
PHYSICAL REVIEW RESEARCH 5, 043029 (2023)

Characterizing critical behavior and band tails on the metal-insulator transition in structurally
disordered two-dimensional semiconductors: Autocorrelation and multifractal analysis

Bong Gyu Shin ,1,2 Ji-Hoon Park ,3 Jing Kong,3 and Soon Jung Jung 1,*

1Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
2Department of Nano Science and Technology, SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU),

Suwon 16419, Republic of Korea
3Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

(Received 21 June 2023; revised 5 September 2023; accepted 11 September 2023; published 10 October 2023)

Our previous study observed the localization-delocalization transition and critical quantum fluctuations of the
local density of states (LDOS) on the structurally disordered two-dimensional (2D) semiconductor MoS2. This
transition corresponds to the metal-insulator transition (MIT) reported in transport measurements. The structural
disorder in MoS2 caused curvature-induced band gap fluctuations, leading to charge localization and unusual
band edge flattening through doping. The critical behavior for the MIT was analyzed using autocorrelation and
multifractality of LDOS mapping results. However, the effect of structural disorder on critical points has not been
fully explored. Here, we systematically investigated the impact of structural disorder on band tail formation and
critical doping concentration by examining the radial-averaged autocorrelation and multifractality of LDOS in
2D semiconductors. Our finding indicates that the radial-averaged autocorrelation and multifractality of LDOS
characterize the band tail ranges and band edge flattening in disordered 2D semiconductors. Decaying regions
in the radial-averaged autocorrelation profile and first-order derivative of singularity peak positions determine
band tail ranges. Increased structural disorder led to larger band tail widths near valence and conduction band
edges, while the doping-induced band edge flattening altered band tail widths for each valence and conduction
band. As the band edge is flattened due to doping, the LDOS map near the critical energy becomes uniform,
exhibiting a divergence in the localization length. The average value of conduction and valence band tail
widths remained almost constant regardless of doping control, serving as a representative value for the degree
of structural disorder. For the MIT, we found that the critical doping concentration depends on the degree of
structural disorder in 2D semiconductors. Our findings provide valuable insights into the fundamental physics
of structurally disordered 2D semiconductors in relevance to quantum phase transitions, which could have
important implications for designing and optimizing electronic/optoelectronic devices based on 2D materials.
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I. INTRODUCTION

The metal-insulator transition (MIT) in a disordered two-
dimensional (2D) system remains an enigma among the
quantum phase transitions, involving the fundamental chal-
lenges of comprehending the order parameter and dynamical
nature [1,2]. The disorder-driven quantum phase transitions
(including disorder-induced MITs) exhibit a critical point
(critical doping concentration for MIT) that separates local-
ized (insulating) and delocalized (conducting) states. In the
noninteracting picture, the disorder-driven MIT is often called
Anderson transitions [1–4]. The one-parameter scaling theory
of localization in disordered 2D systems at zero temperature
(for Wigner-Dyson orthogonal symmetry class AI) predicted
only localized states, not allowing the MIT [5], but the exis-
tence of a 2D MIT has been reported in 2D electron systems
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of Si metal-oxide field-effect transistors and other 2D semi-
conductors [6–11]. To find a universal theory for the 2D MIT,
many aspects of Anderson transitions have been investigated
in terms of symmetry classes [1–3]. As it turns out, many sym-
metry classes allow MIT or critical behaviors in 2D systems
[3]. On the other hand, the field theoretical approach with the
nonlinear sigma model has been developed, and interactions
in a system have been proven to provide vital roles for the
MIT [1–3,12–14]. To understand the criticality of the MIT,
two-point correlations and multifractal analysis of the local
density of states (LDOS) have been proposed to characterize
the quantum critical phenomena [1–3,15–17]. The distribution
of LDOS or the amplitude of wave functions at an energy
level is closely related to the order parameter function of the
Anderson transitions [3,18].

The localization-delocalization transition with criticality in
2D semiconductors was directly observed, revealing the gen-
eral mechanism of structural-disorder-driven critical quantum
fluctuations of wave functions, charge localization, and band
tails along with the doping-induced band edge flattening [19].
Structural disorder in 2D semiconductors induces band gap
fluctuations that act like random potentials, leading to charge
localization that forms band tails near the band edges. As the
doping level increases, the local band bending, resulting from
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the localized charge, generates an unusually uniform state
above the critical energy. This was verified through the radial-
averaged autocorrelation, singularity spectra, and normalized
distribution of LDOS, which were extracted from scanning
tunneling spectroscopy (STS) results. With the band edge flat-
tening through doping, a dramatic localization-delocalization
transition occurred from fluctuating (disorder, localized) to
homogeneous (order, extended) states. This transition corre-
sponds to the MIT in 2D semiconductors [19].

During the localization-delocalization transition, structural
disorder plays a crucial role in enabling the transition to take
place. As such, it is essential to understand the quantitative
relationship between the critical doping concentration (or crit-
ical energy) and the strength of structural disorder. Through
the microscopic mechanism of the MIT, the critical doping
concentration at which the MIT occurs can be expected to
depend on the degree of structural disorder. However, the
quantitative relation between critical doping concentration (or
critical energy) and the strength of structural disorder has not
been fully investigated. The radial-averaged autocorrelation
profile of disordered 2D semiconductors has also not yet been
fully explored for the structural disorder of varying strength.

In this study, we investigate the relation between the
strength of structural disorder and the MIT by analyzing the
radial-averaged autocorrelation and multifractality of LDOS.
The radial-averaged autocorrelation profile and peak positions
(α0) within singularity spectra for a specific structural disor-
der demonstrate critical behavior, as well as the emergence
of band tails and band edge flattening through doping. We
demonstrate that the first derivatives of α0 of LDOS maps
as a function of energy precisely determine energy intervals
of band tails. When reaching the critical energy, the local-
ization length becomes divergent as the band edge flattening
approaches its limit. The relation between the critical doping
concentration and the spatial average of absolute bending
strain was calculated to demonstrate how the critical dop-
ing concentration depends on the strength of the structural
disorder. Our finding indicates that when the structural dis-
order is more pronounced, the critical doping concentration
becomes higher due to the larger capacity of the localized
states. An ideal flat case does not display any localized states
due to its zero curvature, which means there is no MIT.
Then, the intrinsic carrier concentration in the flat case is
assigned as the critical doping concentration. The effective
critical doping concentration at finite temperatures is lower
than that at 0 K, as the thermal excitation of carriers aids
percolation-type conductivity [11]. The critical behavior de-
termined using autocorrelation and multifractality calculated
from the tight-binding method was found to be consistent with
the experimental results of autocorrelation and multifractality
analyzed from STS results.

