of the numerous quantum chemistry experiments
performed on NISQ hardware to date [10,27–48], only a select
few have achieved this threshold; of those that have, most
consist of hydrogen chains of varying size.
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FIG. 1. Compatibility matrix of the error mitigation techniques
investigated in this work. Note that tomography purification is com-
patible with each of these techniques in principle, however it is not
in general scalable due to the exponential number of bases one must
measure to reconstruct the density matrix via full state tomography.
We claim compatibility with dual-state purification since we need
only apply it to a single ancilla qubit.

II. THE HARDWARE

The IBM Quantum hardware is equipped with the universal
gate set {CNOT, Rz, X,

√
X } and, at the time of writing, eight

27-qubit Falcon series quantum processors were available to
us. From the point of view of gate errors and coherence, these
devices are the most reliable available through IBM Quantum
at present, with the greatest quantum volumes (QV) [23,49];
in Table I we provide a snapshot of the hardware specification
at the point of execution of our Qiskit Runtime programs.

One way we may assess the quality of these devices is to
evaluate quantum state fidelities for increasing numbers of
qubits. Namely, we shall prepare the N-qubit Greenberger-

FIG. 2. The N-qubit GHZ circuit, consisting of one Hadamard
and N − 1 CNOT gates.

Horne-Zeilinger (GHZ) state

|ψN 〉 = (|0〉⊗N + |1〉⊗N )/
√

2 (1)

via the circuit given in Fig. 2 and determine the fidelity

f (N ) = ∣∣〈ψ true
N

∣∣ψnoisy
N

〉∣∣2

= 1
2 (

√
p0 + √

p1)2, (2)

where ψ
noisy
N is the noisy state prepared on the hardware, and

p0, p1 are the probabilities with which we obtain the all 0 or
1 state, respectively.

In Fig. 3 we observe a decay in fidelity as more qubits
are included in the GHZ state preparation procedure, with
a sharp drop to near-zero fidelity at N = 22. This is due
to the longest connected path of qubits being of length 21,
given the chip topology of Fig. 4; beyond this point, we

TABLE I. Breakdown of quantum hardware specification restricted to the chosen qubit cluster at the point of executing the Qiskit Runtime
programs. We provide the Quantum Volume (QV), chosen 5-qubit cluster, T1/T2 times and gate duration/error for entangling (CNOT), local
(Rz, X,

√
X ), and readout operations.

Coherence Gate Specification

QV Chosen 5q Cluster Type Time [μS] Type Time [nS] Error ×103

ibmq_montreal 128 {0, 1, 2, 3, 4} T1: 140.92 ± 16.77 Entangling: 471.11 ± 78.69 7.85 ± 1.06
T2: 82.16 ± 39.10 Local: 35.56 ± 0.00 0.22 ± 0.03

Readout: 5201.78 ± 0.00 14.08 ± 2.52
ibmq_kolkata 128 {16, 19, 20, 22, 25} T1: 150.92 ± 16.80 Entangling: 348.44 ± 177.77 5.14 ± 0.65

T2: 135.59 ± 66.36 Local: 35.56 ± 0.00 0.17 ± 0.04
Readout: 675.56 ± 0.00 10.68 ± 1.99

ibmq_mumbai 128 {0, 1, 2, 3, 4} T1: 129.80 ± 28.12 Entangling: 556.44 ± 136.77 8.63 ± 2.20
T2: 104.20 ± 69.62 Local: 35.56 ± 0.00 0.31 ± 0.17

Readout: 3552.00 ± 0.00 18.24 ± 0.91
ibm_hanoi 64 {0, 1, 2, 4, 7} T1: 135.29 ± 54.61 Entangling: 270.67 ± 59.21 6.99 ± 2.65

T2: 174.89 ± 83.31 Local: 32.00 ± 0.00 0.21 ± 0.10
Readout: 817.78 ± 0.00 8.94 ± 1.59

ibm_cairo 64 {8, 11, 13, 14, 16} T1: 95.59 ± 37.85 Entangling: 462.22 ± 296.50 9.17 ± 4.30
T2: 92.76 ± 69.45 Local: 24.89 ± 0.00 0.22 ± 0.06

Readout: 732.44 ± 0.00 20.86 ± 11.74
ibm_auckland 64 {8, 11, 13, 14, 16} T1: 162.99 ± 73.58 Entangling: 376.89 ± 28.61 6.28 ± 1.22

T2: 123.67 ± 72.80 Local: 35.56 ± 0.00 0.23 ± 0.03
Readout: 757.33 ± 0.00 8.30 ± 1.55

ibmq_toronto 32 {5, 8, 9, 11, 14} T1: 113.96 ± 6.53 Entangling: 382.22 ± 61.35 7.96 ± 0.83
T2: 171.38 ± 19.39 Local: 35.56 ± 0.00 0.28 ± 0.06

Readout: 5962.67 ± 0.00 12.04 ± 4.30
ibm_geneva 32 {5, 8, 9, 11, 14} T1: 311.27 ± 101.19 Entangling: 586.67 ± 110.22 3.97 ± 0.31

T2: 300.56 ± 127.31 Local: 38.40 ± 5.69 0.20 ± 0.17
Readout: 1600.00 ± 0.00 30.26 ± 13.08
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FIG. 3. Decay in quantum state fidelity against the number of
qubits for GHZ preparation; dotted lines indicate the measurement-
error mitigated result. We could not utilize more than 15-qubits on
ibm_geneva due to a faulty qubit. The gray bars indicate the average
number of CNOT gates required to prepare the relevant N-qubit GHZ
state, with differences arising between chips due to the transpiler.

incur expensive SWAP operations that rapidly consume the
remaining fidelity, indicated by the dramatic jump in the num-
ber of CNOT gates from 22-qubit onwards. We also include

FIG. 4. The IBM Falcon series 27-qubit chip “heavy-hex” topol-
ogy. For our quantum simulations, we identified optimal qubit
clusters by assigning scores based on gate and readout errors. For
DSP we require 5-qubit clusters of the form given in Fig. 11 to
facilitate every readout configuration; the specific clusters used are
detailed in Table I.

the effect of measurement-error mitigation on the fidelity,
and note that we are able to recover approximately 10–20 %
fidelity in most cases.

III. QUBIT REDUCTION TECHNIQUES

Taken in the minimal STO-3G basis, the full HCl problem
consists of 20 qubits, and therefore direct treatment is not yet
feasible on current quantum computers. For the hardware to
accommodate our problem, we layered the qubit reduction
techniques of tapering [50,51] (Sec. III A) and contextual sub-
space [52–54] (Sec. III B) to yield a dramatically condensed
3-qubit Hamiltonian

H =
∑

i

hiPi, (3)

where we provide the explicit coefficients hi ∈ R and Pauli
terms Pi = q(i)

0 ⊗ q(i)
1 ⊗ q(i)

2 in Table II. The exact ground state
energy of this Hamiltonian lies within 0.837 mHa of the full
configuration interaction (FCI) energy (−455.157 Ha, calcu-
lated using PySCF [55]); this is nearly half what is generally
considered chemical precision (1.6 mHa), although we stress
that, due to the minimal basis set used here, one should not
expect agreement with experimentally obtained energy values.
Subtracting the relatively large identity term leaves a target
energy of −2.066 Ha; with respect to chemical precision, this
represents a challenging 0.077% error ratio that we aim to
capture via QEM.

