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Quantum-enhanced performance in superconducting Andreev reflection engines
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When a quantum dot is attached to a metallic reservoir and a superconducting contact, Andreev processes
lead to a finite subgap current at the normal lead and the creation or destruction of Cooper pairs. Andreev
reflection engines profit from the destruction of Cooper pairs to provide the work needed to set a charge current
at the normal-conductor contact generating electrical power. For this power-transduction device, high power and
large efficiencies in quantum mechanically enhanced regimes are demonstrated. There thermodynamic tradeoff
relations between power, efficiency, and stability, valid for any classical engine, are overcome, and kinetic
constraints on the engine precision are largely surpassed in arbitrary far-from-equilibrium conditions.
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I. INTRODUCTION

At the interface of a normal metal and a superconduc-
tor, Andreev reflection allows electron-to-hole conversion by
means of the creation of a Cooper pair in the superconductor
[1]. The superconducting leakage in the vicinity of a normal
metal induces superconducting correlations at the normal side
that have a strong impact on the electronics of such systems.
Hybrid normal-superconductor (NS) setups have attracted a
great deal of interest both from the theoretical [2] and ex-
perimental sides [3]. The related phenomena, such as the
Josephson effect [4–7] and multiple Andreev reflections [8],
are employed as quantum advantages for creating a wide
range of possibilities for new electronic devices, including
supercurrent transistors [9–11], generators of spin-entangled
electrons [12–19], superconducting quantum interference de-
vices [20–25], superconducting single-photon detectors [26],
NS-based qubits like Andreev qubits [27–29], and topological
qubits [30–32]. The latter have been proposed as building
blocks for fault-tolerant quantum computation.

Beyond these applications, hybrid platforms are perfect
candidates for thermal machines [33]. In particular, they are
being proposed in implementations of quantum refrigerators
and heat engines [34–44]. To progress in this field, a com-
prehensive understanding of their quantum thermodynamics
is certainly needed. For such a purpose, we consider a normal
conductor acting as a small quantum dot (QD) that is tunnel-
coupled to a metallic contact and a superconducting electrode.
Quantum dots are attractive for thermodynamics as they can
display some quantum advantages, namely, they exhibit quan-
tum level discretization behaving as energy filters, and they
can be attached to quantum materials such as reservoirs of
coherent states, i.e., Cooper pairs reservoirs.
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In this paper, we characterize the quantum performance of
a minimal hybrid quantum device based on Andreev reflection
processes at the level of its efficiency, power, and its reliability.
The device is able to operate in nonequilibrium steady-state
conditions as an engine transforming coherent Cooper pairs
into an electrical current (see Fig. 1). We dub this device an
Andreev reflection engine. Contrary to standard heat engines
converting heat into work [45], this engine is an example of
a work-to-work converter, a energy transduction mechanism
typical in soft nanomachines, working in the presence of var-
ious concentration gradients, external forces and torques, or
electric fields [46–48]. Here the destruction of Cooper pairs
in a quantum dot previously loaded from a superconductor
generates an electron-hole pair at the normal contact due to the
Andreev processes, i.e., a finite charge current going against
the applied bias voltage (Ẇq > 0), at the expense of a coher-
ent input power from the superconductor (ẆS < 0). Inversely,
because of Andreev processes, a hole can be injected into the
normal contact to create a Cooper pair at the superconducting
side (ẆS > 0) and a retroreflected electron at the metallic
contact (Ẇq < 0).

Remarkably, the Andreev reflection engine shows large
violations of the so-called thermodynamic uncertainty relation
(TUR) and the kinetic uncertainty relation (KUR), which are
responsible for the quantum-enhanced performance of the
engine operation. The TUR is a universal nonequilibrium re-
lation in the form of an inequality. It imposes strict bounds on
the precision of generic currents through a system following
classical Markovian evolution in terms of its dissipation as
measured by the entropy production rate [49–51]. Relevant
applications of the TUR include the estimation of dissipation
in systems where only partial information is available [52].
Moreover, the TUR has been used to assess the universal
tradeoff between efficiency, power, and their fluctuations
in steady-state heat engines, predicting an inevitable drop
of stability in any classical engine as their power and
efficiency simultaneously increase [53]. As a consequence,
violations of the TUR have been proposed as a witness
for quantum-thermodynamic signatures in the operation
of quantum devices in general [54–56], and quantum heat
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FIG. 1. (a) Illustration of the normal-quantum dot-
superconducting engine. In Andreev reflection an electron from the
normal metal (left pink terminal) is injected in the quantum dot
resulting in (i) a retroreflected hole at the normal reservoir, and (ii)
a coherent Cooper pair at the superconductor (right green terminal).
(b) The superconductor acts as a source of coherent states (Cooper
pairs) that are employed through the quantum dot to generate an
electrical current eventually delivering electrical power.

