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We report on the realization of a graphene billiard with a fourfold rotational symmetry, which has the shape
of a billiard with chaotic classical dynamics. The eigenstates are separated according to their transformation
properties under rotation by π

2 into four symmetry classes. These subspectra can be divided into regions around
the band edges, where they are governed by the nonrelativistic Schrödinger equation, and a region of low
energy-excitations around zero energy, that exhibit a linear dispersion relation and are described by the relativistic
Dirac equation for a spin-1/2 quasiparticle. We analyze the spectral properties in these parts and compare them
with those for nonrelativistic quantum billiards and relativistic neutrino billiards. In both regions the spectral
properties conform with those of nonrelativistic quantum billiards of corresponding shape. Furthermore, we
compute wave functions in configurational space and momentum distributions in quasimomentum space and
find that the first Brillouin zone is formed by two hexagonal ones that are rotated by 30◦ with respect to each
other. Namely, in the relativistic region the momentum distributions are localized at or near the 12 Dirac points
at the corners of these hexagons. At the Van Hove singularities, which separate the nonrelativistic and relativistic
regions, they are localized along the isofrequency lines that connect the six saddle points at the centers between
two corners for each hexagon. We propose a design of a microwave photonic crystal for the experimental
modeling of graphene billiards with fourfold symmetry and present numerical results for its properties.

DOI: 10.1103/PhysRevResearch.5.043028

I. INTRODUCTION

Billiards are a paradigm model for the study of as-
pects of quantum chaos. A classical billiard (CB) consists
of a point particle which moves freely inside a bounded
two-dimensional domain and is reflected specularly at the
boundary. Its dynamics is determined by the shape of the
domain [1–3]. The eigenstates of the corresponding non-
relativistic quantum billiard (QB) are the solutions of the
Schrödinger equation for a free particle with Dirichlet
boundary conditions (BCs). In 1987, Berry and Mondragon
proposed relativistic neutrino billiards [4] (NBs) that are gov-
erned by the Dirac equation for a massless spin-1/2 particle,
which is confined to the billiard domain by imposing the
BC that there is no outgoing flow. Another type of billiards,
which may exhibit nonrelativistic or relativistic features de-
pending on energy, are graphene billiards (GBs) [5–15]. They
are constructed by cutting their shape out of an extended
honeycomb lattice and are used to emulate properties of
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artificial graphene flakes based on a tight-binding model
(TBM) [16,17]. Around the corners of the hexagonal Brillouin
zone, where the conduction band and valence band touch each
other conically, the energy excitations of graphene are well de-
scribed by the Dirac equation for massless spin-1/2 particles
[6,7,11,13,18]. The associated BCs on the spinor components
in a GB were formulated in Refs. [19–21]. The touch points
are referred to as “Dirac points.” The conical shape originates
from the honeycomb-lattice structure [22], which is formed
by two interpenetrating triangular sublattices. This led to
the realization of numerous experimental “artificial-graphene”
realizations [23–40]. We modeled rectangular, Africa-
shaped, and threefold-symmetric GBs experimentally with
flat superconducting microwave photonic crystals [41–45],
named Dirac billiards (DBs) because their energy spectra
exhibit Dirac points around which they exhibit relativistic
phenomena.

Key aspects of quantum chaos are the properties of the
wave functions and the fluctuation properties in the eigenvalue
spectra of a quantum system, as well as their connection to
the properties of the dynamics of the corresponding classical
system. Berry and Tabor showed in Ref. [46] that the spec-
tral properties of typical integrable systems [47] agree well
with those of Poissonian random numbers. According to a
conjecture by Bohigas, Giannoni, and Schmit [48] (BGS) the
spectral properties of quantum systems with a chaotic classi-
cal dynamics coincide with those of random matrices from the
Gaussian ensembles (GEs) of the corresponding universality
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class [49–52]; see also Refs. [53,54]. The appropriate GEs for
quantum systems with preserved and violated time-reversal
invariance are the Gaussian orthogonal ensemble (GOE) and
the Gaussian unitary ensemble (GUE), respectively. Since the
Dirac Hamiltonian associated with NBs is not invariant under
time reversal, the spectral properties of typical NBs with the
shapes of chaotic CBs and no geometric symmetry coincide
with those of random matrices from the GUE. The spectral
properties of GBs with such shapes were expected to be sim-
ilar to those of NBs in the valley regions around the Dirac
points, because there they are governed by the same wave
equations. This was confirmed in experiments with graphene
quantum dots [55,56] with the shape of a chaotic billiard [10].
However, numerical [57–60] and experimental investigations
[41,42,44,45] with GBs yielded the finding that they conform
with GOE statistics. The discrepancies were attributed to the
BCs [57,59,60] and to backscattering at the boundary, which
leads to a mixing of valley states corresponding to the two
independent Dirac points associated with the two triangular
sublattices. In Refs. [61,62], GBs and NBs with shapes of
CBs with an integrable dynamics are presented whose spectral
properties do not agree with Poissonian statistics but with
GOE or intermediate statistics.

