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Engineering bound states in continuum via a nonlinearity-induced extra dimension
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Bound states in continuum (BICs) are states of a system possessing significantly large lifetimes with applica-
tions across various branches of science. In this work, we propose an expedient protocol to engineer BICs using
the Kerr nonlinearities of a system which otherwise has no BICs. The generation of BICs is a direct artifact
of the nonlinearity and the associated expansion in the dimensionality of the system. In particular, we consider
single- and two-mode anharmonic systems and provide a number of solutions apposite for the creation of BICs.
The nonlinearity-induced BICs can be controlled by external drive. In close vicinity to the BIC, the steady state
response of the system is immensely sensitive to perturbations in natural frequencies of the system, and we
illustrate its propitious sensing potential in the context of experimentally realizable setups for both optical and
magnetic nonlinearities.
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I. INTRODUCTION

The localization of electromagnetic waves has been a sub-
ject of intense research over the past few decades [1]. It is well
known that the solutions of the Schrödinger equation below
the continuum threshold possess discrete energies and are
square integrable in nature. In contrast, above the continuum
threshold, energy eigenvalues are continuous and the solutions
are unbounded. However, it has been shown that there exist
localized states within the continuum of energies, namely the
bound states in continuum. BICs were first proposed in 1929
by von Neumann and Wigner [2] in an electronic system and
Stillinger and Herrick later extended it to a two-electron wave
function [3]. However, the first experimental observation of
BICs came only in 1992 by Capasso et al., who demonstrated
an electronic bound state in a semiconductor superlattice [4].

The emergence of BICs in electromagnetic systems can
be explicated by investigating the effective non-Hermitian
Hamiltonian ensuing from the Maxwell’s equations, resulting
in complex resonance frequencies ω. BICs are, in essence,
nonradiating solutions of the wave equations, i.e., modes of
the system with Im(ω) approaching zero. In the last decade,
BICs have been realized in a multitude of settings involving,
for example, electronic [5–7], acoustic [8–10], and pho-
tonic [11] subsystems. In particular, owing to their excellent
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tunability, photonic systems have emerged as an excellent
candidate in recent years with applications including, but
not limited to, the design of high-Q resonators [12–14], las-
ing [15–22], sensing [23–32], filters [33,34], etc. In [24],
Romano et al. reported an optical sensor underpinned by BIC
for the fine grained estimation of perturbations in a dielectric
environment. Another recent work [25] reported the develop-
ment of nanophotonic sensor based on high-Q metasurface
elements for molecular detection with applications in biolog-
ical and environmental sensing. Some other recent intriguing
research topics include the enhanced sensing of spontaneous
emission [27], vortex generation [35,36], switches [37], effi-
cient higher harmonic generation [38,39], and many more.

In this paper, we propose Kerr nonlinearities as a resource
to engineer BICs in systems which do not possess BICs in the
absence of nonlinearities. Such nonlinearities can be observed
in a plentitude of physical systems ranging from optical cav-
ities [40] to magnetic systems [41], and have been a subject
of prime interest, with many exotic effects [42–45]. Here, we
present a variety of solutions for BICs relevant to single- and
two-mode bosonic systems having a Kerr type of anharmonic-
ity. The resulting BICs are strongly sensitive to perturbations
in the system parameters, in particular variations in character-
istic detunings which owe their origin to the existence of first-
and second-order poles in the response function. In addition,
we discuss a number of experimental platforms germane to
our analysis of the nonlinear systems. In particular, we specif-
ically illustrate the sensing capabilities of BICs in two-mode
anharmonic systems which are experimentally realizable. The
sensing at BIC does not require gain in the system, which is
different from sensing at exception points [46,47].

The paper is organized as follows. In Sec. II, we discuss
the well known schemes for the generation of BICs with-
out involving the use of Kerr nonlinearities. Subsequently,
in Sec. III, we provide a detailed analysis of the protocol
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to achieve BICs in a single-mode system with passive Kerr
nonlinearity and the accompanying sensitivity to perturbations
in the system. We extend the study into the domain of a
two-mode active nonlinear system in Sec. IV and establish
its equivalence with the single-mode results in the Appendix.
Finally, we conclude our results in Sec. V.