engines in particular [57–62]. However, the relevance of
the regimes in which the TUR has been found to break
down in previous works is still unclear, given also the small
magnitude of the observed violations in many cases. Similar
to the TUR, the KUR consists of a universal bound on
generic system currents in terms of dynamical activity [63],
which, contrary to dissipation, is symmetric under time
reversal [64]. Despite passing almost unnoticed, the KUR can
provide a powerful complement to the TUR in the description
of engines working in nonequilibrium steady states [65],
especially in far-from-equilibrium regimes [63,66] where
the TUR becomes far from tight [51] (see also Ref. [67]
for a unification of TUR and KUR inequalities). Extensions
of the original TUR and KUR for quantum dynamics have
also been recently reported [68–71]. As we will discuss in
the following, Andreev reflection engines are able to show
unprecedentedly large violations of the KUR at maximum
power, combined with notable violations of the TUR in
high-power and high-efficiency regimes. Moreover, both
inequalities can be violated simultaneously in a regime with
balanced efficiency and close-to-maximum power output.

II. ANDREEV REFLECTION ENGINE MODEL

We consider a single QD device with Hamiltonian Hd =∑
σ εσ d†

σ dσ + Ud†
↑d↓d†

↑d↓, where εσ denotes the energy level
of the dot for electrons with spin σ = {↑,↓}, and U stands
for the Coulomb repulsion between electrons. Eventually,
one can consider the action of a magnetic field by includ-
ing a Zeeman splitting in the dot level energy as ε↑,↓ =
ε ± �Z with �Z = μBgB (μB being the Bohr magneton, g
is the gyromagnetic factor, and B is the applied magnetic
field). The QD is weakly coupled to both a superconducting
electrode and to a metallic contact that acts as a thermal
reservoir, allowing tunneling of electrons to the QD. Both
terminals are kept at a constant temperature T and we assume,
without loss of generality, vanishing chemical potential in
the superconductor, μS = 0. We are interested in the limit
of a large superconducting gap, � → ∞ (subgap transport)
[2,72–76], that allows us to approximate the effect of the

superconductor on the dot as a coherent driving, described
by an effective time-dependent Hamiltonian reading HS (t ) =
�S (d†

↑d†
↓ei(2ε+U )t + d↓d↑e−i(2ε+U )t ) in a Schrödinger picture.

Here �S is a local pairing term that accounts for the prox-
imity effect of the superconductor on the QD. The QD is
tunnel-contacted to a normal electrode characterized by the
tunneling rate �N . Assuming Born-Markov approximations
(either �N � |ε − μN | or �N � kBT [77]) and weak pairing
(�S ∼ �N ), the dynamical evolution of the system can be
modeled by a local quantum master equation in Lindblad
form describing the driven-dissipative dynamics of the dot
(see Appendix A) reading, in the interaction (rotating) frame
with respect to Hd ,

ρ̇(t ) = −i�S[d†
↑d†

↓ + d↑d↓, ρ(t )] +
∑

k

Dk[ρ(t )], (1)

with dissipators Dk[ρ] := LkρL†
k − 1

2 {L†
k Lkρ} and a set of

eight Lindblad operators labeled as L+
σ,δ = �N f (εσ + δU )d†

σ

and L−
σ,δ = �N [1 − f (εσ + δU ])dσ , with δ = {0, 1} (and k =

{σ, δ}). These terms describe the incoherent tunneling of elec-
trons from the normal-metal reservoir, jumping inside (+)
or outside (−) the dot, at a given energy. Here �N is the
tunneling rate between the dot and the normal electrode,
and f (E ) = 1/[1 − exp[(E − μN )/kBT ] is the Fermi-Dirac
distribution, with μN the chemical potential of the normal-
metal reservoir. From the master equation (1), we analytically
obtain the density matrix in the steady state ρ(t → ∞) = π

(ρ̇ = 0) from which we compute the average steady-state en-
ergy current 〈JE 〉 := Tr[Hd

∑
k D[Lk](π )] and charge current

〈Jq〉 := e
∑

σ Tr[d†
σ dσ

∑
k D[Lk](π )] entering the dot from

the normal-metal reservoir. They read

〈JE 〉 = �N

∑
σ,δ

εσ

[
f e
σ,δ (π0 + πσ̄ ) − f h

σ,δ (πσ + π↑↓)
]
, (2a)

〈Jq〉 = �N

∑
σ,δ

e
[

f e
σ,δ (π0 + πσ̄ ) − f h

σ,δ (πσ + π↑↓)
]
, (2b)

where we denoted f e
σ,δ = f (εσ + δU ) and f h

σ,δ = 1 − f (εσ +
δU ) the Fermi-Dirac distributions for electrons and holes,
respectively, the populations of the density operator, π0 =
〈0| π |0〉, πσ = 〈σ | π |σ 〉, π↑↓ = 〈↑↓| π |↑↓〉, and with ↑̄ =↓.
Explicit expressions are provided in Appendix B. Hereafter,
we set electron charge e = 1, Boltzmann constant kB = 1, and
h̄ = 1.