Due to incompatibility with some of the error mitigation
techniques investigated here, we do not implement any mea-
surement reduction strategies such as (qubit-wise) commuting
decompositions or unitary partitioning [56,57]. Instead, each
Hamiltonian term is treated independently so there is zero co-
variance between expectation value estimates, and the overall
variance is therefore obtained as

var(H ) =
∑

i

h2
i var(Pi ); (4)

the statistical analysis is conducted with a bootstrapping of the
raw quantum measurement data.

A. Qubit tapering

Tapering allows one to map Hamiltonian Z2 symmetries
onto distinct qubits and consequently project over them, thus
reducing the effective dimension of the problem. This works
by identifying an independent set of Pauli operators S ⊂ PN

such that [S, T ] = 0 ∀ S ∈ S, T ∈ T , which we refer to as
symmetry generators and can be identified efficiently using
the Symmer Python package [58]. Assuming the elements of
S commute among themselves (if not, select the largest com-
muting subset within), one may perform a Clifford rotation
mapping each symmetry to a distinct qubit position and con-
sequently project onto the corresponding stabilizer subspace;
under this procedure, it is possible to remove |S| qubits from
the Hamiltonian while remaining isospectral.

Since this is a fermionic system, we are guaranteed a re-
duction of at least two qubits arising from the preservation
of spin-up/-down parities; under the Jordan-Wigner mapping
[59] these manifest as Sup/down = Z⊗Iup/down , where the sets
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TABLE II. The 3-qubit contextual subspace HCl Hamiltonian, terms ordered by coefficient magnitude, we take as a testbed for the error
mitigation strategies investigated in this work.

Index q0 q1 q2 Coefficient Index q0 q1 q2 Coefficient

0 I I I −453.090742 17 Y Y X 0.035219
1 I Z Z 0.846721 18 I I X −0.015458
2 Z I Z 0.846721 19 I Z X 0.015458
3 I Z I 0.620754 20 Z I X 0.015458
4 Z I I 0.620754 21 Z Z X −0.015458
5 I I Z 0.393828 22 I X X −0.009644
6 Z Z I 0.258369 23 I Y Y −0.009644
7 Z Z Z 0.238049 24 Z X X 0.009644
8 X Z I −0.061959 25 Z Y Y 0.009644
9 Z X I 0.061959 26 X I X 0.009644
10 Z X Z −0.061959 27 X Z X −0.009644
11 X Z Z 0.061959 28 Y I Y 0.009644
12 Y Y I −0.055599 29 Y Z Y −0.009644
13 Y Y Z 0.055599 30 I X I 0.004504
14 X X X −0.035219 31 I X Z −0.004504
15 X Y Y −0.035219 32 X I I −0.004504
16 Y X Y −0.035219 33 X I Z 0.004504

Iup, Idown index qubit positions encoding up (α), down (β)
electron spin orbitals, respectively. These spin-parity opera-
tors are still Z2 symmetries (i.e., single-Pauli terms) under the
Bravyi-Kitaev mapping [60], however their closed form is less
convenient since individual qubits do not represent distinct
spin-orbitals. For our particular formulation of the 20-qubit
HCl system with even (odd) indices encoding spin-up (-down)
electrons, we have

Sup = ZIZIZIZIZIZIZIZIZIZI,

Sdown = IZIZIZIZIZIZIZIZIZIZ.
(5)

We also identified two additional Z2 symmetries

Sσh = IIIIIIIIZZIIIIIIZZII,

SC2 = IIIIIIZZZZIIIIZZZZII,
(6)

that arise from the Abelian subgroup C2v of the non-
Abelian point group C∞v (to which all heteronuclear diatomic
molecules belong) generated by reflections along the molec-
ular plane (σh symmetry) and rotations through an angle of
180◦ (C2 symmetry). In all, with the symmetry generating set
S = {Sσh , SC2 , Sup, Sdown}, qubit tapering permits a reduction
of 20 to 16 qubits while exactly preserving the energy spec-
trum.

B. Contextual subspace

Whereas tapering exploits physical symmetries of the
Hamiltonian to remove redundant qubits, it is possible to
achieve further reductions by imposing pseudosymmetries on
the system. This is the contextual subspace approach [52–54]
in which we partition the Hamiltonian into noncontextual
and contextual components; the former may be mapped onto
a classical optimization problem, whereas the latter yields
quantum corrections obtained via some eigenvalue-finding
algorithm (VQE, QPE etc.). The qubit reduction is effected by
enforcing noncontextual symmetries on the contextual Hamil-

tonian, thus ensuring any quantum corrections are consistent
with the noncontextual ground state configuration.

The choice of which noncontextual symmetries to enforce
is highly nontrivial. Here, we select stabilizers that preserve
commutativity with the most dominant coupled-cluster ampli-
tudes, thus maximizing variational flexibility in the contextual
subspace. Using this heuristic, we are able to project onto a
3-qubit contextual subspace that permits chemical precision.
In Table II we provide explicit details of the corresponding
Hamiltonian, whose ground state energy has absolute error
0.837 mHa with respect to the FCI energy.

This dramatic reduction in qubit resource is likely due to
CCSD being near exact (we obtained an error of 3.403 × 10−8

Ha with respect to FCI, five orders of magnitude below chemi-
cal precision), as there are just two unoccupied spin-orbitals in
the minimal STO-3G basis set and therefore excitations above
doubles are not possible.

IV. ERROR MITIGATION

In this section, we review the technical aspects of each
quantum error mitigation (QEM) technique investigated
through our benchmark, the results of which are discussed
later in Sec. V E.

A. Estimators

The language we shall use to describe our QEM techniques
is that of estimators. Suppose that we are interested in some
observable O (a Hermitian operator, i.e., O† = O) and have
access to a general quantum state ρ; we wish to estimate
the quantity Tr(ρO), but may only probe the state via some
finite sample of quantum measurements M = {mi}M

i=1, where
mi ∈ ZN

2 . The way in which we collect and subsequently
combine our sample to approximate the desired observable
property defines an estimator E : M → R; the goal of QEM
is to construct effective estimators that are capable of sup-
pressing errors and extracting some usable data from the
noise.
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For example, we may define a naive estimator for the
expectation value of a Pauli operator P ∈ PN . Given a pure
quantum state |ψ〉, we may sample from the quantum de-
vice in a compatible basis (i.e., one that commutes with P)
and obtain eigenstates |mi〉 such that P|mi〉 = mi|mi〉, where
mi = ±1 to estimate the expectation value 〈P〉ψ := 〈ψ |P|ψ〉.
The raw estimator is

EP
RAW(M) = 1

M

M∑
i=1

mi → 〈P〉ψ (M → ∞). (7)

Since any Hermitian operator may be decomposed as
O = ∑

P oPP with oP ∈ R, this allows us to extend our es-
timator to the full observable by linearity,

ERAW =
∑

P

oPEP
RAW, (8)

which shall form a baseline for our QEM benchmark.
We shall use the following metrics to assess the efficacy of

QEM techniques:

var(E) = E(E2) − E(E )2,

bias(E) = E(E − 〈O〉ψ )
(9)

and the related quantity

MSE(E) = E((E − 〈O〉ψ )2)

= var(E ) + bias(E )2,
(10)

or mean-squared error. Taking O = H and |ψ〉 the
ground state of H , our objective is to approximate
E(E ) ≈ 〈ψ |H |ψ〉 = 〈H〉ψ = EFCI. The goal of QEM is to
reduce bias as far as possible [ideally within the threshold
of chemical precision, i.e., |bias(EQEM)| < 1.6 mHa] while
aiming not to amplify variance severely.

