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Thermal suppression of demixing dynamics in a binary condensate
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We investigate the demixing dynamics in a binary two-dimensional (2D) Bose superfluid using classical-
field dynamics. By quenching the interspecies interaction parameter, we identify a strong and weak separation
regime depending on the system temperature and the quench parameter. In the strong separation regime our
results are in agreement with the inertial hydrodynamic domain growth law of binary fluids and a Porod scaling
law for the structure factor at zero temperature is found. In the weak separation regime thermal fluctuations
modify both the domain growth law and the Porod tail of the structure factor. Near the superfluid transition
temperature the scaling dynamics approaches the diffusive growth law of a 2D conserved field. We then analyze
the demixing dynamics in a box cloud. For low quench we find distinctive domain dynamics dictated by the
boundary condition. Otherwise, the dynamics are qualitatively similar to those of systems with periodic boundary
conditions.

DOI: 10.1103/PhysRevResearch.5.043042

I. INTRODUCTION

When two immiscible fluids such as water and oil are
allowed to mix, they separate into two distinct phases [1].
Such phase separation phenomenon is very well established
in science, with relevant implications for important techno-
logical applications [2–4]. In physics, phase separation occurs
in a variety of condensed matter systems such as polymers,
fluid mixtures, gels, ferroelectrics, membranes, superfluids,
superconductors, and the like.

According to classical theories of phase-ordering dynam-
ics, the domain growth follows a characteristic power-law
behavior L(t ) ∼ tη, where L is the average domain size and
η is the scaling exponent. The dynamics is universal such that
the time evolution of an observable is solely governed by L(t ).
In practice, this scaling hypothesis is tested by the equal-time
correlation function C(r′, t ) = 〈φ(r + r′, t )φ(r, t )〉, where
φ(r) is an order parameter characterizing the dynamical
evolution of the system and 〈. . .〉 denotes the statistical av-
erage. The Fourier transform of C(r, t ) is the structure factor
S(k, t ) = 〈φk(t )φ−k(t )〉, where φk is the Fourier transform of
φ(r). From a dimensional consideration the structure factor
obeys the scaling relation S(k, t ) = Ld f (kL(t )) [5], where d
is the spatial dimensionality and the scaling function f (q) is
independent of time. Due to the presence of domain walls,
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f (q) exhibits a power-law tail f (q) ∼ q−(d+1) at large q,
which is referred to as the Porod law [6]. The scaling the-
ory hypothesizes various power laws for domain coarsening,
which describe the time dependence of characteristic length
scales. The domain growth law for a two-dimensional (2D)
conserved field is L ∼ t1/3, which characterizes the diffusive
transport of the order parameter [5,7,8]. In binary fluids a
competition between the viscous and inertial flow leads to
two growth regimes: viscous hydrodynamic (L ∼ t) [9] and
inertial hydrodynamic (L ∼ t2/3) [10]. The viscous hydrody-
namic regime has been confirmed by experiments as well as
simulations [5]. However, the inertial hydrodynamic regime
has not been observed yet as viscous flow is non-negligible in
classical fluids.

Ultracold atoms have emerged as an ideal platform to
study the dynamics of multicomponent superfluids, forming
the basis for the study of a multitude of phenomena such as
the miscible-immiscible transition in binary fluids [11–14].
Experimentally, Bose-Bose mixtures using different hyperfine
levels or different isotopes have been used to study phase
separation [15–18], nonlinear dynamical excitations [19–22],
solitons [23,24], and Townes solitons [25]. Domain formation
and coarsening were observed in quenched immiscible mix-
tures [26]. Following the proposal [27], Rabi-coupled Bose
mixtures [28] were used to experimentally test the Kibble-
Zurek mechanism [29]. Theoretically, many studies reported
dynamical scaling laws in superfluid systems [30–39] and
dynamical instabilities [40–46]. It was pointed out that ther-
mal fluctuations suppress the phase separation at nonzero
temperatures [47–49]. The inertial hydrodynamic regime was
investigated theoretically in binary 2D superfluids [34,50].
Nevertheless, many features of dynamical scaling such as the
role of thermal fluctuations are yet to be explored.

