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Problem-specific classical optimization of Hamiltonian simulation
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Nonequilibrium time evolution of large quantum systems is a strong candidate for quantum advantage.
Variational quantum algorithms have been put forward for this task, but their quantum optimization routines
suffer from trainability and sampling problems. Here, we present a classical preprocessing routine for variational
Hamiltonian simulation that circumvents the need for a quantum optimization by expanding rigorous error
bounds in a perturbative regime for suitable time steps. The resulting cost function is efficiently computable
on a classical computer. We show that there always exists potential for optimization with respect to a Trotter
sequence of the same order and that the cost value has the same scaling as Trotter in simulation time and system
size. Unlike previous work on classical preprocessing, the method is applicable to any Hamiltonian system
independent of locality and interaction lengths. Via numerical experiments for spin-lattice models, we find that
our approach significantly improves digital quantum simulation capabilities with respect to Trotter sequences
for the same resources. For short times, we find accuracy improvements of more than three orders of magnitude
for our method as compared to Trotter sequences of the same gate number. Moreover, for a given gate number
and accuracy target, we find that the preoptimization we introduce enables simulation times that are consistently
more than ten times longer for a target accuracy of 0.1%.
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I. INTRODUCTION

Quantum simulation is believed to be one of the first
applications in quantum computing that may show practical
advantages over its classical counterparts [1,2]. To compile
a digital quantum algorithm for simulating a time evolution
U (t ) that will be typically generated by a p-local Hamiltonian,

U (t ) = e−itH with H =
∑

j

c jHj, (1)

a Trotter-Suzuki decomposition [3], that approximates U (t )
as a product of local exponentials, can be employed. Although
so-called beyond-Trotter methods, such as more general prod-
uct formulas [4–6], quantum signal processing techniques
[7], or Krylov subspace inspired algorithms [8] have been
investigated, recent studies on Trotter error scaling [9,10] have
proven Trotter sequences to still be competitive.

Nonetheless, in specific applications, Trotter sequences fail
to deliver the optimal solution for a product formula with
fixed gate count [11]. Among other optimization strategies,
variational quantum algorithms have been put forward to find
optimized (system-specific) gate sequences for Hamiltonian
simulation [12–17].

Although variational quantum algorithms have recently
piqued significant interest as possible applications on near-
term quantum hardware [18], they hide intrinsic difficulties
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that make their implementation on near-term devices very
challenging. Vanishing gradients (Barren plateaus) [19–21]
sample overhead for efficient measurements [22,23] and ef-
fects of noise on cost function evaluations [24] are only
some of the hurdles to overcome. Thus, key to a successful
near-term quantum algorithm is developing strategies to use
quantum hardware in the crucial solution step, but otherwise
as little as possible.

A drastic, however, promising, approach to solve this is not
to do quantum optimization at all, but rather push the whole
optimization loop into classical preprocessing, which requires
a cost function that is efficiently computable by a classical
machine. This idea has been demonstrated to be applica-
ble in specific cases, such as translational invariant models
[25] in which parameters found on small systems can be
reused in large systems as well as systems with efficient tensor
network representations [26–29] to calculate error measures
classically.

Here, we present a cost function that is classically effi-
ciently computable and use it for classical optimization of
quantum circuits that implement time evolution in preprocess-
ing. We show that this cost function yields a faithful upper
bound on the two-norm error of the ansatz unitary if one
restricts the single time step to be small, an assumption that
is common to all product formulas [4–6,9]. Our cost func-
tion is agnostic of the considered initial state and relies on a
perturbative expansion of a rigorous upper bound that can be
transformed into a polynomial in the parameters. The number
of terms that need to be calculated scales with the number
of noncommuting terms Hj in the Hamiltonian. While this
number is generally dependent on the locality and interaction
distance in H , it is bounded by a power of the qubit number
for models with only two-body interactions. There are thus
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FIG. 1. Maximal simulation time T of variational and Trotter sequences of order q ∈ {1, 2, 4} (left) and simulation time ratio TT /TV of first
order sequences (right) for a fixed gate count that is determined by K and a threshold accuracy ε ∈ {10−2, 10−3} evaluated on a nearest-neighbor
XY model on a 3 × 3 quadratic lattice and random interaction strength J (y)

μ,ν centered around 0.5, J (z)
μν centered around 1 and hμ = 0.25. The

small jumps in TT
TV

are due to the finite step size in the search for optimal time steps t to meet the error threshold ε. See Sec. IV for details of
the numerical experiments to produce the data shown here.

no intrinsic limitations on the Hamiltonian for the use of
our method. We further give a perturbative and classically
computable error estimate that allows us to predict error scal-
ings in system size and simulation time if the optimized gate
sequence is repeated K times.

We illustrate the improvements enabled by our approach
via exact numerical simulations for an XY model with ran-
dom nearest-neighboring interactions. Our results (cf. Fig. 1)
show that the maximally reachable simulation times T for a
given target accuracy ε and a fixed gate budget G = O(K )
are more than ten times longer than for a Trotter sequence of
the same order for cases with K � 20 and ε = 10−3. More-
over, the variational sequence even reaches slightly larger
simulation times than second-order Trotter and is competitive
with fourth-order Trotter, whereas these higher order formulas
provide less data points for fixed gate budget.

The paper is structured as follows. We begin by intro-
ducing the second-order perturbative distance of a variational
sequence from the correct time evolution operator in Sec. II
and show that it bounds the algorithm error up to third-order
corrections in the parameters. We further show that the per-
turbative distance always has a nonvanishing gradient at the
point in the parameter space that corresponds to the Trotter
sequence yielding a general guarantee for the existence of an
optimal solution away from Trotter. In Sec. III, we compute
the scaling of the error in the extrapolation of found optimal
gate sequence in system size and simulation time. Finally, we
demonstrate our findings and the advantages they enable in
numerical experiments on the XY model in Sec. IV before we
close with a summary and outlook.

II. PERTURBATIVE COST FUNCTION

We are interested in a variational ansatz for quantum
simulation U (t ) = exp (−itH ). It has been demonstrated

before [11,25] that Trotter sequences can be optimized in a
model-specific way using the ansatz

Uvar =
R∏

r=1

M∏
j=1

e−iθr, j Hj . (2)

The inner product factorizes all M Hamiltonian terms indexed
with j and the outer product adds the freedom to use in total
R layers in which the parameters can be different. While the
choice of ansatz is not necessarily restricted to Eq. (2), it
has the advantage of containing the Trotter solution. If we
use the parameters θr, j = c jt

R , Eq. (2) reduces to a Trotter
decomposition with Trotter number R.

Finding the optimal solution for an operator approximation
is hard, since error measures for the time evolution operator,
such as

εvar = ‖U (t ) − Uvar‖, (3)

where ‖.‖ is a yet unspecified, unitary invariant norm, requir-
ing exponential resources, in general. In this paper, we present
a classically efficient optimization strategy that yields good
results in the relevant regime of small time steps t

R , where
power expansions can be applied. To this end, we introduce
an approximation to an upper bound of the error measure εvar

for the time evolution operator in Eq. (3), which is provided
by a quantity that we call perturbative distance.