Although it would be preferable to run multiple instances
of each quantum simulation to evaluate E(E ), this is not fea-
sible given the length of time taken to produce each energy
estimate. Instead, we rely on the statistical tool of bootstrap-
ping, introduced in further detail in Appendix, whereby we
generate resampled data from the empirical measurement out-
comes.

B. Measurement-error mitigation

Measurement-error mitigation (MEM) aims to characterize
the errors incurred during the readout phase of a quantum ex-
periment [1]; it treats the state preparation itself as a black box
and does not consider errors that occur prior to measurement.

A naive, nonscalable approach to MEM is to prepare-
and-measure each of the 2N basis states individually; given
some |bi〉 with bi ∈ ZN

2 we perform measurements to obtain a
noisy distribution of binary outcomes |μ(i)

noisy〉 = ∑
j pi, j |b j〉,

where pi, j = 〈bi|A|b j〉 denotes the probability of preparing the
state |bi〉 and measuring |b j〉. The doubly stochastic matrix
A = ∑

i, j pi, j |b j〉〈bi| is referred to as the assignment (or tran-
sition) matrix and lies at the core of this technique.

Now, suppose we wish to implement a circuit with
noiseless measurement output |μideal〉 = ∑

i mi|bi〉; since

A|bi〉 = |μ(i)
noisy〉, then by linearity we have

A|μideal〉 =
∑

i

mi

∣∣μ(i)
noisy

〉 =: |μnoisy〉. (11)

More realistically, what we will actually have access
to is |μnoisy〉, the output from some quantum experi-
ment. Therefore, by inverting the assignment matrix
we obtain a measurement-error mitigated distribution
|μideal〉 = A−1|μnoisy〉.

In its current form, it will not be possible to construct the
assignment matrix for large numbers of qubits. The “tensored”
approach of Nation et al. [2] is designed to assess the qubit-
wise measurement assignment error, namely evaluating the
probability pk that qubit k is erroneously flipped |0〉 � |1〉.
The single-qubit assignment matrix for this process is

A(k) =
[ |0〉 |1〉

〈0| 1 − pk pk

〈1| pk 1 − pk

]
(12)

and we subsequently reconstruct the full N-qubit assignment
error probability by taking products over the relevant single-
qubit transitions,

Ai, j ≈
N−1∏
k=0

A(k)
(bi )k ,(b j )k

. (13)

This expression makes some strong assumptions on the
character of the readout errors, in particular that they are
predominantly uncorrelated. On the IBM Quantum hardware,
Nation et al. found this to be a reasonable assumption (using
ibmq_kolkata), with little difference observed between this
tensored approach versus a complete measurement calibration
until inducing correlations by increasing the readout pulse
amplitudes from their optimized values [2].

The expression of A in terms of single-qubit readout errors
(13) requires just 2N quantum experiments to be carried out,
versus 2N in a complete measurement calibration. Further-
more, its form is particularly convenient as it is amenable
to matrix-free iterative linear algebra techniques [61]. The
Python package mthree developed through the work of Nation
et al. is available in Qiskit; we utilized this for our QEM
benchmark, and it is the only technique presented here that
we did not implement ourselves. In Fig. 5 we present the
measurement distribution pre- and post-MEM for a 21-qubit
GHZ preparation procedure on ibmq_kolkata, recalling from
Fig. 3 that we observed an increase from 29.3% to 47.5% in
GHZ state fidelity. The effect of T1 relaxation is also visible
in this plot, whereby the |0〉 state occurs with considerably
greater probability than |1〉 since the former is energetically
favorable.

C. Symmetry verification

An inexpensive method of error mitigation is to take known
symmetries of the Hamiltonian (usually those of the Z2 va-
riety, i.e., Pauli operators that commute termwise across the
Hamiltonian) and enforce stabilizer constraints on the mea-
sured binary strings resulting from a quantum experiment;
we shall refer to this as symmetry verification (SV) [13–15].
On the other hand, in Sec. III we described how those same
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FIG. 5. Comparing raw and MEM measurement distribu-
tions against the ideal output for 21-qubit GHZ preparation on
ibmq_kolkata (the greatest number of qubits possible without SWAP

operations) with 215 circuit shots. Only outcomes exceeding a fre-
quency of 10−2 are plotted here; this contributes 46.8% and 71.4%
of the raw and MEM distributions, respectively. T1 relaxation results
in a reduced frequency of |1〉 measurement outcomes compared with
|0〉 whereas they should be observed with equal probability 50%.

symmetries may instead be utilized for the purposes of qubit
reduction, which allowed us to dramatically reduce the dimen-
sion of our Hamiltonian. In doing so, we may no longer use
Z2 symmetries to postselect allowed measurement outcomes
as the reduced Hamiltonian has been abstracted from them.
However, there still exist symmetries of a more general nature
that need not commute with each term individually, but do so
with respect to the full Hamiltonian. Examples in the setting of
electronic structure are the (Jordan-Wigner encoded) particle
and spin quantum number operators

SN = 1

2

(
N × I⊗N −

N∑
i=1

Zi

)
, Sz = 1

4

N∑
i=1

(−1)iZi; (14)

note how the latter differs from the up/down spin-parity op-
erators of (5). These are not Z2 symmetries as they do not
commute with individual terms in the Hamiltonian and are
therefore nontrivial in the contextual subspace; the projection
procedure respects commutation and therefore we may use the
reduced operators

SN = 17 × III − IIZ − 1
2 (IZI + IZZ + ZII + ZIZ ),

Sz = 1
4 (IZI + IZZ − ZII − ZIZ )

(15)

for error mitigation in our HCl 3-qubit contextual subspace—
as an exercise, we suggest the reader confirms that these
operators do indeed commute with the Hamiltonian described
by the terms in Table II. An interesting feature of this re-
duced SN operator is the identity term that was not present
in the original formulation of the number operator in (14); the
coefficient indicates the number of particles that have been
effectively enforced in the contextual subspace, in this case
17 out of the 18 available electrons. In the qubit tapering
setting of Sec. III A we were able to enforce Z2 symmetry
perfectly, thus removing the corresponding degrees of free-

dom from the resulting Hamiltonian; in the non-Z2 setting
we have only treated the symmetry approximately, given that
the corresponding symmetry operator (15) is nontrivial. In
the instance that a non-Z2 symmetry operator is projected
onto the identity under the contextual subspace procedure, this
indicates that the symmetry is fixed in the resulting subspace
and therefore need not be accounted for in the construction
of an ansatz circuit. The rotations involved in the projection
procedure abstract the reduced system from the underlying
physical system, however this observation suggests there may
be some natural interpretation of the contextual subspace
method, which would be an interesting pursuit for further
research.

An important point is that we may only mitigate errors
of terms that commute with the number and spin operators,
which, in this case, means only the diagonal ones; this may
still yield significant improvements in error since these terms
have the greatest coefficient magnitude, and errors here will
be amplified proportionally.

Given an ensemble of measurements {b}, we discard any
binary strings b ∈ ZN

2 that do not respect the number and spin
symmetries; given that we know the number of particles n in
the system and the allowed spin values {s0, . . . , sM−1}, where
si = s − i for quantum number s (multiplicity M = 2s + 1),
we require that SN |b〉 = n|b〉 and Sz|b〉 = si|b〉 for some
i ∈ {0, . . . , M − 1}. Our HCl problem is in a singlet config-
uration, hence the only allowable spin value is s = 0 and thus
valid quantum measurements are those in the kernel of Sz.

