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Spin-charge correlations in finite one-dimensional multiband Fermi systems
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We investigate spin-charge separation of a spin- 1
2 Fermi system confined in a triple well where multiple bands

are occupied. We assume that our finite fermionic system is close to fully spin polarized while being doped by a
hole and an impurity fermion with opposite spin. Our setup involves ferromagnetic couplings among the particles
in different bands, leading to the development of strong spin-transport correlations in an intermediate interaction
regime. Interactions are then strong enough to lift the degeneracy among singlet and triplet spin configurations
in the well of the spin impurity but not strong enough to prohibit hole-induced magnetic excitations to the
singlet state. Despite the strong spin-hole correlations, the system exhibits spin-charge deconfinement allowing
for long-range entanglement of the spatial and spin degrees of freedom.

DOI: 10.1103/PhysRevResearch.5.043039

I. INTRODUCTION

The interplay of magnetic properties and charge carrier
transport is fundamentally important for understanding the
behavior of a large class of strongly correlated materials [1–6].
A concrete example of this are hole-doped Mott insulators
where the dressing of the hole carriers by local excitations of
the gas is put forward as the origin of important phenomena
such as the formation of the pseudogap phase [7,8], magnetic
polarons [9–11], and high-temperature superconductivity
[12,13]. Ultracold atom simulators have been employed to
unveil the complex physics of the interplay of magnetism
and conductivity, especially focusing on the two-dimensional
case [9,10,14–20].

The interplay of magnetism and transport in the one-
dimensional case is thought to be much simpler, due to the
effect of spin-charge separation [21–25]. Spin-charge sepa-
ration implies that the spin and particle excitations spatially
propagate with different velocities while not interacting with
one another. This effect was experimentally identified in lat-
tice setups [26] and it is considered to be a generic property
of Luttinger liquids, being the low-energy description of one-
dimensional interacting Fermi systems [27]. As a result of the
general assumption of spin-charge separation, the possibility
of a more involved interplay among magnetism and transport
in one dimension is hardly discussed in the literature.

Recently, important advances in the understanding of mag-
netic properties in one-dimensional setups have been made
in both the weak [28–31] and strong [32–38] interaction
regimes. This is enabled by the experimental availability of
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controllably preparing few-body fermionic ensembles, allow-
ing for the detailed study of the underlying microscopic
mechanisms [38–43]. Such studies are aided by the available
powerful theoretical tools referring to ab initio approaches
[44–46] and effective spin-chain models [28–37]. Further-
more, theoretical studies that attempt to connect atom
transport properties to magnetic phenomena have been per-
formed [47–49]. However, within these works spin-charge
separation is generally employed as an a priori assumption.

Recent studies of ferromagnetic phenomena in one-
dimensional setups motivate a more involved relation between
spin and particle transport [30,31]. In particular, these works
unveiled the interplay of kinetic energy promoted antiferro-
magnetism and interaction-driven ferromagnetic order in the
excited states of fermionic ensembles [31,50]. This is cap-
tured by models, where apart from the spatial coordinate,
the energy band of the different involved states contributes
as an additional degree of freedom [31]. As a consequence,
the possibility of coupling spin and charge excitations can-
not be certainly ruled out, allowing for transport beyond the
paradigm of spin-charge separation. However, whether this
prospect can be realized in a one-dimensional system or if it
is an artifact of this effective description is yet to be explored.

In this paper, we demonstrate correlated spin and parti-
cle transport within a one-dimensional setup by employing a
spin- 1

2 fermionic system confined in a triple-well potential.
In particular, we consider a polarized ensemble of spin-↑
fermions in a double-well subsystem and a single spin-↓
impurity fermion in a third well (see Fig. 1). Notice that
this system is doped by a single hole (initially located in
the third well) allowing us to probe the interplay of spin and
charge. Within an appropriate interaction strength interval, the
dynamics of the system indicates that the tunneling of the hole
couples to distinct spin configurations. Thus, it interacts with
the magnetic order emanating in the triple well, indicating
the development of spin-charge correlations. The correlated
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FIG. 1. Initial state of the system consisting of four spin-↑ parti-
cles (red) and one spin-↓ particle (blue) trapped in a one-dimensional
triple-well potential V (x) (see text).

dynamics of this spinor-fermion system is described on an
ab initio level by employing the multilayer multiconfiguration
time-dependent Hartree method for atomic mixtures (ML-
MCTDHX) [46] and the involved mechanisms are elucidated
in terms of a phenomenological model. The tJU spin-chain
model [31] provides the bridge between these two paradigms.

Beyond the interaction strength interval, where spin-charge
correlations arise, for stronger or weaker repulsion, spin-
charge separation is reestablished. In case of very weak
interactions, this is manifested by uncorrelated tunneling
of the spin-↑ particles on the second band since the fer-
romagnetic exchange is negligible. On the other hand, for
very strong interactions, correlations among the hole and the
spin-↓ fermion persist, but the latter behaves as a nonmagnetic
impurity and the system exhibits ferromagnetic correlations
for all times. We note that the two (quasi)particles cannot bind
due to the repulsive character of the hole-spin-↓ interactions,
which results in the development of long-ranged correlations
among them. This effect is observable when larger lattice
setups are considered and could be exploited to imprint spin-
transport correlations in spintronic devices [51].

This paper is structured as follows. In Sec. II, we describe
our setup and discuss its spin symmetries. Subsequently, in
Sec. III we present the many-body dynamics and show that
spin-charge separation does not hold in this multiband system.
We introduce the spin-coupling mechanism that can explain
this effect and demonstrate its basic dynamical implications
within a phenomenological model. An effective tJU model
is introduced in Sec. IV, which is compared to the ab initio
results and used to expose the spin-state coupling mechanism.
Finally, we conclude in Sec. V and provide an outlook on
possible future perspectives. Our numerical method is illus-
trated in Appendix A. Appendix B provides the derivation of
the effective model in case of noninteracting particles, while
Appendix C provides the effective interaction Hamiltonian
within the tJU model. Appendix D demonstrates the effect
of doublons in the dynamics.

II. SETUP, HAMILTONIAN, AND STATE PREPARATION

We consider a spin- 1
2 system consisting of N↑ = 4 spin-↑

fermions interacting with a single N↓ = 1 spin-↓ fermion
confined in a one-dimensional triple-well potential V (x) =
V0 sin2(kx). The latter can be realized in an experiment by an
optical lattice with wavelength λ = 2π/k. In order to restrict
the system to three wells, we impose hard wall boundary
conditions at x = ±3π/(2k). The inverse lattice wave number

k−1 and the recoil energy ER = h̄2k2/(2m) constitute the char-
acteristic length and energy scales, while the corresponding
timescale reads as tR = h̄/ER. In what follows, all mentioned
numerical values are to be understood in the units derived
from k−1, ER and tR. Subsequently, we choose a potential
height of V0 = 12ER realizing deep wells that allow parti-
cles to be well localized. Finally, let us note that the two
different spin states can be experimentally implemented by
using ultracold 6Li atoms in the two lowest hyperfine states
|F = 1

2 , mF = − 1
2 〉 and |F = 1

2 , mF = + 1
2 〉 [9].

A. Many-body Hamiltonian

Our system is described by a many-body Hamiltonian that
can be separated into a noninteracting part for both species
σ ∈ {↑,↓} and a part describing the interactions between
them: Ĥ =∑σ∈{↑,↓} Ĥσ + ĤI . The underlying single-species
Hamiltonian reads as

Ĥσ =
∫

dx ψ̂†
σ (x)

(
− h̄2

2m

d2

dx2
+ V (x)

)
ψ̂σ (x), (1)

where ψ̂σ (x) is the fermionic field operator annihilating a
spin-σ fermion at position x. The interactions are governed
by

ĤI = g

2

∫
dx : n̂2(x) :

= g
∫

dx ψ̂
†
↑(x)ψ̂†

↓(x)ψ̂↓(x)ψ̂↑(x), (2)

where n̂(x) = ψ̂
†
↑(x)ψ̂↑(x) + ψ̂

†
↓(x)ψ̂↓(x) is the spin-

independent density operator and : Ô : implies normal
ordering of the operator Ô. Since we consider ensembles of
nondipolar ultracold atoms, their interactions are captured by
effective one-dimensional (1D) s-wave contact interactions.
The interaction strength g is linked to the three-dimensional
(3D) s-wave scattering length and the transverse confinement
length. Thus, it is experimentally tunable via Fano-Feshbach
and confinement-induced resonances [52–54].

The total Hamiltonian Ĥ commutes with the spin op-
erators Ŝ± = Ŝx ± iŜy and Ŝz since both Ĥ↑ + Ĥ↓ and ĤI

are spin-independent operators. Recall that for an itinerant
system the individual spin operators are defined as Ŝi =
1
2

∫
dx
∑

σ,σ ′ ψ̂†
σ (x)σ i

σ,σ ′ψ̂σ ′ (x), where σ i are the Pauli ma-
trices with i ∈ {x, y, z}. Furthermore, Ĥ is invariant under
rotations in spin space, associated with its SU(2) symmetry
stemming from its commutation with the total spin operator
Ŝ2 = Ŝ+Ŝ− + Ŝz(Ŝz − 1). This implies that the total spin S of
the system is conserved throughout the dynamics.

We analyze the time evolution of the system for a repulsive
interaction regime of g ∈ [0, 5]. In the noninteracting case
g = 0, the particles are expected to tunnel among the wells
similarly to isolated particles under the influence of the V (x)
potential. The corresponding tunneling frequencies are related
to the eigenenergy differences within the quasidegenerate
triplet of eigenstates forming the precursor of Bloch bands
of the translational invariant system (see Appendix B). In
contrast, nonvanishing interactions g �= 0 introduce a coupling
between the spin-↑ and spin-↓ particles, possibly resulting
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in the development of correlations that qualitatively alter the
dynamics of the system.

