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Static spheres around spherically symmetric black hole spacetime
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Unique features of particle orbits produce novel signatures of gravitational observable phenomena and are
quite useful in testing compact astrophysical objects in general relativity or modified theories of gravity. Here
we observe a representative example that a static, spherically symmetric black hole solution with nonlinear
electrodynamics admits static points at finite radial distance. Each static point thus produces a static sphere,
on which a massive test particle can remain at rest at arbitrary latitudes with respect to an asymptotic static
observer. As a result, the well-known static Dyson spheres can be implemented by such orbits. More interestingly,
employing a topological argument, we disclose that stable and unstable static spheres (if they exist) always
come in pairs in an asymptotically flat spacetime. In contrast to this, the counterpart naked singularity has
one more stable static sphere than the unstable one. Our results have potential applications in testing black
holes in standard Maxwell and nonlinear electrodynamics, as well as in uncovering the underlying astronomical
observation effects in other gravitational theories beyond general relativity.
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I. INTRODUCTION

Exploring the nature of a black hole or spacetime in both
weak and strong gravity regimes largely relies on the charac-
teristic geodesic motions of test particles. Some characteristic
phenomena, such as the ringdown of black hole binaries [1]
and shadows [2,3], can also be understood by the circular or-
bits of photons or massive particles. Further study also shows
that semi orbits, pointy petal orbits, and static light points
appear in rotating boson stars, hairy black holes, wormholes
[4–7], and higher-dimensional rotating black holes [8–10],
expecting to have potential signatures on observable effects.
Recent developments can also be found in Refs. [11,12].

It is generally believed that the test massive particles with
vanishing angular momentum cannot remain at rest at finite
radial distance around a black hole in general relativity. In
particular, due to frame dragging, they will orbit a rotating
black hole. However by tuning the angular momentum of the
counter-rotating particles a static point in the equatorial plane
can be obtained [13]. Due to the symmetry of the spacetime,
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there will be a special orbit, the ring of static points, on which
particles initially at rest remain at rest with respect to an
asymptotic static observer. Such particular orbits are found in
rotating non-Kerr black holes. Therefore observing static, or
quasistatic, phenomena could offer support for the presence
of compact objects that differ from Kerr black holes.

It is natural to ask whether a similar static sphere exists
for a nonrotating black hole. If so, any massive particle will
remain rest at arbitrary latitudes. Thus a thin static shell can be
formed only under the gravitation interaction. Consequently
this mimics an actual and rigid Dyson sphere. Proposed by
Freeman Dyson [14], this object was a shell initially con-
structed around a star and designed to exploit all the infrared
radiation energy of stellar sources. Its greatest advantage is
that it eliminates the inner stress density of the shell or the
required extremely high elastic modulus of the shell material
[15,16].

A characteristic feature of a static point is that the angular
velocity vanishes at radius rsp

�(rsp) = 0, (1)

which we required is independent of the polar and azimuth
angles in a nonrotating black hole background. In general
relativity, minimally coupled to Standard Model matter, such
a static sphere is absent, even by decreasing the black hole
spin accompanied by a ring of static point.

Here we demonstrate that a simple generalization of
electromagnetism, referred to as quasitopological electromag-
netism [17], has a dyonic black hole solution that yields the
necessary conditions for a Dyson sphere without the necessity
of extremality. This theory is a reasonable physical competitor
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to standard electromagnetism, since its basic effects are not
manifest in Earth-based laboratory experiments [17]. Via a
topological argument, we also show, for an asymptotically flat
spacetime, that stable and unstable static spheres (if they exist)
always come in pairs.

The present work is organized as follows. In Sec. II, we
start with a static and spherically symmetric black hole. The
condition for the static spheres are given. Then taking the
quasitopological electromagnetic black hole as an example,
we clearly exhibit the static spheres and straight orbits. Of
particular interest, in Sec. III, the number of the static spheres
are studied by using the topological approach. Finally, we
summarize and discuss our results in Sec. IV.

II. STATIC SPHERES AND STRAIGHT ORBITS

Let us briefly review the geodesic equations and analyze
the necessary conditions for the existence of the static spheres.
The line element of a static, spherically symmetric black hole
is

ds2 = − f (r)dt2 + 1

g(r)
dr2 + r2(dθ2 + sin2 θdφ2), (2)

where the metric functions f (r) and g(r) dependent only on
the radial coordinate r. Without loss of generality, we focus
on equatorial geodesics with θ = π/2. The metric (2) has
two Killing vectors ξμ = (∂t )μ and ψμ = (∂φ )μ, from which
follow two conserved quantities