This QEM technique requires no additional coherent
overhead and only minor postprocessing, yet we observe re-
spectable error suppression from enforcing number and spin
symmetries on the diagonal Hamiltonian terms, as seen in
Table IV. We intend to investigate the use of non-Abelian
point group symmetries (see Sec. III A) for the purposes of
error mitigation in future work, although it is not immediately
clear whether this will be possible.

D. Zero-noise extrapolation

The technique of zero-noise extrapolation (ZNE), also
referred to in the literature as Richardson extrapolation, op-
erates on the principle that one may methodically amplify
noise present in our quantum measurement output, obtaining
a collection of increasingly noisy energy estimates before
extrapolating the data and inferring the experimentally un-
touchable point of “zero noise” [6–12]. There are many
methods of amplifying noise in our quantum circuits: some
do so continuously by stretching gates temporally, requiring
pulse-level control over the hardware, whereas others em-
ploy discrete approaches that either insert identity blocks of
increasing complexity (e.g., unitary folding) or replace the
target gate with a product over its roots.

It is the latter method we employ here. Given a quantum
circuit U , some constituent native gate G, and a noise param-
eter λ ∈ N, we shall replace each instance of G in-circuit with
the equivalent operation

∏λ
i=1

λ
√

G to yield a noise-amplified
circuit Uλ. One may note that λ = 1 corresponds with the un-
modified circuit, whereas we intend to infer a value for λ = 0
by evaluating expectation values Eλ = 〈ψref |U †

λ PUλ|ψref〉 at
integer values λ ∈ {1, 2, 3, . . . } and extrapolating.
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FIG. 6. Noise amplification method used for zero-noise ex-
trapolation. Given a noise amplification factor λ ∈ N, each CNOT

is replaced by 2λ CNOTs, 3λ single-qubit Z-rotations, and two
Hadamard gates. (a) Each CNOT gate may be replaced in-circuit
with a product over its roots, namely λ

√
CNOT = H1CPhase( π

λ
)H1.

(b) Since the IBM hardware takes the CNOT as its native entangling
gate, the CPhase decomposition of (a) is transpiled back in terms of
CNOTs at the point of execution.

In particular, we shall take G = CNOT since this is the
dominant source of error by an order of magnitude, as seen
in Table I. To decompose CNOT into its roots, we define the
two-qubit gate

CPhase(θ ) = 1

2
[(1 + Z ) ⊗ I + (1 − Z ) ⊗ P(θ )]

=
[

I 0
0 P(θ )

]
, (16)

where P(θ ) := eiθ/2Rz(θ ) = [1 0
0 eiθ] and note that

CNOT = H1 × CPhase(π ) × H1. In other words, the
Hadamard gates applied on the target qubit diagonalize
the CNOT gate and thus

λ
√

CNOT = H1 × CPhase

(
π

λ

)
× H1. (17)

The CNOT root-product decomposition is given as a cir-
cuit in Fig. 6(a). When it comes down to implementation of
zero-noise extrapolation on a quantum computer, one must be
mindful of which gates are native to said device and should
avoid circuit optimization routines since these may result in
an unpredictable scaling of noise. For example, as stated in
Sec. II, the CNOT is in fact the native entangling gate on
IBM Quantum systems; therefore, CPhase operations will be
transpiled back in terms of CNOT and Rz gates at the point of
execution, the decomposition of which is given in Fig. 6(b).
Such considerations can wreak havoc on zero-noise extrapo-
lation if not controlled carefully.

For our specific implementation of ZNE, we shall as-
sume that the individual noise amplified estimates have been
obtained via an estimator Eλ so that Eλ = E(Eλ), which
might have previously had some other QEM strategy ap-
plied. We shall then evaluate estimates for λ ∈ {1, 2, 3, 4}
before performing weighted least-squares (WLS) regression

FIG. 7. Zero-noise extrapolation of our HCl problem, comparing
weighted and ordinary least squares in addition to possible boot-
strapped fits. Each of the noisy estimates has had measurement-error
mitigation and symmetry verification applied.

with weights wλ = 1/var(Eλ) to infer a “zero-noise” estimate
EZNE = E0. This penalizes highly varying points in the ex-
trapolation; in Fig. 7 we compare WLS against ordinary least
squares (OLS) and a bootstrapped collection of possible ZNE
curves. We note that such a regression approach allows us to
quantify the success of our extrapolation via the coefficient
of determination, or R2 value, expressed as a ratio of resid-
ual and total sum of squares [62]. WLS yields the smallest
bias in all but two cases: ibm_hanoi and ibm_geneva. In the
former we have a low-variance, low-bias point at λ = 1 that
is pinning the extrapolation while the noisier estimates vary
dramatically, whereas the latter exhibits a problematic low-
variance, negatively biased point at λ = 2 that is causing the
extrapolation to fail.
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E. Dual-state purification

Purification-based error mitigation techniques operate on
the basis that in quantum computation we are often interested
in preparing some pure state |ψ0〉 = U |0〉, corresponding with
a channel

ρ = U (|0〉〈0|) = U |0〉〈0|U † = |ψ0〉〈ψ0|, (18)

whereas in reality what is actually prepared on the noisy
quantum hardware is some mixed state

ρ =
2N −1∑
i=0

λiρi, (19)

where ρi = |ψi〉〈ψi| and we assume λi > λ j for i < j. The
central observation that purification-based methods exploit is

ρM/Tr(ρM ) → ρ0 (M → ∞), (20)

and the convergence is exponentially fast. This is precisely the
formulation of virtual distillation [16], in which one prepares
M copies of the mixed state ρ over disjoint quantum registers
and induces their product via application of a cyclic shift
operator. However, this permutation circuit is expensive and
not feasible for near-term applications; the error mitigation
technique we investigate here—dual state purification (DSP),
also referred to in the literature as echo verification [22]—
is closely related but may be implemented at significantly
reduced cost. While the technique was first presented in the
context of quantum phase estimation (QPE) [17], it was sub-
sequently extended to the NISQ era [18,20]. The idea behind
this method is that one prepares some quantum state, performs
an intermediary readout, and subsequently uncomputes the
circuit before postselecting on zero measurement outcomes;
this bears some resemblance to second-order virtual distilla-
tion (M = 2) but with the state

(ρρ + ρρ)/2Tr(ρρ ) (21)

as opposed to the form given in (20), with the dual state given
as ρ = V (|0〉〈0|) := U †|0〉〈0|U [20].

We now describe explicitly the steps one must follow to
implement DSP. The setting is that of a Pauli operator P ∈ PN

whose expectation value we wish to evaluate with respect
to an N-qubit state |ψ〉 = U |0〉. Denoting by I the set of
nonidentity qubit indices, we may identify a change-of-basis
operator B such that BPB† = ZI = ⊗i∈IZi defined as

Bi =
⎧⎨
⎩

I, Pi ∈ {I, Z},
H, Pi = X,

HS, Pi = Y.

(22)

Now, we note the effect of applying a CNOT gate controlled on
a qubit position i ∈ I to an ancilla register. With the expres-
sion

CNOT = 1
2

[
(I + Z ) ⊗ I + (I − Z ) ⊗ X

]
(23)

we observe

CNOTi,a(|ψ〉 ⊗ |0〉a) = 1

2
(|ψ〉 ⊗ |0〉a + Zi|ψ〉 ⊗ |0〉a

+ |ψ〉 ⊗ |1〉a − Zi|ψ〉 ⊗ |1〉a)

= 1√
2

(|ψ〉 ⊗ |+〉a + Zi|ψ〉 ⊗ |−〉a).