To track the system dynamics, we employ the variational
ab initio method ML-MCTDHX, which allows us to take all
relevant correlations into account (see also Appendix A).

B. Initial state

Our setup involves the two lowest-energy bands, b =
0, 1, of the potential V (x). This inclusion provides addi-
tional degrees of freedom when compared to one-dimensional
(lowest-band) Hubbard models where spin-charge separation
is present [24–26]. Typically, in order to describe the lat-
tice sites on those bands in translationally invariant discrete
systems, e.g., in crystals, one makes use of Wannier states,
which form a well-localized basis set. In our case, the system
has a limited spatial extent and thus the discrete translational
invariance is broken. However, due to the large depth of the
potential wells, here V0 = 12ER, we can define the associated
Wannier states φb

s (x) despite the hard-wall boundaries on the
potential, that are localized in either the left (L), middle (M),
or right (R) well s ∈ {L, M, R} (for details see Appendix B).
These states are used to express the initial state of our system
(see Fig. 1), reading as

|�(0)〉 =
⎛
⎝∏

b=0,1

∏
s∈{L,M}

∫
dx φb

s (x)ψ̂†
↑(x)

⎞
⎠

×
(∫

dx φ0
R(x)ψ̂†

↓(x)

)
|0〉. (3)

The unoccupied Wannier state in the upper energy band of
the right well, b = 1, will be referred to as the “hole.” Experi-
mentally, such states can be generated by preparing polarized
gases in different spatial locations and then loading them
in the triple-well setup. Since each particle within a spin-
polarized Fermi gas behaves independently of the others, any
transfer approach that works for a single particle (see, e.g.,
[55]) can be used for a polarized gas. In this case, loading
the second band of the lattice is not challenging since two
particles with the same spin cannot occupy the same state, so
two spin-↑ particles loaded in the same well would have to oc-
cupy energetically distinct bands. When the energy deposited
into the system by the transfer process is low, those should
predominantly be b = 0 and 1, realizing Eq. (3). Magnetic
field gradients, detuning the spin-↑ from the spin-↓ states,
can be employed to inhibit spin dynamics of the ensemble
when the particles of unlike spin are brought together after
the transfer is completed. To initiate the system dynamics,
these gradients are lifted such that the single-particle states
of different spin become degenerate (see also [31]).

III. ABSENCE OF SPIN-CHARGE SEPARATION

In this section, we analyze the time evolution of the system
after initiating the dynamics with the state of Eq. (3). We
probe spin-charge separation and observe that it does not hold
for all interaction strengths. In order to explain this effect,
a coupling mechanism among the spin and spatial states is
proposed, the implications of which are elucidated within a
phenomenological model.

A. Hole dynamics

In the case of spin-charge separation, we expect the hole,
being related to charge transport, to manifest dynamics that
is independent of the interaction strength g influencing spin
transport. In order to probe this, we pinpoint the position of
the hole in the lattice by tracking the experimentally relevant
observables,

hs(t ) = 2 − ns(t ), (4)

where ns(t ) is the occupation of the well s ∈ {L, M, R} during
time evolution. These observables determine whether there
are less than two particles in each well. The number of par-
ticles in each well is determined numerically via the integral
of the corresponding spin-independent one-body density

ns(t ) =
∑

σ∈{↑,↓}

∫ x f ,s

xi,s

dx ρ̂ (1)
σ (x; t ), (5)

where the interval limits [xi,s, x f ,s] correspond to the spa-
tial extent of the three wells s ∈ {L, M, R}. Namely, xi,L =
−3πλ/2, x f ,L = −πλ/2, xi,M = −πλ/2, x f ,M = πλ/2 and
xi,R = πλ/2, x f ,R = 3πλ/2. Notice that hs(t ) is directly ob-
servable in experimental setups that employ quantum gas
microscopy [56–59], as it does not require the experimentally
challenging resolution of the occupation of different bands.

In the following, we interpret nonzero positive values of
hs(t ) as the probability of a hole lying on site s. This holds
as long as doublons, where two particles of opposite spin
occupy a single site on a band, do not form. The validity of
this assumption is discussed in detail in Appendix D.

The interaction-dependent time evolution of the three ob-
servables hs(t ) within the ab initio approach is depicted in
Figs. 2(a)–2(c). Due to the given initial state (see Fig. 1 and
Eq. (3)), the probability to find the hole in the right well at
t = 0 is equal to one and there are no holes in the other wells.
With progressing time, the hole tunnels among the wells,
primarily the left [Fig. 2(a)] and right well [Fig. 2(c)]. The
middle well [Fig. 2(b)] merely mediates the transfer among
the other two wells and the probability to contain the hole is
not pronounced. We attribute this to the broken translational
symmetry of the system resulting in an energetical offset
between the central and the outer wells. When the particle is
in an outer well, it can tunnel only in one direction, thus its
kinetic energy is larger than when it resides in the central well.

Let us now focus on the presence of spin-charge separation.
Figures 2(a)–2(c) clearly demonstrate that increasing g leads
to a modification of the hole dynamics compared to g = 0.
Based on this figure, we can identify three distinct dynamical
regimes (see brackets above all subfigures in Fig. 2), which
manifest in all three wells. For weak interactions g � 0.3, the
behavior of the hole is close to the noninteracting case, which
is characterized by uncorrelated tunneling. Since there is no
observable dependence of the hole tunneling on interactions
in this regime, we conclude that spin-charge separation holds
in this case. Increasing the interactions to 0.3 < g < 1.0 leads
to an abrupt change of the tunneling behavior of the hole.
Specifically, an increase of the tunneling frequency is visi-
ble in Fig. 2(b) [see also Fig. 2(g) showing hM(t ) for g = 0
and g = 0.5]. Note that this change is noticeable in all three
wells. This alteration of the hole dynamics with g implies that
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(g) (h)

(c)(b)(a)

(d) (e) (f)

FIG. 2. Time evolution of the number of holes inside the left
(a), (d), middle (b), (e), and right (c), (f) wells for the setup of
Fig. 1 for V0 = 12ER. The presented results were obtained (a)–(c) by
ML-MCTDHX via hs(t ) [see Eq. (4)] and (d)–(f) the effective tJU
model by employing h̃s(t ) [see Eq. (16)]. (a)–(f) Brackets above
all subfigures indicate the three identified interaction regimes (see
text). (g), (h) Insets compare the dynamics of the hole hM(t ) and
hR(t ) for different interaction strengths. (b) White arrows point to
two exemplary resonances [compare (b) to the missing vertical stripe
features in (e)]. (c) Black dashed boxes in the inset indicate the time
instances when the tunneling of the hole is affected by repulsion
between the hole and the spin-↓ fermion. (a), (c), (d), (f) Dashed
black lines indicate the timescales of the diffusion of the spin-↓
fermion due to ASEI (see text).

spin-charge separation is absent in this regime. Further in-
creasing interactions gives rise to the strong interaction regime
g � 1.0, again indicated by an abrupt change of the tunneling
process, which becomes slower [see, for instance, Fig. 2(b)
for g = 5 compared to g = 0.5]. In this regime, the hole
dynamics regains independence of spin interactions. This is
particularly visible for the middle well [see Fig. 2(b)] since the
other wells show interaction dependence for large timescales
t > 100 even in the case of g > 1 [see Figs. 2(a), 2(c), and
2(h)]. The reason for this g dependence is related to hole
and spin-↓ interactions and will be analyzed in the following
section. Finally, we can observe individual weak resonances in
the dynamics inside all three wells for interactions of g � 3.0
and g � 3.8 [see, for example, the white arrows pointing to the
vertical resonances in Fig. 2(b) associated with the depletion
of hM (t ) during the dynamics], which we will discuss below
(see Sec. IV). While they affect hs(t ) in a narrow g range

(g) (h)

(c)(b)(a)

(f)(e)(d)

FIG. 3. Time evolution of the number of spin-↓ particles ns↓
inside the left (a), (d), middle (b), (e), and right (c), (f) wells. The
presented results were obtained within (a)–(c) ML-MCTDHX and
(d)–(f) the effective tJU model. (a)–(f) Brackets above all subfigures
indicate the three identified interaction regimes (see text). (g), (h)
Insets compare the dynamics of the hole hR(t ) and the spin-↓ impu-
rity nM/R↓(t ) for g = 0.7 [correlations between both (quasi)particles
inside the same well] and for g = 5.0 (correlations between two
different wells). (b) White arrows point to two exemplary resonances
[compare Fig. 3(b) to Fig. 2(b) and to the missing vertical stripe
features in Figs. 2(e) and 3(e)]. (a), (c), (d), (f) Dashed black lines
indicate the timescales of the diffusion of the spin-↓ fermion due to
ASEI (see text).

within the strong interaction regime, they do not alter the
global dynamical behavior of the hole.

In conclusion, our results [Figs. 2(a)–2(c)] indicate that
the presence of spin-charge separation in our system strongly
depends on the interaction strength between both spin species
and cannot be a priori assumed.