II. STRUCTURAL-DISORDER-DRIVEN
LOCALIZATION-DELOCALIZATION TRANSITION

A. Curvature-induced charge localization

Curvature formation in 2D semiconductor MoS2 on a sub-
strate leads to band gap fluctuations, which were directly
observed in atomic resolution scanning tunneling microscopy
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FIG. 1. Curvature-induced band gap fluctuations and charge lo-
calization mechanism in structurally disordered monolayer MoS2.
[(a)–(c)] Schematic illustrations of curvature-induced band gap fluc-
tuations in monolayer MoS2, and charge localization with doping
control (�ρe represents electron doping charge density). Curvature
in deformed 2D semiconductors causes band gap reduction (a), and
a doping charge localized at the curvature region [(b), (c)]. This
localized charge leads to local band bending, and band edge flat-
tening occurs as the doping level increases [(b), (c)]. Each dashed
line represents the neutral state of (a). Green and purple arrows
indicate the band edge flattening and the Fermi level (EF ) changes
by doping, respectively. [(d)–(f)] DFT calculation results for neu-
tral (d), electron-doped (e), and hole-doped (f) cases in a spherical
bending of MoS2 (inset at the top). The curvature region in the
deformed MoS2 shows band gap reduction. High electron- (hole-)
doping results in conduction (valence) band edge flattening [(e), (f)].
Each plot’s red (blue) bar indicates CBM (VBM) fluctuation ranges.
Purple lines indicate the Fermi level for each plot [for [(e), (f)],
doping concentration ∼7.09 × 1013 cm−2). (g) A cartoon illustrating
charge localization in the structurally disordered MoS2. Curvature-
induced band edge (gap) fluctuations in structurally disordered MoS2

function like a random potential for doping charges, analogous to
the Anderson transitions. Charge localizations are illustrated by lines
with shaded areas. Yellow and purple spheres represent S and Mo
atoms, respectively.

(STM) and STS images in previous studies [19,20]. By con-
forming to the substrate’s surface roughness, the curvature
appeared randomly as bending strain. Bending energy is lower
than the adhesion energy of 2D monolayers, making bend-
ing naturally easy [21,22]. Figures 1(a)–1(c) illustrate the
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mechanism of curvature-induced band gap (edge) fluctuations
and charge localization. The high curvature region displays a
significant band gap reduction of up to ∼1 eV [Fig. 1(a)] [20].
When electron doping is applied, the doping charge prefers
to localize in lower band gap (or edge) regions [Fig. 1(b)]
[19]. The localized electron (hole) charge induces local band
bending due to Coulomb interactions, leading to an unusual
flattening of the conduction (valence) band edge [Fig. 1(c)].
The main reason for this significant band edge flattening
is the strong Coulomb interactions among charge carriers,
as 2D monolayers have a small volume with atomic-scale
thickness that offers less screening for Coulomb interactions
[23]. Mapping results of STS revealed the band edge flatten-
ing due to doping [19]. For electron doping, the fluctuation
range of the conduction (valence) band edge narrows (widens)
[Fig. 1(c)]. For hole doping, valence band edge flattening
occurs, and doping-induced changes in fluctuations of band
edges reverse compared to the trends in electron doping cases.
Density functional theory (DFT) calculations quantitatively
predict curvature-induced band gap fluctuation and band edge
flattening through doping [Figs. 1(d)–1(f)]. For a spherical
bending of monolayer MoS2, DFT calculations demonstrate
band gap reduction in the curvature region [Fig. 1(d)] and
doping-induced band edge flattening (for electron (hole) dop-
ing, Fig. 1(e) [Fig. 1(f)]). It is known that bending strain in
2D semiconductors results in band gap fluctuations. When
doping is introduced, the equilibrium of the electrochemical
potential, establishing the Fermi level, involves the flattening
of the band edge (local band bending) through doping due to
the strong Coulomb interactions less screened by 2D semicon-
ductors [19].

In monolayer MoS2 with structural disorder, curvature-
induced band gap (edge) fluctuations act like random poten-
tials for doping charge, analogous to the Anderson transition
[4,19]. Figure 1(g) presents a cartoon depicting a random
distribution of localized doping charge over curvatures in a
structurally disordered MoS2. The microscopic origin of MIT
was confirmed in a previous study using STM and STS at
the atomic scale [19]. The revealed mechanism showed that
local band bending by localized charge led to an unusual band
edge flattening due to the strong Coulomb interaction. The
localization-delocalization transition of LDOS at the critical
energy, along with the band edge flattening through doping,
was observed, and the criticality was analyzed using autocor-
relation and multifractality of STS mapping results [19]. The
random distribution of localized states was also confirmed to
form the exponential band tails near the band edges [19]. The
microscopic mechanism of MIT was found to be generally
applicable to a wide variety of 2D semiconductors.

B. Autocorrelation analysis

The STM image of neutral MoS2 on SiO2 [Fig. 2(a)] re-
vealed structural disorder due to the surface roughness of the
SiO2 substrate. Near the conduction band minimum (CBM)
at 0.75 eV, charge localization was observed in the STS map
as shown in Fig. 2(b). At a higher energy level of 2.0 eV
above CBM, state fluctuations extended over the whole area
[Fig. 2(c)], and complexity associated with structural disorder
remains. The radial-averaged autocorrelation profile of MoS2

on SiO2 [Fig. 2(d)] presents rapidly decaying regions near
band edges, corresponding to disordered localized states that
formed band tail regions. Stronger structural disorder in MoS2

exhibits more rapidly decaying regions due to the stronger
charge localization.

For MoS2 on highly oriented pyrolytic graphite (HOPG)
[Fig. 2(e)], distinct charge localization was not observed near
CBM (1.6 eV) [Fig. 2(f)] due to the weak structural disorder.
At the higher energy level of 2.2 eV above CBM, the STS
map [Fig. 2(g)] also exhibited uniform LDOS due to the weak
structural disorder. The radial-averaged autocorrelation pro-
file of MoS2 on HOPG [Fig. 2(h)] shows an almost constant
value along the radial distance at the allowed energy levels,
indicating the uniformity of LDOS as shown in Figs. 2(f) and
2(g). The energy range of rapidly decaying behaviors near
the band edges in Fig. 2(h) is narrow due to weak structural
disorder in MoS2 on HOPG, which indicates narrow band
tails. Radial-averaged autocorrelation profiles characterize the
band tails of localized states under varying structural disorder
strengths, from weak to strong cases.

The strongly localized states show a rapidly decaying am-
plitude of the wave function, |ψ (r)|2 ∼ exp(−|r|/ξL ), where
|r| is the distance from the center of the localized states
and ξL is the localization length that is smaller than the
(effective) system size [3]. If wave functions are extended,
the characteristic width of the wave functions becomes
larger (ideally infinite) than the (effective) system size. Lo-
calization in wave functions (ψ) can be measured by the
radial-averaged autocorrelation C(|R|) which is defined by
〈|ψ (r, E )|2|ψ (r + R, E )|2〉 or 〈ρ(r, E )ρ(r + R, E )〉, where ρ

is LDOS proportional to |ψ (r, E )|2, |R| is a radial distance,
and 〈·〉 means an average over the disorder [16]. Near the crit-
ical point of the localized-delocalized transition of the wave
functions, C(|R|) is proportional to (|R|/L)−η(l < |R| < L),
where η is the critical exponent, l is the length scale of the
elastic mean free path, and L is the effective system size, L =
min{Lφ, ξc, Ls} (Lφ : dephasing length; ξc: correlation length;
and Ls: system size) and satisfying that η = −�2, where
�2 is the anomalous multifractal exponent of moment q = 2
[16]. Such a power law behavior of |R|−η indicates the ab-
sence of length scales, which makes a continuous connection
between localized (finite, disorder) and delocalized (ideally
infinite, order) states [24]. The power law behavior is relevant
to the critical quantum fluctuation that must be compatible
with localization and delocalization regions, requiring scale
invariance (the absence of length scale) associated with mul-
tifractality. The fractality of a system refers to self-similarity,
regardless of the scale of the system (the absence of length
scale). Multifractality means that a system has many parts
with different fractalities.