(24)

Finally, as demonstrated by Huo and Li [20], we may
uncompute the circuit U that prepares |ψ〉 and postse-
lect on measurement outcomes |0〉, occurring with prob-
ability p0, to drive the ancilla register into the state

1√
2p0

(|+〉a + 〈ψ |Zi|ψ〉|−〉a).
We now describe the full process of computing the expec-

tation value 〈P〉ψ . First of all, the circuit is initialized in the
state

|ψ0〉 = |0〉 ⊗ |0〉a (25)

before applying the unitary U and basis transformation B
supported on some qubit subset I:

|ψ1〉 =(BU ⊗ I )|ψ0〉
=BU |0〉 ⊗ |0〉. (26)

We now compute and store the parity of qubits I on the ancilla
register:

|ψ2〉 =
∏
i∈I

CNOTi,a|ψ1〉

= 1√
2

(BU |0〉 ⊗ |+〉a + ZIBU |0〉 ⊗ |−〉a). (27)

Inverting the change-of-basis and unitary circuit, we obtain

|ψ3〉 = (U †B† ⊗ I )|ψ2〉

= 1√
2

(|0〉 ⊗ |+〉a + U † B†ZIB︸ ︷︷ ︸
=P

U |0〉 ⊗ |−〉a)

= 1√
2

(|0〉 ⊗ |+〉a + U †PU |0〉 ⊗ |−〉a). (28)

Finally, we perform a projective measurement onto the 0
outcome, effected by the projection operator P0 = |0〉〈0| with
probability p0 = 〈ψ |P0|ψ〉:

|ψ4〉 = 1√
p0

(P0 ⊗ I )|ψ3〉

= 1√
2p0

(|0〉 ⊗ |+〉a + |0〉 〈0|U †PU |0〉︸ ︷︷ ︸
=〈P〉ψ

⊗|−〉a)

= |0〉 ⊗ 1√
2p0

(|+〉a + 〈P〉ψ |−〉a)︸ ︷︷ ︸
:=|φ〉a

; (29)

in practice, this projective measurement is realized by postse-
lecting on zero measurement outcomes.

In effect, we have induced a virtual calculation of the
desired expectation value on the ancilla qubit. The quantity
〈P〉ψ may be extracted by performing measurements of the
ancilla state |φ〉 in the X and Z bases, as we shall demonstrate
now.

Using the normalization condition for |φ〉, we infer that

p0 = 1 + 〈P〉2
ψ

2
, (30)

which we note is at least 1
2 , meaning we should in principle

retain at worst 50% of the samples taken from the quantum
hardware. Inspecting (29), sampling from the |φ〉 state in the
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X -basis yields |+〉 and |−〉 with probabilities pX
0 and pX

1 ,
respectively, from which we obtain the estimator

EX = pX
0 − pX

1 ≈ 1 − 〈P〉2
ψ

2p0
= 1 − 〈P〉2

ψ

1 + 〈P〉2
ψ

(31)

for the ancilla expectation value 〈X 〉φ .
We may also express |φ〉 in the Z-basis

|φ〉 = 1

2
√

p0
[(1 + 〈P〉ψ )|0〉a + (1 − 〈P〉ψ )|1〉a]; (32)

sampling from this state, we obtain |0〉 and |1〉 with proba-
bilities pZ

0 and pZ
1 , respectively. From this we may derive an

estimator

EZ = pZ
0 − pZ

1

≈ 1

4p0
[(1 + 〈P〉ψ )2 − (1 − 〈P〉ψ )2]

= 〈P〉ψ
p0

= 2〈P〉ψ
1 + 〈P〉2

ψ

(33)

for the ancilla expectation value 〈Z〉φ .
Finally, by combining (31) and (33) we may reconstruct an

error mitigated estimator for the desired quantity 〈P〉ψ :

EDSP = EZ

1 + EX
. (34)

One may actually reconstruct 〈P〉ψ using only the Z-basis
measurements by noting 〈X 〉2

φ + 〈Z〉2
φ ≡ 1 and therefore

〈P〉ψ = 〈Z〉φ
1 + √

1 − 〈Z〉φ
, (35)

which one may arrive at by forming a quadratic equation from
(33) and solving. Doing the same for the X -basis measure-
ments yields

〈P〉ψ = ±
√

1 − 〈X 〉φ
1 + 〈X 〉φ

, (36)

however it is not possible to determine the correct sign using
these measurements alone; supplementary Z-basis measure-
ments would be required to indicate the sign here.

One might also note that, expressing |φ〉 in the Y -basis

|φ〉 = 1

2
√

2p0
{[(1 + 〈P〉ψ ) − i(1 − 〈P〉ψ )]|+i〉a

+ [(1 + 〈P〉ψ ) + i(1 − 〈P〉ψ )]|−i〉a}, (37)

we must have 〈Y 〉φ = pY
0 − pY

1 = 0; this was also noted by
Huo and Li [20] and we might be able to exploit this fact for
additional error mitigation in future work.

In Fig. 8 we present the DSP circuit. The only errors that
are not suppressed through this process are those occurring
in the readout phase, since errors may propagate through to
the ancilla register and are not canceled during the subsequent
uncomputation. However, there is one additional trick we may
employ here; if the circuit is error-free, then the state of the

FIG. 8. Schematic of the dual-state purification protocol with
readout to a single ancilla qubit, where I indicates the nonidentity
qubit positions of the Hamiltonian term being measured. In reality,
one must construct the readout subcircuit with careful consideration
of the chip topology to avoid excessive SWAP usage; for the 3-qubit
HCl problem we report the optimal readout blocks in Fig. 12.

ancilla qubit is necessarily pure. In practice, the ancilla will
be described by a mixed state

ρ = (1 − ε)|ϕ0〉〈ϕ0| + ε|ϕ1〉〈ϕ1|, (38)

where ε is the infidelity, which we may characterize fully via
state tomography. Measuring the ancilla in the X,Y, Z bases,
we may reconstruct ρ = 1

2 (I + γX X + γY Y + γZZ ), where
γP = Tr(Pρ), and identifying the largest eigenvalue with cor-
responding eigenvector |ϕ0〉 we take this as an approximation
to the pure state |φ〉 obtained in the noiseless setting. Huo
and Li [20] found this additional state tomography procedure
to be essential in obtaining accurate results from dual-state
purification.

Furthermore, from (31) we note that 〈X 〉φ � 0, but in prac-
tice it is possible for a negative value to appear from quantum
experiments. In fact, the depolarizing noise can be sufficiently
high such that the corresponding eigenvalue of ρ dominates,
resulting in spurious expectation values that can violate this
non-negativity constraint maximally. This is a considerable
problem when one considers the form (34), since this can
result in division by zero, yielding a potentially infinite ex-
pectation value estimate for 〈P〉ψ . We combat this by always
choosing the eigenvalue with positive 〈X 〉φ , even in the case
when it does not hold the greatest weight. We observed this in
particular for terms necessitating expensive SWAP operations;
for our HCl circuit, this meant only terms of the form ZZI
under change-of-basis (see Sec. V B for details), since this re-
sults in a closed loop of three CNOT gates which is not directly
expressible on any IBM system (the heavy-hex topology of
Fig. 4 does not contain cycles of three connected qubits).
We also observed instability of the tomography purification
method when 〈Z〉φ ≈ 0 whereby the error can be increased
through this procedure. Therefore, we opted only to run this
additional step when the raw expectation value exceeded some
threshold near zero, taking the standard DSP result otherwise.
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A potential modification for future work would be to flip
the initial state of the system register |0〉 → |1〉 via a layer
of X gates and postselect on 1 measurement outcomes. While
this should theoretically be no different from initializing with
|0〉, the effect of T1 relaxation is for qubits to decay into the
energetically favorable |0〉 state (as was observed in Fig. 5),
resulting in the erroneous postselection of invalid measure-
ments. By flipping the initial state, we should expect to retain
fewer measurements in the postselected data, but the probabil-
ity of these corresponding with successful circuit runs should
be improved.