2643-1564/2023/5(4)/043042(11) 043042-1 Published by the American Physical Society

https://orcid.org/0000-0001-8881-978X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.5.043042&domain=pdf&date_stamp=2023-10-13
https://doi.org/10.1103/PhysRevResearch.5.043042
https://creativecommons.org/licenses/by/4.0/


SINGH, AMICO, AND MATHEY PHYSICAL REVIEW RESEARCH 5, 043042 (2023)

In this paper, we investigate how the thermal fluctuations
influence the dynamical scaling of coarsening in a binary 2D
Bose superfluid. To this end, we employ semiclassical-field
simulations to address the demixing dynamics at nonzero
temperature, which is triggered by quenching the immiscibil-
ity parameter α = g12/

√
g11g22, where g12 is the interspecies

interaction, and g11 and g22 are the intraspecies interactions.
As a key result, we show how the characteristic scaling of
domain growth is modified by the temperature and the quench
parameter. The interplay of the quench and thermal energy
results in two phase separation regimes. The first one is the
strong separation regime that occurs at low temperature and
α � 1.4, for which the Porod scaling law of the structure
factor S(k) ∼ k−3 holds, and the domain coarsening follows
the inertial hydrodynamic growth law of binary fluids, i.e.,
L(t ) ∼ t2/3. The other regime is the weak separation regime at
high temperatures, where thermal fluctuations modify both the
domain growth law and the Porod tail of the structure factor.
Near the superfluid critical temperature the domain coarsen-
ing approaches the diffusive growth law of a 2D conserved
field (L ∼ t1/3) and the Porod tail of the structure factor scales
close to S(k) ∼ k−1. Furthermore, we examine the demixing
dynamics in a box cloud and find an intriguing interplay of the
box symmetry and the dynamics. In particular, for α close to
1 and small clouds, with sizes comparable to the spin healing
length, demixing occurs via the creation of domains of regular
patterns due to the boundary condition. For high α and large
clouds we recover the dynamics that is similar to the system
with periodic boundary conditions.

II. SYSTEM AND METHODOLOGY

We consider a cloud of 87Rb atoms in two different hy-
perfine states |F = 1, mF = 0〉 and |F = 2, mF = 0〉, which
is motivated by the experiments [51,52]. Thus, the two species
have the same masses (m1 = m2 = m) and the intraspecies
scattering lengths are a11/aB = 100.86 and a22/aB = 94.58
[53], where aB is the Bohr radius. The interspecies scatter-
ing length is a12/aB = 98.9 [54], resulting in the parameter
α = 1.012, which is defined as

α ≡ a12/
√

a11a22. (1)

Since α is slightly above 1, the two species are weakly im-
miscible and thermal fluctuations play a prominent role in
the demixing dynamics, as we show below. In our theoretical
study we vary α in the range 1.03 � α � 1.55 to examine
both weakly and strongly immiscible regimes, which covers
a wide range of immiscible regime that can be explored with
mixtures of other species, in addition to 87Rb, which provided
the experimental motivation of this study. We describe the
system by the Hamiltonian

Ĥ = Ĥ1 + Ĥ2 + Ĥ12, (2)

with

Ĥa =
∫

dr
[(

h̄2

2ma
∇ψ̂†

a (r) · ∇ψ̂a(r)

+ gaa

2
ψ̂†

a (r)ψ̂†
a (r)ψ̂a(r)ψ̂a(r)

)]
(3)

and

Ĥ12 =
∫

dr[g12ψ̂
†
1 (r)ψ̂†

2 (r)ψ̂2(r)ψ̂1(r)], (4)

where a = 1, 2 represent the two species and ψ̂a (ψ̂†
a ) are

the corresponding annihilation (creation) operators. The in-
traspecies interactions gaa and interspecies interaction g12 are
given by, respectively,

gaa = 2
√

2π h̄2

m

aaa

�z
and g12 = 2

√
2π h̄2

m

a12

�z
. (5)

�z = √
h̄/(mωz ) is the harmonic oscillator length of the trap-

ping potential in the transverse direction, where ωz is the trap
frequency. We note that to avoid unwanted buoyancy effect,
the alignment of the 2D gas as orthogonal to gravity has to be
achieved sufficiently well, and with sufficiently strong trans-
verse confinement. For a condensate with a large number of
atoms we replace ψ̂a by complex numbers ψa. Using Eq. (2)
we obtain the coupled equations of motion

ih̄∂tψ1 =
(

− h̄2

2m
∇2 + g11n1 + g12n2

)
ψ1, (6)

ih̄∂tψ2 =
(

− h̄2

2m
∇2 + g22n2 + g12n1

)
ψ2, (7)

which govern the dynamics of binary condensates. na = |ψa|2
are the densities. This system hosts two excitation branches of
collective modes [55]