Associated with the transport of energy and electrons be-
tween the dot and the normal-metal reservoir, we identify
the average heat current entering the system, Q̇ := 〈JE 〉 −
μN 〈Jq〉, and the average electrical output power delivered to
the normal metal, Ẇq := −μN 〈Jq〉, as usual [78]. In addition,
we identify the average output power extracted into the su-
perconductor from the time-dependent Hamiltonian, ẆS :=
−Tr[ḢS (t )ρS (t )], which in the interaction picture and for the
steady-state regime reads

ẆS = i�S (2ε + U ) (πc − π∗
c ), (3)

where πc = 〈0| π |↑↓〉. Notice that this is a coherent work
contribution which only depends on the (nonzero) off-
diagonal elements of π in the Hd basis, connecting the
even-parity QD states by a Cooper pair. The first law in
the setup hence reads ẆS + Ẇq = Q̇, ensuring the balance

043041-2



QUANTUM-ENHANCED PERFORMANCE IN … PHYSICAL REVIEW RESEARCH 5, 043041 (2023)

FIG. 2. Three operating regimes for the Andreev reflection en-
gine as characterized by the electric power output at the normal
reservoir Ẇq (orange solid-line), the driving power extracted in the
superconductor ẆS (orange solid-line), and the heat absorbed from
the reservoir Q̇ (red solid-line) as a function of the dot energy level
ε in kBT units (left panel) and their corresponding illustrations in
terms of the direction of the currents (right panel). Power and heat
current values are given in units of �N kBT and we took U = 8kBT ,
μN = 20kBT , �Z = 2kBT , and �S = 0.6�N .

between output work in both terminals and input heat from
the normal metal [79]

In Fig. 2 we show the three main regimes of operation of
the NS hybrid device as a function of the dot level ε for fixed
values of Coulomb repulsion U > 0 and chemical potential
μN > μS = 0. In regime (I), ε > μN − U/2, the electric cur-
rent enters the normal-metal generating output power Ẇq at
the expense of the work exerted by the superconductor, ẆS <

0. Maximum output electric power Ẇ max
q = μ�N [4�2

S/(�2
N +

4�2
S )] is quickly reached as ε is increased. On the contrary,

if (II) −U/2 < ε < μN − U/2, work is extracted in the su-
perconductor through the generation of Cooper pairs ẆS > 0
using an input electrical current from the normal metal act-
ing as a load, Ẇq < 0. In this regime, the superconducting
power reaches its maximum, but obtaining an analytical ex-
pression for it was not possible. Finally, for (III) ε < −U/2,
ẆS < 0 becomes negative, together with Ẇq < 0, and hence
power from both superconducting and normal-metal contacts
is consumed. In the three regimes, heat is dissipated into the
environment Q̇ < 0 leading to a non-negative entropy produc-
tion rate:

	 = −Q̇/T = −(ẆS + Ẇq)/T � 0. (4)

The equilibrium point is achieved precisely in the interface
between regimes I and II for ε = μN − U/2, where both
electrical and superconducting currents change sign lead-
ing to zero dissipation. This corresponds to the condition
of (global) detailed balance in the setup, obtained from
f e
↑,1 f e

↓,1 = f h
↑,0 f h

↓,0.
The efficiencies of regimes I and II are obtained by dividing

the output power by the corresponding input load as ηI :=
Ẇq/(−ẆS ) and ηII := ẆS/(−Ẇq), which lead to remarkably
simple expressions:

ηI = 2μN

2ε + U
� 1, ηII = 2ε + U

2μN
� 1, (5)

where the upper bounds follow from the second law of
thermodynamics in the setup, as expressed in Eq. (4). No-
tice that, contrary to the case of quantum heat engines and

refrigerators, the efficiency of the Andreev reflection engine
is not bounded by the Carnot efficiency, but by 1, as it corre-
sponds to work-to-work transducers [46]. Moreover, similar to
other models of steady-state engines working in a continuous
operation mode, maximum efficiency can only be obtained
by approaching the equilibrium point, leading to vanishing
power output [45,78,80], and it verifies universal relations
constraining maximum power and minimum dissipation in the
linear-response regime [47,81,82].

III. ENHANCED STABILITY FROM DEPARTURES IN TUR
AND KUR

Beyond the power output and the efficiency of an engine, a
third key element for the assessment of its performance is the
stability of the output power. Generated power is affected by
unavoidable fluctuations induced by environmental noise, and
it may spoil its reliability [83–85]. The TUR has a privileged
position to capture the core of the tradeoff between power,
efficiency, and stability, since it bounds all current fluctua-
tions by dissipation, var[X ]2/〈X 〉2 � 2kB/	, for any current,
e.g., X = JE , Jq, . . . , where var[X ] =

√
〈(X − 〈X 〉)〉2 is the

variance or uncertainty of the considered current [49–51].
Indeed, it allows a quantitative characterization of this tradeoff
through the so-called normalized constancy [53], which in the
present setup reads, for the electric power,