Definition 1. Let H =∑M
j c jHj be a time-independent

Hamiltonian. Define the perturbative distance

C(θ ) =
∥∥∥∥∥∥i
∑

j

ξ j (θ )Hj −
∑
j> j′

χ j, j′ (θ )[Hj, Hj′ ]

∥∥∥∥∥∥ (4)
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with the coefficients

ξ j (θ ) =
∑

r

θr, j − tc j, (5)

χ j, j′ (θ ) = 1

2

[∑
r

(θr, jθr, j′ ) +
∑
r>r′

(θr, jθr′, j′ − θr, j′θr′, j )

]
. (6)

The perturbative distance C(θ ) represents an approxima-
tion to an upper bound of the error measure εvar for the time
evolution operator. We make this statement precise in the
following proposition.

Proposition 1. Let H =∑M
j c jHj be a time-independent

Hamiltonian and C(θ ) the perturbative distance defined in
Eq. (4). Then the error εvar defined in Eq. (3) is bounded up to
third-order corrections by

εvar � C(θ ) + O(θ3). (7)

Proof. We can write the difference operator in Eq. (3) in
the form

e−itH − eZ , (8)

where Z is determined by merging Uvar into one exponential
via the Baker-Campbell-Hausdorff (BCH) lemma. We show
in Lemma 2 (see Appendix A 2 for a proof) that up to third
order

Z = i
∑
r, j

θr, jHj − 1

2

∑
(r, j)>(r′, j′ )

θr, jθr′, j′ [Hj, Hj′ ] + O(θ3).

(9)

We assumed a specific ordering of the multi-index (r, j) for
the sake of being precise. The statement can be very well
applied to arbitrary orderings of the exponentials in Eq. (2).
We finally make use of a well-known estimate (see Lemma 1
in Appendix A 1 for a proof)

‖eiA − eiB‖ � ‖A − B‖, (10)

that leaves us with the proposition. �
To make C(θ ) an approximate upper bound to the error εvar,

we need to assume t
R‖H‖ � 1 and bound the parameters θ to

be at the same order of magnitude. This assumption yields
a time-dependent bound on R, which is not surprising. In
general, Lieb-Robinson bounds on the entanglement that is
generated by time evolution gives a relation between t and R
[30]. If one manages to minimize C(θ ) within the perturbative
regime, the leading term in the upper bound will be of order
O(θ3), yielding a new error estimate that we will analyze in
Sec. III.

Note that first-order Trotter sequences can be represented
by Eq. (2), setting the parameters θr, j = tc j

R . The Trotter solu-
tion has the advantage that it makes the linear contribution in
θ , respectively t

R , vanish. It is, however, not the only solution
that achieves this. In fact, we can reduce the number of pa-
rameters by M if we constrain the linear terms by ξ j = 0 ∀ j.
Let us thus fix the last layer (r = R) by setting

θR, j = tc j −
∑
r �=R

θr, j, (11)

so (R − 1)M parameters remain. Note that Eq. (11) is a choice
that turns out to be helpful as long as the operators that

contribute in linear order are all orthogonal to the operators
in the second-order terms, which we assume in the following.
Otherwise first and second order terms could be used to cancel
each other.

We are still free to choose a specific norm. While in finite
dimensions, all norms are equivalent, choosing a norm to
describe the error ε, implies a notion of how the algorithm
performs for specific initial states. If we were to choose the
operator norm ‖.‖∞, for instance, ε can be connected to an
infidelity for the worst case initial state, while a two-norm
‖.‖2 yields an average case error. Later, C(θ ) shall be used
as a cost function in variational optimization, so it should
be continuously differentiable in the parameters θr, j . While
this rules out the operator norm, all Schatten p-norms can
be applied. If we consider the two-norm, we see that the
computation of C(θ ) is classically efficient. In this case,

C(θ )2 = −2−n
∑
j> j′

∑
k>k′

χ j, j′χk,k′Tr([Hj, Hj′ ][Hk, Hk′ ]), (12)

where we included a normalization factor 2−n that prevents
C(θ ) from growing in the Hilbert space dimension. Typically,
the commutators [Hj, Hj′ ] follow a simple algebraic struc-
ture (for instance, if all Hj are Pauli strings). The factors
Tr([Hj, Hj′ ][Hk, Hk′ ]) can thus efficiently be computed for the
model of interest, typically even by hand, leaving C(θ ) to be
a fourth order polynomial in θ .

The Trotter solution, while becoming exact in the limit
R → ∞, can always be beaten for finite R � 3, as we will
show in the following.

Proposition 2. Let H =∑ j c jHj a Hamiltonian and Uvar

as defined in Eq. (2) with R � 3. The Trotter solution θT
r, j =

tc j

R describes a (local) minimum of C(θ ) if and only if the
Trotter formula is exact, i.e., C(θT ) = 0 ∀t .

Proof (Sketch). For the forward direction ⇒, we explicitly
calculate the gradient at the Trotter solution ∇C(θT ). Setting
this to zero, gives a relation

∑
j>l

∑
k>k′

A j,k,k′,l = 2r − R

2(r − 1) − R

∑
j<l

∑
k>k′

A j,k,k′,l ∀r, l,

(13)

where A j,k,k′,l is a tensor independent of r and R. For R � 3,
we show that this forces the left-hand side of Eq. (13) to
vanish, making the Trotter sequence exact. For details, see
Appendix A 3. The reverse direction ⇐ is trivial. �

III. ERROR SCALING

Since the proposed classical optimization scheme can only
make valid statements within the perturbative regime θ �

1
‖H‖ , longer simulation times either require large R or repe-
titions of a small time step. A similar extrapolation can be
done in system size. This section studies the scaling of the
perturbative distance along these extrapolations. In the case
that the second-order perturbative cost function is optimized
to values that become negligible to higher orders, the error
scaling is determined by a third-order term E (θ ) for which

εvar � C(θ ) + E (θ ) + O(θ4) (14)
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holds. First, we consider the extrapolation in system size in
the presence of translation symmetries.

Proposition 3. Let H =∑A
a=1

∑n
j=1 caH ( j)

a be a p-local,
translation invariant Hamiltonian, where index a labels differ-
ent interaction terms and the dependence on the qubit number,
indicated by superscript ( j), only denotes on which qubit H ( j)

a

has support. Let further Uvar be as defined in Eq. (2).
If the parameters are chosen to be translation invariant, i.e.,

θr, j = θr,a, then the cost value for a system of n qubits on a
D-dimensional geometry is bounded by the cost value Cunit (θ )
of a system of (2p − 1)D qubits and the error is bounded by
Eunit (θ ) of a system of (3p − 2)D qubits

C(θ ) � nCunit (θ ) and E (θ ) � nEunit (θ ). (15)

Further, if all the commutators [Hj, Hj′ ] are orthogonal with
respect to the Hilbert-Schmidt product, cost and error read

C(θ ) = √
nCunit (θ ) and E (θ ) = √

nEunit (θ ). (16)

See Appendix A 4 for a proof. Remarkably, the calcula-
tion of C(θ ) on translation-invariant systems is reduced to a
problem on (2p − 1)D qubits only. If the optimal parameters
are used for a larger system, the cost function will scale as
O(n). In fact, a system that is small enough can be exactly
diagonalized on a classical computer and an exact measure of
error, such as ‖U (0, t ) − Uvar‖ can be calculated. A successful
extrapolation of optimal parameters for translation invariant
systems to larger system sizes has been found in Ref. [25]
and also shows a linear scaling of the squared cost function in
system size n, even beyond the perturbative regime. While we
restrict the discussion here to translation symmetries, the be-
havior of other scaling transformations such as clusterings or
pooling-inspired transformations can be analogously checked.