B. Spin-↓ particle dynamics

In order to get a first impression of the possible dynamical
correlations between the hole and spin-↓ particle we examine
the dynamics of the latter and subsequently compare to the
results of hs(t ). To this end, we depict the particle-number
dynamics of the spin-↓ particle in Fig. 3. The correspond-
ing spin-resolved particle-number expectation value inside the
wells s ∈ {L, M, R} reads as

ns↓(t ) =
∫ x f ,s

xi,s

dx ρ
(1)
↓ (x), (6)

043039-4



SPIN-CHARGE CORRELATIONS IN FINITE … PHYSICAL REVIEW RESEARCH 5, 043039 (2023)

with [xi,s, x f ,s] defined as for Eq. (5). Since the initial state
is given as in Eq. (3), Figs. 3(a)–3(c) indicate a probability
of ns↓(t = 0) = δs,R. For t > 0, the spin-↓ particle exhibits
tunneling dynamics among the wells similarly to the hole
quasiparticle [compare to Figs. 2(a)–2(c)]. In contrast to the
latter, the spin-↓ dynamics show a prominent interaction de-
pendence for all considered values of g. More specifically,
for small interactions g < 0.3, the frequency of the spin-↓
tunneling substantially increases from the noninteracting case.
This can be seen for instance in Fig. 3(c) for t < 80 and g �
0.3. The time interval for which the particle is still localized
inside the right well decreases with increasing g when com-
pared to g = 0. This effect can be attributed to spin-exchange
processes [29–31] that allow the spin-↓ to transfer to the
excited band of the triple well. Within b = 1, it possesses
a much larger tunneling frequency than in the ground band
owing to its higher energy. For larger interactions g � 1.0,
we see that the spin-↓ tunneling dynamics slows down as g
increases, visible as increased revival timescales [see Fig. 3(a)
for g = 2 and g = 5]. This feature can be understood in the
following manner. As we claimed above and explicate in
Appendix D, doublons do not form in either of the bands, thus,
the main way that the spin-↓ particle is transported across the
triple well is the Anderson superexchange interaction (ASEI)
[60], via which adjacent spin-↑ and spin-↓ particles are ex-
changed via a virtual transition to a doublon state. Since the
transport rate within this mechanism is inversely proportional
to the interaction strength, the tunneling dynamics induced
by this mechanism slows down as g increases, explaining
the behavior of Figs. 3(a)–3(c). See also the black dashed
lines in Figs. 3(a) and 3(c) that illustrate the corresponding
timescales of the ASEI dominated tunneling. Let us note that
the dynamics analyzed above is analogous to the double-well
case of Ref. [30]. Note that the spin-↓ fermion shows weak
resonances for g � 3.0 and g � 3.8, just like the hole [see the
white arrows pointing to vertical resonances in Fig. 3(b)].

The joined analysis of Figs. 2(a)–2(c) and 3(a)–3(c)
allows us to identify correlations between the dynamics
of the (quasi)particles hinting towards the presence of a
related interaction mechanism. Indeed, additional structures
to the above mentioned can be observed in the transport
properties of the spin-↓ particle that can be attributed to its
interaction with the hole. Example cases of this are more
easily identified for strong interactions g > 2, where we
can observe that in addition to the ASEI dominated spin-↓
dynamics a faster timescale associated with the hole tunneling
[Figs. 2(a) and 2(c)] is imprinted in the dynamics of spin-↓
particle [Figs. 3(a)–3(c)]. A particular example of this is the
abrupt transport of the spin-↓ particle appearing from the
right [Fig. 3(c)] to the middle [Fig. 3(b)] well as soon as
the hole density revives on the right well. This can be seen
also in Fig. 3(g), which shows the rough coincidence of the
increasing and decreasing tendencies of hR(t ) and nM (t ) for
t > 10. By inspecting the dynamics of Figs. 2(c) and 3(c), we
can identify several similar events reminiscent of hole-spin-↓
scattering processes. A similar behavior can be identified
for smaller g, substantially modifying the hole dynamics. In
particular, by comparing Figs. 2(c) and 3(c) for 0.3 < g < 1
we can see that the presence of the spin-↓ particle in the right
well is clearly correlated with an increased probability of the

FIG. 4. Schematic illustration of the correlated tunneling process
introducing the coupling between the spin and spatial degrees of
freedom via the emergence of an interaction-dependent energy gap

E between triplet and singlet states.

hole also residing in the same site [see Fig. 2(h)]. The same is
also the case for the left well [Figs. 2(a) and 3(a)].

Analogously, the spin-↓ dynamics due to ASEI also influ-
ences the tunneling of the hole. Specifically, the presence of
the spin-↓ results in a higher hole occupation, which is visible
when comparing the dynamics around the black dashed lines
in Figs. 2(a) and 2(c) and 3(a) and 2(c) and is seen in detail in
Fig. 2(h) where we compare the dynamics of the hole in the
right well for g = 2.5 and g = 5.0. The black dashed boxes
indicate the time intervals for which the hole mainly resides
in the right well due to its ASEI dominated tunneling and thus
the hole is strongly affected by the presence of the fermion.
For stronger g the intervals move to later times due to the g
dependence of ASEI. Thus, the increase of the time-scale of
the hole dynamics observed in Figs. 2(a) and 2(c) is indeed
due to the interaction with the spin-↓.

These findings indicate correlations of the spin-↓ and hole
in our system, leading to the absence of the spin-charge
separation in the intermediate regime. As we point out in
Sec. III C, these correlations do not induce magnetic exci-
tations for the strong interaction regime and thereby do not
break spin-charge separation. However, the hole remains cou-
pled to the spin-↓ particle, which behaves as a nonmagnetic
impurity. Based on the above, one might be tempted to assume
an attractive hole-spin-↓ interaction. As will also be discussed
in the following section, the precise mechanism leading to the
emergence of these correlations is significantly more nuanced.

C. Triplet-singlet coupling mnechanism

Here, we present the mechanism that we hold responsible
for the observed dependence of the hole dynamics on the
interaction strength g. It is based on the occupation of the
second energy band which introduces magnetic interactions
among the distinct spin states.

Let us begin by considering the initial state (Fig. 1). Start-
ing from this configuration, the spin-↑ particle occupying
the middle-well state of the b = 1 energy band tunnels to
the vacant state of the same band in the right well. The
thereby created setting where the right well contains one
particle of each spin may realize two possible spin config-
urations, namely, a triplet and a singlet state, owing to the
spin-dependent interactions [28–30] (see Fig. 4).

Within the triplet state, the spins of the particles arrange
such that their total spin defined by the value of Ŝ2 is maximal,
i.e., they are ferromagnetically ordered. We expect that the
interaction energy contribution of this configuration is zero
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and thus it is degenerate with the initial state (see Fig. 4).
In contrast, the corresponding singlet state results in a fi-
nite interaction energy inducing a total energy increase when
compared to the aforementioned states. Thus, for increasing
interactions, an energy gap 
E develops among the singlet
and triplet states, which can be related to ferromagnetic ex-
change interactions identified in [31]. When 
E becomes
much larger than the tunneling energy scale, the singlet states
can no longer be accessed when the system is initialized in the
state of Eq. (3) (Fig. 1). Therefore, the system is effectively
population trapped in the manifold of triplet states.

Note that the above argumentation neglects the shift of po-
tential energy due to particle transfer among the sites, which
is present due to the broken translational invariance of V (x),
but is much smaller than the other system parameters. In
addition, the lowest-band tunneling is neglected, a reasonable
approximation for small times as it is dominated by ASEI (see
Sec. III B), and thus is much slower than the excited band tun-
neling. Furthermore, intersite interactions are not considered
since they are negligible for V0 = 12ER. The validity of these
approximations is explicated in Sec. IV B by the introduction
of the tJU model.

Below, we employ this mechanism to infer about the
presence of spin-charge separation. We first focus on a
strict definition of spin-charge separation corresponding to
the absence of spin-transport correlations. Subsequently, we
comment on a weaker definition in terms of spin-charge
deconfinement. A spin-charge deconfined system might pos-
sess substantial spin-transport correlations but the involved
interactions, are not attractive or strong enough to cause the
formation of a bound state of spin and spatial excitations.

For zero spin-spin interactions the spin states of Fig. 4
are degenerate, which means that the spin-↑ particles in the
highest band hop independently of one another and so does
the hole. The spin-↓ particle in this case resides in the lowest
band and moves independently from the hole. Thus, spin-
charge separation in this case is unambiguous. As we show
below, in all other cases it is absent but it can be claimed that
within certain timescales it holds approximately. In particular,
for small but nonzero interactions, resulting in a 
E much
smaller than the tunneling energy scale, the system behaves
similarly to the noninteracting case [see also Figs. 2(a)–2(c)].
However, due to the small energy difference among the singlet
and triplet states, a relative phase e−i
Et/h̄ gets accumulated
during the dynamics. This results in the dephasing of the
tunneling dynamics on a timescale proportional to 
E , ex-
hibited as a beating like pattern [see Fig. 2(g)] for g = 0.5.
This phase accumulation corresponds to the transfer of the
spin-↓ to the excited band showcasing the development of
correlations among the spatial and spin degrees of freedom.
Since the development of these correlations is a slow process,
one can claim that spin-charge separation approximately holds
for short times.

In order to simplify the description in the case of interme-
diate interactions, let us first analyze spin-charge separation
for strong interactions, where 
E is much larger than the
tunneling energy splitting. In the latter case, the system is
population trapped in the manifold of triplet states and as such
spin-charge separation occurs trivially since the hole is not
coupled to spin excitations simply because these do not exist.

This results in a system that behaves ferromagnetically (as
defined in Refs. [30,31]) for all times. However, a different
mechanism emerges in this regime, which couples the hole
with the spin-↓ impurity fermion. To illustrate this, let us
consider the tunneling among two adjacent sites α and β and
the following set of states:∣∣Iα

α

〉 = . . . â0†
α↓â0†

β↑â1†
β↑ . . . |0〉,

∣∣T β
α

〉 = . . . â0†
α↑

â0†
β↑â1†

β↓ + â0†
β↓â1†

β↑√
2

. . . |0〉,

|Pα〉 = . . . â0†
α↑â0†

β↑â1†
β↑ . . . |0〉,∣∣Iβ

β

〉 = . . . â0†
α↑â1†

α↑â0†
β↓ . . . |0〉,

∣∣T α
β

〉 = . . .
â0†

α↑â1†
α↓ + â0†

α↓â1†
α↑√

2
â0†

β↑ . . . |0〉,

|Pβ〉 = . . . â0†
α↑â1†

α↑â0†
β↑ . . . |0〉,

(7)

where âb†
iσ with spin σ ∈ {↑,↓}, site i ∈ {α, β}, and the band

index b = 0, 1 correspond to the fermionic creation operators
in the appropriate Wannier state and |0〉 is the fermionic vac-
uum state. We omit writing explicitly the creation operators
for all other sites than α and β, but we consider them to be
the same for all of these states so that the tunneling matrix
elements among these states are not trivially zero. In the
above introduced notation the position of the hole is given
by the state subscript, the position of the spin-↓ fermion by
the superscript, and the value of the total spin in the site that
the spin-↓ resides by the corresponding letter with T corre-
sponding to S = 1 and I to S = 1

2 . Here, P refers to a spin-↑
polarized state and as such has no superscript. A straightfor-
ward calculation of the tunneling matrix elements yields〈

Iα
α

∣∣ ∑
σ∈{↑,↓}

−t1
(
â1†

ασ â1
βσ + H.c.