Using the tight-binding approach with the three-band
model over the third-nearest neighbor [25], the curvature-
induced band gap fluctuations and formation of band tails
were fully investigated for various strengths of structural dis-
orders and doping concentrations.

Figure 2(i) shows horizontal stacking of dI/dV spec-
tra at each spatial point extracted by STS mapping in
which the blue-colored region corresponds to the band
gap. The observed band gap fluctuations were highly
correlated with the mean curvature in the monolayer
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FIG. 2. Direct observation of localized states and characterization of band tails in structurally disordered monolayer MoS2. [(a)–(d)] STM
topography of MoS2 on SiO2 (a), STS maps near CBM (0.75 eV) (b) and above CBM (2 eV) (c), and radial-averaged autocorrelation profile
(d). The structural disorder in MoS2 on SiO2 leads to strong charge localization near the band edge (b), characterized by a decaying region
in the radial-averaged autocorrelation. The band tails consist of localized states. [(e)–(h)] STM topography of MoS2 on HOPG (e), STS maps
near CBM (1.61 eV) (f) and above CBM (2.2 eV) (g), and radial-averaged autocorrelation profile (h). Charge localization is negligible in the
weak structure disorder from the flat HOPG (f). (i) Horizontally stacked STS results (dI/dV s) from each position. (j) Typical line profiles for
local VBM, CBM, and band gap along a straight line in the real space extracted from the STS results. The side inset shows DOS extracted
from STS results (gray line), revealing exponential band tails near band edges. (k) Horizontally stacked calculated LDOS results using the
tight-binding (TB) method with structural disorder. (l) Typical line profiles for local VBM, CBM, and band gap extracted from the calculated
LDOS using TB methods. The side inset shows the calculated DOS results (light green line) with exponential band tails near band edges.
TB modeling results align well with the experimental results [(i), (j)]. The blue, red, and purple curves in each DOS plot are fitting lines for
valence (blue) and conduction (red) band tails, and reference of DOS (purple) in a flat case. The dashed purple lines in each DOS plot indicate
the band edges for flat cases. Band gap fluctuations are denoted by a blue-colored region [(i), (k)]. The Fermi level is set to zero.

MoS2 [20]. Figure 2(j) shows the typical fluctuations of
local CBM, VBM, and band gap along a spatial straight line.
The right-side inset in Fig. 2(j) shows the density of states
(DOS, gray line) extracted from the STS results with expo-
nential fitting lines for band tails of valence (blue line) and
conduction (red line) band edges exhibiting the characteristic
band tail width (ϕ) of ∼0.2 eV by exp(−|E |/ϕ), where E is
the energy of the electrons. The DOS for the flat region in
MoS2 [purple line in Fig. 2(j)] exhibited the intrinsic band
gap size of 2.65 eV on SiO2 substrate [20]. The exponential
shapes of the band tails are expected to be only formed by the
randomness of structural disorder [26].

For the theoretical results in structural disorder, the struc-
tural modeling for disordered MoS2 was constructed with the
tight-binding method [19,25]. To mimic the surface fluctu-
ation observed in STM results of MoS2 on SiO2, random
deformation of MoS2 was generated by a collection of random
Gaussian bumps with tuning parameters. The tight-binding

calculations for the disordered MoS2 model show random
band gap fluctuations [Fig. 2(k)] as observed in the experi-
mental results [Fig. 2(i)]. The calculated typical line profiles
for CBM, VBM, and the band gap along a spatial straight line
[Fig. 2(l)] align well with the experimental results in disor-
dered MoS2 on SiO2. The right-side inset in Fig. 2(l) shows
the calculated DOS results for the disordered MoS2 (light
green line) with exponential band tails near the band edges
(red and blue fitting lines) and for flat MoS2 (purple line).
The tight-binding approach fully reconstructed the observed
structural disorder effect with the mechanism of curvature-
induced band gap fluctuations as explained in the previous
study [19,20].

To understand the formation of the band tails under struc-
tural disorder, scaling of structural disorder was conducted
to evaluate the radial-averaged autocorrelation profiles under
the effects of various disorder strengths (Fig. 3). The left-
side insets in Fig. 3 show random fluctuations of surface
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FIG. 3. Effect of structural disorder on band tail formation. The
radial-averaged autocorrelation profiles for each structural disorder
strength (stacked vertically) show changes in band tail ranges, which
were extracted from the tight-binding calculations. The fluctuation
range of surface morphology was scaled, representing structural
disorder strength from weak to strong disorder as shown in the
insets on the left side. The rapid decay regions in the radial-averaged
autocorrelation profiles correspond to the band tail regions. The flat
0 case at the bottom shows constant radial-averaged autocorrelation,
corresponding to the uniform LDOS distribution without disorder.
The blue-colored regions in autocorrelation profiles correspond to
the band gap regions, which are forbidden. The vertical dashed black
lines indicate band edges for the flat case.

morphologies with different strengths of structural disorder.
Larger height fluctuations allow larger absolute curvatures
leading to significant changes in band gap. As disorder
strength increases, band tail widths near band edges become
larger. Typically, the reported characteristic width of the band
tail in MoS2 on SiO2 was ∼0.1 eV [27], corresponding to near
the “1” case of disorder strength in Fig. 3, displaying a similar
surface roughness range of MoS2 on SiO2. The theoretical
results align well with the experimental results of MoS2 on
both SiO2 and HOPG cases, revealing the continuous changes
of band tails as a function of structural disorder strength.