Optimizing on longer simulation times still within the per-
turbative regime comes with an increase in R and therefore
with the number of parameters making a successful opti-
mization hard. Instead, long simulation times can be reached
by repeating a pretrained single time step fixing the number
of parameters to be RM. The scaling of the cost function
under this extrapolation in simulation time is studied in the
following.

Proposition 4. Let Uvar (θ ) be an ansatz for variational
Hamiltonian simulation as defined in Eq. (2) with the cost
value C(θ ). The ansatz

U K
var (θ

K ) =
⎛
⎝ R∏

r=1

M∏
j=1

e−iθr, j Hj

⎞
⎠

K

. (17)

simulates time T = Kt using KR layers and K copies of the
RM parameters. The corresponding cost value reads

C(θK ) = KC(θ ). (18)

Proof idea. The extrapolated ansatz is equivalent to the
ansatz before by mapping R → KR, t → Kt and identifying
θr, j = θr%R, j , where % denotes the modulo operation. Plug-
ging this into the definition of χ from Eq. (6) yields a linear
factor K . See Appendix A 5 for details. �

In total, the cost function scales as O(K ) when extrapolat-
ing in time. Note that the leading order Trotter error scales the

same under the above mapping

‖U (0, t ) − UTrotter‖ = O
(

t2

R

)
→ O

(
K

t2

R

)
. (19)

The error E (θ ) of the repeated sequence does not admit a
common K-dependent factor that can be pulled out, but rather
introduces extra terms, �, that make the error scaling worse
than for Trotter sequences (see Appendix A 5 for details). The
extra terms will, in general, contribute to an O(K2) scaling:

E (θK ) � KE (θ ) + K (K − 1)

2
�. (20)

Although this result means that usually the improvement with
respect to Trotter will eventually melt away at long times,
our numerical experiments show that there are significant
improvements for the timescales that are relevant to reach
quantum advantage in digital quantum simulation.

IV. NUMERICAL EXPERIMENT

To explore the accuracy improvement that can be enabled
with our approach in specific examples, we study the perfor-
mance of the derived cost function by optimizing a variational
sequence with the second-order perturbative distance defined
in Eq. (4) and comparing it to the exact value for the dif-
ference of time evolutions εvar = ‖U (t ) − Uvar‖ and εTrotter =
‖U (t ) − UTrotter‖ as well as to the leading order error term
E (θ ) (cf. Eq. (14)) that is efficiently computable classically.
For this comparison, we study the ratios

Rε = εTrotter

εvar
RE = εTrotter

E (θ )
(21)

of perturbative (RE ) and exact (Rε) error measures comparing
Trotter and variational sequences. In Eq. (21), C(θT ) denotes
the perturbative distance for choosing the variational parame-
ters equal to the Trotter choice θr, j = tc j

R .
From the bound in Eq. (14), we can also infer an approxi-

mate lower bound for the exact error ratio

Rε �
εTrotter

C(θ ) + E (θ )
+ O(θ4) ≈ RE , (22)

where we assumed that C(θ ) � E (θ ) after a successful opti-
mization of the parameters θ .

As an example, we consider an XY model with a fully con-
nected interaction graph that is described by the Hamiltonian
(up to unitary equivalence)

HXY = −
∑
μ>ν

(
J (y)
μν YμYν + J (z)

μν ZμZν

)+
∑

μ

hμXμ. (23)

The sum over μ, ν counts every pair of qubits and the sym-
metric matrices J (y,z)

μν encode the interaction strengths between
qubits μ and ν. In our numerical simulations, we normalize
the Hamiltonian to ‖H‖ = √

n to fix the timescale.
To calculate C(θ ) for the XY model, we define a mapping

between the single index j ∈ {1, ..., M} used in the above
derivations and the Hamiltonians in Eq. (23) labeled by the
qubit indices μ ∈ {1, ..., n} and the interaction type. The non-
vanishing commutator terms that appear in C(θ ) are of the
form [ZμZν, Xμ], [YμYν, Xμ] or [ZμZν,YνYσ ]. This allows the
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FIG. 2. Perturbative (C, E ) and exact (ε) error measures (left) and exact error ratio Rε and the ratio of error estimates RE (right) as defined
in Eq. (21) evaluated on a nearest-neighbor XY model on a 3 × 3 quadratic lattice and random interaction strength J (y)

μ,ν centered around 0.5,
J (z)
μν centered around 1 and hμ = 0.25.

reduction of C(θ ) to O(n3) nonvanishing terms in the fully
connected case and to O(n) nonvanishing terms in a nearest-
neighbor XY model. See Appendix C for an explicit form of
the perturbative distance C(θ ). Note that we are still free to
turn off specific interactions from the fully connected graph
to study lattice geometries of any dimension. We will now
turn to a two-dimensional geometry for which there is no
analytical solution using free fermion mapping, such as in one
dimension.

In Fig. 2, we plot the cost values C, E and ε, as well as the
ratios Rε and RE for different times t . The optimizer manages
to find small values of C(θ ) for all times. For small enough
times t < R

‖H‖ = 1, the perturbative distance also incorporates
a faithful indicator for the exact norm in a sense that the op-
timal parameters also yield a significant decrease in the exact
error εvar of the variational sequence. Also, the error estimate
E and the ratio RE yield very good approximations for the true
error ratio Rε as predicted in Eq. (22). The numerics hence
indicate that the approximate upper bound derived in Eq. (14)
is tight.

In Fig. 3, the optimal parameters found before for a fixed
time step

√
2nt ∈ {0.05, 0.5, 1.5} are being repeated up to

K = 10 times to simulate longer times. As predicted in Propo-
sition 4, the square of the perturbative distance grows with
a factor K2. For total simulation times

√
2nKt < 1.5, this

scaling is also reflected in the exact cost ε. Above this crit-
ical time, higher order contributions become non-negligible,
which explains why the scaling ε deviates from O(K2).
Remarkably, the error ratio between Trotter and variational
sequences stays constant also far beyond this critical time until
the improvement of the variational sequence eventually starts
melting away at t > 1.