)∣∣T α
β

〉 =
√

2t1

2
, (8a)

〈
T β

α

∣∣ ∑
σ∈{↑,↓}

−t1
(
â1†

ασ â1
βσ + H.c.

)∣∣T α
β

〉 = t1

2
, (8b)

〈Pα|
∑

σ∈{↑,↓}
−t1
(
â1†

ασ â1
βσ + H.c.

)|Pβ〉 = −t1, (8c)

where t1 refers to the tunneling amplitude of band b = 1.
Notice that the mobility of the hole is diminished when it tun-
nels towards the spin-↓ fermion, as the corresponding matrix
elements [among T and I states, see Eqs. (8a) and (8b)] are
smaller in value than when it tunnels among sites containing
only spin-↑ polarized particles [P states, see Eq. (8c)]. We
interpret this behavior as an effective repulsion among the
spin-↓ impurity fermion and the hole, implying the develop-
ment of correlations among them.

For weaker interactions the singlet states can be populated
so we have to consider the influence of the following states in
the above effective description, namely,

∣∣Sβ
α

〉 = . . . â0†
α↑

â0†
β↑â1†

β↓ − â0†
β↓â1†

β↑√
2

. . . |0〉,

∣∣Sα
β

〉 = . . .
â0†

α↑â1†
α↓ − â0†

α↓â1†
α↑√

2
â0†

β↑ . . . |0〉, (9)
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FIG. 5. Representation of the matrix elements of Eqs. (8a)–(8c) and (10a)–(10c) in terms of weighted graphs for the example case of a
lattice with five sites. (a) Corresponds to the case of a large gap 
E � t1, while (b) refers to the general case, where spin excitations can be
induced by the hole dynamics. Each vertex represents one of the states defined in Eqs. (7) and (9) with its color representing the value of S
at the site where the spin-↓ resides (see legend). The edge weights correspond to the values of the corresponding matrix elements which are
encoded in the line style (see inset legend).

where S indicates the singlet character of the state correspond-
ing to S = 0 within the site where the spin-↓ resides. These
states result in the matrix elements

〈
Iα
α

∣∣ ∑
σ∈{↑,↓}

−t1(â1†
ασ â1

βσ + H.c.
)∣∣Sα

β

〉 = −
√

2t1

2
, (10a)

〈
Sβ

α

∣∣ ∑
σ∈{↑,↓}

−t1
(
â1†

ασ â1
βσ + H.c.

)∣∣Sα
β

〉 = t1

2
, (10b)

〈
Sβ

α

∣∣ ∑
σ∈{↑,↓}

−t1
(
â1†

ασ â1
βσ + H.c.

)∣∣T α
β

〉 = t1

2
. (10c)

These indicate that the hole is effectively repelled by the sin-
glet states similarly to the triplet ones [compare Eqs. (8c) and
(10a)–(10c)]. However, the matrix elements of Eqs. (10a)–
(10c) additionally reveal that when the hole is in the same
site as the spin-↓ or it tunnels towards this site, it can
induce magnetic transitions among the triplet and singlet
states [see Eqs. (8a) and (10a)]. Therefore, the coupling
mechanism analyzed in the case of strong interactions ob-
tains a magnetic character when 
E reduces, resulting in
spin-transport correlations. The necessary condition for the
occurrence of this spin-transport coupling mechanism is
that the energy gap is of the order of the tunneling energy
scale of the upper energy band 
E ∼ t1. In that case, the
gap among the states of Fig. 4 is large enough such that the
dephasing among the triplet and singlet states is as fast as
the tunneling of the hole enabling the latter to modify the
superposition among these states.

This mechanism reveals that spin-charge deconfinement
is present in our system since all of the above-mentioned
hole and spin-↓ interaction mechanisms are repulsive and

no bound state can occur. Therefore, this deconfinement is
expected to be observed for an extensive system allowing for
sufficient spatial separation of the two (quasi)particles. Even
in this case we can show that the correlations stemming from
the above-described interaction mechanisms are detectable.
To illuminate this, in the following section we develop an
effective two-dimensional lattice model that can unravel the
correlation mechanisms among the hole and spin-↓ particle
based on Eqs. (8a)–(8c) and (10a)–(10c).

D. Hole-spin-impurity correlations
within a simplified framework

The matrix elements of Eqs. (8a)–(8c) and (10a)–(10c)
introduce a very simplistic phenomenological model for the
coupling of the hole with spin-↓ impurities. In particular, the
couplings among the involved states can be represented in
terms of the weighted graphs (see also [61,62]) of Fig. 5(a)
for 
E � t1 and Fig. 5(b) in case of 
E ∼ t1. Here each
vertex corresponds to one of the states labeled by |X β

α 〉 with
α, β = 1, 2, . . . , M referring to the hole and spin-↓ position,
respectively. M is the size of the lattice and X ∈ {I, S, T }
parametrizes the total spin in the site where the spin-↓ par-
ticle resides [see also Eqs. (7) and (9)]. Each edge indicates
coupling among these states induced by the tunneling of a
particle within the excited band. Notice that all |Sβ

α 〉 also have
diagonal matrix elements, equal to 
E , which appear in the
graph as closed loops.

The graph of Fig. 5(b) depends only on two relevant pa-
rameters, the gap 
E and the tunneling t1, thus the dynamics
of the corresponding Hamiltonian would depend only on the
fraction 
E/t1 and the initial state. To explore the concepts
we have analyzed in Sec. III C and to make a connection
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with the ML-MCTDHX results of Sec. III A, we employ
|�gr (t = 0)〉 = |I0

0 〉 as the initial state and consider the state
of the system |�gr (t )〉 after t = 10h̄/t1 in an infinite lattice
α, β = 0,±1,±2, . . . . In practice we employ a finite lattice
with M = 61 sites which is large enough for convergence to
M → ∞ in this timescale within a relative tolerance of 10−4.

We are particularly interested in the hole-spin-↓ two-body
density ρ

(2)
h↓ (xh, x↓; t ) =∑X∈{I,S,T } |〈X x↓

xh |�gr (t )〉|2 and the re-
lated two-body correlation function

g(2)
h↓ (xh, x↓; t ) = ρ

(2)
h↓ (xh, x↓; t )

ρ
(1)
h (xh; t )ρ (1)

↓ (x↓; t )
, (11)

with ρ
(1)
h (xh; t ) =∑X∈{I,S,T }

∑
β |〈X β

xh
|�gr (t )〉|2 and ρ

(1)
↓

(x↓; t ) =∑X∈{I,S,T }
∑

α |〈X x↓
α |�gr (t )〉|2. In addition, the

quantity

S(xh, x↓; t ) =
1
2

∣∣〈Ix↓
xh

∣∣�gr (t )
〉∣∣2 + ∣∣〈T x↓

xh

∣∣�gr (t )
〉∣∣2

ρ
(2)
h↓ (xh, x↓)

(12)

identifies the average spin S in the site where the spin-↓
resides, allowing us to deduce the involvement of magnetic
mechanisms in the system.

The results for the hole-spin-↓ two-body density after a
propagation time of t = 10t1/h̄ are provided in Figs. 6(a1)
and 6(a2) for 
E/t1 = 1 and 
E/t1 = 10, respectively. As
we have anticipated from the discussion in Sec. III C, spin-
charge deconfinement is evident in our system. Indeed, the
two-body density in Figs. 6(a1) and 6(a2) is large enough to
be discernible only in the case that |xh| > |x↓|. Nevertheless,
the effect of hole-spin-↓ interactions is prominent as increased
interactions, reflected by higher values of 
E , lead to the
focusing of the expanding hole probability in a single wave
packet [see Fig. 6(a2)] instead of the train of density peaks
observed for lower 
E [see Fig. 6(a1)]. In addition, notice the
asymmetric profile of ρ

(2)
h↓ (xh, x↓; t ) with respect to reflection

at the x↓ axis by inspecting Fig. 6(a1) for −1 < x↓ < 1 and
7 < xh < 18 and Fig. 6(a2) for −1 < x↓ < 1 and 0 < xh <

20. This asymmetry can be attributed to the absence of mir-
ror symmetry of the associated graph [see Fig. 5(b)], which
stems from the fact that the hole has to tunnel to the left in
order to push the spin-↓ particle to the right and vice versa.
This property is better identifiable in the correlation function
g(2)

h↓ (xh, x↓) [see Figs. 6(b1) and Fig. 6(b2)]. It is shown that the
joined probability of finding the hole and spin-↓ atom varies
by several orders of magnitude compared to the uncorrelated
result (notice the logarithmic scale of the color coding in these
figures). In particular, the largest values of g(2)

h↓ (xh, x↓) are
observed for xh = x↓ − 1 in case of xh > 0 and xh = x↓ + 1
for xh < 0. The population of these regions results from the
hole shifting the position of the spin-↓ fermion repeatedly,
substantially delaying the expansion of the latter due to the
smaller mobility it has in this case. Nonetheless, since the hole
predominantly escapes the region where it interacts with the
spin-↓, the probability of lying there given by ρ

(2)
h↓ (xh, x↓) is

very small [Figs. 6(a1) and 6(a2)].
Finally, Figs. 6(c1) and 6(c2) reveal our arguments re-

garding spin-charge separation. For 
E/t1 = 10, we observe
that the configurations of maximal possible spin, i.e., S = 1