C. Doping-induced band edge flattening

When doping is applied to structurally disordered MoS2,
the band edge flattening occurs due to the strong Coulomb
interaction which is less screened by the thin material itself
[19,23]. For electron (hole) doping, the conduction (valence)
band edge is flattened by the local band bending of the

localized charge until reaching the equilibrium of electro-
chemical potential (determination of the Fermi level) [19].
The doping-induced band edge flattening effects were cal-
culated using the tight-binding results. Figure 4(a) shows
electron-doping charge localization with the flattening of the
conduction band edge. The localized doping-charge density
[�ρe in Fig. 4(a)] for case 1 in Fig. 3 becomes large by accu-
mulation of doping charge towards the local minimums of the
curvature-induced potentials when the doping concentration
increases [from bottom 0 (neutral) to top 5 in Fig. 4(a)]. For
each doping level for case 1 in Fig. 3, the radial-averaged
autocorrelation profiles of LDOS [Fig. 4(b)] shows narrowing
of the rapidly decaying region near the conduction band edge
and widening of the rapidly decaying region near the valence
band edge, corresponding to the conduction band edge flatten-
ing via doping. The highest doping level case, 5, in Fig. 4(b)
corresponds to the almost perfect flattening of the conduction
band edge. For the flattening limit, the band tail near the
conduction band edge vanishes. At the flattening limit, the
radial-averaged autocorrelation profiles above the conduction
band edge hardly changed along the radial distance due to the
uniformity of LDOS caused by the band edge flattening. Fig-
ure 4(c) shows the total radial-averaged autocorrelation pro-
files at the flattening limit as a function of structural disorder
strength, as in Fig. 3. The band tail near the valence band edge
elongates further when the structural disorder becomes strong.
Due to the flattening of the conduction band edges through
doping, the range of the band tail near the valence band edge is
almost twice as wide as in the neutral case, as shown in Fig. 3.

In Fig. 4(d), the experimental result of the radial-averaged
autocorrelation profile from electron-doped MoS2 on SiO2

(doping concentration ∼5.7 × 1012 cm−2) exhibited a narrow
decaying region near the conduction band edge, correspond-
ing to the flattening of the conduction band edge, which is in
good agreement with case 2 in Fig. 4(b). Above the critical
energy or band tail region, the flattening of the conduction
band edge through high doping led to the spatially uniform
extended states, regardless of the structural disorder, which
was not observed from the neutral case as in Fig. 2(c) [19].
Truly 2D uniform states appeared as they passed through the
localization-delocalization transition, exhibiting almost con-
stant values of the radial-averaged autocorrelations due to the
doping-induced band edge flattening.

In Fig. 5(a), the calculated DOS by the tight-binding
method for the doping cases in Figs. 4(a) and 4(b) shows the
conduction band edge flattening and widening of the band tail
near the valence band edge. The DOS near the band edges for
each doping level exhibited exponential band tails and the lin-
earity of the exponential band tails in log plots characterized
the width of band tail (ϕ) by fitting of exp(−|E |/ϕ) as shown
in Figs. 5(b) (valence band) and 5(c) (conduction band). The
characteristic widths of band tails (ϕCB or VB for conduction
or valence band) were plotted in Fig. 5(d). The average values
(ϕavg) of the band tails of the conduction and valence bands re-
main almost constant, representing a value that is independent
on doping control. The band tail width (ϕCB or VB) results are
in good agreement with the radial-averaged autocorrelation
results [Fig. 4(b)].

It is important to note that when hole doping is ap-
plied, the changes in band tails through electron doping are
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FIG. 4. Band edge flattening through doping in structural disorder. (a) Tight-binding method calculation results for doping charge densities
(�ρe) with electron-doping control (indexed from 0 to 5) in disordered MoS2. The doping charge is localized under the curvature-induced
band gap fluctuations. The larger index number indicates a higher doping concentration. The 0 means neutral states. (b) The radial-averaged
autocorrelation profiles with doping control in disordered MoS2 corresponding to (a). Higher electron doping concentration induces the
flattening of the conduction band edge with the enlargement of the valence band tail width, showing decay along the radial distance
(vertical direction; see the vertical scale bar at the bottom) in the autocorrelation. (c) Total radial-averaged autocorrelation profiles for various
disorder strengths with conduction band edge flattening. The variation of disorder strength is the same as that in Fig. 3. Decaying regions
near VBM in the autocorrelation profiles correspond to each band tail range. (For example, the arrow at the top indicates the band tail
range for disorder strength 2.) (d) The radial-averaged autocorrelation profile of experimental results in electron-doped MoS2/SiO2 (doping
concentration ∼5.7 × 1012 cm−2). Conduction band edge flattening was observed in good agreement with case 3 in (b). The blue-colored
regions in autocorrelation profiles are band gap regions, which are forbidden.

reversed between the valence and conduction band sides
(Figs. 7 and 8).

D. Multifractal analysis

To better understand band tails and criticality, we con-
ducted a multifractal analysis of LDOS in the presence of
structural disorder. We found that the LDOS’s multifractality
at various energy levels quantifies the band tail ranges con-
nected to the critical energy of the localization-delocalization
transition.

In Figs. 6(a)–6(d), the peak positions (α0) of singular-
ity spectra [ f (α)] satisfying f (α0) = 2 were extracted from
the spatial fluctuations of LDOS as a function of energy

(red lines). The absolute values of α0 derivatives (|dα0/dE |)
display peaks that characterize the band tail ranges on
the energy axis [blue lines in Figs. 6(a)–6(d)]. For the
MoS2 on HOPG with weak structural disorder due to the
HOPG’s flatness, peaks of |dα0/dE | characterized the nar-
row band tail ranges as shown in Fig. 6(a) (shaded region).
In MoS2 on SiO2 with strong structural disorder, peaks of
|dα0/dE | characterize large band tail ranges [shaded areas
in Fig. 6(b)]. With a higher doping level in MoS2 on SiO2

[as in Fig. 4(d)], peaks of |dα0/dE | describe the band tails
exhibiting the narrow (large) band tail range at the con-
duction (valence) band side, as expected by doping-induced
band edge flattening [Fig. 6(c)]. All the multifractal analy-
sis of the experimental results [Figs. 6(a)–6(c)] are in good
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(a)

(d)

(b)

(c)

FIG. 5. Exponential band tails and band tail widths under doping
control. (a) DOS profiles corresponding to Fig. 4(a). Higher doping
concentration results in the extension of the valence band tail with
flattening of the conduction band edge, close to that of the intrinsic
flat MoS2. [(b), (c)] Close-up log plots for the valence and conduction
band edges from (a). Linearity in the log plots means the exponential
behaviors of band tails. (d) Characteristic band tail widths extracted
from DOS results (a). Flattening of conduction band edges leads to
a diminishing conduction band tail width (ϕCB) via electron doping.
The average values (ϕavg) of conduction and valence band tail (ϕVB)
widths remain almost constant, representing a value that is not de-
pendent on the doping level.

agreement with the autocorrelation profile results [Figs. 2(d),
2(h), and 4(d)].

The band edge flattening trends through doping were sys-
tematically investigated using multifractal analysis of the
tight-binding results [Fig. 6(d)]. For a specific structural dis-
order (as in case 1 of Fig. 3), the multifractality results
demonstrate that the conduction (valence) band tail range
(shaded regions) narrows (widens) with the flattening of the
conduction band edge as electron doping increases [as in
Fig. 4(b)]. The band tail ranges through doping are plotted for
conduction and valence band sides in Fig. 6(e). The average
(�Eavg) of the valence and conduction band tail ranges (�EVB

and �ECB) is nearly constant, similar to the average (ϕavg) of
the characteristic band tail widths for valence and conduction
bands [Fig. 5(d)]. It is noteworthy to mention that when hole
doping is applied, the changes in Fig. 6(d) by electron doping
are reversed between the valence and conduction band sides.
In addition, we observed that amplitudes of α0 values at the
limit of the band edge flattening could be heavily influenced

by the mean value of the absolute bending strain across a
region, as depicted in Fig. 9. When considering the amplitude
of α0, it becomes apparent that further research is necessary to
understand the interplay of the Coulomb interactions among
charges, particularly at elevated doping concentrations.