CT = 2kBT
ηIFq

(1 − ηI )Ẇq
� 1, (6)

where Fq := 〈Jq〉2/var[Jq]2 denotes the electric signal-to-
noise ratio (squared inverse relative error) quantifying the
reliability of the engine’s output current, and we applied the
TUR to obtain the right-hand-side inequality. This implies that
low efficiency is a price to pay for accessing a large signal-
to-noise ratio (and hence a reliable engine) at finite output
power. We notice that the TUR strictly bounds the optimal
performance of any classical steady-state engine following
classical dynamics, as characterized by its power, efficiency,
and stability [53]. However, in the Andreev reflection en-
gine, it is possible to achieve enhanced constancy in relevant
operating regimes, as its quantum coherent (but Markovian)
evolution induced by superconductivity allows the breakdown
of the TUR. We explicitly show the TUR departure by ob-
taining analytical expressions of the current variance var[Jq]
that are used to compute the signal-to-noise ratio Fq and
the normalized constancy CT , using the full-counting-statistics
formalism [86–89]. In particular, we obtained the general-
ized quantum master equation including four counting fields
accounting for the input-output exchange of electrons in the
normal-metal contact. The cumulants are then computed fol-
lowing the inverse counting statistics method formulated in
Ref. [89], from which the current variance var[Jq] is obtained
(see Appendix C).

Our results are shown in Fig. 3(c), where we plot CT as
a function of ε − μN and the Coulomb repulsion U . The
classical upper bound CT = 1 is highlighted by the red dashed
line, while yellow (light) tones denote quantum-enhanced
constancy. While classical steady-state engines achieve unit
constancy only at the equilibrium point (detailed balance
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(a) (b) (c) (d)

FIG. 3. (a) Electrical output power in μN�N units vs ε − μN (dot level height on the top the conductor chemical potential) and U (Coulomb
interaction). The global detailed balance condition depicted in white (ε − μN = −U/2) separates regimes with electrical power generation
(regime I) and superconducting power generator (regime II). (b) Corresponding efficiency for the superconducting work to electrical power
conversion (ηI) and for electrical power to superconducting work (ηII). (c) TUR constancy in the plane (ε − μN ,U ) where regions leading to
TUR violations CT > 1 are marked by the dashed red line. (d) KUR constancy in the plane (ε − μN ,U ) and violations CK > 1 marked by
dashed black lines. Parameters: �S = 0.6�N , kBT = 1, and �z = 0.

line in the figure), our Andreev reflection engine allows
a quantum-mechanical enhancement of its thermodynamic
performance (CT � 1.2) in regimes of high efficiency η >

0.9 and near the maximum output power region Ẇq �
(0.4−0.5)μN�N , as can be appreciated in Figs. 3(a) and 3(b),
in which the region leading to TUR violations has also been
included to guide the eye.

Far from equilibrium, however, dissipation is not the only
quantity of interest; time-symmetric quantities may play an
important role as well [64]. An important example is dy-
namical activity (or frenesy) [90–93] characterizing the total
volume of transitions in a system per unit time, regardless of
the net current directions. In our setup, it reads

K = �N

∑
σ,δ

[
f e
σ,δ (π0 + πσ̄ ) + f h

σ,δ (πσ + π↑↓)
]
; (7)

for the explicit expression, see the Appendix B. It has been
shown that dynamical activity also bounds all steady-state
currents by means of the KUR, as var[X ]2/〈X 〉2 � K−1 for
X = JE , Jq, . . . , providing a tighter constraint to the noise-to-
current ratio than the TUR in far-from-equilibrium conditions
[63,66]. The KUR allows us to directly introduce a new
normalized constancy bounded by 1 for classical Markov
dynamics in nonequilibrium steady states:

CK = Fq

K � 1, (8)

to be compared with the TUR-based normalized constancy
in Eq. (6). The above inequality provides a complementary
(strict) constraint on the stability of any classical steady-state
engine, and it highlights the fact that in order to increase the
signal-to-noise ratio, a larger dynamical activity is necessary,
independent of the incurred dissipation.

Remarkably, we find that the Andreev engine exhibits large
violations of the KUR-normalized constancy (up to CK � 2.2.)
in extensive parameter regimes, as shown in Fig. 3(d), as
soon as we deviate from equilibrium, i.e., from the centered
white line representing detailed balance conditions. The re-
gion where Eq. (8) is violated is highlighted in yellow (light),
with the classical maximum value represented by the black
dotted curves. This region includes parameters for which
maximum power has been (almost) saturated, Ẇq � 0.5μN�N

[see Fig. 3(a), where the region with enhanced KUR-
normalized constancy is also plotted], and the engine effi-
ciency starts to decrease with respect to the region showing
TUR violations, ηI � 0.9–0.6 [both regions are also compared
in Fig. 3(b)]. Therefore, it turns out that the most accentuated
quantum consequences on the engine precision occur indeed
in far-from-equilibrium conditions, and they are in general
undetected by the TUR. There is, however, a small region
where both TUR and KUR are simultaneously violated, where
the Andreev reflection engine shows a high output power
(Ẇq � 0.5μN�N ) together with a stability not achievable with
similar values of efficiency (ηI � 0.9) by any classical steady-
state engine.