−E = gtt ṫ, l = gφφφ̇, (3)

which are respectively the energy and orbital angular momen-
tum per unit mass of a massive test particle; the dots denote the
derivative with respect to an affine parameter. For a massive
test particle, we have gμν ẋμẋν = −1. Solving the equation of
geodesics, one easily obtains the radial motion of a massive
particle

ṙ2 + Veff = 0, (4)

where the effective potential is given by Veff = g(r)(1 +
l2/r2) − g(r)E2/ f (r). For a distant static observer at rest, the
angular velocity of a massive test particle circling the black
hole can be solved as

� = f (r)l

r2E
. (5)

Note that outside the black hole horizon, f (r) > 0 and g(r) >

0. So vanishing � requires l = 0 as expected. Then the re-
duced effective potential reads

Veff = g(r)

(
1 − E2

f (r)

)
. (6)

The static sphere is also a specific circular orbit, which sat-
isfies Veff = V ′

eff = 0, where the prime denotes the derivative
with respect to r. As a result, the following conditions should
be satisfied:

E = √
f (rsp), f ′(rsp) = 0, (7)

where rsp is the radius of the static sphere. Note that f ′′(rsp) >

0 and <0 correspond to stable and unstable static spheres, re-
spectively, and so the former is of particular interest. It is also

worth to point out that the above analysis on the static sphere
is general and can be applied to any static, spherically sym-
metric black hole. After a simple algebraic calculation, one
easily finds that there is no static sphere outside the horizon of
a Reissner-Nordström black hole in standard Maxwell electro-
dynamics. However, when the nonlinear electrodynamic terms
are included in, the static sphere will be present.

To illustrate such result, let us consider the dyonic black
hole given in Ref. [17]. A quasitopological electromagnetic
action term is included in

S = 1

16π

∫ √−gd4x(R − α1F 2 − α2((F 2)2 − 2F (4) )), (8)

where the field strength is F 2 = FμνFμν and F (4) =
Fμ

νF ν
ρFρ

σ F σ
μ. The coupling parameters α1 and α2 are for

the standard Maxwell and quasitopological electromagnetic
actions, respectively, with α1 = 1 and α2 = 0, yielding stan-
dard Maxwell theory. Under the ansatz of global polarization,
this quasitopological term has no influence on the Maxwell
equation and the energy-momentum tensor. Note that the α2

term contributes to photon-photon scattering; from accelerator
experiments, α2 � h̄e4

360π2m4
e c7 . For a black hole of mass M,

α2/M2 is dimensionless in geometric units c = h̄ = kB = G =
1; to obtain α2/M2 < 1, M > 104M�. Hence this solution
can be applied to supermassive black holes located in the
centers of galaxies. This bound could be further reduced by
the cancellation of the two α2-dependent terms in (8).

The static spherically symmetric black hole solution to the
field equations following from (8) is [17]

f (r) = g(r) = 1 − 2M

r
+ α1 p2

r2

+ q2

α1r2 2F1

[
1

4
, 1;

5

4
; −4p2α2

r4α1

]
, (9)

with 2F1 the hypergeometric function. The electric and mag-
netic charges are q and p/α1, respectively. For this matter
sector, the null, weak, and dominant energy condition are held
when both α1 and α2 are positive, while the strong energy
condition is violated. We note that other forms of matter, such
as a scalar field with a positive potential, along with most
inflationary models, also violate this condition. In this sense
the quasitopological term behaves like dark energy.

Most intriguingly, we have a class of black hole solutions
respecting standard energy conditions that exhibits interesting
results. The chaos bound does not seem to be universally
satisfied [18], and echoes can also naturally emerge without
placing a hard wall near the horizon [19]. From the viewpoint
of black hole thermodynamics, a triple point phase structure
is present, indicating a rich underlying microstructure [20]. In
particular, in certain parameter regions, for example, α1 = 1,

α2/M2 = 2.76, p/M = 0.14, and q/M = 1.02, there are
four black hole horizons and three photon spheres, indicating
an interesting spacetime structure. Such intriguing properties
will cast potential imprints on black hole image and
gravitational waves.

Plotting the reduced effective potential (6) in Fig. 1, we ob-
serve one stable and one unstable static sphere at rsp1 and rsp2

for fixed energy Esp1 and Esp2, respectively. For each energy
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FIG. 1. The reduced effective potential (6) for the dyonic black
hole. The energy of the massive test particle is set as E=0.01,
0.1393 (Esp1), 0.25, 0.3528 (Esp2), and 0.4 from top to bottom. The
stable and unstable static spheres are located at rsp1/M = 0.91 and
rsp2/M = 0.43, respectively.

E ∈ (Esp1, Esp2), there is a bound orbit. A neutral massive test
particle will undergo straight back-and-forth motion between
two turning points, for example r1 and r2 for E = 0.25. Note
that there is no angular motion due to the vanishing angular
velocity.