Through multifractal analysis, we can accurately determine
the energy intervals of band tails, which are unattainable when
solely relying on the characteristic band tail width derived
from the exponential fitting of DOS.

E. Criticality and localization length

In Fig. 6(f), the localization lengths characterized by the
radial-averaged autocorrelation profiles of tight-binding re-
sults display divergence at the band edge flattening limit
through high doping (case 5), corresponding to the critical
behavior of the localization-delocalization transition. The lo-
calization lengths in cases from 0 (neutral) to 3 show small
values near 5 nm in the band tail regions, indicating strong
localization, which is consistent with the STM and STS and
transport results [28].

It is worth noting that the critical exponent ν = 2.74,
estimated from case 5 of Fig. 6(f) using the fitting of
∼ |E − EC |−ν , is nearly identical to the reported values in
the symplectic symmetry class of the Anderson transitions
[29–31]. The tight-binding model used in this work neglects
the effect of spin-orbit coupling (SOC). However, random
strain causes fluctuations in hopping parameters and the
doping-induced band edge flattening leads to random changes
in on-site energy terms. The tight-binding models in symplec-
tic cases included random changes in both hopping and on-site
energy parameters, which is why the critical exponent could
be close to the symplectic cases. The previous experimen-
tal results [19], however, reported a larger critical exponent
than that of the symplectic class. The primary difference
between our modeling and the previous experimental results
involves two factors, Coulomb interactions among carriers
and curvature-induced SOC changes. In particular, curvature-
induced SOC changes in monolayer MoS2 create an emergent
gauge as a pseudomagnetic field [32], and the intrinsic mag-
netizations reported in previous experimental results [33,34]
align well with the curvature-induced pseudomagnetic field
and DFT calculations [19]. The pseudomagnetic field allows
for a higher critical exponent value than that in the symplectic
case [35], which is consistent with experimental results. We
leave the pseudomagnetic field effects on the critical exponent
for future works. However, the main conclusions in this work
remain unaffected by the SOC effects.

Figure 6(g) displays the calculated LDOS maps for each
doping case near the critical energy [∼0 eV in Fig. 6(d)].
At the limit of the band edge flattening through doping, the
uniformly extended state near the critical energy [case 5 in
Fig. 6(g)] exhibited divergence of the localization length as a
critical behavior [case 5 in Fig. 6(f)]. The singularity spectra
of each LDOS map [Fig. 6(g)] are shown in Fig. 6(h), and the
case 5 in Fig. 6(g) reveals monofractality towards the metallic
limit (ideally, a function such that f (α = 2) = 2, otherwise
negative infinity [3]) due to band edge flattening through
doping, which agrees well with the previous experimental
results [19].
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FIG. 6. Band tail characterization by multifractality of the local density of states. [(a)–(c)] Peak positions (α0) of singularity spectra [such
that f (α = α0) = 2] from the spatial distributions of LDOS at given energies in MoS2 on HOPG (a) [from Fig. 2(h)], MoS2 on SiO2 (b) [from
Fig. 2(g)], and electron-doped MoS2 on SiO2 (c) [from Fig. 3(g)]. Absolute values of derivatives of the peak positions (|dα0/dE |) characterize
the range of band tails, indicated by shaded areas (blue for valence band and red for conduction band). MoS2 on HOPG is flatter than that on
SiO2, leading to the narrower band tail widths near the band edge. With a high electron doping in (c), the derivatives of α0 show the narrowing
of the conduction band tail and the widening of the valence band tail by flattening of band edges through the doping. (d) Tight-binding results
for α0 and derivatives of α0 for various doping levels [corresponding to 0–5 as shown in Fig. 4(a)] from LDOS in the given structurally
disordered MoS2. The flattening of band edges by higher electron doping exhibits the narrowing of the conduction band tail and widening of
the valence band tail in good agreement with the experimental results in [(b), (c)]. (e) Band tail ranges in each case of (d) were plotted. As
electron doping increases (from 0 to 5), the conduction (valence) band tail range �ECB (�EVB) decreases (increases). The average (�Eavg)
of the band tail ranges is nearly constant. (f) Localization lengths characterized in the radial-averaged autocorrelations show divergence as a
critical behavior along with the full flattening of the band edge in doping case 5, where the conduction band tail range shrank and emerged
into the critical energy, leading to the criticality. The inset is the log-scale plot of the localization lengths. The zero energy is set close to the
critical energies of each case. (g) LDOS maps for each doping case near the critical energy (0 eV). The relative intensities of the maps are on
the same scale. (h) Singularity spectra of LDOS maps in (g). (i) Critical doping concentration as a function of the average of absolute bending
strain from variation in the strength of structural disorder. The flat case (0%) corresponds to the intrinsic doping concentration at 1 K. The blue
star indicates the experimental result on the SiO2 substrate [9].
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(a) (b) (c) (d)

(f)

(e)

FIG. 7. Band edge flattening via hole doping in structural disorder. (a) Tight-binding calculations of doping charge densities in structurally
disordered MoS2 with various hole doping levels. Charge localization was correlated with curvature structures in MoS2. The structural disorder
corresponds to case 1 in Fig. 3. The 0 index indicates the intrinsic (neutral) case and the larger index means the higher doping level. (b) The
radial-averaged autocorrelation profiles corresponding to (a). Rapidly decaying regions near the band edges characterize the band tail regions.
The doping case 5 shows the flattening limit of the valence band edge. (c) The calculated DOS corresponding to (a). The arrows in the plot
indicates widening of the conduction band tail and the flattening of the valence band edge through hole doping. [(d), (e)] Close-up log-plot of
valence (d) and conduction (e) band tails in (c). (f) Plot of the band tail widths for the conduction (ϕCB) and valence (ϕVB) band sides, extracted
from DOS results (c). The average (ϕavg) of the conduction and valence band tail widths is nearly constant regardless of the hole doping level.

The upper boundaries of the conduction band tail range
from multifractal analysis in Fig. 6(d) are close to the critical
energy of the localization-delocalization transition, satisfy-
ing the theoretical prediction for the criticality, η = −�2 =
α0 − 2 [3,16]. This naturally results from band tails consisting
of the localized states and the band tail boundaries meeting
the extended states, as defined by the critical energy [36]. It
is essential to mention that the critical energy differs from
the mobility edge defined in a conventional rigid DOS case
without band edge flattening.

The peak position α0 of the singularity spectrum at the
critical energy acts like an order parameter of α0 − d , where
d is the dimension of the system (for 2D systems, d = 2)
[24]. If α0 is close to the system dimension of 2, the system
approaches the metallic limit. As the electron (hole) doping
level increases, the band edge flattening induces a uniform
distribution of LDOS at an energy above (below) the critical
energy. Indeed, the peak position α0 of the singularity spec-
tra of the uniform states over the critical energy is almost
2 (spatial dimension of the system) as shown in Fig. 6(d)
(above 0 eV), approaching the metallic limit. At the limit of
the band edge flattening through electron doping, the critical

energy approaches the conduction band edge with vanishing
of the conduction band tail region. The variation of α0 larger
than 2 reflects the localized states forming the band tails,
originated from the structural disorder.