IV. EXPERIMENTAL DIRECTIONS AND CLOSING

Hybrid systems benefit from Andreev processes serving
as the basis for the construction of Andreev reflection en-
gines operating as work-to-work transducers. Notably, these
engines exhibit significant violations of the TUR and the KUR
at large efficiencies and maximum power (doubling KUR
violations predicted in normal double quantum dots [65]).
We propose for its experimental realization a semiconductor
nanowire QD as motivated by the recent experimental ac-
tivity on the subgap transport regime [74–76]. Specifically,
a device consisting of a nanowire QD tunnel-coupled to
a normal electrode, and partially covered by a layer of a
large-gap superconducting material, where our results may
be tested from measurements of current fluctuations. [Typical
parameters: � = 2.5 meV (niobium) [30,94] or � ∼ 0.55
(vanadium with Ti and Al), U ≈ 0.2 meV, T ∈ [0.1, 1 K]
[74], and tunneling �N ∈ [1, 5 μeV] as in experiments in
the weakly coupled regime [95,96].] Out of the large-gap
regime we expect that quasiparticle transport will weaken
the violation of TUR and KUR. Coherent assisted devices
such as the Andreev reflection engine presented here, showing
large departures from the classical TUR and KUR bounds,
open the door to construct highly stable and efficient quan-
tum machines under low-dissipation conditions. On the other
hand, the ultimate precision bounds achievable in hybrid
normal-superconducting quantum conductors remain an open
question for future research [97].
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APPENDIX A: MASTER EQUATION DERIVATION

The Hamiltonian of the QD system interacting with normal
and superconducting leads reads

H =
∑

σ

[
εσ d†

σ dσ + U

2
d†

σ dσ d†
σ̄ dσ̄

]

+
∑

σ

∑
kα

Vkα

(
c†

kα
dσ + H.c.

) +
∑
kN

εkN c†
kN

ckN

+
∑

kS

εkS c†
kS

ckS + �
(
c†

kS
c†

kS
+ H.c.

)
. (A1)

As in the main text, ε↑,↓ = ε ± �Z is the energy level for the
dot, and U is the Coulomb repulsion. Electrons are annihilated
in the dot by the operator dσ with spin denoted by σ = {↑,↓}
(σ̄ denotes the opposite spin to σ ). Here kα is the wave vector
for the electronic states in the superconducting and metallic
reservoirs, α = {S, N}. � denotes the superconducting gap.
Operators ckN and ckS represent the destruction operator for
electrons at the normal (N) and superconducting (S) elec-
trodes. The tunneling amplitudes between the normal-to-dot
and superconducting-to-dot parts are denoted by VN ≡ VkN

and VS ≡ VkS , respectively, which are considered independent
of k. The relevant QD states are denoted for short as | ↑〉,
| ↓〉 for one electron on the dot with respective spin, |0〉 for
no electrons, and | ↑↓〉, corresponding to a Cooper pair in
the QD.

From Eq. (A1) we perform two approaches: (i) the on-site
Coulomb interaction is considered weak enough to allow a
mean-field treatment, and (ii) we follow Ref. [72] and we
adopt an effective Hamiltonian description corresponding to
the large-gap limit (subgap transport � � �N , kBT ) by taking
� → ∞. In that case, the continuum part of the charge current
due to the quasiparticle contribution is negligible [43,73–76].
Under these considerations, the QD is “proximitized” by the
superconductivity introducing an effective local pairing term

denoted by �S . Consequently, the QD Hamiltonian is com-
posed of a bare term Hd = ∑

σ εσ d†
σ dσ + Ud†

↑d↑d†
↓d↓ and

the pairing term HS (t ) = �S (d†
↑d†

↓ei(2ε+U )t + d↓d↑e−i(2ε+U )t ),
whereas the superconducting electrode is traced out.

In the weak-coupling limit of the QD normal-metal in-
teraction, and under Born-Markov approximations (V 2

N �
max{|εσ − μN |, kBT } [77]), the driven-dissipative dynamics
of the system can be described by means of a quantum
master equation [98,99]. Moreover, in the limit of weak in-
teraction with the superconductor, one can treat HS (t ) as a
perturbation to the bare QD Hamiltonian Hd , and perform the
secular approximation up to leading order [100] to obtain a
master equation in Gorini-Kossakovsky-Sudarshan-Lindblad
(GKSL) or simply Lindblad form:

ρ̇S (t ) = − i[Hd + HS (t ) + HLS, ρS (t )]

+
∑

k

Dk[ρS (t )] + O
(
V 2

N �S
)
, (A2)

which remains valid as long as O(V 2
N �S ) ∼ O(V 3

N ) or greater.
Here HLS is the so-called Lamb-shift Hamiltonian, and we ob-
tain dissipators Dk[ρ] = LkρL†

k − 1
2 {L†

k Lkρ} (with k = {σ, δ})
for the set of Lindblad operators L+

σ,δ = √
�N f (εσ + δU )d†

σ

and L−
σ,δ = √

�N [1 − f (εσ + δU ])dσ , with δ = {0, 1}. They
produce jumps between the bare Hd QD states, with f (E ) =
1/[1 + exp[β(E − μ)] the Fermi-Dirac distribution function
[β = (kBT )−1, where kB is the Boltzmann constant and T is
the temperature] and �N = πV 2

N νN is considered as a constant
(νN is the DOS at the normal contact).