There also exist nonrelativistic QBs with certain symmetry
properties, which do not comply with the BGS conjecture.
Examples are billiards with a threefold rotational symme-
try [63–65] or, generally, an M-fold rotational symmetry, a
unidirectional classical dynamics [66–69], or nanoelectrome-
chanical systems consisting of a circular quantum dot on a
suspended nanoscopic dielectric plate [70,71]. These are time-
reversal invariant systems; however, part of their subspectra
exhibit GUE statistics. In Ref. [72] we considered a GB with
threefold (C3) rotational symmetry, which was investigated
experimentally in Ref. [45], and determined that properties of
their eigenvalues and eigenfunctions agree with those of the
QB of corresponding shape; that is, we found GUE statistics
for two of the three subspectra. Such GBs can be constructed
by cutting a graphene sheet to their shape because the symme-
try properties comply with those of the hexagonal lattice. It is
not possible to realize in this way GBs with a fourfold rota-
tional symmetry. The objective of this paper is to demonstrate
that GBs with that symmetry property can still be constructed
and to investigate and compare properties of their eigenvalues
and eigenfunctions with those of the nonrelativistic QB and
relativistic NB of corresponding shape. We obtain the GBs by
cutting four identical sheets with the shape of a fundamental
domain out of a graphene sheet and gluing them together and
demonstrate that the GBs exhibit the features of a quantum
system with fourfold rotational symmetry. In Sec. II we re-
view the properties of relativistic and nonrelativistic QBs with
fourfold symmetry. In Sec. III we present the results for the
corresponding GB, and in Sec. IV we propose an experimental
realization based on a microwave photonic crystal, i.e., a DB
of corresponding shape. Finally, we discuss our findings in
Sec. V.

II. BILLIARDS WITH FOURFOLD SYMMETRY

A classical billiard (CB) refers to a pointlike particle
confined in a bounded two-dimensional domain, where it

moves freely and is reflected specularly at the boundary.
We define the domain � of the billiard in a Cartesian coor-
dinate system in polar coordinates, r = [x(r, ϕ), y(r, ϕ)], or
in the complex plane, w(r, ϕ) = x(r, ϕ) + iy(r, ϕ), with ϕ ∈
[0, 2π ), r ∈ [0, r0] with the boundary ∂� at r = r0.

The eigenfunctions ψ (r, ϕ) of nonrelativistic QBs and the
electric-field strength of microwave billiards (MBs) [73–75]
are governed by the Schrödinger equation and the Helmholtz
equation, respectively, with Dirichlet BCs along ∂�,

Ĥψm(r, ϕ) = −�(r,ϕ)ψm(r, ϕ) = k2
mψm(r, ϕ),

ψm(r, ϕ)|r=r0 = 0. (1)

The eigenenergies Em = k2
m of the Hamiltonian Ĥ are given

in terms of the wave numbers km. These are related to the
eigenfrequencies fm of the corresponding MB through the
relation km = 2π fm/c, where c denotes the velocity of light
in a vacuum.

Neutrino billiards were introduced in Ref. [4]. They are
governed by the Weyl equation [76] for a noninteracting spin-
1/2 particle of mass zero, referred to as the Dirac equation in
Ref. [4],

ĤDψ = cσ̂ · p̂ψ = Eψ, ψ =
(

ψ1

ψ2

)
, (2)

with p̂ = −ih̄∇ being the momentum of the particle, ĤD

denoting the Dirac Hamiltonian, and σ̂ = (σ̂x, σ̂y), where σ̂x,y,z

are the Pauli matrices. Furthermore, E = h̄ck is the energy
of the particle, where k is the free-space wave vector. In
Ref. [4] only this ultrarelativistic case was considered, which
was extended to massive NBs in Refs. [45,72,77]. The particle
is confined to the billiard domain by requiring that the normal
component of the local current, that is, of the expectation
value of the current operator û = ∇pĤD = cσ̂, n · u(r) = cn ·
[ψ†σ̂ψ] is zero along the boundary, leading to the BC [4]

ψ2(ϕ) = iμeiα(ϕ)ψ1(ϕ). (3)

Here, α(ϕ) is the angle of the outward-pointing normal vector
n = [cos α(ϕ), sin α(ϕ)] at w(r0, ϕ) with respect to the x axis,
and μ = ±1 determines the rotational direction of the current
at the boundary. We use μ = 1 in the following.