E2
k,± =

(
E2

1 + E2
2

)
2

± 1

2

√(
E2

1 − E2
2

)2 + 16ε2
k n1n2g2

12, (8)

where Ea = √
εk (εk + 2gaana) are the single-component Bo-

goliubov spectra and εk = h̄2k2/(2m). The coupling g12

results in hybridized branches Ek,±. A direct consequence
of this hybridization is that the low-momentum part of Ek,−
vanishes when α = 1 (or equivalently g12 = √

g11g22) and
becomes imaginary for α > 1. This leads to the creation of
unstable modes when α is above 1, which is responsible
for the demixing of the two species. We note that αc = 1 is
the quantum critical point separating the miscible (α < αc)
and immiscible (α > αc) states at zero temperature [13]. The
range of unstable modes is determined by setting Ek,− = 0,
giving (see Appendix A)

k2
0 = 1

ξ 2
1 ξ 2

2

[√(
ξ 2

1 − ξ 2
2

)2 + 4α2ξ 2
1 ξ 2

2 − (
ξ 2

1 + ξ 2
2

)]
, (9)

where ξa = h̄/
√

2mgaana are the single-component healing
lengths. k0 vanishes when α = 1 and increases with increasing
α for α > 1. The wavelength λ0 = 2π/k0 and the lifetime
τ = h̄/Ek0,− give an estimate of length and time scale for the
emergence of domains.

We investigate the phase-separation dynamics using the
classical-field method of Refs. [56,57]. For the numerical
simulations we discretize the space on a lattice of size Nx × Ny

and a discretization length l = 1 µm. We note that l is chosen
to be smaller than or comparable to the healing length and the
thermal de Broglie wavelength [58]. This maps the continuum
Hamiltonian on the discrete Bose-Hubbard model, which in-
troduces J = h̄2/(2ml2) as the tunneling energy and Uaa =
gaal−2 and U12 = g12l−2 as the on-site repulsive interactions.
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FIG. 1. Sketch of the quench protocol for a homogeneous cloud
confined in a box potential. (a) The initial state is a thermal state
having total density n at temperature T . (b) We apply a π/2 pulse
to obtain a uniform superposition of species 1 (dashed line) and 2
(continuous line). Thereafter, we quench the interspecies interaction
g12 into the demixed regime, which creates a dynamically unstable
mixture of two species. (c) Time evolution proceeds via nucleation
of domains of species 1 and 2. (d) Long-time evolution at final time
t f results in a steady state having species 2 at the center and species
1 forming a shell around it.

We use ωz = 2π × 4.6 kHz, leading to U11/J = 0.336 and
U22/U11 = 0.938 [51]. The quench protocol is described in

Fig. 1. We start with a 2D superfluid cloud of total density
n = 10 µm−2 at temperature T . The initial states ψ1(r) of this
system are sampled in a grand-canonical ensemble of chem-
ical potential μ and temperature T via a classical Metropolis
algorithm [56]. We choose T in a wide range of T/T0 =
0.1–1.1, where T0 is an estimate of the critical temperature for
the superfluid transition in weakly interacting 2D Bose gases
[59,60]. For the other species we sample the initial states with
vacuum fluctuations, i.e., 〈|ψ2(ri )|2〉 = 1/(2l2) [61], where
the index i corresponds to the lattice site and 〈. . .〉 denotes
the ensemble average. At time t = 0 we use a π/2 pulse
to obtain a uniform superposition of the states ψ1/2(ri ) =
[ψ1(ri ) ± ψ2(ri )]/

√
2. This results in the two cloud densities

n1 ≈ n2 ≈ n/2 = 5 µm−2, since g11 and g22 are similar. We
then quench g12 in the demixed regime (α > 1) and determine
the time evolution ψ1/2(r, t ) via Eqs. (6) and (7). As schemat-
ically shown in Figs. 1(c) and 1(d), the initial time evolution
proceeds via nucleation of small-sized domains and the long-
time evolution results in two spatially separated clouds. To
analyze the demixing dynamics, as an order parameter, we
calculate the local density imbalance

m(r, t ) = n1(r, t ) − n2(r, t )

n1(r, t ) + n2(r, t )
. (10)

We show m(r, t ) for a periodic-boundary system in Fig. 2 and
its average 〈m(r, t )〉 for a box system in Fig. 6, where 〈. . .〉
denotes an average over the initial ensemble.