The terms HLS and Dk[ρS (t )] above are of the order V 2
N ,

while further terms of order O(V 2
N �S ) are neglected, justi-

fying that the presence of the superconductor driving term
HS (t ) does not alter the dissipative interaction between the
QD and the normal metal [99]. This procedure is standard
for obtaining a local master equation [100], while alternative
ways have been discussed, e.g., in Refs. [101–104]. Moreover,
as is customary in open quantum systems, we neglect the
Lamb-shift Hamiltonian HLS since it only leads to a (small)
renormalization of the original energies [98,99]. Taking these
considerations into account, and shifting to the rotating frame
with respect to Hd , we recover, from Eq. (A2), the master
equation (1).

From the master equation (1) we can obtain the Pauli equa-
tions for the QD level occupations pi := 〈i|ρ|i〉 for i = {0,↑,

↓,↑↓} and the only relevant off-diagonal term c := 〈0|ρ| ↑↓〉
induced by the superconductor coherent driving. Below we
display the Pauli equations in matrix form as d �p(t )/dt =
W �p(t ) with column vector �p = (p0, p↑, p↓, p↑↓, c, c∗)T and
rate matrix W :

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ṗ0

ṗ↓
ṗ↑
ṗ↑↓
ċ

ċ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−(k+
↑ + k+

↓ ) k−
↓ k−

↑ 0 i�S −i�S

k+
↓ −(k−

↓ + r+
↑ ) 0 r−

↑ 0 0

k+
↑ 0 −(k−

↑ + r+
↓ ) r−

↓ 0 0

0 r+
↑ r+

↓ −(r−
↑ + r−

↓ ) −i�S i�S

i�S 0 0 −i�S −� 0

−i�S 0 0 i�S 0 −�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

p0

p↓
p↑
p↑↓
c

c∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A3)
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where i is the pure imaginary complex unit, and the transition
rates that appear in the rate matrix W read k±

σ := �N f (εσ ) and
r±
σ := �N f (εdσ + U ). Moreover, for ease of notation, we used

� := ∑
σ (k+

σ + r−
σ )/2. Notice that the transition rates k±

σ and
r±
σ stand for adding an electron on the dot (+) with spin σ

and for subtraction of an electron (−) with spin σ , and we
distinguished the cases in which the quantum dot is either
empty (k-rates) or singly occupied (r-rates).

APPENDIX B: MAIN THERMODYNAMIC QUANTITIES

In this Appendix, we provide some of the analytical expres-
sions for the main quantities characterizing the performance
of the Andreev reflection engine introduced in the main text.
First, we provide expressions for the energy and charge cur-
rents in Eqs. (2a) and (2b):

〈JE 〉 = 4 �N (2ε + U )�2
S

(
f e
↑,1 f e

↓,1 − f h
↑,0 f h

↓,0

)
∑

σ

(
f e
σ,1 + f h

σ,0

)(
4�2

S + �2
N

[
1− ∏

σ

(
f e
σ,1 − f e

σ,0

)]) ,

(B1)

〈Jq〉 = 4 �N�2
S

(
f e
↑,1 f e

↓,1 − f h
↑,0 f h

↓,0

)
∑

σ

(
f e
σ,1 + f h

σ,0

)(
4�2

S + �2
N

[
1 − ∏

σ

(
f e
σ,1 − f e

σ,0

)]) ,

(B2)

from which we can easily check that 〈JE 〉 = (2ε + U )〈Jq〉,
and that the detailed balance condition f e

↑,1 f e
↓,1 = f h

↑,0 f h
↓,0

leads immediately to 〈JE 〉 = 〈Jq〉 = 0. On the other hand,
the average output power in the superconductor from Eq. (3)

reads

ẆS = 4 �N (2ε + U )�2
S

(
f e
↑,1 f e

↓,1 − f h
↑,0 f h

↓,0

)
∑

σ

(
f e
σ,1 + f h

σ,0

)(
4�2

S + �2
N

[
1 − ∏

σ

(
f e
σ,1 − f e

σ,0

)]) ,

(B3)

hence verifying ẆS = 〈JE 〉, as pointed out in the main text.
The entropy production in Eq. (4) is then given by

	 = 4 �N (2μ − 2ε − U )�2
S

(
f e
↑,1 f e

↓,1 − f h
↑,0 f h

↓,0

)
T

∑
σ

(
f e
σ,1 + f h

σ,0

)(
4�2

S + �2
N

[
1 − ∏

σ

(
f e
σ,1 − f e

σ,0

)]) ,

(B4)

and the dynamical activity in Eq. (7) reads

K = �N

[
�2

N (K1 + K2)
∑

σ

(
f e
σ,1 + f h

σ,0

)
∑

σ

(
f e
σ,1 + f h

σ,0

)(
4�2

S + �2
N

[
1− ∏

σ

(
f e
σ,1 − f e

σ,0

)])
− 4 �2

SK3
(

f e
↓,1 + f h

↑,0

)
∑

σ

(
f e
σ,1 + f h

σ,0

)(
4�2

S + �2
N

[
1− ∏

σ

(
f e
σ,1 − f e

σ,0

)])
]
.