Let us take this extrapolation to a practical case in which
we have a gate budget G = O(KRn) that will scale with the
number of qubits n and the number of circuit repetitions K ,
and a maximal target accuracy ε. A natural question from a
practitioner’s point of view is to ask, What is the maximally
reachable simulation time T = Kt with these fixed resources.
We study this question in Fig. 1 where we plot TV for vari-
ational and Trotter sequences of order q ∈ {1, 2, 4} picking

FIG. 3. Pertubartive cost values C compared with exact norm cost function ε for a repeated sequence of variational and Trotter solution
evaluated on a nearest-neighbor XY model on a 3 × 3 quadratic lattice and random interaction strength J (y)

μ,ν centered around 0.5, J (z)
μν centered

around 1 and hμ = 0.25. A single time step always corresponds to R = 3 layers and the single step time increases from left to right
√

2nt ∈
{0.05, 0.5, 1.5}. From the log-log plot, one can read off C(θK )2 = O(K2) as predicted by Proposition 4.
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the maximal time step t that corresponds to an error ε just
below the threshold. While the variational sequence reaches
larger simulation times than first- and second-order Trotter
sequences, its maximal simulation time is comparable to the
fourth-order Trotter formula in the ε = 10−2 case and in the
ε = 10−3 case for circuits with K < 25. The simulation time
of the variational sequence is then surpassed by that of a
q = 4 Trotter formula in the case ε = 10−3 at depths K > 25.
However, since higher order Trotter formulas require more
gates for a single time step, the resolution of the time evolution
for a given gate number also becomes more sparse. For NISQ
applications, which are typically K < 20, there might be only
a single- or no fourth-order data point in the implementable
range, depending on the system size. We also plot the ratio of
simulation times TT /TV for first-order sequences to show that
our method can reach simulation times that are more than ten
times longer than for a Trotter sequence of the same order for
ε = 10−3 and K � 20.

We have also computed the values of the the ratios RC and
Rε for different times t for a transverse field Ising model in
Appendix B. Also for this model, our approach leads to a dra-
matic improvement. This model, however, has a particularly
simple commutator algebra that is routed in its low connec-
tivity. Therefore, many of the two-qubit gates in a Trotter
sequence commute with each other and, as a consequence,
a first-order Trotter sequence of the Ising model is unitar-
ily equivalent to a second-order Trotter sequence. Improving
upon this sequence would require a third-order perturbative
distance analogous to our discussion above.

V. CONCLUSION

In this paper, we presented a classically efficient way to
estimate error measures for variational time evolution in the
regime t

R , θ � 1
‖H‖ and proposed an optimization routine

for variational Hamiltonian simulation that is executed com-
pletely in classical preprocessing. The method is applicable to
arbitrary p-local Hamiltonians and only requires computing
commutators of individual terms in the Hamiltonian.

We show that—analogous to a Trotter decomposition—
the linear contribution to the error in the parameters θ can
be forced to exactly vanish. The remaining parameters can
then be found to minimize the second-order error terms for
which the existence of a better solution than Trotter is always
guaranteed within the perturbative regime. A generalization
to higher orders is straightforward and remains only a matter
of diligence. The Trotter-inspired error scalings in system size
and extrapolations in simulation time are conserved also when
deviating from the Trotter solution. Our findings are backed
up with numerical experiments on the XY model with random
interaction strengths.

For future work, it would be interesting to study other phys-
ically motivated models like nonlocal fermionic encodings.
Also, an extension to time-dependent Hamiltonians would be
interesting, although the extrapolation to larger times is not
straightforward for this case. Another possibility to simplify
the computation of the perturbative distance is to change the
exact error measure that is to be approximated. This can be
done by fixing the initial state of the quantum simulation or to
consider alternative error measures, such as the conservation

of statistical moments of the Hamiltonian, as recently pro-
posed in Ref. [17].
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APPENDIX A: DERIVATION OF THE COST FUNCTION

1. An upper bound for the error

To derive an upper bound for the error of a variational gate
sequence for time evolution, we start by reviewing a general
upper bound for differences of unitaries shown in Ref. [31].

Lemma 1. Let A, B be Hermitian operators and ‖.‖ any
norm that admits unitary invariance, then

‖eiA − eiB‖ � ‖A − B‖. (A1)

Proof. We begin by writing the difference operator eiA −
eiB in integral form

eiA − eiB =
∫ 1

0
dx

d

dx
[ei(B+x(A−B))]

=
∫ 1

0
dx
∫ 1

0
dy[eiy(B+x(A−B))(A − B)

× ei(1−y)(B+x(A−B))]. (A2)

In the first step, we used the fundamental theorem of calculus
and, in the second step, we used the identity for the derivative
of the exponential map

d

dx
eF (x) =

∫ 1

0
dy eyF (x)F ′(x)e(1−y)F (x) (A3)

for any operator valued function F (x) and its derivative F ′(x).
If we consider the norm of the operator in Eq. (A2), we can
use the triangle inequality and its unitary invariance to get to
the result

‖eiA − eiB‖ �
∫ 1

0
dx
∫ 1

0
dy‖eiy(B+x(A−B))(A − B)

× ei(1−y)(B+x(A−B))‖

=
∫ 1

0
dx
∫ 1

0
dy‖A − B‖ = ‖A − B‖. (A4)

�
Let H =∑M

j=1 c jHj be Hermitian. We are interested in a
time evolution operator built from gates of the form e−iθHj .
For this choice, the variational gate sequence will have the
form of Eq. (2). We can use the BCH formula to find an anti-
Hermitian operator Z that combines all exponentials in Eq. (2)
into one. Using Lemma 1, we then get a general bound for the
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difference operator

‖U (0, t ) − Uvar‖ = ‖e−itH − eZ‖ � ‖itH + Z‖. (A5)

Z contains infinitely many terms in general. To transform
Eq. (A5) into something that is classically computable, we
will truncate Z in a perturbative regime.

2. Truncation of BCH formula

In the limit of small time steps t
R → 0, a Trotter formula

becomes exact. We want to keep t
R small but finite in the

following. We further assume the parameters θr, j to be of
the same order as t

R . Consider the following supplementary
lemma.

Lemma 2. Let Aj, j ∈ J for some index set J be a list of
bounded operators and denote the maximal operator norm
max j ‖Aj‖∞ =: a. It holds that

←∏
j∈J

eAj = eB, (A6)

B =
∑
j∈I

Aj + 1

2

∑
j>k

[Aj, Ak] + 1

12

∑
j �=k

[Aj, [Aj, Ak]]

+ 1

6

∑
j>k>l

([Aj, [Ak, Al ]] + [Al , [Ak, Aj]]) + O(a4),

(A7)

where we assumed an implicit ordering on index set J, and
the arrow above the product implies that the exponential cor-
responding to the smallest index is being multiplied from the
right.