2
for xh = x↓ and S = 1 for x↓ �= xh, are almost exclusively

FIG. 6. (ai) Two-body density ρ
(2)
h↓ (xh, x↓; t0 ), and (bi) two-body

correlations g(2)
h↓ (xh, x↓; t0 ) of a hole and spin-↓ (quasi)particles ini-

tially localized at x↓ = xh = 0 after an expansion time of t0 = 10h̄/t1

for varying value of the singlet-triplet state energy gap (i = 1)

E/t1 = 1 and (i = 2) 
E/t1 = 10. (ci) The value of the total spin
S in the site of the spin-↓ particle as a function of the spin-↓ impurity
fermion position for the same parameters as (ai) and (bi). The gray
regions in (bi) and (ci) indicate the regions where ρ

(2)
h↓ (xh, x↓) <

(10−14)2 and thus is numerically indistinguishable from the value
zero. In all cases, the Hamiltonian corresponding to Fig. 5(b) is
employed for a lattice with M = 61 sites that allows for adequate
convergence to the M → ∞ limit.

populated due to the large gap among the triplet and singlet
configurations. Nevertheless, some spin-excited sites exist
corresponding predominantly to the additional expanding
wave packets of the hole density at −1 < x↓ < 1 and 7 <

|xh| < 14 [see Figs. 6(c2) and 6(a2)]. Notice that for the max-
imal value S = 1 the spin-↓ does not correspond to a spin
excitation since ferromagnetism is controlled by the total spin
rather than polarization [30,31]. Thus, within a reasonable
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approximation, we can claim that no substantial correlations
among the spin excitations and the hole transport develop in
this regime while the hole and spin-↓ (acting here as a non-
magnetic impurity) are strongly coupled [see Fig. 6(b2)]. For
smaller gaps 
E = t1, the magnetic response of the system is
substantially different. In particular, we can see in Fig. 6(c1)
that high S > 0.7 is realized only in the region of |xh| < 15
while outside of this region S ≈ 0.5, corresponding to the
state that the spin-↓ remains in the lowest band of the lattice.
Importantly, the different peaks in the train of the hole density
that is expelled from the site 0 [Fig. 6(a1) for 7 < xh < 23 and
x↓ = 0] correspond to different values of S [see the variation
of S in Fig. 6(c1) when xh increases from xh = 7 to 23]. This
illustrates the long-range entanglement of spin excitations and
hole position in this setup, which can be utilized to bring the
spin-↓ impurity fermion to the desired S state by manipulating
the hole position that lies far away from it. This property might
be useful for spintronic applications [51]. Thus, we can claim
that the spin and spatial states of our setup are coupled despite
the fact that spin-charge deconfinement is exhibited.

IV. EFFECTIVE SPIN-CHAIN MODEL

Here we introduce an effective model that provides the
connecting link among the phenomenological description,
that identified spin-charge correlations, and the results ob-
tained with ML-MCTDHX, which indicated spin-charge
separation. It rigorously reveals the emerging energy gap
between singlet and triplet states, upon which the phenomeno-
logical arguments of Sec. III C are based, in terms of the
microscopic system parameters. This enables the identifica-
tion and assignment of the described phenomenology in the
ab initio results.

A. Effective Hamiltonian

We introduce an effective tJU model generalizing the ap-
proach used in [31]. Within this model a single site refers to
the position on a band b inside a specific well s. The sites
are well captured by employing the previously mentioned
Wannier states φb

s (x) as a basis set, in which a fermion of spin
σ is created by using the operator âb†

sσ .
Let us first introduce the noninteracting part of the effective

Hamiltonian which reads as [31]

Ĥ0 = −
∑

b=0,1

∑
σ∈{↑,↓}

t b
(
âb†

Lσ âb
Mσ + âb†

Mσ âb
Rσ + H.c.

)

+
∑

b=0,1

∑
σ∈{↑,↓}

[
(εb + 
εb)

(
n̂b

Lσ + n̂b
Rσ

)+ εbn̂b
Mσ

]
(13)

(see Appendix B). The first part of the Hamiltonian describes
the single-particle tunneling among the wells. In each band b,
we consider only next-nearest-neighbor tunneling which oc-
curs with a tunneling amplitude t b. The second term describes
the energy of noninteracting particles, where εb is the average
energy of the eigenstates that form the band b. As pointed
out in Sec. III A, the translational invariance of the lattice
is broken and the left and right wells acquire an additional
energy offset 
εb when compared to the central well. Notice

that this offset is identical for the left and the right wells due
to the parity symmetry x → −x of V (x).

The exact description including interactions within the
tight-binding model of Eq. (13) considers all possible matrix
elements between different Wannier states. Such a framework
is undesirable for us as it would obscure the interpretation of
the system dynamics. Therefore, we use a minimal effective
description, where we restrict the model to onsite interactions.
This is a valid approximation assuming that the Wannier states
are well localized in each well, which is adequate for the
large values V0 employed here. These types of Fermi-Hubbard
models have been successfully applied to fermions in double
wells and lattice traps [31,63,64]. Here, we consider intraband
interactions with strength U b and interband interactions Jbb′

in each well. These interaction constants can be derived from
the Wannier states: Jbb′

s = ∫ dx|φb
s (x)|2|φb′

s (x)|2, U b
s = Jbb

s =∫
dx|φb

s (x)|4. Notice the lattice dependence s ∈ {L, M, R} of
the above interaction constants due to the broken translational
invariance.

To account for interactions, we introduce the following
Hamiltonian that consists of direct interaction terms:

ĤI,dir = g

⎡
⎣∑

b=0,1

∑
s∈{L,M,R}

U b
s n̂b

s↑n̂b
s↓

+
∑

s∈{L,M,R}
J01

s

(
n̂0

s↑n̂1
s↓ + n̂1

s↑n̂0
s↓
)⎤⎦. (14)

This Hamiltonian includes interactions by counting the par-
ticles of both spin species in each well and assigning
them with the corresponding interaction strength. Addi-
tionally, we include exchange interaction terms of the
form −gJ01

s (â0†
sσ â1†

sσ ′ â1
sσ â0

sσ ′ ) for all different combinations
{s, σ, σ ′}. They describe the process where two fermions lo-
cated inside the same well but in different bands can exchange
their spin. By adding these to ĤI,dir, we can write the complete
effective interaction Hamiltonian as

Ĥ ′
I = g

⎡
⎣∑

b=0,1

∑
s∈{L,M,R}

U b
s n̂b

s↑n̂b
s↓

−
∑

s∈{L,M,R}
J01

s

(
Ŝ0

s · Ŝ1
s − 1

4
n̂0

s n̂1
s

)⎤⎦, (15)

where n̂b
s = n̂b

s↑ + n̂b
s↓ counts the total number of particles

inside a well. Above, the operators Ŝb
s are the spin operators

Ŝb
s = Ŝb

x,sêi + Ŝb
y,sêj + Ŝb

z,sêk where êi are the unit vectors in
spin space and Ŝb

i,s = 1
2

∑
σσ ′ σ i

σσ ′ âb†
sσ âb

sσ ′ with i ∈ {x, y, z},
s ∈ {L, M, R}, and σ i being the Pauli matrices. Finally, the
complete effective tJU model is given by ĤtJU = Ĥ0 + Ĥ ′

I .
This model splits the Hilbert space of the total system into dif-
ferent subspaces corresponding to distinct band configurations
{n0 =∑s n0

s , n1 =∑s n1
s , . . . } (see also [28,30]) that do not

couple with one another. This approximation is well founded
since εb is the largest energy scale of the system. For more
details on this approach, see Appendix C.
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B. Comparison with the ab initio dynamics

As a first probe of the effective model, we compare its
hole dynamics [see Figs. 2(d)–2(f)] to the one obtained from
ML-MCTDHX [see Figs. 2(a)–2(c)]. Within tJU , the system
is initialized in the state of Eq. (3) while its time evolution
follows |�(t )〉 = exp(−iĤtJU t/h̄)|�(0)〉. The position of the
hole [Figs. 2(d)–2(f)] can be tracked exactly by the expecta-
tion values of the hole operators

h̃s(t ) = 〈�(t )|(1 − â1†
s↑â1

s↑
)(

1 − â1†
s↓â1

s↓
)|�(t )〉

= 1 − 〈�(t )|n̂1†
s |�(t )〉 + 〈�(t )|n̂1†

s↑n̂1†
s↓|�(t )〉, (16)

with s ∈ {L, M, R}. Note that h̃s(t ) is much more difficult
to experimentally measure than hs(t ) since it requires that
the distinct bands of the lattice can be resolved individually.
The quantity hs(t ) circumvents that by adding the negligi-
ble contribution of the first band δhs = 1 − 〈�(t )|n̂0†

s |�(t )〉 +
〈�(t )|n̂0†

s↑n̂0†
s↓|�(t )〉 ≈ 0 provided that no doublons form (see

also Appendix D). In the following we will directly compare
h̃s(t ) and hs(t ) despite that h̃s(t ) �= hs(t ) in the general case.

Indeed, Figs. 2(d)–2(f) reveal that the main qualitative
structures of the ab initio approach are reproduced within
the tJU model. In particular, we can identify the same
three interaction regimes that partition the dynamics obtained
from ML-MCTDHX: weak (0.3 � g), intermediate (0.3 <

g < 1.0), and strong interactions (1.0 � g) [compare, e.g.,
Figs. 2(a) and 2(d)]. Even more importantly the qualitative
behavior within these regimes is almost equivalent to the
ab initio case (see also Sec III A). The tunneling dynamics
mainly involves the left and right wells, which is consistent
with the ML-MCTDHX case [see Figs. 2(a)–2(c)] and is at-
tributed to the energetic separation of the central well due to

εb [see Eq. (13)]. The above also indicates the relevance of
our findings as the experimentally accessible hs(t ) is proven
to be an adequate probe of the spin-charge separation in our
system, even when compared with the theoretically more rig-
orous measure h̃s(t ) (see also Appendix D).