(B5)

Finally, the electric power signal-to-noise ratio appearing in
TUR and KUR expressions [Eqs. (6) and (8)] is given by

Fq =
(

f e
↑,1 f e

↓,1 − f h
↑,0 f h

↓,0

)∑
σ

(
f e
σ,1 + f h

σ,0

)
2μ[F1 + F2 + F3 + F4]

. (B6)

In the above expressions for the dynamical activity and elec-
tric signal-to-noise ratio, we have introduced the following
functions to simplify the expressions:

K1 = (
f e
↓,0

)2

(
f e
↑,1 f e

↓,1 + f e
↑,0

∑
σ

f h
σ,1 − f h

↑,1 − 1

)
+ f e

↑,0

(
2 f h

↑,0 − f e
↓,1

[(
f e
↑,1

)2 + f e
↑,1 f e

↓,1 −
∑

σ

f h
σ,1 − f e

↑,0

(
f e
↑,1 + 1

)])
,

K2 = f e
↓,0

(
2 + (

f e
↑,0

)2 ∑
σ

f h
σ,1 − f e

↑,0

[(
f e
↓,1

)2 + f e
↑,1 f e

↓,1 −
∑

σ

f h
σ,1

])
+ f e

↑,0

[(
f e
↓,1

)2 + (
f e
↑,1

)2 + 4
(

f e
↑,1 f e

↓,1 − 1
) −

∑
σ

f e
σ,1

]
,

K3 = (
f e
↓,0

)2 + (
f e
↑,1 + 1

)(
f h
↑,1 + f h

↓,1 + f h
↑,0

) + f e
↓,0

(
2 f e

↑,1 − f e
↓,0 − f h

↓,1

)
,

F1 =
∑

σ

(
f e
σ,1 + f h

σ,0

)2[
f e
↑,1 f e

↓,1 − f h
↓,0 − f e

↑,1 f e
↓,0

(
1 + f e

↓,1

) + f e
↑,0 f e

↓,0

(
f e
↑,1 − f e

↓,1

) − f e
↑,0

(
f e
↑,1 f e

↓,1 − f h
↓,1

)]
,

F2 = 4�2
S

(
f e
↑,1 f e

↓,1 − f h
↑,0 f h

↓,0

)[
8 + (

f e
↓,0

)2 − (
f e
↓,1

)2 + f e
↑,0

(
f e
↑,0 − 8

) + f e
↓,0

(
6 f e

↑,0 − 8
) − 6 f e

↑,1 f e
↓,1 − (

f e
↑,1

)2]
4�2

S + �2
N

[
1 − ∏

σ

(
f e
σ,1 − f e

σ,0

)] ,

F3 = 4�2
S

(
f e
↑,1 f e

↓,1 − f h
↑,0 f h

↓,0

4�2
S + �2

N

[
1 − ∏

σ

(
f e
σ,1 − f e

σ,0

)]
)2

,

F4 = 4�2
S

[
10 −

∑
σ

(
f e
σ,1 − f e

σ,0

)] +
[

18 + 5
∑

σ

(
f e
σ,1 − f e

σ,0

) + (
f e
↓,0

)2[
f e
↑,0 − f e

↑,1

] + f e
↓,1

(
f e
↑,0 − f e

↑,1

)

× [
10 + f e

↓,1 − f e
↑,0 + f e

↑,1

] + f e
↓,0

[(
f e
↑,0

)2 + 2 f e
↑,1

(
5 + f e

↓,1

) + (
f e
↑,1

)2 − 2 f e
↑,0

(
5 + f e

↑,1 + f e
↓,1

)]]
. (B7)
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APPENDIX C: FULL COUNTING STATISTICS

To calculate the variance of the currents in the QD systems and test TUR and KUR expressions, we employ the full counting
statistics (FCS) formalism [15,87–89]. A generalized quantum master equation can be obtained by including counting fields for
the electron transport within dissipative terms:

ρ̇G(t, χ↑, χ↓) = − i�S[d†
↑d†

↓ + d↑d↓, ρG(t, χ↑, χ↓)] +
∑

k

D̄k[ρG(t, χ↑, χ↓)], (C1)

where ρG(t, 0, 0) = ρ(t ), and we introduced modified dissipators (again k = {σ, δ}):
D̄k[ρG] = LkρGL†

k e−iχσ − 1
2 {L†

k LkρG}. (C2)