V. GROUND STATE PREPARATION

Before proceeding to the quantum error mitigation bench-
mark, there are a few additional considerations to resolve.
First, one must identify a suitable ansatz circuit that is suffi-
ciently expressible to realize the desired ground state. Second,
we discuss the mapping of our circuits onto physical qubits, in
particular for dual-state purification since one should be mind-
ful of the added qubit connectivity constraints arising from
parity computation stored on the ancilla qubit. Third, despite
not implementing any shot reduction methods in this work, we
still wish to distribute the shot budget in an informed manner,
preferably tailored to each device; this is the final point of
discussion before moving onto the results of our benchmark.

We stress that, while eigenvalue estimation is a fundamen-
tal component of the VQE algorithm, we are not running
the optimization itself on hardware, only the ground state
preparation for means of benchmarking the QEM techniques
presented in Sec. IV. There are additional considerations to
take into account when running full VQE on quantum hard-
ware. For example, the algorithm itself exhibits a level of
robustness against noise as the optimizer can effectively com-
bat hardware error due to the variational principle. The caveat
here is that, since it is not in general possible to measure
the full Hamiltonian simultaneously, the optimization may
become nonvariational due to state preparation discrepancies
when measuring different subsets of Pauli operators.

A. Ansatz construction

Initially, we tested the noncontextual projection ansatz [53]
derived from the 316-term CCSD operator. The projection
into the 3-qubit contextual subspace yields a 6-term excitation
pool from which we identify four operators via qubit-ADAPT-
VQE that permit chemical precision. Despite this dramatic
reduction in circuit depth from the full UCCSD ansatz, the
resulting noncontextual projection ansatz consists of 12 CNOT

gates which we found to be prohibitive in achieving chemical
precision.

To remedy this, we abandon chemical intuition in the name
of hardware efficiency. It is already known that an arbitrary
3-qubit quantum state may be prepared on quantum hardware
using at most four CNOT gates [63]. In fact, we found that
only two CNOT gates are sufficient in constructing a 3-qubit
ansatz circuit that is sufficiently expressible for our electronic
structure problem, presented in Fig. 9. In Fig. 10 we present
the outcome of a noiseless VQE simulation over this ansatz to
illustrate its expressibility.

FIG. 9. Hardware efficient HCl 3-qubit contextual subspace
ansatz; the Y -rotation gates are decomposed into native
gates as Ry = √

XRz

√
X . The optimal parametrization

obtained from the state vector simulation in Fig. 10 is
θ1 = −0.064 926 67, θ2 = 2.898 361 52, θ3 = 0.263 738 07, θ4 =
−0.067 090 62, θ5 = 0.010 068 33, θ6 = −0.265 850 46.

B. Ancilla readout mapping for DSP

The main bottleneck for dual-state purification is the an-
cilla readout step. Given the limited topology of the available
quantum systems (Fig. 4) and the structure of our ansatz
(Fig. 9), it is not possible to realize every 3-qubit Pauli Z mea-
surement basis (IIZ, IZI, IZZ, ZII, ZIZ, ZZI, ZZZ) without
the aid of SWAP operations since at least one basis will always
result in a closed loop of three CNOTs, which cannot be di-
rectly implemented on the hardware. We identified an optimal
readout mapping that ensures that just one measurement basis
requires a SWAP operation by selecting a cluster of five qubits
of the form in Fig. 11 and implementing the readout as per
Fig. 12.

C. Shot budget distribution

To ensure a fair comparison, we define a fixed shot
budget B up front and distribute according to the partic-
ular combined error mitigation strategy. The optimal shot
distribution is in proportion with vP := |hP|√var(P), where
var(P) = 1 − 〈P〉2

ψ [64]; however, the state-dependency
means this may only be evaluated in-circuit. Therefore, we
allocate 0.1%(b = 0.001) of the overall budget to determine
a rough estimate of the variance for each Hamiltonian term in
order to rebalance the shot distribution accordingly; after this

FIG. 10. Noiseless 3-qubit CS-VQE simulation of the HCl
molecule over the hardware efficient ansatz presented in Fig. 9. The
classical optimizer used is adaptive moment (Adam) estimation with
gradients calculated using the parameter shift rule; we see that the
ansatz is sufficiently expressible to achieve chemical precision.

043054-10



BENCHMARKING NOISY INTERMEDIATE SCALE QUANTUM … PHYSICAL REVIEW RESEARCH 5, 043054 (2023)

FIG. 11. The five-qubit cluster we require for dual-state purifi-
cation in order to facilitate readout in every possible measurement
basis. There are 18 such clusters on the 27-qubit Falcon chip (see
Fig. 4) and we selected the optimal one with respect to gate and
readout errors.

preliminary step, we are left with B′ = (1 − b)B remaining
shots. For example, defining V = ∑

P vP we allow the follow-
ing:

(i) ZNE: B′vP
�V circuit shots for each Pauli term P per noise

amplification factor, where � is the number of noisy estimates
desired for the energy extrapolation procedure.

(ii) DSP: B′vP
2V circuit shots for each Pauli term P, where the

factor of 1
2 comes from performing both X and Z measure-

ments over the ancilla qubit.
(iii) DSP + ZNE: B′vP

2�V circuit shots for each Pauli term P
per noise amplification factor.

Since the shot budget is fixed, layering multiple error miti-
gation techniques may result in increased variance since fewer
shots might be allocated to individual point estimates. It is the
goal of this work to practically evaluate this tradeoff between
absolute error and uncertainty in the energy estimate, which
has been noted in numerous studies [22,24].

FIG. 12. Ancilla readout mappings given qubit clusters of the
form in Fig. 11. Given the qubit topology of Fig. 4 and the form
of our ansatz in Fig. 9 (where qubits a, b, c are the same as above,
with d the ancilla qubit), we may not entangle qubits a and b since
it would result in a closed loop of three CNOT operations that is not
expressible on the available quantum systems. We avoid this situation
by introducing a single SWAP operation (represented in-circuit as
×—×) for Hamiltonian terms of the form ZZI as in (f).

D. Methods

To construct the molecular Hamiltonian for HCl (bond
length 1.341 Å), we first performed a restricted Hartree-Fock
calculation in PySCF [55] in the STO-3G basis. OpenFermion
was then used to build the second-quantized fermionic molec-
ular Hamiltonian [65] and was mapped onto Pauli operators
via the Jordan-Wigner transformation [59]. This was then
converted into the Symmer [58] operator representation to
leverage the included tapering and contextual subspace func-
tionality, which facilitated a reduction to 3-qubits while
incurring a ground state energy error of just 0.837 mHa in
the resulting contextual subspace Hamiltonian with respect to
full configuration interaction (FCI); Sec. III discusses this in
further detail.

We used Qiskit [66] for the construction of our hardware
efficient ansatz circuit, and the state preparation jobs required
for each quantum error mitigation (QEM) strategy were com-
posed as Qiskit Runtime programs. These were submitted to
the IBM Quantum service and allowed us to retrieve all the
necessary quantum circuit samples in the shortest amount of
time possible to mitigate against noise drift.