Let us now compare the particle dynamics for the spin-↓
particle. To this end, we show the particle-number dynamics
ns↓(t ) of Eq. (6) in Fig. 3. It can be observed that the tJU
model qualitatively captures the interaction dependence of
the spin-↓ dynamics [compare Figs. 3(d) and 3(f)], which, as
claimed in Sec. III B, stems from the ASEI. In particular, the
corresponding coupling of this interaction mechanism within
the tJU approach is ∼3(t1)2/(gŪ 1), which can be shown to
well describe the spin-↓ dynamics for g > 3 (not shown here
for brevity). In addition, the scattering events among the hole
and spin-↓ (quasi)particles are also clearly captured by the
tJU model. Finally, the accumulation of hole density within
the site where the spin-↓ resides is observable [see Figs. 2(d)
and 2(f)]. This is attributed to the reduced mobility of the
hole when placed in the vicinity of the spin-↓ particle [see
Eqs. (8a), (8b), and (10a)–(10c)], leading to the accumulation
of its density in the site of the impurity.

Nevertheless, there are two notable differences between
the effective tJU model and the ML-MCTDHX results. First,
the involved timescales slightly differ, which can be seen by
comparing the timescales of the ASEI [compare the dynamics
around the black dashed lines in Figs. 3(a)–3(c) to 3(d)–3(f)]

and also by studying the hole dynamics [see Figs. 2(a)–2(c)
and 2(d)–2(f)]. This frequency difference can be attributed to
the increased level repulsion within the eigenspectrum in the
ab initio case, stemming from the terms neglected within the
tJU approximation (see also Sec. IV D). Second, the effective
model is missing the weak resonances at g � 3.0 and g � 3.8.
This discrepancy is visible for both the hole (Fig. 2) and the
spin-↓ dynamics (Fig. 3). As we argue in Sec. IV D these
resonances can be attributed to an interband transfer process.

C. Emergence of the triplet-singlet energy gap

We now proceed to use the tJU model to unravel the
coupling mechanism between singlet and triplet states (see
Fig. 4) that we claim to be responsible for the development
of spin-charge correlations in our system.

We consider a well s containing one spin-↑ and one
spin-↓ particle and examine the interaction part of the effec-
tive Hamiltonian [see Eq. (15)]. The first part ∝ U b

s , which
considers direct onsite interactions between both spin species,
does not contribute here except for very small interactions
since doublon formation is negligible 〈�(t )|n̂b

s↑n̂b
s↓|�(t )〉 ≈ 0

(see Appendix D). In contrast, the second part of the inter-
action Hamiltonian ∝ Jbb′

s [see Eq. (15)], which describes
interband interactions, acquires different values depending
on the spin configuration. Let us first consider a spin-triplet
state. The spin operators yield 〈T β

α |Ŝ0
s · Ŝ1

s |T β
α 〉 = 1

4 for α �= s
and all β. Additionally, 〈T β

s |Ŝ0
s · Ŝ1

s |T β
s 〉 = 0 holds for all β

which results in an interaction energy of ET
I = 〈ĤI〉T = 0.

Similar results are also reproduced for the |Iα
α 〉 states. On

the other hand, for the singlet state 〈Ss
α|Ŝ0

s · Ŝ1
s |Ss

α〉 = − 3
4 ,

〈Sβ
s |Ŝ0

s · Ŝ1
s |Sβ

s 〉 = 0 and 〈Sβ
α |Ŝ0

s · Ŝ1
s |Sβ

α 〉 = 1
4 for α �= s �= β,

yielding ES
I = 〈ĤI〉S = gJ01

s . The energy difference between
both spin configurations is 
E = ES

I − ET
I = gJ01

s . Thus, this
gap is indeed interaction dependent as we have previously
claimed in Sec. III C. The proportionality is characterized by
the interband interaction constant J01

s , that depends on the
well s. However, J01

M ≈ J01
L = J01

R ≡ J01 and thus we expect
the same interaction-dependent behavior for all wells.

The interaction energy of the initial state inside the right
well, where the spin-↓ particle is isolated, reads as E0

I =
〈ĤI〉0 = 0 = ET

I , which is the same as for the triplet configu-
ration. The relative energies for different spin configurations
are illustrated in Fig. 4. Since triplet states are not energet-
ically cut off from the initial state, they are anticipated to
take part in the dynamics for all interaction strengths. Singlet
states are expected to contribute only up to a critical inter-
action strength, below which the energy gap 
E = gJ01 is
small enough to be bridged, similarly to our arguments in
Sec. III C.

In order to check this hypothesis, we evaluate the
time-dependent probability for the system to be in a ferromag-
netically ordered state, i.e., |T β

α 〉 and |Iα
α 〉 as in Eq. (7):

PF (t ) =
∑

α �=β∈{L,M,R}

∣∣〈T β
α

∣∣�(t )
〉∣∣2

+
∑

α∈{L,M,R}

∣∣〈Iα
α

∣∣�(t )
〉∣∣2. (17)
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(a)

(b)

(c)

FIG. 7. (a) Probability to occupy the ferromagnetically ordered
triplet and isolated spin-↓ states, PF (t ), (b) the same for the singlet
states, PS (t ), and (c) for doublon states, PD(t ), within the effective
tJU model.

Analogously, the corresponding probability for the singlet
states [see also Eq. (9)] is defined by

PS (t ) =
∑

α �=β∈{L,M,R}

∣∣〈Sβ
α

∣∣�(t )
〉∣∣2. (18)

The results of these evaluations are presented in Figs. 7(a) and
7(b). This figure indicates that the ferromagnetically ordered
states participate in the dynamics for the whole range of in-
teractions [see Fig. 7(a)] and are the dominant contribution
to |�(t )〉 for strong interactions g � 1.0. In this regime, sin-
glets do not contribute to the dynamics as indicated by the
vanishing overlap probability [see Fig. 7(b)]. For interactions
below that value, g � 1.0, PF (t ) and PS (t ) show that triplet
and singlet states both take part equally in the dynamics.
Additionally, there is an apparent coupling between triplet
and singlet states inside the intermediate regime 0.3 � g �
1.0, identified by the visible oscillatory behavior of PF (t )
and PS (t ). Since this is the regime for which we have ob-
served broken spin-charge separation (see also Sec. III A), this
strengthens our hypothesis that this coupling mechanism is in
fact responsible for the presence of spin-charge correlations
and the consequent absence of spin-charge separation in our
system. For completeness, note that for g = 0 triplets and
singlets both have a less important role in the dynamics [see
Figs. 7(a) and 7(b) for g < 0.1]. This occurs because in this
case doublon states are present that were negligible for larger
interactions [Fig. 7(c)] (see also Appendix D). Owing to the
relation PD(t ) = 1 − PF (t ) − PS (t ), that holds both within the
tJU model as well as in the ab initio system, they appear as
simultaneous depletion in both PS (t ) and PT (t ).

FIG. 8. The eigenspectrum of the tJU model for N↑ = 4 and
N↓ = 1 fermions confined in a triple well with V0 = 12ER. The over-
lap of the depicted eigenstates with the initial state |〈�(0)|�tJU

i 〉|2
is indicated by the grayscale of the data points. The dashed lines
indicate the nine energetically lowest eigenstates of the graph Hamil-
tonian, Fig. 5(b). The solid blue lines indicate the tJU eigenstates
with 4 and 1 particles in the b = 0 and 2 bands, respectively. These
states result in the resonances observed within ML-MCTDHX in the
g regions indicated by the dotted ellipses due to their beyond tJU
couplings to the manifold of relevant states (see text).

D. Effective eigenspectrum

In this section, we consider the spectrum of the effective
tJU model (see Fig. 8) in order to compare with the phe-
nomenological model of Sec. III D and to explain the missing
features present in the ab initio many-body results. We focus
on the eigenstates possessing significant overlap with the ini-
tial state of Eq. (3). The spectrum reveals that the initial state
involves the occupation of a multitude of eigenstates for all
values of g, which is expected as hole dynamics is observed in
all considered cases [see Figs. 2(d)–2(f)].

To get a deeper understanding of the above occupation
pattern of the tJU eigenspectrum, we compare it with the rele-
vant nine energetically lowest states of the graph of Fig. 5(b),
appearing as dashed lines in Fig. 8. In order to facilitate a
comparison between both spectra, we include the specific site
dependence of the triplet-singlet gap stemming from the vari-
ation of J01

s for different s ∈ {L, M, R}. Furthermore, the en-
ergetic barrier of the spin-↓ particle to occupy the middle site,
stemming from the expulsion of the b = 1 particles to the side
wells, is also taken into account. This leads to the modification
of diagonal matrix elements of the graph Hamiltonian to

〈
Iα
α

∣∣Ĥgraph

∣∣Iα
α

〉 = E0 + δαM
ε1,〈
T β

α

∣∣Ĥgraph

∣∣T β
α

〉 = E0 + δαM
ε1,〈
Sβ

α

∣∣Ĥgraph

∣∣Sβ
α

〉 = E0 + 
Eβ + δαM
ε1

= E0 + gJ01
β + δαM
ε1, (19)
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where α, β ∈ {L, M, R} and E0 = 3ε0 + 2
ε0 + 2ε1 + 
ε1

is the appropriate zero-energy offset such that the spectra
of both approaches agree for g = 0. The remaining matrix
elements are given by Eqs. (8a)–(8c) and (10a)–(10c).

With these corrections incorporated, we observe that the
spectra of both effective models show excellent agreement
for strong interactions g > 2, indicating the tendency of the
system to provide a spin-↓ and hole entangled state, as un-
raveled in Secs. III C and III D. For weaker interactions the
agreement between the methods is only qualitative, thus ad-
ditional mechanisms to the ones captured within Ĥgraph are
involved in the dynamics. In particular, Ĥgraph completely ne-
glects the presence of doublon states. Although these are not
significantly occupied within the tJU model [see Fig. 7(c)],
they have the important role of increasing the spin-↓ mobility
via the ASEI mechanism [60,65]. This significantly modifies
the behavior of the tJU eigenspectrum in the regime 0.5 <

g < 2. Finally, for g < 0.5 a multitude of avoided crossings
among the doublon states and the remaining configurations
are observed explaining their involvement within the weakly
interacting regime (see Sec. IV C).