Proof. We proceed by induction over the size of index set J. For |J| = 1, the statement becomes trivial and for |J| = 2
equivalent to the BCH formula. We hence assume that the statement holds for an index set J of size I − 1. Let us rename Z from
above to ZI−1 to emphasize the size of the index set. If we add an Ith index, we get

eAI

←∏
j∈J

eAj = eAI eZI−1 = eZI , (A8)

where we get ZI from the BCH lemma

ZI = AI + ZI−1 + 1
2 [AI , ZI−1] + 1

12 [AI − ZI−1, [AI , ZI−1]] + O(a4). (A9)

Let us recollect all orders in a. For first order, we get AI +∑I−1
i=1 Ai =∑I

i=1 Ai. For the second-order term, we gather two terms
from Eq. (A9):

1

2

I−1∑
i> j

[Ai, Aj] + 1

2

[
AI ,

I−1∑
i=1

Ai

]
+ O(a3) = 1

2

I∑
i> j

[Ai, Aj] + O(a3). (A10)

Finally, the third-order term has three contributions from Eq. (A9),

1

12

I−1∑
j �=k

[Aj, [Aj, Ak]] + 1

6

I−1∑
j>k>l

([Aj, [Ak, Al ]] + [Al , [Ak, Aj]]) + 1

4

I−1∑
j>k

[AI , [Aj, Ak]]

+ 1

12

I−1∑
j

[AI , [AI , Aj]] + 1

12

I−1∑
j,k

[Aj, [Ak, AI ]]

= 1

12

I−1∑
j �=k

[Aj, [Aj, Ak]] + 1

6

I−1∑
j>k>l

([Aj, [Ak, Al ]] + [Al , [Ak, Aj]]) + 1

4

I−1∑
j>k

[AI , [Aj, Ak]]

+ 1

12

I−1∑
j

([AI , [AI , Aj]] + [Aj, [Aj, AI ]]) + 1

12

I−1∑
j>k

(−[AI , [Aj, Ak]] + [Ak, [Aj, AI ]]) + 1

12

I−1∑
j<k

[Aj, [Ak, AI ]]

= 1

12

I∑
j �=k

[Aj, [Aj, Ak]] + 1

6

∑
j>k>l

([Aj, [Ak, Al ]] + [Al , [Ak, Aj]]), (A11)

where we first split the sum
∑

j,k =∑ j=k +∑ j>k +∑ j<k and used the Jacobi identity of the commutator in the first step. In
the second, we renamed indices to absorb the fourth sum into the second terms and the rest into the first term accordingly. Taking
all three orders together, we conclude with the statement. �
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We can now apply Lemma 1 to the BCH Hamiltonian Z of a variational decomposition of H . While we will need the
third-order term of Eq. (A7) when discussing error scalings, for now we only make use of the first- and second-order term

−itH − Z = −it
M∑

j=1

c jHj + i
∑
r, j

θr, jHj − 1

2

∑
(r, j)>(r′, j′ )

θr, jθr′, j′ [Hj, Hj′ ] + O(θ3)

= i
∑

j

(∑
r

θr, j − tc j

)
Hj − 1

2

∑
(r, j)>(r′, j′ )

θr, jθr′, j′ [Hj, Hj′ ] + O(θ3), (A12)

where we implied an order on the index set J = {(r, j)}r, j . The specific ordering is not important for our discussion. Without
loss of generality, we will choose the order (r, j) < (r′, j′), if and only if r < r′ or r = r′ and j < j′. If one fixes the last layer
of parameters as in Eq. (11), the linear contribution in Eq. (A12) will vanish. For the sake of clarity, we will still write θR, j in the
following even though it is not a free parameter. Finally, we can write the second-order term of the upper bound

‖itH + Z‖ =
∥∥∥∥∥∥

1

2

∑
(r, j)>(r′, j′ )

θr, jθr′, j′ [Hj, Hj′ ]

∥∥∥∥∥∥
=
∥∥∥∥∥∥

1

2

∑
j> j′

(∑
r

θr, jθr, j′

)
[Hj, Hj′ ] + 1

2

∑
j, j′

(∑
r>r′

θr, jθr′, j′

)
[Hj, Hj′ ]

∥∥∥∥∥∥
=
∥∥∥∥∥∥

1

2

∑
j> j′

[∑
r

(θr, jθr, j′ ) +
∑
r>r′

(θr, jθr′, j′ − θr, j′θr′, j )

]
[Hj, Hj′ ]

∥∥∥∥∥∥. (A13)

We dropped vanishing commutators and regathered similar terms in the last step of Eq. (A13). For the sake of clarity, we will
define an abbreviation for the coefficient of the commutator terms:

χ j, j′ := 1

2

∑
r

θr, jθr, j′ + 1

2

∑
r>r′

(θr, jθr′, j′ − θr, j′θr′, j ). (A14)

After plugging in Eq. (11), that is necessary to make the linear contribution in Eq. (A12) vanish, we get

χ j, j′ = 1

2
t2c jc j′ − tc j′

R−1∑
r

θr j +
R−1∑

r

θr, jθr, j′ +
R−1∑
r>r′

θr, jθr′, j′ . (A15)

3. Optimization potential (proof of Proposition 2)

Proof. The backwards direction is trivial as C(θ ) � 0 per definition. As for the forward direction, assume that θT is a global
minimum of C and hence also of C2. The cost value at the Trotter parameters θT

r, j = tc j

R reads

C(θT )2 = −2−n
∑
j> j′

∑
k>k′

t4c jc j′ckck′

4R2
Tr([Hj, Hj′ ][Hk, Hk′ ]), (A16)

which is nonzero in general. For a global minimum, the gradient of C at the point θT must vanish. The gradient of C at the
Trotter solution reads

∂q,lC(θ )2 = −2−n+1
∑
j> j′

∑
k>k′

(∂q,lχ j, j′ )χk,k′Tr([Hj, Hj′ ][Hk, Hk′ ]). (A17)

Here, we introduces the shorthand ∂r, j = ∂
∂θr, j

. The factor 2 in Eq. (A17) comes from the fact that the cost function is symmetric
under the exchange of the factors χ j, j′ and χk,k′ . The derivative of χ reads

2∂q,lχ j, j′ = δl, jθq, j′ + δl, j′θq, j +
∑
q>r′

(δl, jθr′, j′ − δl, j′θr′, j ) +
∑
r>q

(θr, jδl, j′ − θr, j′δl, j )

= δl, j

⎛
⎝∑

r�q

θq, j′ −
∑
r>q

θq, j′

⎞
⎠+ δl, j′

⎛
⎝∑

r<q

θq, j −
∑
r�q

θq, j

⎞
⎠ (A18)

and at the Trotter solution

2∂q,lχ j, j′ = δl, j
tc j′

R
(2q − R) + δl, j′

tc j

R
(2(q − 1) − R). (A19)
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Finally, the gradient of the cost function reads

(∂q,lC
2)

({
tc j

R

}
j

)
= −2−n

∑
j<l

∑
k>k′

tc j

R
(2q − R)

t2ckck′

2R
Tr([Hl , Hj][Hk, Hk′ ])

+ 2−n
∑
j>l

∑
k>k′

tc j

R
(2(q − 1) − R)

t2ckck′

2R
Tr([Hl , Hj][Hk, Hk′ ])

= 2−n

⎛
⎝(2(q − 1) − R)