III. RESULTS

A. Demixing dynamics

In Fig. 2 we show the time evolution of m(r, t ) of a single
trajectory at T/T0 = 0.21 for α = 1.03 and 1.55. We employ a
fixed system size of 256 × 256 µm2 for all periodic-boundary
simulations. The quench to the demixed state at t = 0 triggers
the nucleation of domains of each component, where smaller
domains during the initial formation are present for α = 1.55
than that for α = 1.03. We estimate the initial domain size L0

by the momentum range k0 of unstable modes in Eq. (9). We
obtain L0 ∼ λ0 = 19 and 4.7 µm and the nucleation time t ∼

FIG. 2. Nucleation of domains and the coarsening dynamics. Time evolution of the two-species density imbalance m(x, y) of a single
trajectory for α = 1.03 (upper row) and 1.55 (lower row), displaying nucleation of domains of two components (red and blue) and their
coarsening dynamics. The spatial dimensions for each panel are 256 × 256 µm2.
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FIG. 3. Nonequilibrium excitation spectra. Dynamic structure
factor S1(k, ω) as a function of the wave vector k = kêx and fre-
quency ω for α = 1.03, 1.13, 1.34, and 1.55. The black continuous
lines are the Bogoliubov spectra Ek,± of Eq. (8) and the black dashed
line represents the imaginary part of Ek,−. The arrow indicates the
momentum range of unstable modes based on Eq. (9), which is
derived for continuous space. In our numerically discretized space
representation, this prediction is modified toward the solution of
Eq. (A4), resulting in a deviation from Eq. (9); see also the discussion
in Appendix A. The white dotted lines correspond to the spectra of
phase-separated clouds; see text.

τ = 26 ms and 1.5 ms for α = 1.03 and 1.55, respectively.
The intermediate time evolution manifests the coarsening pro-
cess, where small domains shrink and large ones grow. There
are small patches of other component in the domains, which
are due to the initial fluctuations that suppress the dynamics in
the weak separation regime. This is the scenario for α = 1.03,
whereas for α = 1.55 the dynamics is weakly affected by
these fluctuations as the system is in the strong separation
regime. The weak versus strong separation regime occurs as
an interplay between the thermal and quench energy. At high
temperatures thermal fluctuations dominate the dynamics and
no phase separation occurs as we show in Appendix B.

To identify the interplay of collective modes in the demix-
ing dynamics we calculate the dynamic structure factor of the
density

S1(k, ω) = 〈|n1(k, ω)|2〉, (11)

where n1(k, ω) is the Fourier transform of the density n1(r, t )
of component 1 in space and time:

n1(k, ω) = 1√
Nl Ts

∑
j

∫ Ts

0
dt e−i(kr j−ωt )n1(r j, t ). (12)

Ts is the sampling time for the numerical Fourier transform
and Nl = NxNy is the number of lattice sites. We choose
the same Ts = 0.55 s for all α, where the choice of Ts is
based on a time window that includes both nucleation and
coarsening of domains; see also Appendix C. In Fig. 3 we
show S1(k, ω) as a function of the wave vector k = kêx and