The mthree [2] package was utilized to perform
measurement-error mitigation (MEM, Sec. IV B) whereas we
wrote bespoke implementations for all the other QEM tech-
niques introduced in Sec. IV, namely symmetry verification
(SV, Sec. IV C), zero-noise extrapolation (ZNE, Sec. IV D),
and dual-state purification (DSP, Sec. IV E) with or without
tomography purification (TP). The linear regression function-
ality of statsmodels [67] was utilized for the purposes of
ZNE, and the relevant postprocessing required for each QEM
technique was parallelized with multiprocessing to permit a
greater number of resamples to be extracted in our bootstrap-
ping procedures (see Appendix for details).

We also provide all the Hamiltonian data, runtime program
scripts, quantum experiment data, and postprocessing func-
tions to aid the reader in reproducing the results of this paper,
accessible via GitHub [68].

E. Results

In Table IV we report the results of benchmarking our
suite of error mitigation strategies for the 3-qubit HCl problem
across every 27-qubit system currently available to us through
IBM Quantum with a shot budget of B = 106; the order in
which each QEM technique (MEM, SV, ZNE, DSP, TP) ap-
pears in the combined strategy identifier indicates the order
in which each method is being applied. Table III presents
the average error suppression in relation to the raw estimate,
calculated as (

1 −
∣∣∣∣bias(EQEM)

bias(ERAW)

∣∣∣∣
)

× 100%, (39)

and change in standard deviation σ across our suite of systems
excluding ibm_hanoi and ibm_geneva, due to these systems
performing suboptimally (resulting in a failure of ZNE in
Fig. 7). When bias(EQEM) is near zero, the error suppression
will approach 100%, whereas values close to 0% indicate little
(or no) improvement over the raw estimator; negative values
of error suppression correspond with instances whereby the
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TABLE III. Average error suppression and change in standard deviation under each error mitigation strategy evaluated across all 27-qubit
Falcon IBM Quantum devices (excluding ibm_hanoi and ibm_geneva, which did not perform well, as seen in the ZNE plots of Fig. 7 and
Table IV). Ordered by decreasing mean error suppression.

Error Suppression (%) Change in Std. Dev.

Mean Best Worst Mean Best Worst

MEM+SV+ZNE 94.327 99.392 88.101 3.680 1.078 7.207
DSP+TP 93.253 99.713 80.793 2.543 1.583 3.833
MEM+DSP+TP 92.661 98.601 75.508 2.113 0.789 3.472
MEM+ZNE 87.094 97.877 69.185 7.069 1.202 25.063
MEM+SV 82.678 96.643 67.108 0.638 0.519 0.758
SV+ZNE 79.799 94.938 52.882 4.270 0.385 8.594
MEM 76.505 96.704 65.358 0.669 0.517 0.762
SV 63.577 80.992 33.191 0.748 0.645 0.887
MEM+DSP+TP+ZNE 59.767 99.758 −98.987 6.738 3.104 8.853
DSP+TP+ZNE 34.012 95.721 −107.805 7.462 5.593 9.523
ZNE 33.384 52.230 18.303 6.699 0.642 24.689
MEM+DSP+ZNE −10.180 93.343 −238.874 6.779 3.715 8.601
MEM+DSP −18.002 75.430 −330.030 2.224 1.080 3.440
DSP+ZNE −68.019 1.854 −298.966 7.235 5.453 8.989
DSP −76.967 29.366 −393.687 2.620 1.896 3.726

QEM strategy has had a detrimental effect on the energy
estimate, a highly unfavorable situation.

The shot budget yields a raw standard deviation of
2 < σ < 3 mHa, quantified via a bootstrapping procedure
(discussed in Appendix). In Fig. 13 we plot the bootstrap
distributions for a selection of the best performing QEM
strategies to illustrate the tradeoff between estimator bias and
variance in practice, serving as a valuable comparison with
previous theoretical analyses [22].

We observed that application of the MEM and SV tech-
niques served to consistently lower both the estimator bias
and standard deviation, which can be attributed to these ap-
proaches rectifying readout errors. Used in combination, the
MEM + SV strategy permitted a respectable reduction in bias
while also suppressing deviations with very little classical
overhead.

Unlike MEM and SV, the ZNE and DSP techniques ne-
cessitate modification to the quantum circuits themselves: the
former, a decomposition of each CNOT gate into procedu-
rally more complex circuit blocks, and the latter requiring
a prepare-readout-invert structure with a supplementary an-
cilla qubit. This amounts to an increase in circuit depth for
both techniques that must be taken into consideration when
using them. For example, DSP doubles the circuit depth and
therefore one must ensure the primitive ansatz is executable
within half the coherence time of the device (minus the time
required for measurement). On the other hand, the increase
in circuit depth arising from ZNE limits the permitted noise
amplification factors, although it is not recommended to go to
large factors regardless. Both of these methods can be seen to
inflate the standard deviation.

By itself, DSP performs very poorly (indeed, the worst four
strategies were all DSP-based), but when used in combina-
tion with TP we are permitted dramatic reductions in bias
which exceed all other QEM strategies in the benchmark.
The dependence on tomography purification for the ancilla

qubit was also observed in Huo and Li [20] and is essential
to obtain good results from dual-state purification. We stress
that, although state tomography is not scalable in general, here
it is applied to a single qubit and hence does not contribute a
significant cost in the number of measurements required.

We found mixed success with ZNE-based strategies de-
pending on which other QEM techniques were deployed in
combination. Applied on top of MEM and SV, we observed a
significant improvement in error suppression, bar ibm_hanoi,
and ibm_geneva where extrapolation failed (Fig. 7), albeit
at a significant increase in standard deviation. On the other
hand, performing noise amplification on the ancilla qubit for
the purposes of DSP produced disappointing results. These
observations might be attributed to coherent errors causing
unpredictable noise amplification behavior; this could have
been improved by including probabilistic error cancellation
[6], converting coherent error into incoherent error that may
be extrapolated more confidently.

VI. CONCLUSION

In this work, we compared various quantum error-
mitigation strategies for estimating the ground state energy
of the HCl molecule on NISQ hardware. Indicated by the
benchmark results of Sec. V E, we identified three hybrid
strategies with the strongest performance:

(i) Dual-state purification with tomography purification
(DSP + TP). This yields compelling error suppression
(93.253% on average) although at an increase in standard
deviation (2.543 times the raw value on average); given a
generous shot budget and sufficient qubit connectivity, this
strategy should produce reliably accurate results. Implement-
ing dual-state purification requires heavy modification to the
ansatz resulting in doubled circuit depth, although the errors
incurred here are suppressed. Further layering measurement-
error mitigation produces a similar suppression in error,
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FIG. 13. Bootstrapped distributions for the best three QEM strategies identified through our benchmark. The mean energy of each
distribution corresponds with the estimator bias. Note the failure of ZNE on ibm_hanoi and ibm_geneva, which is explained in Sec. IV D
and illustrates the sensitivity of this technique to erroneous fluctuations in the noise amplification.
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although the increase in standard deviation is slightly less
(2.113 times the raw value on average).

(ii) Measurement-error mitigation with symmetry verifica-
tion (MEM + SV). This comes with very low overhead yet
respectable error suppression (82.678% on average) on top of
a reduction in standard deviation (0.638 times the raw value
on average). Furthermore, there is no required modification
to the ansatz circuit since both techniques operate solely on
the binary measurement output. We recommend this strategy
for restrictive shot budgets or where qubit topology does not
permit the readout block needed for dual-state purification.