II. BIC IN A COUPLED TWO-MODE SYSTEM

We commence our analysis by revisiting the emergence of
BICs in a generic two-mode system without any nonlinear-
ities. To this end, we consider a system comprising modes
a and b coupled through a complex parameter J and driven
externally at frequency ωd . The dynamics of the system in the
rotating frame of the drive is given by

Ẋ = −iHX + Fin, (1)

where, X T = [a b], Fin describes the modality of external
driving and H is the effective non-Hermitian Hamiltonian
provided by

H =
(

�a − iκ J
J �b − iγ

)
. (2)

Here, �i = ωi − ωd where i ∈ {a, b}, ωa and ωb are the
characteristic resonance frequencies of the modes a and b,
and κ, γ denote their respective decay rates. Note that the
real and imaginary parts of J = g − i� represent the coher-
ent and dissipative form of coupling between the modes.
The eigenvalues of H are given by λ± = �a+�b

2 − iγ̄ ±√
( �a−�b

2 − iγ̃ )2 + (g − i�)2, where γ̄ = κ+γ

2 and γ̃ = κ−γ

2 .
One of the ways to bring to naught the imaginary part of the
eigenvalues is to employ engineered gain into the system, that
is to make κ = −γ . This in conjunction with the absence
of dissipative coupling, viz., � = 0 and �a = �b yield the
eigenvalues λ± = �a ±

√
(g2 − γ 2). Palpably, the system in

the parameter domain g � γ is earmarked by the observation
of real eigenspectra [48]. Note that the system under this pa-
rameter choice lends itself to a PT -symmetric description of
the effective Hamiltonian featuring an exceptional point (EP)
in the parameter space at g = γ . On the other hand, the region
g < γ affords eigenvalues which form a complex-conjugate
pair, wherein the amplitude of the modes grows exponentially
in time whereas the other one decays. In the context of PT -
symmetric systems, it is important to notice that EPs, which
have found applications in sensing [46,47], are functionally
analogous to BICs.

There exists another interesting parameter domain, con-
formable with anti-PT symmetry, i.e., {PT,H} = 0, that can
spawn a BIC, without involving external gain. Such a sys-
tem necessitates the absence of coherent coupling, that is
to say g = 0, κ = γ , and �a = −�b, begetting λ± = −iκ ±√

(�2
a − �2), which take purely imaginary form when |�a| �

�. In contrast, the |�a| > � phase leads to decaying solutions
with real parts of the eigenvalues lying on either side of the
external drive frequency. Observe that when �a = 0 and as
� approaches κ , the system entails a BIC, marked by the
existence of a vanishing eigenvalue, i.e., λ+ → 0, and thereby
eliciting a pole at origin in response to the external drive. The
anti-PT symmetric system does not warrant the use of gain;

FIG. 1. A third-order Kerr nonlinear medium in an optical cavity.

however, it stipulates the use of dissipative coupling, which
can be engineered by coupling the subsystems via a common
intermediary reservoir [45,49–51].

It makes for a relevant observation that, in general, the
effective Hamiltonian in Eq. (1) does not yield nonradiating
solutions of the Maxwell equations, especially when J = 0,
i.e., when the modes are decoupled. In the following section,
we provide a mechanism to engineer BIC in a nonlinear sys-
tem, which in the absence of nonlinearity has no BICs. An
example of a linear system with no BIC would be the Hamil-
tonian H in Eq. (2) with J real and no gain, i.e., κ, γ > 0.
In fact, the existence of BIC is an inalienable consequence
of anharmonicities present in the system and the concomitant
magnification of the dimensionality. The mechanism can be
extended to two-mode nonlinear systems, and we provide a
detailed analysis with explicit examples in Sec. IV.

III. BIC IN A SINGLE-MODE KERR NONLINEAR SYSTEM

We consider a medium with third-order Kerr nonlinearity
characterized by a nonlinear contribution to the polarization
P(3)(ω) = χ (3)|E (ω)|2E (ω) placed in a single-mode cavity
with mode variable a as depicted in Fig. 1. Here, E is the
cavity electric field and χ (3) the third-order nonlinear sus-
ceptibility. The cavity is driven externally from the left at
frequency ωd with a field strength proportional to E. The
passive nature of nonlinearity indicates that the nonlinear
processes are only affected by the frequency composition of
the field and not the medium, which only plays a catalytic
role [52]. The dynamics of the system in the rotating frame of
the drive is given by

ȧ = −(i� + γ )a − i2U |a|2a + E, (3)

where � = ωa − ωd , ωa denotes the cavity resonance fre-

quency, U = 3h̄ω2
aχ

(3)

4ε0nVeff
is a measure of Kerr nonlinearity of the

medium with refractive index n, Veff signifies the effective
volume of the cavity mode having a leakage rate γ , and

E =
√

2γ Pd

h̄ωd
represents the Rabi frequency of external driving.