The additional resonances observed within the ML-
MCTDHX approach can also be explained in terms of Fig. 8.
The solid blue lines indicate the tJU eigenenergies corre-
sponding to states where four particles are occupying the
ground band b = 0 and one particle lies in the second excited
band b = 2. These configurations possess a smaller single-
particle energy than the states with three and two particles
in the b = 0 and 1 bands, respectively, which we have con-
sidered up to now. Due to the necessity to generate a ground
band doublon in the former band configuration, the energies
of these states increase significantly ∝ gŪ 0 for increasing
repulsion. As a consequence, they cross the manifold of the
considered states for a finite value of g, as it can be seen in
Fig. 8 for 2 < g < 4 range, see dotted ellipses. For smaller
g ≈ 1, the crossings observed in Fig. 8 give rise to very narrow
resonances that we cannot resolve in our ab initio calculations.
These crossings are exact within the tJU description because
the related interaction terms, that result in the coupling of
those distinct band configurations, are neglected [29–31]. In
particular, these terms correspond to the so-called cradle mode
[66–68], where two particles of the same band are expelled to
different bands due to interaction.

V. CONCLUSIONS AND OUTLOOK

We have investigated the correlated dynamics of a spin- 1
2

fermionic system confined in a one-dimensional triple-well
potential. The considered initial state is composed of a polar-
ized ensemble of spin-↑ fermions confined in a double-well
subsystem and a single spin-↓ fermion trapped in the re-
maining well of the overall potential. By implementing this
initial state with a vacancy in the rightmost well, we are able
to probe the presence of the usually assumed spin-charge
separation both in terms of development of spin-transport
correlations and spin-charge deconfinement. By exploring the
hole dynamics for different interaction strengths among the
spin species, we have revealed the development of spin-charge
correlations in this multiband setup. In particular, in the inter-
mediate interaction regime, where neither interband exchange

interaction nor the development of magnetic excitations can
be neglected, the system does not exhibit spin-charge separa-
tion since strong correlations of the spin and hole dynamics
develop. Spin-charge separation is reestablished when leaving
this regime to higher or lower interactions since one of the
above-mentioned supporting mechanisms becomes negligi-
ble in either case. The mechanism that couples spin-triplet
and -singlet configurations into an effective two-dimensional
lattice has been elucidated in terms of a phenomenological
description. The latter is based on a graph generated from the
tunneling-induced couplings among the involved states. This
simple description demonstrates the emergence of spin-↓ and
hole entanglement and the relation to magnetic excitations in
the intermediate interaction regime. We have characterized
this mechanism by comparisons among this phenomenolog-
ical description, the coarse-grained effective tJU model and
the ab initio ML-MCTDHX approach, demonstrating the per-
sistence of the development of spin-↓ and hole correlations
when the system is treated within different levels of rigor.

This work sets only the beginning of studying the absence
of spin-charge separation in one-dimensional multiband sys-
tems. An interesting direction is the study of larger systems
with more than one spin-↓ particle that enable the examination
of more complex spin-exchange dynamics. Furthermore, the
presence of an additional hole in a larger system gives rise to
the possibility of hole-hole interactions and may also lead to
interactions of the 1D equivalent of magnetic polarons.
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APPENDIX A: ML-MCTDHX

In order to obtain the fully correlated ab initio quan-
tum dynamics of our system, we solve the many-body
Schrödinger equation (ih̄∂t − Ĥ)|�(t )〉 = 0 using the multi-
layer multiconfiguration time-dependent Hartree method for
atomic mixtures (ML-MCTDHX) [46]. This ab initio method
employs a time-dependent basis set of orthonormal states,
truncating the many-body Hilbert space to the relevant part of
the dynamics at each time step. The basis and the correspond-
ing expansion coefficients are variationally optimized, which
allows us to take intraspecies and interspecies correlations into
account in a numerically efficient manner. In a first step, the
many-body wave function |�(t )〉 is expanded with respect to
M orthonormal species functions {|�σ

k (t )〉}Mk=1 for each spin
state σ ∈ {↑,↓}:

|�(t )〉 =
M∑
k=1

√
λk (t )|�↑

k (t )〉|�↓
k (t )〉. (A1)

The expansion coefficients λk (t ) are the eigenvalues of the
σ -component reduced density matrix. The latter is defined as
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ρNσ
σ (�x, �x′) = 〈�(t )|[∏Nσ

i=1 ψσ (xi )]†∏Nσ

i=1 ψσ (x′
i )|�(t )〉. In the

second step, we expand the species functions with respect to
a time-dependent number-state basis {|�nσ (t )〉}:∣∣�σ

k (t )
〉 =∑

�n
Bσ

k;�n(t )|�nσ (t )〉, (A2)

with the corresponding expansion coefficients Bσ
k;�n(t ). The

distinct number states |�nσ (t )〉 refer to different occupation
numbers �nσ = (nσ

1 , . . . , nσ
mσ

) and read as

|�nσ (t )〉 =
[

mσ∏
i=1

ânσ
i

i,σ (t )

]†

|0〉. (A3)

The creation operator â†
i,σ (t ) creates a fermion in the time-

dependent, variationally optimized single-particle function
(SPF) |φσ

i (t )〉: ∣∣φσ
i (t )

〉 = â†
i,σ (t )|0〉. (A4)

Those operators fulfill the fermionic anticommutation re-
lations implying that ML-MCTDHX takes the appropriate
particle exchange symmetry into account. Finally, the SPF
are expanded with respect to a time-independent primitive
basis set which corresponds to a D-dimensional sine discrete
variable presentation {|s〉}, where we use D = 120 grid points.
Thus, this expansion reads as

∣∣φσ
i (t )

〉 = D∑
j=1

bσ
i j (t )|s j〉. (A5)

Note that on this layer, the expansion coefficients are time
dependent while the basis set is time independent.

By employing this truncation procedure, the determination
of the total many-body wave function reduces to finding the
expansion functions and respective coefficients of each layer
at each individual time step instead of using the full time-
independent basis set, spanned by the primitive basis {|s j〉}Dj=1.
The time evolution of the many-body wave equation is deter-
mined by solving the equations of motion of ML-MCTDHX,
determined by the Dirac-Frenkel variational principle. The
configuration space (M, mσ )σ∈{↑,↓} defines the Hilbert space
truncation [46], here M = m↑ = m↓ = 6.

APPENDIX B: NONINTERACTING DESCRIPTION
OF TRIPLE-WELL CONFINED FERMIONS

We establish the specifics of the effective description of
our triple-well system via an effective tight-binding model. To
achieve this, we elaborate on the symmetry analysis of Ĥ↑ +
Ĥ↓ [Eq. (1)], outlined in Sec. IV A.

Strictly speaking, no Bloch bands exist in our system due
to the presence of hard-wall boundary conditions. However,
we expect some precursors of the band structure to persist
especially in the case of large V0. Indeed, the explicit nu-
merical diagonalization of Eq. (1) [see Fig. 9(a)] indicates
that for deep lattices, V0 � 10ER, the low-lying states of the
system organize in groups of three states analogously to our
expectation for periodic boundary conditions. We can further
expect [and indeed we observe in Fig. 9(b)] that within each
such group, herewith referred to as a band, the involved states

FIG. 9. (a) The 21 energetically lowest noninteracting eigenen-
ergies of a triple well with varying V0. Eigenenergies belonging to
different bands are indicated by lines of different color (see labels).
(b) The 3 energetically lowest eigenstates corresponding to the b = 0
band of a triple well with V0 = 12ER. (c) The 3 Wannier states
generated from the eigenstates of (b) via the procedure described in
Appendix B.

are superpositions of states that are well localized within the
wells. The latter we call Wannier states, in analogy to the
translationally invariant case. To extract these states [see
Fig. 9(c)], we derive an effective model as follows. We first
consider the most general single-particle tight-binding model
with three sites that reads as

Ĥ =
∞∑

b=0

(−t b
LMâ†

LâM − (t b
LM

)∗
â†

MâL − t b
MRâ†

MâR

− (t b
MR

)∗
â†

RâM + εb
Lâ†

LâL + εb
Mâ†

MâM + εb
Râ†

RâR
)
, (B1)

where b refers to the index of the involved band. Here we
have suppressed the spin index since it is not relevant in
the discussion of this Appendix. This Hamiltonian can be
significantly simplified by using the symmetry properties of
the total Hamiltonian [see Eq. (1)]. Notice that Eq. (1) is
real and thus the maximally localized Wannier states would
also be real, thus, t b

LM = (t b
LM )∗ and t b

MR = (t b
MR)∗ holds. In

addition, the potential is parity symmetric x → −x allowing
to write t b

LM = t b
MR = t b and εb

L = εb
R by demanding that

Eq. (B1) also respects this symmetry. By defining εb
M = εb

and εb
L = εb + 
εb, we arrive at

Ĥ =
∞∑

b=0

[−t b(â†
LâM + â†

MâR + H.c.)