In this paper we investigate the spectral properties and
properties of the wave functions and momentum distributions
of the symmetry-projected eigenstates of a GB with fourfold
symmetry, implying that it is invariant under ϕ → ϕ + π

2 ,
and also analyze those of the corresponding QB and NB. A
further requirement on the billiard shape is that the dynamics
of the CB is fully chaotic. Thus, in order to avoid the occur-
rence of families of bouncing-ball-like orbits, i.e., continuous
sets of neutral orbits, which yield nongeneric contributions
to the spectral properties [3,78,79], the boundary should not
comprise straight-line parts. Furthermore, bulges should be
designed such that orbits cannot be trapped in them. The
shape shown in Fig. 1 complies with these requirements. The
domain � of the billiard is defined by the parametrization

w(r, ϕ) = r[1 + 0.1 cos(4ϕ) − 0.1 sin(8ϕ)]eiϕ, r � r0,

(4)
where in the numerical simulations r0 = 3.

043028-2



GRAPHENE BILLIARDS WITH FOURFOLD SYMMETRY PHYSICAL REVIEW RESEARCH 5, 043028 (2023)

FIG. 1. Shape of the fourfold-symmetric billiard. The domain
can be divided into four fundamental domains that are mapped onto
each other under rotation by π

2 . We use the subdivision indicated
by the red dashed lines for the construction of the GB. The shortest
connected periodic orbit is a square orbit of length l̃s � 1.165 × 4r0

(green solid lines). A second square orbit of length l̃ � 1.355 × 4r0

is exhibited (orange solid lines). Furthermore, the diameters of the
two orbits with lengths 1.646 × 2r0 (green dashed line) and 1.916 ×
2r0 (orange dashed line) are shown.

Generally, M-fold symmetry of the boundary of a billiard
implies that w(ϕ) ≡ w(r0, ϕ) has the periodicity properties

w

(
ϕ + λ

2π

M

)
= eiλ 2π

M w(ϕ), (5)

eiα(ϕ+λ 2π
M ) = eiλ 2π

M eiα(ϕ), (6)

with λ = 0, 1, 2, . . . , M − 1.
The eigenstates of the corresponding nonrelativistic QB

can be classified into M subspaces labeled by l = 0, . . . , M −
1 according to their transformation properties with respect to
rotation by 2π

M under application of the rotation operator

R̂ = ei 2π
M L̂ (7)

with L̂ denoting the angular momentum operator. The
symmetry-projected eigenfunctions of the QB are character-
ized by the property

R̂λψ (l )
m (r, ϕ) = ψ (l )

m

(
r, ϕ − 2π

M
λ

)
= eil 2π

M λψ (l )
m (r, ϕ). (8)

Furthermore, they are real for l = 0 and also for l = M/2
for even M, that is, invariant under the time-reversal operator
T̂ = Ĉ with Ĉ denoting the complex conjugation operator
[52], whereas for l �= 0, M/2 they are complex and

T̂ ψ (l )
m (r, ϕ) = ψ (M−l )

m (r, ϕ). (9)

Thus, because the billiard system is invariant under T viola-
tion, ψ (l )

m (r, ϕ) and ψ (M−l )
m (r, ϕ) are eigenfunctions with the

same eigenvalue k2
m. Here, we used the fact that

Ĉψ (l )
m

(
r, ϕ − 2π

M
λ

)
= e−il 2π

M λ
[
ψ (l )

m (r, ϕ)
]∗

= ei(M−l ) 2π
M λ

[
ψ (l )

m (r, ϕ)
]∗

(10)

implying that [ψ (l )
m (r, ϕ)]∗ = ψ (M−l )

m (r, ϕ). Accordingly, the
eigenvalue spectrum can be separated into nondegenerate
eigenvalues (singlets) with l = 0, M

2 and pairwise degenerate
ones (doublets) with labels l, M − l . If the corresponding
classical dynamics is chaotic and if the billiard boundary has
no additional geometric symmetries, the spectral properties of
the singlets show GOE behavior, while those of the doublet
partners exhibit GUE statistics [63].