In the long-time limit, the mode a decays into a steady state
described by the cubic equation

I = α

2

[
1 +

(
�̃ + α

2

)2
]
, (4)

where I = 2U |E|2
γ 3 , α = 4U

γ
|a0|2, �̃ = �/γ , and a0 is the

steady amplitude of the mode a. The output intensity is pro-
portional to α. The Eq. (4) can engender a bistable response
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FIG. 2. (a) The I-α curve, given by Eq. (4), for the single mode
Kerr nonlinear system when �̃ = −3. The turning points α± [Eq. (5)]
are as denoted in the figure. (b) The real and imaginary parts of the
eigenvalues ofH as a function of �̃ for α = 2.367. The orange point
indicates BIC. (c) The �̃-α curve given by Eq. (4) for input I = 5
(black line) and the turning points α± [Eq. (5)] plotted against �̃

(orange line and red line, respectively). (d) α′ = dα

d�̃
and 2.63/|I −

I−|1/2 are plotted against I to make a comparison when �̃ = −3.

under the condition U� < 0 and �2 > 3γ 2 as illustrated by
Fig. 2(a). Notably, there exist two turning points character-
ized by the coordinates (I±, α±) of the I-α curve, subject to
dI
dα

= 0, beyond which we observe an abrupt change in α. The
exact form of α± is given by

α± = −4�̃ ± 2
√

�̃2 − 3

3
, (5)

while I± can be obtained from Eq. (4) by substituting the
above-mentioned solutions. Moreover, there is a cutoff for the
pump power beyond which the bistable characteristics set in.
The critical magnitude of Ic is defined by the inflection point
in the I-α graph described by the condition dI

dα
= d2I

dα2 = 0,
providing us

Ic = −α2

2

(
�̃ + α

2

)
. (6)

For a given set of parameters U , I , �, and γ , we would like
to perturb the system in �, modifying the mode variable into
a = a0 + δa, in which δa characterizes the perturbations of
the mode a about a0. The dynamics of the perturbations are
governed by the following effective Hamiltonian:

H̃ =
(

�̃ + α − i β

−β∗ −�̃ − α − i

)
, (7)

where β = 2U
γ

a2
0. The complex eigenvalues of the Eq. (7)

denoted as λ refer to the normal modes of the system and
they can be obtained by solving the characteristic polynomial
equation

λ2 + 2iλ + |β|2 − (�̃ + α)2 − 1 = 0. (8)

Notably, in the limit when the determinant of the Hamiltonian(α

2

)2
− (�̃ + α)2 − 1 → 0, (9)

one of the solutions of Eq. (8) becomes vanishingly small.
Note that we are working in the frame rotating at frequency
ωd . Therefore, under this condition, the imaginary part of one
of the eigenvalues approaches zero, alluding to the generation
of a BIC, as depicted in Fig. 2(b). It is worth noting that α �= 0,
i.e., U �= 0, is a prerequisite for the existence of such a state.
In other words, the generated BIC owes its origin entirely to
the Kerr anharmonicities of the mode a. For a given value
of the parameter �, the BICs exist at (I±, α±), which are
exactly the turning points of the I-α curve as depicted in
Figs. 2(a) and 2(c). It has to be kept in mind that if for exper-
imental reasons it is not easy to reach exactly the BIC point,
then the response would depend on Im(λ+), whose value can
be read off from Fig. 2(b). Since in such a case Im(λ+) �= 0,
one can call such points as quasibound states.

Application of nonlinearity-induced BIC in sensing. The
existence of BICs also leads to the enhanced sensitivity of
the nonlinear response to perturbations in the system param-
eters. This can be accredited to the existence of the first- and
second-order poles at α = α± in the first-order derivative of
the nonlinear response,

dα

d�̃
= − 8α(�̃ + α/2)

3(α − α−)(α − α+)
, (10)

obtained from differentiating Eq. (4) by �̃. To further eluci-
date the origin of sensitivity, we expand I around the turning
points of the I-α curve, that is, around α = α±, I = I± +
∂I
∂α

ε + ∂2I
∂α2 ε

2 + O(ε3), where ε = α − α± and I± are obtained
by substituting α± in Eq. (4). Consequently, at the turning
points of the curve, ∂I

∂α
= 0 and we have | dα

d�̃
| ∼ |I − I±|−1/2.