F. Critical doping concentration

Recognizing the parameters crucial for quantum critical-
ity is foundational in understanding critical phenomena. In
this context, we provide insight into how structural-disorder-
driven MIT is dictated by the correlation between critical
doping concentrations and structural disorder strength. As
the doping-induced band edge flattening reduces the band
tail range, the critical energy approaches the band edge. The
presence of localized states triggered MIT in structurally dis-
ordered 2D semiconductors. The critical doping concentration
regarding the Fermi level corresponds to the vanishing point
of the conduction (valence) band tail along with the band
edge flattening induced by electron (hole) doping. Therefore,
the critical doping concentration depends on the degree of
the structural disorder associated with the formation of band
tails or localized states. If the ideally flat MoS2 exists, the
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FIG. 8. Structural disorder effect for the valence band edge flat-
tening via hole doping. The radial-averaged autocorrelation profiles
as a function of structural disorder strengths, as the presented surface
morphologies on the left. The tight-binding results show that flatten-
ing of the valence band edge through hole doping exhibited widening
of the conduction band tail ranges which displayed rapid decaying in
the radial-averaged autocorrelation.

critical doping concentration at finite temperatures is related
to the intrinsic carrier concentration. At 0 K, the intrinsic
carrier concentration is expected to be zero. In a perfectly
flat scenario, doping charge directly contributes to increased
conductance. However, in a 2D semiconductor that is not flaw-
lessly flat, the inherent curvature results in charge localization.
This invariably gives rise to the metal-insulator transition,
which should be detectable at very low temperatures even
when the structural disorder is minimal. It is worth noting
that in practical terms, 2D semiconductors are never perfectly
flat due to a myriad of physical factors, including substrate
surface roughness, trapping of atoms/molecules, and so on.
The critical doping concentration was determined using tight-
binding calculations for various structural disorder strengths
(Fig. 3), and it is displayed in Fig. 6(i) together with the
previous experimental result of MoS2 on SiO2. The average
of absolute bending strain was obtained from the structural
disorder. Stronger structural disorder induces a larger critical
doping concentration, which originates from the capacity of
the localized states. After filling the localized states, delo-
calized states start to be occupied. The experimental average
value of absolute bending strain in MoS2 on SiO2 was ∼2%
[20], and the critical doping concentration of MIT in MoS2 on
SiO2 was reported as ∼1 × 1013 cm−2 [9,11]. If the nonzero
temperature is sufficient to activate the carrier excitations, the
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FIG. 9. Influence of structural disorder on α0 amplitudes. (a) The
amplitude of α0 presents a sensitivity to structural disorder strength,
particularly at the limit of band edge flattening. (b) The absolute
value of the derivative of α0. The range of band tails at the valence
band edges scales with the structural disorder strength. Progressing
from the bottom to the top, each row in both (a) and (b) aligns with
the following average values of absolute bending strain: 0%, 0.253%,
0.507%, 0.761%, 1.015%, 1.268%, and 1.522%, in that order.

effective critical doping concentration becomes lower than the
critical doping concentration at 0 K because thermally excited
carriers aid conductivity (through percolation), as observed in
the previous results [11].

III. SUMMARY AND CONCLUSIONS

In summary, we investigated the effect of structural
disorder on the microscopic origin of MIT in 2D semi-
conductors using autocorrelation and multifractal analysis
with experimental results and tight-binding calculations. The
radial-averaged autocorrelation profiles and singularity spec-
tra, as a function of the structural disorder strengths, with
a doping-induced band edge flattening characterized band
tails and critical behaviors of the localization-delocalization
transition. The radial-averaged autocorrelation profiles char-
acterized the localization/correlation lengths and ranges of
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band tails through decaying behaviors. From the multifractal
analysis of LDOS, we confirmed that the absolute value of
first derivatives of their peak positions (|dα0(E )/dE |) char-
acterized the band tail ranges. Along with the conduction
(valence) band edge flattening through electron (hole) doping,
the conduction (valence) band tail range shrank close to zero,
and the critical energy approached the conduction (valence)
band edge. Eventually, the divergence of localization length
as a critical behavior occurred when the Fermi level crossed
the critical energy by doping. The extended states above
the critical energy exhibited uniformity with the band edge
flattening, regardless of the structural disorder. The α0 − 2
acts like an order parameter that realizes the localized and
extended states along with the band edge flattening through
doping. We found that the critical doping concentration for
MIT at 0 K is correlated with the strength of structural dis-
order. At the finite temperatures (not 0 K), thermal excitation
of the carriers resulted in percolation-type MIT, which shows
an effective doping concentration below the critical doping
concentration at 0 K. We believe that the understanding of
the curvature-induced charge localization, band tails, and the
localization-delocalization transition or MIT in structurally
disordered 2D semiconductors leads to the fundamental con-
cepts of quantum phase transitions and criticality for unique
quantum electronic/optoelectronic device applications.
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APPENDIX A: BAND EDGE FLATTENING VIA HOLE
DOPING

Following the same mechanism as explained for the con-
duction band edge flattening via electron doping, the valence
band edge flattening via hole doping is triggered by the local-
ization of holes in the curvature-induced valence band edge
(or band gap) fluctuations. The main differences from the
electron doping cases [Figs. 4 and 5] are the sign of the charge
in the Coulomb interaction and the capacity of the density of
states near the band edge. Figure 7 shows the localization of
holes, band tail formation, and characteristic band tail width
as a function of hole doping concentration.

APPENDIX B: STRUCTURAL DISORDER EFFECT FOR
THE BAND EDGE FLATTENING VIA HOLE DOPING

The strength of structural disorder determines the capacity
of charge localization through curvature-induced band edge
(or band gap) fluctuations. At the limit of the valence band
edge flattening, the conduction band tail is stretched with the
structural disorder strength [Fig. 8], which is similar to the
electron doping cases [Fig. 4(c)].

APPENDIX C: SINGULARITY SPECTRUM OF LDOS (STS)
MAP

For the multifractal analysis, we followed the methods
of Chhabra and Jensen [37]. The singularity spectrum f (α)
is the fractal dimension of spatial domains that the ampli-
tude of electron wave functions ψ at a position r follows
|ψ (r)|2 ∼ L−α , where L is the (effective) linear size of the
system [3,24,37]. The probability of finding electrons from
|ψ (r)|2 with moment q in a box of linear size lb is given by

Pq
i (lb) =

∑
j∈boxi (lb)

|ψ (r j )|2q, (C1)

where the system domain is divided by boxes of linear size lb
[boxi(lb)]. The normalized population measure of moment q
is defined by

μi(q, lb) = Pq
i (lb)/

∑
j

Pq
j (lb). (C2)

A singularity strength αi is defined to satisfy that Pq
i (lb) ∝

λ−αi , where λ is the normalized spatial measure defined by
lb/L. The population count N (αi ) is the number of boxes for
the singularity strength αi, where αi is in between α and α +
dα. The singularity spectrum f (α) is introduced by N (α) ∝
λ− f (α), which indicates the fractal dimension of the N (α) box
domains.