+ (εb + 
εb)(â†
LâL + â†

RâR) + εbâ†
MâM]. (B2)

The effective Hamiltonian depends on exactly three
parameters for each band, t b, εb, and 
εb, and within
each band we have exactly three states. Thus, we can fit the
effective model parameters so that it exactly reproduces the
eigenenergies εb

i , with i = 1, 2, 3, of Eq. (1), yielding

εb = εb
1 + εb

3 − εb
2,


εb = 2εb
2 − (εb

1 + εb
3

)
,

t b =
√

1
2

(
εb

2 − εb
1

)(
εb

3 − εb
2

)
. (B3)
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With this choice, the localized basis is related to the energy
eigenstates via the unitary transformation

Û b=

⎛
⎜⎜⎜⎜⎝

2t b√
(
εb+�b)2+8(t b)2


εb+�b√
(
εb+�b)2+8(t b)2

2t b√
(
εb+�b)2+8(t b)2

1√
2

0 − 1√
2

2t b√
(
εb−�b)2+8(t b)2


εb−�b√
(
εb−�b)2+8(t b)2

2t b√
(
εb−�b)2+8(t b)2

⎞
⎟⎟⎟⎟⎠,

(B4)

where �b ≡
√

(
εb)2 + 8(t b)2. By inverting the transforma-
tion, we obtain the localized states in terms of the energy
eigenstates which can be determined directly by diagonalizing
Eq. (1). The above procedure defines the Wannier states up to
a constant phase shift. In order to remove this ambiguity, we
fix the phase of the eigenstates of Eq. (1) by multiplying with
the appropriate phase factor of ±1 so that they take positive
values in the leftmost part of the triple well x ≈ −3π/2. This
is done because the left site is assumed to contribute with a
positive phase to the energy eigenstates [see Eq. (B4)].

APPENDIX C: EFFECTIVE INTERACTIONS

In this Appendix we outline the derivation of the interac-
tion Hamiltonian [see Eq. (15)] that is part of the effective
model ĤtJU = Ĥ0 + Ĥ ′

I . To this end, we consider the to-
tal many-body Hamiltonian from Eqs. (1) and (2), Ĥ =∑

σ∈{↑,↓} Ĥσ + ĤI . In our system, the gap between two en-
ergy bands constitutes the largest energy scale. Thus, it is
justified that a corresponding tight-binding model might well
capture the dynamics and for sufficiently small interactions,
the many-body spectrum can be captured by the noninter-
acting single-particle eigenenergies (SPEE) of the potential.
Accordingly, the many-body eigenstates can be described by
the single-particle eigenstates (SPES). We transform these
states to the Wannier states φb

s (x) describing the state on an
energy band b inside a well s (see Appendix B). The under-
lying approximation is that the latter are well localized within
the wells such that interactions of particles residing in distinct
lattice sites can be neglected.

Let us define the corresponding creation and annihilation
operators of spin species σ ∈ {↑,↓},

âb†
sσ =

∫
dx φb

s (x)ψ̂†
σ ,

âb
sσ =

∫
dx φb∗

s (x)ψ̂σ , (C1)

which create and annihilate a particle in the state φb
s (x) with

eigenenergy εb
s and obey the fermionic anticommutation rela-

tions. With these operators, the many-body Hamiltonian can
be written as

Ĥ =
∑

s∈{L,M,R}

(∑
b

∑
σ∈{↑,↓}

εb
s âb†

sσ âb
sσ

+ g
∑

b,b′,c,c′
U bb′cc′

s âb†
s↑âb′†

s↓ âc
s↓âc′

s↑

)
, (C2)

with U bb′cc′
s = ∫ dx φc∗

s (x)φc′∗
s (x)φb

s (x)φb′
s (x). Let us ana-

lyze which interaction terms emanate from the last sum.

First, we consider b = b′ = c = c′ which yields an inter-
action term Ĥdoub

s = g
∑

b U bbbb
s âb†

s↑âb†
s↓âb

s↓âb
s↑ and describes

the doublon interaction energy when two particles of an-
tioriented spins occupy the same state inside a well s.
By considering the definition of U , we find that U bbbb

s =∫
dx|φb

s (x)|4. Subsequently, we abbreviate U bbbb
s as U b

s . Next,
we consider direct interactions between two particles of op-
posite spin in different states, which is defined by Ĥdir

s =
g
∑

b�=b′ U bb′b′b
s âb†

s↑âb′†
s↓ âb′

s↓âb
s↑. We rename the interaction con-

stant as Jbb′
s = U bb′b′b

s = ∫ dx|φb
s (x)|2|φb′

s (x)|2. With these two
types of interactions, we can introduce a direct interaction
Hamiltonian:

ĤI,dir = g
∑

s∈{L,M,R}

(∑
b

U b
s n̂b

s↑n̂b
s↓ +

∑
b�=b′

Jbb′
s n̂b

s↑n̂b′
s↓

)
. (C3)

However, this is not sufficient to generate an effective de-
scription of interactions as it can be demonstrated that the
last term breaks the SU(2) symmetry of the total Hamil-
tonian. Thus, it would yield incorrect eigenstates. In order
to avoid this artificial symmetry breaking, we include ad-
ditional terms. From U bb′cc′

s , we find a spin-exchange term
of the form Ĥ exc

s = g
∑

b�=b′ U bb′bb′
s âb†

s↑âb′†
s↓ âb

s↓âb′
s↑, which allows

two antialigned fermions occupying different states to ex-
change their spin. Ultimately, we find the effective interaction
Hamiltonian

Ĥ ′
I =

∑
s∈{L,M,R}

Ĥdoub
s + Ĥdir

s + Ĥ exc
s

= g
∑

s∈{L,M,R}

[∑
b

U b
s n̂b

s↑n̂b
s↓

−
∑
b�=b′

Jbb′
s

(
Ŝb

s · Ŝb′
s − 1

4
n̂b

s n̂b′
s

)]
, (C4)

with Jbb′
s = U bb′b′b

s = U bb′bb′
s . The operators Ŝs are the spin

operators as introduced in Sec. IV A. In conclusion, we have
obtained Eq. (15). This Hamiltonian induces ferromagnetic
order for g > 0 and antiferromagnetic order for g < 0. Note
that additional terms can be derived from the second sum
of Eq. (C2). These include more involved doublon tunneling
terms, cradle modes, and density-mediated interactions (see
[50] for more details). However, opposite to the interaction
terms introduced above, applying these additional ones to
a many-body state causes an additional energy shift in the
case of vanishing interactions. Thus, they only contribute to
avoided crossings when the two distinct corresponding con-
figurations cross one another within tJU (see Fig. 8 for an
example of this process) or generate small energy shifts to
the tJU eigenenergies due to level repulsion when ∂Ei/∂g ≈
∂Ej/∂g for two tJU eigenstates i, j that couple by these
interaction terms.

APPENDIX D: EFFECT OF DOUBLONS
IN THE MANY-BODY DYNAMICS

Throughout the paper we have claimed that doublon forma-
tion is negligible in our system. The purpose of this section is
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to provide theoretical arguments on why this behavior occurs.
Doublon formation in the ground band b = 0 is energetically
prohibitive for U � t , where U and t are the characteristic
energy scales of intrasite interaction and tunneling respec-
tively [69], due to the formation of an energy gap among the
states with one and zero doublons. For the parameters of our
setup U/t = gŪ 0/t0 ≈ 55.4g, where Ū 0 = 1

3

∑
s∈{L,M,R} U 0

s ,
and thus ground band doublons are expected to exist only for
very small interactions g ≈ 0. This is in agreement with our
findings of Fig. 7(c), demonstrating non-negligible doublon
occupation only for g < 0.1.

Doublon formation in the excited band b = 1 requires
the spin-↓ particle to be in this band. This can be reached
by interaction-driven spin-exchange processes which do
not change the spatial distribution of the particles [29,30]
and are not affected by the presence of a sizable band
gap for the considered value of V0 that prohibits interband
population transfer. Such a process corresponds to the
spin-exchange term ∝ J01

s in Eq. (15). The importance of
this term when compared to interactions in the excited
band is g independent, specifically J̄01/Ū 1 ≈ 0.67, where
J̄01 = 1

3

∑
s∈{L,M,R} J01

s , while gŪ 1/t1 ≈ 2.17g. By using the
above we can work out the timescale of the transport relative
to the tunneling which corresponds to the inverse of the
fraction of the two energy scales gŪ 1/t1. This implies that
spin-exchange processes become important at gŪ 1/t1 > 1
yielding g = g0 ≈ 0.67. In that case the interaction strength is
already large g0Ū 1/t1 ≈ 1.49 and thus doublon formation is
expected to be negligible. This argumentation is corroborated
by our findings in Fig. 7(c), where a small population of
PD(t ) is observed in the region 0.1 < g < 2 associated to the
formation of higher band doublons.

Finally, let us comment on the fact that hs(t ) can be read-
ily corrected for doublon occupation within state-of-the-art

experiments. Note that a comparison of Figs. 2(a)–2(c) with
2(d)–2(f) already reveals that its effect on altering the value of
hs(t ) is negligible. However, a way to experimentally verify
this claim is important. The correction mechanism we propose
is based on quantum microscopy identifying the position of all
atoms in the system in a spin-resolved manner and the fact that
the doublon formation is associated to pronounced triple occu-
pation of a single site. The triple occupation can be deduced
experimentally by the reduction of number of atoms in the
other wells even in the case that single and triple occupations
of a site are not directly experimentally distinguishable.

In the case of b = 0 doublons the triple occupation signa-
ture occurs since these states occur for weak interaction where
the correlations among the lower and higher band particles are
negligible. This means that the hole would tunnel in and out
of the higher band state at the doublon position on a timescale
proportional to h̄/t1. In contrast, the doublon formation occurs
on a much longer timescale h̄/t0. Therefore, the shift in hs(t )
due to doublon formation can be removed by neglecting the
cases where a triple occupation occurs since in these cases
one of the observed holes corresponds to the ground state one
created due to the doublon. The artificial increase of hs(t )
occurring when the position of the hole coincides with the
doublon can be removed by studying the motion of the holes
in the cases that triple occupation of a site occurs and assum-
ing that the b = 1 hole tunnels as a noninteracting particle.

A similar procedure for b = 1 is significantly easier. This is
because after a spin exchange occurs that transfers the spin-↓
particle to the excited band, all atoms in the ground band are in
the spin-↑ state and occupy one site each. This means that if a
doublon forms in the excited band, it can be always identified
by the triple occupation of a site (two for the doublon and
one for the spin-↑ particle of the lower band) and thus this
contribution can be safely removed.
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