Taking energies to be E = 0.2, 0.15, 0.14, and Esp1 =
0.1393, we exhibit the radial motion of the particle starting at
the small turning points in the r-t plane in Fig. 2. Obviously,
when the energy decreases and tends to Eso1, the radial region
of the motion narrows. In particular, when E = Esp1 shown in
Fig. 2(d), the radial distance remains unchanged with coordi-
nate time, indicating there is a static sphere at r = rsp1.

In summary, we observe two static spheres—one stable and
one unstable—for the static, spherically symmetric dyonic
black hole. Thus a static Dyson-like sphere can be appropri-
ately constructed. Actually, the existence of the static spheres
is due to the effective repulsion produced by the nonlinear
electrodynamics behaved like dark energy, which is quite
different from the case for the rotating black holes balanced
by the nonvanished angular momentum [13].

III. NUMBER OF STATIC SPHERES

As shown above, there is one stable and one unstable static
spheres. We now determine the number of static spheres for a
general static, spherically symmetric black hole (9), providing
us with universal information not requiring refer to a specific
spacetime. This approach was used to show that light rings are
an intrinsic structure of spacetime, independent of the photon
[21,22] (see also Refs. [23–30]), with at least one ring being
radially unstable. This is quite different from timelike circular
orbits, which closely depend on the energy and angular mo-
mentum of the test particle. Quite remarkably, a well-behaved
topology characterizing equatorial timelike circular orbits can
be constructed [31]. In what follows, we mainly focus on
the topological properties for a static sphere without orbital
angular momentum.

FIG. 2. Radial motion of the massive test particle. (a) E = 0.2,
(b) 0.15, (c) 0.14, and (d) Esp1. When E = Esp1, the radial motion is
just a horizontal line denoting a static orbit with vanishing angular
momentum.

In order to satisfy the conditions for a static sphere given
in (7), we construct the vector φ=(φr , φθ ) with

φr = ∂ f (r)

∂r
, φθ = − cos θ

sin2 θ
. (10)

Note that φθ is an auxiliary term given in Ref. [32], which
allows us to explicitly show the direction of the vector in a two
dimensional plane. The auxiliary term can also be selected
as some other smooth and continuous function of r and θ

without introducing extra zero point of φ. Obviously a static
sphere is exactly located at a zero point of φ. For any given
static sphere we can calculate its winding number, where a
positive (negative) value signifies a stable (unstable) static
sphere. However, here we are concerned with the sum of the
winding numbers, namely the total topological number W of
the static spheres corresponding to the following topological
current [33]:

jμ = 1

2π
εμνρεab∂νna∂ρnb, μ, ν, ρ = 0, 1, 2, (11)

where ∂ν = ∂
∂xν and xν = (τ, r, θ ) and the unit vector is de-

fined as na = φa

||φ|| (a = 1, 2). The parameter τ is a time control
parameter. It is not hard to check that this current is conserved:
∂μ jμ = 0.
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FIG. 3. Representation of the vector direction along the bound-
ary. The black arrows represents the direction of the vector, and
the closed rectangular loop denotes the complete boundary of the
parameter space.

To determine W , we need to examine the behavior of the
vector φ at the boundary of the r − θ plane. A simple calcula-
tion shows that at θ = 0 and π , the direction of φ is outwards.
On the other hand, near the horizon r = rh, f (rh) = 0 and
f (r > rh) > 0; thus φr is positive, which indicates the direc-
tion of φ is rightward in the plane, ignoring the specific values
of φθ . At large r, for an asymptotically flat black hole, it is
easy to obtain f ′(r → ∞) > 0. This suggests that the direc-
tion of φ is also towards the right. For clarity, we sketch the
direction of the vector (10) in Fig. 3. The closed rectangular
loop denotes the complete boundary of the parameter space.
The black arrows represents the direction of the vector. It is
clear that that the direction of the vector changes at different
segments of the boundary. Going counterclockwise along the
loop once, the direction of the vector does not make one
completely loop. Thus we easily obtain the total topological
number

W =
∑

i

wi = 0, (12)

where wi denotes the winding number of the ith zero point of
φ. Since our result is universal, for an arbitrary asymptotically
flat, static, spherically symmetric black holes, it strongly sug-
gests that if static spheres exist, they always come in pairs. It
is easy to find that the radial stable and unstable static spheres
has winding number w = 1 and −1. So if one is radial stable,
another must be unstable. We shall see that this result changes
for naked singularities.