The singularity spectrum f [α(q)] and average of the sin-
gularity strength α(q) are defined by

f [α(q)] = lim
λ→0

1

ln λ

Nt∑
i

μi(q, lb) ln μi(q, lb), (C3)

α(q) = lim
λ→0

1

ln λ

Nt∑
i

μi(q, lb) ln Pi(lb). (C4)

where Nt is the total number of boxes of (lb/L)−d (d is the
system dimension.).

APPENDIX D: TIGHT-BINDING METHOD FOR
STRUCTURAL DISORDER

The tight-binding method with the three-band model of
transition metal dichalcogenides [25] was applied to calculate
the random fluctuations of local surface height in mono-
layer MoS2. Structural disorder for structural modeling was
generated by the superposition of random Gaussian bumps
for height fluctuations within the elastic limit of MoS2. The
disorder strength was scaled by control of the surface fluc-
tuation range. The unit cell size was 25 × 25 nm2 and a
periodic boundary condition was applied to avoid a bound-
ary effect. The randomly deformed structural models within
third-nearest neighbor were calculated to obtain LDOS of
each d orbital (dz2 , dxy, and dx2−y2 ). The changes of hopping
parameters ti j between i and j sites by strain were considered
as

ti j = t0
i jexp

(
−β

[
ai j

a0
− 1

])
, (D1)

where a0, t0
i j , and ai j are unstrained lattice distance, primitive

hopping parameter, and strained distance between i and j
sites, respectively. The factor β was chosen as 5, empirically.
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APPENDIX E: DENSITY FUNCTIONAL THEORY
CALCULATIONS FOR BAND EDGE FLATTENING

The first-principles calculations were performed to investi-
gate the curvature-induced band gap fluctuations and doping-
induced band edge flattening, using the Vienna ab initio
simulation package (VASP) based on the density functional
theory with a plane-wave basis set [38]. The pseudopoten-
tials in the projector augmented wave (PAW) formalism with
the Perdew-Burke-Ernzerhof (PBE) parametrization of the
general gradient approximation (GGA) were used as imple-
mented in VASP [39,40]. The spherical bending structure of
a Gaussian shape was modeled by a slab geometry with a
vacuum of ∼14 Å. The structural model with a Gaussian
shape was fully relaxed until the residual forces of each
atom were less than 0.02 eV/Å. The plane-wave cutoff en-
ergy was 400 eV. The 
 point was used for the surface
Brillouin zone integration due to the largeness of the unit
cell (47.4 × 43.79 nm2) with a heavy computational load. The
energy convergence was achieved with a tolerance of 10−6 eV.

APPENDIX F: SYNTHESIS OF MoS2 MONOLAYERS

Monolayer MoS2 film was grown under low pressure by
metal-organic chemical vapor deposition (MOCVD) [41].
Molybdenum hexacarbonyl [Mo(CO)6, Sigma-Aldrich] and
diethyl sulfide ((C2H5)2S, Sigma Aldrich) were selected as
precursors of Mo and S, respectively, and were supplied in
a gas phase into a 1-in. quartz tube furnace by the help of a
bubbler system with Ar as a carrier gas. The MoS2 film was
synthesized on a 300-nm-thick SiO2/Si wafer with the flow
rate of 100 SCCM (standard cubic centimeter per minute) for

Ar, 0.6 SCCM for Mo(CO)6, and 2.0 SCCM for (C2H5)2S
under a growth temperature below 350 ◦C and a growth time
of 15 h. After growth, the furnace heat was turned down until
it reached room temperature.

APPENDIX G: CRITICAL DOPING CONCENTRATION

The critical doping concentration was determined through
the complete occupancy of localized states until the threshold
of band edge flattening via doping was reached. Once this
threshold is met, there are not any favored sites for the doping
charge to localize, causing the doping charge to transition into
free carriers beyond the critical doping concentration. The
critical doping charge concentration was determined by the
integration of the density of states over the energy ranges of
localized states (band tails) at the limit of band edge flattening.
The absolute values of the critical doping concentrations were
calibrated by DFT-calculated Fermi levels and experimental
results from Ref. [9].

APPENDIX H: STRUCTURAL DISORDER EFFECT AT
THE CONDUCTION BAND EDGE FLATTENING LIMIT

The amplitude of α0 from the multifractal analysis is de-
pendent on both the strength of the structural disorder and the
flattening of band edges through doping. When an LDOS map
at a given energy is more homogeneous, the amplitude of α0

becomes closer to 2 as the metallic limit in a 2D system. The
sensitivity of α0 to structural disorder at the conduction band
edge flattening limit is shown in Fig. 9(a). The absolute value
of the derivative of α0, which is less sensitive to the structural
disorder, characterizes the band tail ranges [Fig. 9(b)].
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[13] V. Dobrosavljević, E. Abrahams, E. Miranda, and S.
Chakravarty, Scaling theory of two-dimensional metal-insulator
transitions, Phys. Rev. Lett. 79, 455 (1997).

[14] A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg,
Dynamical mean-field theory of strongly correlated fermion
systems and the limit of infinite dimensions, Rev. Mod. Phys.
68, 13 (1996).

[15] A. D. Mirlin and F. Evers, Multifractality and critical fluc-
tuations at the Anderson transition, Phys. Rev. B 62, 7920
(2000).

[16] I. S. Burmistrov, I. V. Gornyi, and A. D. Mirlin, Multifractality
at Anderson transition with Coulomb interaction, Phys. Rev.
Lett. 111, 066601 (2013).

[17] E. Cuevas and V. E. Kravtsov, Two-eigenfunction correlation
in a multifractal metal and insulator, Phys. Rev. B 76, 235119
(2007).

043029-12

https://doi.org/10.1103/RevModPhys.80.1355
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRevLett.42.673
https://doi.org/10.1103/PhysRevB.50.8039
https://doi.org/10.1103/RevModPhys.73.251
https://doi.org/10.1103/RevModPhys.82.1743
https://doi.org/10.1038/nmat3687
https://doi.org/10.1002/adfm.201604093
https://doi.org/10.1038/ncomms7088
https://doi.org/10.1126/science.1115660
https://doi.org/10.1103/PhysRevLett.79.455
https://doi.org/10.1103/RevModPhys.68.13
https://doi.org/10.1103/PhysRevB.62.7920
https://doi.org/10.1103/PhysRevLett.111.066601
https://doi.org/10.1103/PhysRevB.76.235119


CHARACTERIZING CRITICAL BEHAVIOR AND BAND … PHYSICAL REVIEW RESEARCH 5, 043029 (2023)

[18] A. D. Mirlin and Y. V. Fyodorov, Distribution of local
densities of states, order parameter function, and critical be-
havior near the Anderson transition, Phys. Rev. Lett. 72, 526
(1994).