FIG. 4. Growth laws and dynamical scaling at nonzero temperatures. (a1)–(e1) Structure factor S(k, t ) as a function of the wave vector
k = kêx and time t on a log-log scale for α = 1.55 and various T/T0. The upper and lower ranges of spectral weights for (b1)–(e1) are given in
parentheses. The location of the maximum (continuous line) allows us to determine the average domain size L(t ); see text. (a2)–(e2) The values
of L(t ) and their power-law tη fit (line) yield η = 0.66, 0.63, 0.52, 0.45, and 0.36 for T/T0 = 0.21, 0.43, 0.65, 0.75, and 0.86, respectively. ξs is
the spin healing length; see text. (a3)–(e3) Plots of S(k)/L(t )2 versus kL(t ) demonstrate universal time evolution for various t . The continuous
line indicates an approximate scaling for the high-momentum tail.
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frequency ω for α = 1.03, 1.13, 1.34, and 1.55. We observe
both dynamically stable and unstable modes, where stable
modes appear as two excitation branches and unstable ones
as a broad spectrum of low-energy excitation. We compare
these results with the Bogoliubov spectra Ek,± of Eq. (8).
For our discretized system, the free-particle dispersion takes
the form εk = 2J[1 − cos(kxl )], where J = h̄2/(2ml2) is the
tunneling energy. We show the real-valued predictions of Ek,±
as the continuous lines in Fig. 3, which capture the excitation
branches of stable modes for low and intermediate α and show
deviations for high α. We also show the imaginary solution
of Ek,−, which qualitatively captures the broad spectrum of
unstable modes. The momentum range of unstable modes
increases with increasing α and is close to the predictions of
Eq. (9). There is a peaklike excitation at small k corresponding
to the structure of a macroscopic domain that the system
forms at time t = Ts, which shifts to a lower k at high α; see
the structure factor shown in Appendix C. This implies the
development of large domains at high α in agreement with the
dynamics presented in Fig. 2.

Furthermore, we compare the two excitation branches of
stable modes with the spectra of phase-separated clouds.
In this case, the cloud density is twice the initial density,
i.e., ni, f = 2ni, and the Bogoliubov spectrum reads Ek,n1, f =√

εk (εk + 2g11n1, f ). This result agrees with the upper branch
of S1(k, ω) for all α in Fig. 3. The other component being
spatially separated from component 1 acts as a thermal cloud
whose free-particle dispersion captures the lower branch for
all α in Fig. 3.

B. Dynamical scaling

To characterize the scaling behavior we calculate the struc-
ture factor of the imbalance

S(k) = 〈|m(k)|2〉, (13)

with

m(k) = 1√
Nl

∑
j

exp(−ikr j )m(r j ), (14)

where m(k) is the Fourier transform of m(r). In Figs. 4(a1)–
4(e1) we show S(k, t ) as a function of the wave vector k =
kêx and time t for α = 1.55 and various T/T0. The nucle-
ation of domains is indicated by the spectral peak at finite k,
which gradually moves to smaller k as the domains coarsen.
The location of the peak describes an average size of the
domain, whereas the peak broadening reflects the influence
of thermal fluctuations on the dynamics. The thermal effect
is strong at high temperature, resulting in a decreasing peak
amplitude in Figs. 4(a1)–4(e1). For T/T0 = 0.86, only after a
short time evolution, the spectral peak vanishes due to strong
diffusion induced by thermal fluctuations. We fit the structure
factor with the Gaussian distribution g(k) = A0 exp[−(k −
kd )2/(2σ 2)], where A0, kd , and σ are the fitting parameters.
From kd we determine the average domain size L = 2π/kd .
In Figs. 4(a2)–4(e2) we show the determined values of L(t )
on a log-log scale. The growth of L(t ) demonstrates a power-
law behavior that is typical for coarsening of macroscopic
domains L 
 ξs, where the spin healing length is defined
as ξs = h̄/

√
2mngs, with gs = (2g12 − g11 − g22)/2. ξs is a

FIG. 5. Temperature and quench-parameter dependence. (a)
η(T ) for α = 1.55. (b) η(α) at T/T0 = 0.21. The horizontal dashed
line marks the zero-temperature prediction η0 = 0.68. (c) Average
squared imbalance 〈m2〉 at time t = 11 s as a function of T/T0

for α = 1.03, 1.13, and 1.55, while the inset shows the time evo-
lution at T/T0 = 0.21. (d) Temperature dependence of the initial
superfluid fraction ns/n, which we determine using the method de-
scribed in Ref. [62]. The results are obtained for the system size
256 × 256 µm2.

length scale on which the two species interact to nucleate
domains. We extract a power law f (t ) = c0tη with exponent
η, with the assumption that the dependence scales as a power
law. This way, we determine the scaling exponent η; see
caption of Fig. 4. We note that the value of η decreases with
increasing temperature.