On the other hand, close to inflection point sensitivity has the
functional dependence | dα

d�̃
| ∼ |I − Ic|−2/3. In practice, one

can choose a value of � and Eq. (9) in conjunction with
Eq. (4) to determine the corresponding α± and I± appropri-
ate for sensing. As I is varied tantalizingly close to I±, any
perturbations in the parameter � translate into a prodigious
shift in the mode response, as is perceptible from Fig. 2(d).
Note that the sensitivity to aberrations in � is a direct artifact
of the existence of a BIC.

Bearing in mind the generality of our analysis, it is interest-
ing to observe the variety of experimental platforms available
to implement our scheme for investigating BICs produced
by nonlinearity-induced extra dimensions. Some of the well-
known examples in the context of passive nonlinearities and
bistability include sodium vapor [53], ruby [54], Kerr liquids
like CS2, nitrobenzene, electronic nonlinearity of Rb vapor,
etc., to name a few [40,55]. In the subsequent section, we
stretch the analysis into the case of two-mode anharmonic,
systems which are ubiquitous in nature.

IV. ENGINEERING BIC IN A TWO-MODE KERR
NONLINEAR SYSTEM

We begin this section by considering a two-mode active
Kerr nonlinear system that consists of modes a and b coupled
coherently through a real parameter g, and b is externally
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pumped at a frequency of ωd . The Hamiltonian of the system
can be expressed as

H/h̄ = ωaa†a + ωbb†b + g(b†a + ba†)

+ Ub†bb†b + i�(b†e−iωd t − beiωd t ), (11)

where ωa and ωb represent the resonance frequencies of the
modes a and b, the coefficient U quantifies the strength of
Kerr nonlinearity, and � denotes the Rabi frequency of the ex-
ternal field driving the b mode. The systems characterized by
the aforementioned Hamiltonian are prevalent in nature, for
example, a collection of two-level atoms under the conditions
of no saturation which act as an active Kerr nonlinear medium
in a driven resonant cavity. The dynamics of the system in the
rotating frame of the drive is provided by

ȧ = −(iδa + γa)a − igb,

ḃ = −(iδb + γb)b − 2iUb†bb − iga + �, (12)

where δa = ωa − ωd , δb = ωb + U − ωd , and γa and γb de-
note the dissipation rates of the modes a and b, respectively.
In the long-time limit, the system decay into a steady state,
i.e., a → a0, b → b0, giving the following nonlinear cubic

equation:

I = 4x3 + 4δ̃Rx2 + |δ̃|2x, (13)

where I = U�2, x = U |b0|2, δ̃ = δb − iγb − g2

δa−iγa
, and we

define δ̃R = δb − g2δa

δ2
a+γ 2

a
and δ̃I = −γb − g2γa

δ2
a+γ 2

a
as the real and

imaginary parts of δ̃, respectively. Notice that δ̃I is negative.
Under the criterion δ̃R <

√
3δ̃I , there exist three possible roots

for x, leading to a bistable response, wherein two of the roots
are stable while the third is unstable. The output intensity from
the cavity is proportional to x.

Conditions for the existence of BIC. To analyze the effect
of perturbations around the steady state, we use a linearized
approximation by letting a = a0 + A and b = b0 + B, where
A and B signify the perturbations of mode a about a0 and
mode b about b0, respectively. The dynamics of the perutrba-
tions ψT = [A ,B,A †,B†] are governed by the following
equation:

∂ψ

∂t
= −iHψ + I, (14)

whereH is the effective Hamiltonian

H =

⎛
⎜⎜⎜⎜⎝

δa − iγa g 0 0

g δb + 4x − iγb 0 2Ub2
0

0 0 −δa − iγa −g

0 −2Ub∗2
0 −g −δb + 4x − iγb

⎞
⎟⎟⎟⎟⎠, (15)

and I = 0 for the steady state. The normal modes of the system are hallmarked by complex eigenvalues of Eq. (15), which
can be obtained by solving the characteristic polynomial equation det(H − λI) = 0. Conspicuously, when detH = 0, one of
the eigenvalues can approach zero (in the rotating frame of the drive), spawning real eigenvalues and thereby indicating the
emergence of a BIC. Therefore, we first determine the parameter domain consistent with condition