The variables χ↑ and χ↓ represent the counting fields for ↑ and ↓ electrons exchanged with the normal metal, respectively,
associated with projective measurements of the number of particles in the normal metal. The solution of the generalized master
equation above provides direct information on the generating function for particle exchange statistics with the reservoir with
different spins, N↑ and N↓, as Tr[ρG(t, χ↑, χ↓)] = G(χ↑, χ↓, t ) = ∫

dN↑dN↓P(N↑, N↓)ei(χ↑N↑+χ↓N↓ ).
As for the case of the original master equation, the counting-field-dependent generalized master equation can be linearized

and written in matrix form as d �pG(t )/dt = WG(χ↑, χ↓) �pG(t ) with

WG(χ↑, χ↓) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−(k+
↑ + k+

↓ ) k−
↓ exp (−iχ↓) k−

↑ exp (−iχ↑) 0 i�S −i�S

k+
↓ exp (iχ↓) −(k−

↓ + r+
↑ ) 0 r−

↑ exp (−iχ↑) 0 0

k+
↑ exp (iχ↑) 0 −(k−

↓ + r+
↑ ) r−

↓ exp (−iχ↓) 0 0

0 r+
↑ exp (iχ↑) r+

↓ exp (iχ↓) −(r−
↑ + r−

↓ ) −i�S i�S

i�S 0 0 −i�S −� 0

−i�S 0 0 i�S 0 −�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (C3)

to be compared with the rate matrix W in Eq. (A3) above.
The cumulants are computed following the inverse counting
statistics method formulated in Ref. [89]. In this method,
the characteristic polynomial of matrix WG, namely P(λ) :=
−det[WG(χ↑, χ↓) − λ1], is written as a series in terms of
powers of its eigenvalues,

P(λ) =
M∑

μ=0

aμλμ = λM + aM−1λ
M−1

+
M−2∑

μ

∞∑
j=0

∞∑
l=0

a( j,l )
μ

χ
j
↑χ l

↓
j! l!

λμ, (C4)

with M = 6 the dimension of WG, and where in the sec-
ond line the coefficients aμ(χ↑, χ↓) have been expanded
in a (two-variable) Taylor series around the vicinity of
(χ↑ = 0, χ↓ = 0). Above we used the short-hand notation
a( j,l )

μ := ∂
j
χ↑∂

l
χ↓aμ|(χ↑,χ↓ )=0 and a(0)

μ = aμ|(χ↑,χ↓ )=0. Following
Ref. [89], the derivatives of the polynomial coefficients with
respect to the counting fields can be identified with the differ-
ent cumulants of the electron currents. Therefore, by knowing
the series coefficients of the characteristic polynomial, the
different cumulants can be obtained in a systematic way.

The characteristic polynomial P(λ) can be analytically
obtained from WG in Eq. (C3), from which the relevant co-
efficients can be calculated as

a0 = P(λ = 0), a1 = ∂P(λ)

∂λ

∣∣∣∣
λ=0

, a2 = 1

2

∂2P(λ)

∂λ2

∣∣∣∣
λ=0

.

(C5)

As a second step, we calculated their derivatives with respect
to the counting fields:

a( j,l )
0 = (−i) j+l ∂ j+l a0

∂χ
j
↑∂χ l

↓

∣∣∣∣∣
(χ↑,χ↓ )=0

,

a( j,l )
1,σ = (−i) j+l ∂ j+l a1

∂χ
j
↑∂χ l

↓

∣∣∣∣∣
(χ↑,χ↓ )=0

,

a( j,l )
2,σ = (−i) j+l ∂ j+l a2

∂χ
j
↑∂χ l

↓

∣∣∣∣∣
(χ↑,χ↓ )=0

. (C6)

Finally, from the coefficients above, we obtain the first
and second cumulants of the spin charge currents, namely
the average currents for spin σ =↑,↓, their corresponding
variances, and the covariance between the two currents:

〈J (↑)
q 〉 = − a(1,0)

0

a(0)
1

, 〈J (↓)
q 〉 = − a(0,1)

0

a(0)
1

, (C7)

var[J (↑)
q ] = −a(2,0)

0 + 2a(1),0
0 J (↑)

q + 2a(0)
2 J (↑)2

q

a(0)
1

, (C8)

var[J (↓)
q ] = −a(0,2)

0 + 2a(0,1)
0 J (↓)

q + 2a(0)
2 J (↓)2

q

a(0)
1

, (C9)

covar[J (↑)
q , J (↓)

q ] = −a(1,1)
0 + a(1,0)J (↑)

q + a(0,1)
0 J (↓)

q

a(0)
1

+ a(0)
2 (J (↑)2

q + J (↓)2
q )

a(0)
1

. (C10)

We emphasize that the obtained expressions for the average
charge current 〈Jq〉 = ∑

σ 〈J (σ )
q 〉 coincide with the expression
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given in Eq. (2b). Moreover, we point out a typo in theex-
pression of the second cumulant c2 in Eq. (11) of Ref. [89],
where a′

0 should read a′′
0 �= a′

0, and we corrected it in the above

expressions. From the variance of the electron currents with
spins, σ = {↑,↓}, we can obtain the variance of the electrical
power output as

var[Wq] = μ2
N (var[J (↑)

q ] + var[J (↓)
q ] + 2 covar[J (↑)

q , J (↓)
q ]) = 4μ2

N var[J (σ )
q ], (C11)

where the last equality follows from the fact that the
symmetry of our system leads to var[J (↑)

q ] = var[J (↓)
q ] =

covar[J (↑)
q , J (↓)

q ]. These expressions have been used to calcu-
late the electric power signal-to-noise ratio given in Eq. (B6).
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