In Figs. 4(a3)–4(e3) we show the scaled structure factor
S(k, t )/L(t )2 as a function of the scaled wave vector kL(t )
for various t and T/T0. The different-time results collapse
on one single curve, confirming the scaling hypothesis. The
momentum tail follows a power-law behavior and its decay
varies with temperature. For T/T0 = 0.21 we find a depen-
dence S(k) ∼ k−3, which is consistent with the Porod law
[5]. This occurs due to the presence of domain walls that
lead to the dependence S(k) ∼ k−3 at large k in 2D. At high
temperature, the momentum tail decays slowly as the process
of phase separation is suppressed by dominant thermal fluc-
tuations. For T/T0 = 0.86 we find a momentum-tail behavior
S(k) ∼ k−1.25, where no phase separation is visible in the time
evolution; see Appendix B.

Figures 5(a) and 5(b) show the temperature and quench-
parameter dependence of the scaling exponent. Both T and α

influence the value of η, exemplifying the interplay between
strong and weak separation regimes. At low T and large α, the
system is in the strong separation regime in the sense that the
dynamics is marginally affected by initial fluctuations. Here
we obtain η close to the zero-temperature prediction η0 =
0.68, which suggests that the dominant process for domain
growth is the inertial hydrodynamic transport of superfluid
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FIG. 6. Domain formation in a square box of size 64 × 64 µm2. (a)–(c) show the time evolution of the average imbalance 〈m(x, y)〉
at T/T0 = 0.21 for α = 1.03 (upper row), 1.13 (middle row), and 1.55 (lower row). We present the full time evolution as videos in the
Supplemental Material, which displays a continuous transformation between the domains of different shapes [63].

from low-density to high-density regions. This scenario is
consistent with the simulations of binary condensates at zero
temperature [50]. At high T and small α, initial fluctuations
suppress the dynamics of phase separation and result in a
modification of η and the high-momentum tail of the structure
factor. We refer to this regime as the weak separation regime.
To quantify these regimes we calculate the time evolution of
the average squared imbalance 〈m2〉. In Fig. 5(c) we show
〈m2〉 at t = 11 s as a function of T/T0 for α = 1.03, 1.13, and
1.55. It decreases with increasing T/T0; see also Appendix B.
As shown in the inset of Fig. 5(c), 〈m2〉 increases during the
time evolution and then slowly converges to the steady state
in the long-time evolution. We find that the dynamics is in the
strong separation regime for 〈m2〉 � 0.64, where we recover
both the zero-temperature η0 and the Porod tail of the structure
factor. The weak separation regime sets in when 〈m2〉 � 0.64,
where thermal fluctuations modify the scaling parameters.
Here the dynamics is influenced by thermal fluctuations that
suppress the initial superfluid order of the system [Fig. 5(d)].
For 〈m2〉 � 0.4 we observe no phase separation.

C. Demixing dynamics in a square box

We now turn to the demixing dynamics of a homogeneous
2D cloud confined in a square-box geometry, which is mo-
tivated by the experiments [51,52]. Compared to a periodic
boundary system, where domain locations are spontaneous,
finite boundaries break the translational invariance and act as
a pinning potential for the formation of domains [26]. We
choose the same density and the same quench protocol as
above. We first analyze the demixing dynamics in a box cloud
of size 64 × 64 µm2, which is comparable to the experiments
[51,52]. In Fig. 6 we show the time evolution of the average

imbalance 〈m(x, y)〉 at T/T0 = 0.21 for α = 1.03, 1.13, and
1.55. Indeed, the nucleation of domains is pinned by the
box boundaries, which stems from a density difference at
the edges since a11 and a22 are different, serving as a seed
for the creation of domains. On the contrary, in the case of
periodic-boundary systems domain nucleation is seeded from
the fluctuations of the field. The box symmetry results in a
qualitatively different average dynamics than in infinite sys-
tems. For α = 1.03, the time evolution proceeds via formation
of regular patterns that undergo a continuous transformation to
create structures of striking, geometric shape. At t ∼ 0.5 s the
time evolution shows the creation of one macroscopic domain
of components 1 and 2, which then equilibrates after t ∼ 5 s.
These results are close to the measurements that show the
creation of similar structures for time evolution up to 100 ms