(iii) Zero-noise extrapolation on top of measurement error
mitigation with symmetry verification (MEM + SV + ZNE).
This is sensitive to many factors, but used carefully it can yield
excellent results (94.327% average error suppression when
we exclude the cases where extrapolation failed in Fig. 7).
There are many approaches to implementing ZNE, even ex-
tending to the pulse-level. On superconducting devices this
might be preferable since it offers fine control over noise
amplification. ZNE produced the largest inflation in standard
deviation (3.680 times the raw value on average) and therefore
a significantly greater shot budget would be necessary, due to
error propagation in the extrapolation and since we evaluate
several noise factors per expectation value.

As indicated by Table III, each of these strategies achieved
an average error suppression exceeding 80% across the suite
of 27-qubit IBM Quantum chips. Given the level of noise
present on these devices, reflected in the raw energy esti-
mates, the high bar of chemical precision would necessitate

a suppression of 98.783%. This was obtained for three out
of eight instances of DSP + TP (on the highest QV=128
systems ibmq_montreal and ibmq_kolkata, plus the QV=64
system ibm_auckland, with further device specifications given
in Table I) and a single instance of MEM + SV + ZNE (on the
QV=128 system ibmq_mumbai), bearing in mind the stan-
dard deviation exceeds the chemically precise region, and an
increased shot budget would be necessary to counteract this.

From the empirical results presented in this work, it is
clear that we must rely heavily on methods of quantum error
mitigation if we are to obtain usable results from NISQ hard-
ware. Through our benchmark on the IBM Quantum 27-qubit
Falcon processors, we have demonstrated the most effective
combined strategies, which we intend to take forward in our
future simulation work.
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ibmq_montreal bias 294.7 16.7 0.8 6.9 19.0 30.2 14.9 85.9 59.2 61.1 143.2 240.7 65.6 72.4 301.9 208.1
σ 2.9 13.4 4.6 3.7 16.5 1.7 14.0 2.0 1.9 9.0 18.1 13.5 10.8 4.2 16.8 5.8

ibmq_kolkata bias 85.5 9.4 1.4 3.3 1.8 28.1 40.3 28.2 57.1 8.8 10.6 65.5 93.0 37.3 144.5 88.7
σ 2.0 2.2 7.7 6.9 7.4 1.5 1.9 1.5 1.8 17.5 18.2 4.7 17.2 6.9 18.0 7.4

ibmq_mumbai bias 235.4 1.4 37.2 3.3 36.0 23.8 18.6 42.9 44.7 0.6 54.5 118.1 146.7 165.1 332.4 349.8
σ 2.7 12.9 8.4 6.9 12.9 1.6 15.5 1.7 1.7 23.9 25.7 12.7 23.2 6.7 23.8 7.7

ibm_auckland bias 73.4 8.7 0.9 7.1 5.8 22.3 29.1 25.4 38.1 146.1 152.6 54.2 248.8 315.8 293.0 362.5
σ 2.2 2.4 6.5 5.5 2.6 1.5 0.8 1.5 1.7 15.7 15.8 1.4 16.4 6.0 16.5 6.6

ibm_cairo bias 208.9 4.1 4.8 4.7 64.4 7.0 26.5 6.9 64.0 19.5 8.9 99.8 255.2 200.4 205.4 242.8
σ 2.6 18.5 4.2 5.3 64.2 1.3 22.0 1.3 1.9 20.8 18.2 63.3 19.6 5.5 17.5 4.9

ibm_hanoi bias 98.5 96.4 44.1 31.1 157.9 15.5 64.5 20.8 30.8 12.0 26.6 110.6 59.6 90.2 84.7 171.9
σ 2.5 12.7 7.6 7.3 23.8 1.6 12.2 1.7 1.9 21.2 20.1 23.4 21.5 7.2 21.0 7.2

ibmq_toronto bias 125.9 3.6 24.2 30.8 18.8 21.4 11.0 28.6 37.9 2.3 125.6 87.7 8.4 55.0 123.6 162.4
σ 2.2 7.5 4.8 1.8 4.5 1.6 11.5 1.7 1.8 9.9 12.6 7.2 10.3 2.4 12.2 5.0

ibm_geneva bias 200.9 53.0 18.4 3.6 109.5 100.6 65.9 100.6 153.7 27.8 37.9 107.2 358.7 28.0 471.2 232.3
σ 2.7 81.4 4.7 7.8 148.4 1.9 24.3 1.9 2.3 14.6 12.3 60.4 15.2 7.8 16.1 5.5
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APPENDIX: BOOTSTRAPPING

To evaluate the uncertainty in our energy estimates, we rely
on the statistical technique of bootstrapping [69]. Ideally, one
would perform quantum experiments many times to probe the
“true” population, but from a practical standpoint this is not
feasible due to the length of time required for each energy
estimate (in our case ≈30 min for a shot budget of B = 106).
Instead, we perform the experiment just once and generate
resampled measurement data from the empirical distribution.
This technique is widespread in statistics and makes the sta-
tistical analysis very convenient, not least as we may assume
normality under the central limit theorem, which we verified
using the normaltest function in SciPy [70] that implements
the D’Agostino-Pearson test [71].

Suppose we perform an n-shot quantum experiment
and obtain a collection of binary measurement outcomes
M = {m1, . . . , mn}, where mi ∈ ZN

2 . Our various QEM strate-
gies combine these measurements in some way to yield
an energy estimate E(M ), but we would like to say some-
thing about the uncertainty in each estimator without having

FIG. 14. The true distribution of energy estimates obtained from
225 quantum experiments on ibmq_kolkata, each consisting of
10 000 circuit shots. Overlayed are the bootstrapped distributions
for individual measurement sets to understand the relation between
bootstrapping and the true population; the color gradient indicates
how far a given sample lies from the true (empirical) mean.

to perform further experiments. The bootstrapping approach
involves resampling from the empirical measurement distribu-
tion M, namely sampling elements m′

i ∈ M with replacement
to form a new set of n measurements M ′. We perform this
process as many times as possible given the available compute
resource, say R ∈ N repetitions, to approximate

var(E) ≈ 1

R2

R∑
r=1

R∑
s>r

(E(M ′
r ) − E(M ′

s))2; (A1)

this is how we obtained the variances in Table IV.
One might question whether bootstrapping is well-

motivated here. A priori, one has no reason to expect
acceptable agreement with the true population parameters,
hence we ran 225 instances of our quantum experiment ap-
plied just to the diagonal terms of the Hamiltonian (given
in Table II), necessitating only computational basis measure-
ments. We performed 10 000 circuit shots in each experiment,
for a combined total of 2.25 × 106 point samples before as-
sessing the quality of the bootstrapped distributions against
the overall sample. The 225 quantum experiments provide
a target standard deviation σ , indicated by the vertical line
in Fig. 15, and we compare with this the bootstrap standard
deviations obtained per experiment.

In Fig. 14 we plot the result of our bootstrapping test and
see reasonable agreement with the true energy distribution
obtained from the NISQ hardware; the standard deviations all
coincide with the experimentally obtained value to O(10−3)
(on the order of chemical precision), as indicated in Fig. 15,
and therefore we employ bootstrapping with confidence.

FIG. 15. Distribution of bootstrapped standard deviations σ vs
the experimentally obtained value on ibmq_kolkata. We observe
good agreement, with the bootstrapped values correct up to O(10−3).
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