[19] B. G. Shin, J.-H. Park, J.-Y. Juo, J. Kong, and S. J. Jung,
Structural-disorder-driven critical quantum fluctuation and lo-
calization in two-dimensional semiconductors, Nat. Commun.
14, 2283 (2023).

[20] B. G. Shin, G. H. Han, S. J. Yun, H. M. Oh, J. J. Bae, Y. J.
Song, C.-Y. Park, and Y. H. Lee, Indirect bandgap puddles in
monolayer MoS2 by substrate-induced local strain, Adv. Mater.
28, 9378 (2016).

[21] S. Deng, E. Gao, Z. Xu, and V. Berry, Adhesion energy of MoS2

thin films on silicon-based substrates determined via the at-
tributes of a single MoS2 wrinkle, ACS Appl. Mater. Interfaces
9, 7812 (2017).

[22] R. I. González, F. J. Valencia, J. Rogan, J. A. Valdivia, J.
Sofo, M. Kiwi, and F. Munoz, Bending energy of 2D ma-
terials: Graphene, MoS2 and imogolite, RSC Adv. 8, 4577
(2018).

[23] Y. Lin, X. Ling, L. Yu, S. Huang, A. L. Hsu, Y.-H. Lee, J.
Kong, M. S. Dresselhaus, and T. Palacios, Dielectric screening
of excitons and trions in single-layer MoS2, Nano Lett. 14, 5569
(2014).

[24] M. Janssen, Multifractal analysis of broadly-distributed observ-
ables at criticality, Int. J. Mod. Phys. B 8, 943 (1994).

[25] G.-B. Liu, W.-Y. Shan, Y. Yao, W. Yao, and D. Xiao, Three-band
tight-binding model for monolayers of group-VIB transition
metal dichalcogenides, Phys. Rev. B 89, 039901 (2014).

[26] H. M. Cohen, M. Y. Chou, E. N. Economou, S. John, and C. M.
Soukoulis, Band tails, path integrals, instantons, polarons, and
all that, IBM J. Res. Dev. 32, 82 (1988).

[27] W. Zhu, T. Low, Y.-H. Lee, H. Wang, D. B. Farmer, J. Kong, F.
Xia, and P. Avouris, Electronic transport and device prospects of
monolayer molybdenum disulphide grown by chemical vapour
deposition, Nat. Commun. 5, 3087 (2014).

[28] K. Hsieh, V. Kochat, X. Zhang, Y. Gong, C. S. Tiwary, P.
M. Ajayan, and A. Ghosh, Effect of carrier localization on
electrical transport and noise at individual grain boundaries in
monolayer MoS2, Nano Lett. 17, 5452 (2017).

[29] Y. Asada, K. Slevin, and T. Ohtsuki, Numerical estimation
of the β function in two-dimensional systems with spin-orbit
coupling, Phys. Rev. B 70, 035115 (2004).

[30] R. Sepehrinia, Universality of Anderson transition in two-
dimensional systems of symplectic symmetry class, Phys. Rev.
B 81, 045104 (2010).

[31] Y. Su and X. R. Wang, Role of spin degrees of freedom in
Anderson localization of two-dimensional particle gases with
random spin-orbit interactions, Phys. Rev. B 98, 224204 (2018).

[32] H. Ochoa, R. Zarzuela, and Y. Tserkovnyak, Emergent gauge
field from curvature in single layers of transition-metal
dichalcogenides, Phys. Rev. Lett. 118, 026801 (2017).

[33] H. Duan, P. Guo, C. Wang, H. Tan, W. Hu, W. Yan, C. Ma,
L. Cai, L. Song, W. Zhang, Z. Sun, L. Wang, W. Zhao, Y.
Yin, X. Li, and S. Wei, Beating the exclusion rule against
the coexistence of robust luminescence and ferromagnetism in
chalcogenide monolayers, Nat. Commun. 10, 1584 (2019).

[34] Z. Guguchia, A. Kerelsky, D. Edelberg, S. Banerjee, F. von
Rohr, D. Scullion, M. Augustin, M. Scully, D. A. Rhodes,
Z. Shermadini, H. Luetkens, A. Shengelaya, C. Baines, E.
Morenzoni, A. Amato, J. C. Hone, R. Khasanov, S. J. L.
Billinge, E. Santos, A. N. Pasupathy et al., Magnetism in
semiconducting molybdenum dichalcogenides, Sci. Adv. 4,
eaat3672 (2018).

[35] Y. Su, C. Wang, Y. Avishai, Y. Meir, and X. R. Wang, Absence
of localization in disordered two-dimensional electron gas at
weak magnetic field and strong spin-orbit coupling, Sci. Rep. 6,
33304 (2016).

[36] M. H. Cohen, C. M. Soukoulis, and E. N. Economou, Interband
optical absorption in amorphous semiconductors, in Optical
Effects in Amorphous Semiconductors, AIP Conf. Proc. No.
120 (AIP, Melville, NY, 1984), p. 371.

[37] A. Chhabra and R. V. Jensen, Direct determination of the f (α)
singularity spectrum, Phys. Rev. Lett. 62, 1327 (1989).

[38] G. Kresse and J. Furthmüller, Efficiency of ab-initio total
energy calculations for metals and semiconductors using a
plane-wave basis set, Comput. MatER. Sci. 6, 15 (1996).

[39] J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient
approximation made simple, Phys. Rev. Lett. 77, 3865 (1996).

[40] G. Kresse and J. Joubert, From ultrasoft pseudopotentials to
the projector augmented-wave method, Phys. Rev. B 59, 1758.
(1999).

[41] J.-H. Park, A.-Y. Lu, P.-C. Shen, B. G. Shin, H. Wang, N.
Mao, R. Xu, S. J. Jung, D. Ham, K. Kern, Y. Han, and J.
Kong, Synthesis of high-performance monolayer molybdenum
disulfide at low temperature, Small Methods 5, 2000720 (2021).

043029-13

https://doi.org/10.1103/PhysRevLett.72.526
https://doi.org/10.1038/s41467-023-38024-4
https://doi.org/10.1002/adma.201602626
https://doi.org/10.1021/acsami.6b16175
https://doi.org/10.1039/C7RA10983K
https://doi.org/10.1021/nl501988y
https://doi.org/10.1142/S021797929400049X
https://doi.org/10.1103/PhysRevB.89.039901
https://doi.org/10.1147/rd.321.0082
https://doi.org/10.1038/ncomms4087
https://doi.org/10.1021/acs.nanolett.7b02099
https://doi.org/10.1103/PhysRevB.70.035115
https://doi.org/10.1103/PhysRevB.81.045104
https://doi.org/10.1103/PhysRevB.98.224204
https://doi.org/10.1103/PhysRevLett.118.026801
https://doi.org/10.1038/s41467-019-09531-0
https://doi.org/10.1126/sciadv.aat3672
https://doi.org/10.1038/srep33304
https://doi.org/10.1103/PhysRevLett.62.1327
https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevB.59.1758
https://doi.org/10.1002/smtd.202000720