FIG. 7. Finite-size scaling. (a) η as a function of the inverse
system length 1/Lx at T/T0 = 0.21 for α = 1.03 (crosses) and 1.55
(squares). The linear fit (continuous lines) yields η∞ = 0.59 and 0.68
for α = 1.03 and 1.55, respectively. (b) We obtain η∞ = 0.53 at
T/T0 = 0.65 for α = 1.55.
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[51,52]. The pinning effect is suppressed when α is high; see
the dynamics for α = 1.13 and 1.55 in Figs. 6(b) and 6(c). The
reason for this is the smaller spin healing length ξs at higher α,
which supports the creation of small-sized domains. ξs is 4.6,
2.2, and 1.1 µm for α = 1.03, 1.13, and 1.55, respectively. For
the cloud size considered, we obtain Lx/ξs ≈ 14 and 58 for
α = 1.03 and 1.55, respectively, where the former supports
the creation of regular-shaped domains due to the boundary
condition. So, for Lx/ξs 
 1, the dynamics approaches the
one obtained for a system with periodic boundary conditions.

Next, we analyze the growth laws for the domains in a box
cloud of sizes between 64 × 64 µm2 and 512 × 512 µm2. We
calculate the structure factor S(k, t ) to determine the average
domain size using the procedure described above. From the
power-law growth of domains we ascertain the scaling expo-
nent η, which is analogous to Fig. 4. In Fig. 7(a) we show
η as a function of 1/Lx at T/T0 = 0.21 for α = 1.03 and
1.55. Lx is the linear dimension of the box. The variation of
system size by a factor of 64 allows us to perform a reliable
finite-size scaling, which gives access to the scaling exponent
η∞ in the thermodynamic limit. We obtain η∞ = 0.59 and
0.68 for α = 1.03 and 1.55, respectively. The results of η∞ are
close to the values obtained for periodic-boundary conditions.
In Fig. 7(b) we show η as a function of 1/Lx at T/T0 =
0.65 for α = 1.55. For this system we find η∞ = 0.53,
confirming the suppression of the scaling exponent at high
temperature.

IV. CONCLUSION

We have studied the demixing dynamics of a binary 2D
Bose superfluid using classical-field simulations. By quench-
ing the interspecies interaction parameter we have analyzed
the coarsening dynamics at various values of temperature
and the quench parameter. We have demonstrated that the
dynamical scaling of domain growth interpolates between the
inertial hydrodynamic growth law of binary fluids and the
diffusive growth law of a 2D conserved field. Specifically, for
low temperature and high quench we have found the inertial
hydrodynamic growth law L(t ) ∼ t2/3 and the Porod scaling
law of the structure factor S(k) ∼ k−3, where L is the average
domain size and k is the wave vector. We have pointed out that
at high temperature thermal fluctuations suppress the demix-
ing dynamics and modify both the domain growth law and the
Porod tail of the structure factor. We have shown that near
the superfluid transition temperature the scaling dynamics
approaches the diffusive growth law of a 2D conserved field,
L(t ) ∼ t1/3, and the Porod tail scales similar to S(k) ∼ k−1.
We have then studied the demixing dynamics in a box cloud.
We have shown that for low quench and small clouds of
sizes comparable to the spin healing length the box symmetry
gives rise to distinctive dynamics, which is characterized by
domains of geometric shapes. By varying the system size we
have determined the scaling exponents of the growth law and
found them to be consistent with the results of systems with
periodic boundary conditions.

Our results highlight the fundamental interplay of the
quench and thermal energy in phase separation, which mod-

ifies the underlying scaling laws of coarsening dynamics.
We note that these considerations might apply to the recent
results reported in [64]. The experimental realization of our
results provides a quantum simulation of scaling laws of bi-
nary fluids. Furthermore, Bose mixtures in a ring trap offer
the capability to study the solid-body rotation and persistent
currents in multicomponent quantum mixtures.
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APPENDIX A: MOMENTUM RANGE
OF UNSTABLE MODES

The range of unstable modes is obtained by setting Ek,− =
0 in Eq. (8), which results in(

εk

g11n1
+ 2

)(
εk

g22n2
+ 2

)
= 4α2. (A1)

For the continuum free-particle dispersion εk = h̄2k2/(2m),
Eq. (A1) becomes(

k2ξ 2
1 + 2

)(
k2ξ 2

2 + 2
) = 4α2, (A2)

where ξa = h̄/
√

2mgaana are the healing lengths, with a =
1, 2. We solve Eq. (A2) for k and obtain the solution

k2
0 = 1

ξ 2
1 ξ 2

2

[√(
ξ 2

1 − ξ 2
2

)2 + 4α2ξ 2
1 ξ 2

2 − (
ξ 2

1 + ξ 2
2

)]
. (A3)