0 = detH = 12
(
δ2

a + γ 2
a

)
x2 + 8

( − δag2 + δbδ
2
a + δbγ

2
a

)
x + (g2 − δaδb + γaγb)2 + (δaγb + δbγa)2. (16)

It is worth noting that the existence of BIC relies on the prerequisite x = U |b0|2 �= 0. In other words, the Kerr anharmonicities
of the mode b are solely responsible for the creation of the BIC. Upon solving Eq. (16), we discover that BICs can exist at points

x± = − 1
3 δ̃R ± 1

6

√
δ̃2

R − 3δ̃2
I , (17)

which are exactly the turning points of the I-x curve given in Eq. (13), obtained from solving the condition dI
dx = 0.

While invoking the linearized dynamics, one must make sure that the dynamical system is stable, which is to ensure that
the eigenvalues of H have negative imaginary parts. Consequently, we define λR and λI as the real and imaginary parts of the
complex eigenvalues, respectively, and let λ′ = −iλ. The characteristic polynomial equation can then be written as

0 = det(H − iλ′I) = λ′4 + a1λ
′3 + a2λ

′2 + a3λ
′ + a4, (18)

where

a1 = 2(γa + γb), a2 = δ2
a + 2g2 + (

γ 2
a + 4γaγb + γ 2

b

) + (
12x2 + 8δbx + δ2

b

)
,

a3 = 2δ2
aγb + 2δ2

bγa + 2(γaγb + g2)(γa + γb) + 16δbγax + 24γax2, a4 = detH . (19)

The stability conditions of the system can be obtained by employing the Routh-Hurwitz criteria, yielding the constraints a1 > 0,
a3 > 0, a4 > 0, and a1a2a3 > a2

3 + a2
1a4. Apparently, the first two conditions are met automatically, and we find

a1a2a3 − a2
3 − a2

1a4 = 4γaγb
(
12x2 + 8δbx − δ2

a + δ2
b

)2 + 4γaγb(γa + γb)2
[
24x2 + 16δbx + 2

(
δ2

a + δ2
b

) + (γa + γb)2
]

+ 4g2(γa + γb)2[12x2 + 8(δa + δb)x + (δa + δb)2 + (γa + γb)2], (20)
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FIG. 3. Schematic of the cavity-magnon system.

which is manifestly positive, fulfilling the final criterion. The
only remaining criterion a4 = detH > 0 is satisfied along
with δ̃R <

√
3δ̃I and x ∈ (0, x−) ∪ (x+,∞).

Sensing capabilities of nonlinearity-induced BIC. The im-
portance of the above results can be legitimized in the optical
domain with several well known systems, including, for in-
stance, Sagnac resonators [56,57] among other settings [40].
The presence of BICs at points x± contributes to the sig-
nificantly improved sensitivity of the nonlinear response to
variations in the system parameters, in particular, to perturba-
tions in the natural frequency of the active nonlinear medium.
The remarkable sensitivity is a direct upshot of the existence
of first- or second-order poles at x = x± in the first derivative
of the nonlinear response, which has the functional form

dx

dδb
= − x(x + δ̃R/2)

3(x − x−)(x − x+)
, (21)

analogous to Eq. (10). Therefore, it immediately fol-
lows that adjacent to the turning points, we have | dx

dδb
| ∼

|I (x±) − I|−1/2. By the same token, close to the inflection
point, the sensitivity scales as |Ic − I|−2/3.

Sensing in magnetic systems. In view of the extensive
studies on nonlinearities [41] in ferrimagnetic spheres, it is
worthwhile to consider magnetic systems to implement the
sensing scheme. Note that the anharmonicities in optical sys-
tems are a direct consequence of the nonlinear response of
electrical polarization. In stark contrast, the anharmonic com-
ponent in a magnetic system originates from the nonlinear
magnetization. We consider a single ferromagnetic yttrium
iron garnet (YIG) interacting with a microwave cavity as
portrayed in Fig. 3. The ferromagnet couples strongly with
the microwave field at room temperature, giving rise to quasi-
particles, namely cavity-magnon polaritons. The YIG acts as
an active Kerr medium, which can be pinned down to the
magnetocrystalline anisotropy [41,42,58] of the sample. A
strong microwave pump of power Pd and frequency ωd is used
to stimulate the weak anharmonicity of the YIG, which is of
the order 10−9 Hz. The full Hamiltonian of the cavity-magnon
system is consistent with Eq. (11), where the mode operators
a, b are respectively superseded by cavity and magnon annihi-
lation operators. The quantities ωa and ωb represent the cavity
and Kittel mode resonance frequencies. The Rabi frequency

of external pumping takes the form � = γe

√
5πρdPd

3c , where
γe is the gyromagnetic ratio, ρ denotes the spin density of
the YIG with a diameter d , and c stands for the velocity of
light. For experimentally realizable parameters, we plot in