∑
j>l

−(2q − R)
∑
j<l

⎞
⎠ tc j

R

∑
k>k′

t2ckck′

2R
Tr([Hl , Hj][Hk, Hk′ ]). (A20)

We have ∇C(θT ) = 0 if and only if

∑
j>l

∑
k>k′

c jckck′Tr([Hl , Hj][Hk, Hk′ ]) = 2q − R

2(q − 1) − R

∑
j<l

∑
k>k′

c jckck′Tr([Hl , Hj][Hk, Hk′ ]) ∀q, l (A21)

Since R � 3, the right-hand side of Eq. (A21) will have a nontrivial dependence on q but the left-hand side will not. For
instance, plug in q = 1 and q = R with arbitrary but fixed l , then the prefactor on the right-hand side becomes R−2

R and R
R−2 . As

for R � 3, these are unequal, so the left-hand side of Eq. (A21) must vanish. Since l is arbitrary, also C(θ ) = 0 ∀t which means
Trotterization is exact. �

4. Translational-invariant models (proof of Proposition 3)

For the following proofs, we are interested in the leading order term E (θ ) in the error from the truncation to the perturbative
regime. This term will become dominant by the time we have minimized C(θ ). As before, in Appendix A 2, we expand
‖itH + Z‖ now up to third order and separate C from the third-order error term E using the triangle inequality:

‖itH + Z‖ � C(θ ) + E (θ ) + O(θ4). (A22)

Using Lemma 2, we can read

E (θ ) =
∥∥∥∥∥∥

1

12

∑
(r, j)�=(r′, j′ )

θr, jθr, jθr′, j′ [Hj, [Hj, Hj′ ]] + 1

6

∑
(r, j)>(u,k)>(v,l )

θr, jθu,kθv,l ([Hj, [Hk, Hl ]] + [Hl , [Hk, Hj]])

∥∥∥∥∥∥
=
∥∥∥∥∥ 1

12

∑
j �= j′

⎛
⎝∑

r

θr, jθr, jθr, j′ +
∑
r �=r′

θr, jθr, jθr′, j′

⎞
⎠[Hj, [Hj, Hj′ ]] + 1

6

( ∑
j>k>l

∑
r

θr, jθr,kθr,l

+
∑
j>k

l

∑
r>v

θr, jθr,kθv,l +
∑
k>l

j

∑
r>u

θr, jθu,kθu,l +
∑
j,k,l

∑
r>u>v

θr, jθu,kθv,l

)
([Hj, [Hk, Hl ]] + [Hl , [Hk, Hj]])

∥∥∥∥∥, (A23)

where we split the sums as before using an implicit row-major ordering on the multiindex (r, j). For the sake of simplicity, we
gather all coefficients into a tensor � j,k,l of the twofold nested commutators and define E (θ ) = ‖∑ j,k,l � j,k,l [Hj, [Hk, Hl ]]‖.

Proof of Proposition 3. If we impose translational symmetry on the system of interest, we can split such a symmetric, p-local
(p-nearest neighbor) Hamiltonian into A different interaction types that act the same way on every qubit, i.e.,

H =
A∑

a=1

n∑
j=1

caH ( j)
a . (A24)

The index ( j) labels the qubit number and a the interaction type. The Hamiltonians H ( j)
a have nontrivial support on the p qubits

starting with j. In one dimension, these are j, j + 1, ..., j + p − 1. For higher dimensions, different interaction types may admit
support on clusters of at most p neighboring qubits. We do not make any assumptions on lattice geometry or dimension in the
following and formally denote by Np( j) the set of Hamiltonian terms that correspond to a p-nearest neighbor of the jth term.
The parameters are chosen to be translational invariant by just dropping the dependence on the qubit number, i.e., θr, j = θr,a. As
a consequence, also χ j, j′ = χa,a′ and � j,k,l = �a,b,c.

Since we introduced another index j → (a, j), we need to refine the chosen ordering. Without loss of generality, we choose

(r, a, j) : (1, 1, 1) � (1, 1, j) � (1, a, j) � (r, a, j). (A25)
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To simplify the cost function defined in Eq. (12), we decompose the sum∑
(a, j)>(a′, j′ )

=
∑
j> j′
a=a′

+
∑
a>a′

∑
j, j′

. (A26)

We plug in the above structure into the definition of the cost function, and use the locality of the Hamiltonian to get

C(θ ) =
∥∥∥∥∥∥
∑
j> j′

χa,a
[
H ( j)

a , H ( j′ )
a

]+
∑
a>a′

∑
j, j′

χa,a′
[
H ( j)

a , H ( j′ )
a′
]∥∥∥∥∥∥

=

∥∥∥∥∥∥∥∥∥
∑

j

⎡
⎢⎢⎢⎣
∑

j′∈Np( j)
j′> j

χa,a
[
H ( j′ )

a , H ( j)
a

]+
∑
a>a′

∑
j′∈Np( j)

χa,a′
[
H ( j)

a , H ( j′ )
a′
]
⎤
⎥⎥⎥⎦
∥∥∥∥∥∥∥∥∥

� n

∥∥∥∥∥∥∥∥∥
∑

j′∈Np( j)
j′> j

χa,a
[
H ( j′ )

a , H ( j)
a

]+
∑
a>a′

∑
j′∈Np( j)

χa,a′
[
H ( j)

a , H ( j′ )
a′
]
∥∥∥∥∥∥∥∥∥

for one fixed j

=: nCunit (θ ), (A27)

where we used the triangle inequality in the last step. From translational invariance, we know that the second to last term yields
the same value for every j yielding a factor n. If the commutators [Hj, Hj′ ] are orthogonal with respect to the Hilbert-Schmidt
product, the sum

∑
j can be pulled out of the squared norm yielding n equal addends and hence C(θ ) = √

nCunit (θ ).
The same way, we can reduce the computation of E (θ ) to a unit cell. However, as we consider twofold nested commutators

here, the unit cell is of size (3p − 2)D:

E (θ ) =
∥∥∥∥∥∥
∑

j

⎡
⎣∑

a,b,c

∑
k∈Np( j)

∑
l∈Np(k)

�a,b,c
[
H ( j)

a ,
[
H (k)

b , H (l )
c

]]⎤⎦
∥∥∥∥∥∥.