As shown in Ref. [25], the black hole charge can be treated
as a time control parameter. In order to study the evolution
of the static sphere radius as the time control parameter, we
choose the parameter values α1 = 1, α2/M2 = 2.76, p/M =
0.14, and q/M = 1.02. For q � q2 and q > q2, the metric (2)
respectively describes a dyonic black hole and naked singular-
ity, with f (r) given in (9). The behavior of the radii of static
spheres is shown in Fig. 4. From the figure, we find that two
static spheres emerge only when q � q1 for the black hole.
The one with small radius has a negative winding number
and so is unstable, whereas the one with large radius has a
positive winding number and is stable. The total topological

FIG. 4. The radius of the static sphere as a function of the time
control parameter q. “BH” and “NS” are for the black hole and
naked singularity, respectively. The signs “+” and ‘‘−” denote the
positive and negative winding numbers, respectively. Three charac-
teristic charges are localized at q1/M = 1.0143, q2/M = 1.0305, and
q3/M = 1.0504. The black arrows indicate the increase of the time
control parameter.

number vanishes for q < q1, where static spheres are absent.
This property continues for all q1 < q < q2.

At extremality, with q = q2, a new stable static sphere
with smaller radius emerges. For q > q2 the solution describes
a naked singularity, and there are three static spheres; the
topological number is W = 1 − 1 + 1 = 1, notably different
from the situation for a black hole. This situation persists
for q2 < q < q3. For q → q3, the two smaller spheres merge,
leaving only one static sphere of large radius for q > q3. Nev-
ertheless, the topological number W = 1 remains unchanged.
These topological results indicate that if solutions exist, there
must be a radially stable static solution, from which a static
Dyson sphere can be constructed.

We summarize our results in Table I. The topological num-
ber W clearly has distinct values for the black hole and naked
singularity, indicating they are in different topological classes.

IV. SUMMARY

Quasitopological electromagnetism provides us with an
interesting phenomenological competitor to the standard
Maxwell theory, since its basic effects are not manifest in
Earth-based laboratory experiments [17]. Minimally coupling
this theory to gravity, we have investigated static spheres, at
which a massive particle remains at rest with respect to a static
asymptotic static observer in a static, spherically symmetric
dyonic black hole and its naked singularity counterpart. This
solution respects that that the standard dominant, weak, and
null energy conditions are held for positive α1 and α2. We

TABLE I. Topological numbers for the black hole and naked
singularity for various charges q.

BH NS

q q < q1 q1 < q < q2 q2 < q < q3 q3 < q

W 0 0 1 1
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found that the black hole admits a pair of stable and unstable
static spheres, and naked singularity admits one more stable
one than the unstable ones. They also provide a chance to con-
struct the Dyson-like spheres. What is most intriguing is that,
quite unlike standard Einstein-Maxwell theory, no extremality
condition is required to achieve static balance.

Making use of a topological argument for static spheres
in an asymptotically flat spacetime, we showed the black
hole and naked singularity have distinct topological numbers
(W = 0 and 1, respectively) for their static spheres. These
results confirm that the stable and unstable static spheres al-
ways come in pairs for asymptotically flat black holes. It also
indicates that the black hole and naked singularity solutions
belong to different topological classes. Moreover, if one the
naked singularity solution can be the exterior metric of some
stellar structure, there would be a topological phase transition
at q = q2 for the static spheres.

Besides realizing the static Dyson-like sphere, the pres-
ence of static orbits could result in certain novel gravitational
phenomena. For example, there may be one extra static or
slow velocity accretion disk, in contrast to those formed at
the usual innermost stable circular orbits. Since this orbit,
which acts as a light source, is closer to the black hole, it
will produce a different shadow pattern. Such double accre-
tion disks will yield interesting observable effects, providing
unique tests of general relativity. Although material particles
outside may accumulate near the static sphere, their mutual
frictional forces and angular momenta will cause these par-

ticles to form a metastable accretion disk. An actual disk
has a very limited amount of matter, and thus only modifies
the local gravitational field, which has very tiny gravitational
influence far away from the object inside the sphere. Our main
results can be applied to other static, spherically symmetric
black holes. As an example, we carried out the calculation for
the dyonic black hole with a quasitopological electromagnetic
term, and observed the static orbits. Since quasitopological
electromagnetism is phenomenologically viable, it is conceiv-
able that it replaces Maxwell’s theory and that such dyonic
black holes might actually exist. Very recently, double-black
hole solutions balanced by their scalar hair or cosmic expan-
sion were found exist [34–36]. Our static point orbit naturally
provides a mechanism for realizing such double-black hole
solutions with the extreme mass ratios. More generally, our
study is of particular interest insofar at it provides a deeper
understanding of static spheres that might be present in
other theories of true observational interest beyond nonlinear
electrodynamics.
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