FIG. 4. (a) The δb-x curve for I = 18 (black line) and the turning
points x± plotted against δb (red line and orange line, respectively).
(b) x′ = dx

dδb
and 0.92/|I − I (x−)|1/2 are plotted against I to make a

comparison when δb = 0. Parameters are γa = γb = 1, g = δa = 4.

Fig. 4 values of the output intensity x [from Eq. (13)] and
remarkable sensing capability x′. Note that currently the study
of YIG systems is in vogue, and hence such systems would be
a natural choice to study nonlinearity-induced BIC [58,59].

V. CONCLUSIONS

In conclusion, we have demonstrated a new scheme apro-
pos of single- and two-mode Kerr nonlinear systems to
engineer BICs. In the context of single-mode systems, we
considered a passive Kerr nonlinearity in an optical cavity
that demonstrates bistability. As the the system parameters are
tuned in close proximity to the turning points of the hysteresis,
a BIC springs into existence marked by a vanishing linewidth
of the mode. In the neighborhood of the BIC, the steady
state response was observed to show pronounced sensitivity
to perturbations in the detunings. This remarkable sensitivity
can be traced down to the existence of poles in the first-order
derivative of the response with respect to the perturbation vari-
able. The sensitivity to perturbations scales as inverse square
root of the deviations in external pump powers optimal for
the turning points. Further, we extended the analysis into the
regime of two-mode systems possessing an active nonlinear
medium. Our analysis is generic, applicable to a large class of
systems, including, both optical and magnetic systems. Some
of the passive nonlinear optical platforms include nonlinear
media like CS2, nitrobenzene, and Rb vapor, whereas high-
quality Sagnac resonators support active Kerr nonlinearities.
In addition, we considered an active Kerr medium provided by
magnetic systems interacting with a microwave cavity where
research activity has flourished of late. In the domain of large
detunings of the active Kerr medium, the two-mode setup
can be described by an effectively single-mode anharmonic
system in lock step with the results from the passive Kerr
nonlinearity in an optical cavity.
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APPENDIX: EQUIVALENCE BETWEEN SINGLE-MODE
AND TWO-MODE ANHARMONIC SYSTEMS

So far, we have discussed schemes for the creation of
BICs in single- and two-mode nonlinear systems. It is worth
mentioning that there exists a close correspondence between
the two-mode and single-mode results in the limit of large δb.
To enunciate this, let us delve into the second part of Eq. (12).
In the long-time limit, we have

−(iδb + γb)m − 2iUb†bb − iga + � = 0. (A1)

Note that the effect of γb pales in comparison with δb, and we
can recast the above equation into

b = − (ga + i�)

δb
[1 + x]−1, (A2)

where x = 2U |b|2
δb

. For the purpose of simplification, we set
� = 0 and assume that the external drive is on the cavity
at Rabi frequency E. Owing to the largeness of δb, it is
discernible that x � 1. Therefore, we can revise the above

equation as

b = − (ga + i�)

δb
[1 − x + O(x2)]. (A3)

Keeping only terms up to first order in x, we are left with b =
− ga

δb
[1 − 2U |b|2

δb
]. Upon iterating the solution and omitting the

higher order terms, the approximate solution for b transforms
into

b = −ga

δb
+ 2

(
g

δb

)3(U

δb

)
|a|2a. (A4)

Substituting this into the first part of Eq. (12), we obtain
an effective single mode description of the dynamics of the
system,

ȧ = −(iδ̃a + γa)a − iŨ |a|2a + E, (A5)

where δ̃a = δa − g2

δa
and Ũ = 2( g

δb
)
4
U . Strikingly, the pre-

ceding equation reproduces Eq. (3) with �, γ , and 2U
respectively replaced by δ̃a, γa, and Ũ , unfolding the equiv-
alence between two-mode and single-mode nonlinear systems
in the realm of large δb.
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