� nEunit (θ ) (A28)

Again, if the commutators [H ( j)
a , [H (k)

b , H (l )
c ]] are orthogonal with respect to the Hilbert-Schmidt inner product, we get E (θ ) =√

nEunit (θ ). �

5. Long simulation times (proof of Proposition 4)

Proof. As Eq. (17) is equivalent to the ansatz before by just mapping R → KR, t → Kt and identifying θr, j = θr%R, j , the cost
function will have the same form as before with modified χ ,

χ
(KR)
j, j′ = 1

2

KR∑
r=1

(θr, jθr, j′ ) + 1

2

KR∑
r>r′

(θr, jθr′, j′ − θr, j′θr′, j )

= K

2

R∑
r=1

(θr, jθr, j′ ) + K

2

R∑
r>r′

(θr, jθr′, j′ − θr, j′θr′, j ) = Kχ
(R)
j, j′ , (A29)

where we denoted the number of layers as a superscript χ (R) to better differentiate the two coefficients. The factor K comes from
the identification of θr, j = θr%R, j . While the first factor is trivial, the second comes from splitting the antisymmetric sum into

KR∑
r>r′

= K (K + 1)

2

R∑
r>r′

+ (K − 1)K

2

R∑
r<r′

= K (K + 1)

2

R∑
r>r′

− (K − 1)K

2

R∑
r>r′

= K
R∑

r>r′
. (A30)

�
In the same way, we can plug in the duplicated parameters θK into E (θ ). We get the following identities:

KR∑
r

= K
R∑
r

and
KR∑

r �=r′
= K2

R∑
r �=r′

+K (K − 1)
R∑

r=r′
, (A31)
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which yields a global factor K2 for the first sum
∑

j �= j′ in Eq. (A23). For the second sum, unfortunately we do not have a common
factor to pull out. We have

KR∑
r>u

= K (K + 1)

2

R∑
r>u

+K (K − 1)

2

R∑
r�u

=
R∑

r>u

+K (K − 1)

2

R∑
r,u

KR∑
r>u>v

= K
R∑

r>u>v

+K (K − 1)(K + 1)

6

R∑
r

R∑
u>v

+K (K − 1)(K − 2)

6

R∑
r

R∑
u�v

= K
R∑

r>u>v

+K (K − 1)

2

R∑
r

R∑
u>v

. (A32)

In the last step, we used that the sum over
∑

r,u,v vanishes because of antisymmetry of the commutator. While some of the above
contributions multiply the error before duplication by a factor, others are nonzero extra terms. We thus get an upper bound

E (θK ) � KE (θ ) + K (K − 1)

2
�, (A33)

involving the rest term

� =
∥∥∥∥∥
(∑

j>k
l

∑
r>u

−
∑
j>k

l

∑
r�u

−2
∑
j�k

l

∑
r�u

)
θr jθukθvl ([Hj, [Hk, Hl ]] + [Hk, [Hj, Hj]]) + 3

∑
j,k,l

∑
r>u>v

θr jθukθvl ([Hk, [Hj, Hj]])

∥∥∥∥∥.
(A34)

APPENDIX B: PERTURBATIVE DISTANCE
OF A TRANSVERSE FIELD ISING MODEL

We apply the presented method to a general transverse field
Ising model (TFIM) with full connectivity, which is described
by the Hamiltonian

HTFIM = −
∑
μ,ν

JμνZμZν +
∑

μ

hμXμ. (B1)

The sum over μ, ν counts every pair of qubits and the sym-
metric matrix Jμν encodes the interaction strengths between
qubits μ and ν. To fix a timescale, we normalize the Hamilto-
nian to ‖H‖ ≈ √

n. In total, the Hamiltonian admits n(n−1)
2 ZZ

terms and n X terms. To use the notation introduced before,
one needs to map the interactions between two qubits to a
single index j:

Hj =
{

Zμ( j)Zν( j) for j � n(n−1)
2

Xμ( j) for n(n−1)
2 < j � n(n+1)

2

c j =
{

Jμ( j)ν( j) for j � n(n−1)
2

hμ( j) for n(n−1)
2 < j � n(n+1)

2 .
(B2)

The exact ordering of the indices is not important, in general.
To give an explicit example, consider row major ordering
j = (μ − 1)(n − μ

2 ) + ν, for μ � ν. We plug Hj into Eq. (12)
and observe that the only nonzero commutator terms are of
the form ZμYν . To also have a nonvanishing trace (Pauli-string
squares to 1), both commutators need to match, i.e.,

Tr([Hj, Hj′ ][Hk, Hk′ ]) = −2n+2δ j,kδ j′,k′ (δμ( j),μ( j′ )

+ δμ( j),ν( j′ ) )� j− n(n−1)
2

� n(n−1)
2 +1− j′ ,

(B3)

where we used the implicit one-to-one mapping between in-
dices j ∈ {1, ..., n(n+1)

2 } and μ, ν ∈ {1, ..., n}, as well as the

Kronecker delta and the discretized Heavyside step function:

δ j,k =
{

1 if j = k
0 else �x =

{
1 if x > 0
0 else . (B4)

The Heavyside factors ensure that only ZZ and X terms are
composed in the commutator. The Kronecker deltas in the
bracket account for the two cases where X can hit the first or
second qubit of ZZ . The factors δ j,kδ j′,k′ ensure that the Pauli
strings match yielding a nonvanishing trace. In total, we get

C(θ )2 = 4
∑
j> j′

∑
k>k′

χ j, j′χk,k′δ j,kδ j′,k′ (δμ( j),μ( j′ ) + δμ( j),ν( j′ ) )

× � j− n(n−1)
2

� n(n−1)
2 +1− j′

= 4
Mz+n∑

j=Mz+1

Mz∑
j′=1

χ2
j, j′ (δμ( j),μ( j′ ) + δμ( j),ν( j′ ) )

= 4
n∑

μ<ν

(
χ2

j(μ), j(μ,ν) + χ2
j(ν), j(μ,ν)

)
, (B5)

where we shorthanded the number of ZZ interactions as Mz =
n(n−1)

2 . Note that every addend in Eq. (B5) is positive, so mini-
mizing C(θ ) reduces to the simultaneous minimization of each
addend. However, the equations χ2

j, j′ = 0 do not decouple in
general, so there is no exact formula for the roots of Eq. (B5).

1. Two-dimensional square lattice

Physical models typically yield local interactions. Let us
reduce the above discussion to a two-dimensional TFIM
that only includes nearest-neighbor interactions. This is
straightforwardly done by imposing

Jμν = 0 and θr, j(μ,ν) = 0 if μ � ν, (B6)
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FIG. 4. Visualization of the perturbative distance for a two-dimensional nearest-neighbor Ising model. Instead of defining cumbersome
notation as in Eq. (B7), it is often simpler to think about the commutator structure in this pictorial manner.

where μ � ν denotes that μ and ν are not neighbors. On a
two-dimensional square lattice, it is handy to further refine the
qubit indices into two μ = (μx, μy), where μx ∈ {1, ..., nx}
and μy ∈ {1, ..., ny} count the lattice sites in each dimension,
respectively. θr, j = 0 also implies χ j, j′ = 0 ∀ j′ which further
reduces the number of terms in Eq. (B5):

C(θ ) = 4
(nx,ny )∑

μ=(1,1)

(
χ2

j(μ), j(μ,(μx,μy+1))

+ χ2
j((μx,μy+1)), j(μ,(μx,μy+1)) + χ2

j(μ), j(μ,(μx+1,μy ))

+ χ2
j((μx+1,μy )), j(μ,(μx+1,μy ))

)
. (B7)

Although the cost function becomes tedious to write, it only
contains a linear number of terms and is thus efficiently com-
putable. The four contributions in Eq. (B5) account for the
different combinations of the appearing ZY string and are
depicted in Fig. 4.