For the discrete free-particle dispersion εk =
4J sin2(kl/2), with J = h̄2/(2ml2), Eq. (A1) takes the
form[

4ξ̃ 2
1 sin2(k̃/2) + 2

][
4ξ̃ 2

2 sin2(k̃/2) + 2
] = 4α2, (A4)

where ξ̃1 = ξ1/l , ξ̃2 = ξ2/l , k̃ = kl , and l is the lattice dis-
cretization length. For small k̃, sin2(k̃/2) ≈ k̃2/4 and we
recover Eq. (A2) and the result in Eq. (A3). This is the reason
why the result of k0 differs for large α in Fig. 3, where large
α leads to a large value of k0 and hence the deviation from the
discretized dispersion relation.

APPENDIX B: INFLUENCE OF TEMPERATURE
ON THE DEMIXING DYNAMICS

In this section we show how the thermal fluctuations
suppress the demixing dynamics at nonzero temperatures.
We calculate the imbalance m(x, y) of a single sample of
the ensemble for the immiscible parameter α = 1.55 and
the system size of 256 × 256 µm2. In Fig. 8 we show the
time evolution of m(x, y) for various values of the tem-
perature T/T0. The coarsening dynamics is affected by the
initial thermal fluctuations, resulting in a suppression of phase
separation at high temperatures. Near the superfluid critical
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FIG. 8. Influence of temperature on the demixing dynamics in a periodic-boundary system of size 256 × 256 µm2 for α = 1.55. (a)–
(d) show the time evolution of the imbalance m(x, y) of a single trajectory after the quench deep in the demixed state at temperatures T/T0 =
0.43, 0.65, 0.75, and 0.86. The red and blue colors denote the two components.

FIG. 9. Average squared imbalance 〈m2〉 as a function of temper-
ature T/T0, determined from the time evolution at t = 5.5 s (dashed
lines) and 11 s (symbols).

temperature at T/T0 = 0.86 we find no distinguishable phase
separation.

As shown in Fig. 2 the long-time relaxation is slow for
α = 1.03 compared to the dynamics for α = 1.55. This is also
reflected in the values of the average squared imbalance 〈m2〉
in Fig. 9, which shows the temperature dependence of 〈m2(t )〉
determined at two different times t = 5.5 s and 11 s in the
time evolution. This confirms that the long-time relaxation
is slow for small α at low temperatures, whereas dominant
thermal fluctuations facilitate relaxation for systems at high
temperatures.

APPENDIX C: NONEQUILIBRIUM
EXCITATION SPECTRA

In Fig. 10 we show the results of the dynamic structure
factor S1(k, ω), which are calculated using a longer sampling
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FIG. 10. Dynamic structure factor S1(k, ω) as a function of the
wave vector k = kêx and frequency ω for α = 1.03, 1.13, 1.34, and
1.55, which is determined using a longer sampling time of Ts = 1.1 s.
The black continuous lines, the black dashed line, and the white dot-
ted lines are the same as in Fig. 3. The arrow indicates the momentum
range of unstable modes based on Eq. (A3).

time of Ts = 1.1 s. The overall features of the excitation spec-
tra are similar to the results of sampling time of Ts = 0.55 s
presented in Fig. 3.

FIG. 11. Structure factor Sk as a function of the wave vector
k = kêx for α = 1.03, 1.13, 1.34, and 1.55, determined using two
sampling times: (a) Ts = 0.55 s and (b) Ts = 1.1 s.

As we mention in the main text, S1(k, ω) displays a
peaklike excitation at low wave vector k corresponding to a
macroscopic domain that the system forms at the sampling
time Ts. To show that the location of this peak changes with
α, we determine the structure factor Sk = ∑

ω S1(k, ω) from
the results of S1(k, ω). In Fig. 11 we plot Sk as a function
of k for α = 1.03, 1.13, 1.34, and 1.55. The peak occurs at a
lower k for high α. Furthermore, there is an overall shift in
the peak location depending on the sampling time Ts. We note
that the rapid growth of Sk at k = 0 refers to the condensate
mode.
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