2. Numerical results

In Fig. 5, we study the performance of the derived
cost function by optimizing a variational sequence with the
second-order cost function derived in Eq. (B7) and comparing
it to the exact value of the difference of time evolutions ε for
different times t . The optimizer manages to find small values
of C(θ ) for all times. For small enough times t < R

‖H‖ ≈ 1, the
perturbative cost function also incorporates a faithful indicator
for the exact norm in a sense that the optimal parameters also
yield a significant decrease in the exact error of the variational
sequence.

APPENDIX C: PERTURBATIVE DISTANCE OF AN XY
MODEL IN A TRANSVERSE FIELD

In total, the XY Hamiltonian from Eq. (23) admits n(n−1)
2

YY terms, n(n−1)
2 ZZ terms, and n X terms. To use the notation

introduced before, one needs to map the interactions between

FIG. 5. Perturbative (C) and exact (ε) error measures (left) and exact error ratio Rε and the ratio of error estimates RE (right) as defined in
Eq. (21) evaluated on a nearest-neighbor Ising model on a 3 × 3 quadratic lattice and random interaction strength Jμ,ν centered around 1 and
hμ = 0.25.
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two qubits to a single index j:

Hj =

⎧⎪⎨
⎪⎩

Xμ( j) for j � n

Yμ( j)Yν( j) for n < j � n(n+1)
2

Zμ( j)Zν( j) for n(n+1)
2 < j � n2,

c j =

⎧⎪⎪⎨
⎪⎪⎩

hμ( j) for j � n

J (y)
μ( j)ν( j) for n < j � n(n+1)

2

J (z)
μ( j)ν( j) for n(n+1)

2 < j � n2.

(C1)

The exact ordering of the indices is not important, in general. To give an explicit example, consider row major ordering j =
(μ − 1)(n − μ

2 ) + ν for μ � ν. We plug Hj into Eq. (12) and observe that the only nonzero commutator terms are of the form
ZμYν and YμXνZσ . To also have a nonvanishing trace (Pauli-string squares to 1), both commutators always need to match. While
this is always given if j = k and j′ = k′, now we can also have the case [YμYν, Xμ] = −[ZμZν, Xν] = −2iZμYν ,

C(θ )2 = 4
n∑

μ<ν

(
χ2

jy (μ,ν), j(μ) + χ2
jy (μ,ν), j(ν) + χ2

jz (μ,ν), j(μ) + χ2
jz (μ,ν), j(ν) − χ jz (μ,ν), j(μ)χ jy (μ,ν), j(ν) − χ jz (μ,ν), j(ν)χ jy (μ,ν), j(μ)

)

+ 4
n∑

μ<ν<σ

(
χ2

jz (μ,ν), jy (ν,σ ) + χ2
jz (μ,σ ), jy (ν,σ ) + χ2

jz (ν,σ ), jy (μ,ν) + χ2
jz (ν,σ ), jy (μ,σ ) + χ2

jz (μ,ν), jy (μ,σ ) + χ2
jz (μ,σ ), jy (μ,ν)

)
, (C2)

where we mapped back the lattice indices μ, ν to the single index j by reverting the mapping for all cases in Eq. (C1). The terms
in the first line of Eq. (C2) come from commutator terms of the form YZ and the terms in the second line from terms of the form
XYZ.

1. Two-dimensional square lattice

If we only admit nearest-neighbor interaction and set all other J (y,z)
μν = 0, we get

C(θ )2 = 4
(nx,ny )∑

μ=(1,1)

(
χ2

jy (μ,(μx,μy+1)), j(μ) + χ2
jy (μ,(μx,μy+1)), j((μx,μy+1)) + χ2

jy (μ,(μx+1,μy )), j(μ) + χ2
jy (μ,(μx+1,μy )), j((μx+1,μy ))

+ χ2
jz (μ,(μx,μy+1)), j(μ) + χ2

jz (μ,(μx,μy+1)), j((μx,μy+1)) + χ2
jz (μ,(μx+1,μy )), j(μ) + χ2

jz (μ,(μx+1,μy )), j((μx+1,μy ))

− χ jz (μ,(μx,μy+1)), j(μ)χ jy (μ,(μx,μy+1)), j((μx,μy+1)) − χ jz (μ,(μx+1,μy )), j(μ)χ jy (μ,(μx+1,μy )), j((μx+1,μy ))

− χ jz (μ,(μx,μy+1)), j((μx,μy+1))χ jy (μ,(μx,μy+1)), j(μ) − χ jz (μ,(μx+1,μy )), j((μx+1,μy ))χ jy (μ,(μx+1,μy )), j(μ)

+ χ2
jz (μ,(μx,μy+1)), jy ((μx,μy+1),(μx,μy+2)) + χ2

jz (μ,(μx+1,μy )), jy ((μx+1,μy ),(μx+2,μy ))

+ χ2
jz (μ,(μx,μy+1)), jy (μ,(μx+1,μy )) + χ2

jz (μ,(μx,μy+1)), jy ((μx,μy+1),(μx+1,μy+1))

+ χ2
jz (μ,(μx,μy+1)), jy ((μx−1,μy ),μ) + χ2

jz (μ,(μx,μy+1)), jy ((μx−1,μy+1),(μx,μy+1))

+ χ2
jz ((μx,μy+1),(μx,μy+2)), jy (μ,(μx,μy+1)) + χ2

jz ((μx+1,μy ),(μx+2,μy )), jy (μ,(μx+1,μy ))

+ χ2
jz (μ,(μx+1,μy )), jy (μ,(μx,μy+1)) + χ2

jz ((μx,μy+1),(μx+1,μy+1)), jy (μ,(μx,μy+1))

+ χ2
jz ((μx−1,μy ),μ), jy (μ,(μx,μy+1)) + χ2

jz ((μx−1,μy+1),(μx,μy+1)), jy (μ,(μx,μy+1))

)
. (C3)

Although being tedious to write, Eq. (C3) admits a linear number of addends that follow simple systematics. The first two lines
gather the 2D-analogs of terms 1–4 in Eq. (C2) and lines 3 and 4 gather the former terms 5 and 6. The remaining terms are
gathered in lines 5–10 and resemble every combination of nontrvial three-body commutators.

2. More parameters

We explore the behavior under changing depth R within a single time step, which also alters the number of parameters to
be optimized. In Fig. 6, we show a numerical experiment analog to Fig. 2, but using R = 4 and R = 6. As with increasing R,
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FIG. 6. Perturbative (C) and exact (ε) error measures (left) and exact error ratio Rε (right) for R = 4 and R = 6 evaluated on a nearest-
neighbor XY model on a 3 × 3 quadratic lattice and random interaction strength J (y)

μ,ν centered around 0.5, J (z)
μν centered around 1 and hμ = 0.25.

On the left panel, results for R = 6 are plotted.

t
R decreases and the Trotter errors that we compare with get smaller. The optimizer still manages to find solutions that yield a
comparable improvement ratio as seen in Fig. 2. For very small times, the improvement ratios become much smaller, since the
cost function C, as well as the error ε, approach numerical accuracy.
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