The eigenstates of the corresponding NB can also be
grouped according to their transformation properties under a
rotation by 2π

M into M − 1 subspaces [63,80–82],

R̂
λ
ψ

(l )
1,2(r) = eil 2π

M λψ
(l )
1,2(r), λ = 0, 1, . . . , M − 1. (11)

However, the components of the spinor eigenfunctions belong
to different subspaces [72,83]. Namely, if the first component
of the mth spinor eigenfunction belongs to the subspace l ,

R̂ψ1,m(r) = eil 2π
M ψ1,m(r), (12)

the second one belongs to the subspace l̃ = (l − 1),

R̂ψ2,m(r) = ei(l−1) 2π
M ψ2,m(r), (13)

where l̃ = −1 corresponds to l = M − 1. This intermingling
of symmetry properties originates from the additional spin
degree of freedom [72,83]. We denote in the following the
symmetry-reduced eigenstates by the label l corresponding
to the subspace of the first spinor component. The spectral
properties of the NB are well described by the GUE for
all subspaces, if it has the shape of a billiard with chaotic
dynamics and no mirror symmetries. Furthermore, since T
invariance is violated, the eigenvalues belonging to subspaces
l and M − l are not degenerate.

For the analysis of spectral properties the ordered eigen-
values km with k1 � k2 � · · · were unfolded to mean spacing
unity by replacing them by the smooth part of the integrated
spectral density, εm = N smooth(km). For QBs it is given by
Weyl’s formula [84], NWeyl(km) = A

4π
k2

m − L
4π

km + C0, with
A and L denoting the area and perimeter of the billiard,
respectively. For massless NBs the Weyl formula is the same,
except that the perimeter term is absent [4]. We computed
the nearest-neighbor spacing distribution P(s), the integrated
nearest-neighbor spacing distribution I (s), the number vari-
ance �2(L), and the rigidity �3(L) of the spectrum [49].
Furthermore, we analyzed distributions of the ratios [85,86] of
consecutive spacings between nearest neighbors, r j = ε j+1−ε j

ε j−ε j−1
,

which are dimensionless so that no unfolding is needed
[85–87].

We computed, for each symmetry class of the QB and NB,
5000 eigenvalues using the corresponding boundary-integral
method [4,77,88,89]; see Appendix A. Examples of wave
functions are shown in Fig. 2 for l = 0, 1, 2. For l = 3 they are
indistinguishable from those for l = 1. Generally, the wave
functions are spread over the whole billiard area; however,
some exhibit a cross- or square-shaped pattern of increased
intensity, as illustrated in these examples. However, this scar-
ring is not as pronounced as, e.g., in the threefold-symmetric
billiards considered in Ref. [72]. This explains why deviations
of the spectral properties from random-matrix theory (RMT)
are small in the present case compared with those observed
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FIG. 2. Intensity distributions of the wave functions of the
QB for the symmetry-reduced eigenstates with l = 0 and n =
207, 209, 211 (first row), l = 1 and n = 211, 216, 217 (second row),
and l = 2 and n = 205, 207, 215 (third row).

in that paper. These are shown in Fig. 3 for the QB and
its symmetry-projected eigenstates labeled by l = 0, 1, 2, 3.
The eigenvalues corresponding to l = 1 and l = 3 are de-
generate. Therefore we only show spectral properties for the
case l = 1. They agree well with the GOE for l = 0, 2 and
with the GUE for l = 1. For l = 0, slight deviations are ob-
served for L � 3 for �2(L) and L � 12 for �3(L), whereas
no deviations from the predicted RMT curves are observed
for l = 1. This indicates that especially for l = 0 there are
nonuniversal contributions from states that are scarred along,
e.g., the shortest connected periodic orbit, shown in Fig. 1, or
a cross orbit, that are absent for l = 3. For the threefold QB
and NB studied in Ref. [45,72], such contributions led to clear
deviations from RMT predictions. These, however, could be
extracted from the fluctuating part of the integrated spectral
density, where they are visible as slow oscillations that can
be determined by employing length spectra [79,90]. We also
include the results for the complete level sequence comprising
the eigenvalues corresponding to eigenstates with l = 0, 1, 2.
These are compared with an RMT model consisting of block-
diagonal matrices of the same dimensions, where two blocks
are drawn from the GOE and one from the GUE. Agreement
is very good for the short-range correlations, and only small
deviations are observed for the long-range correlations.

Figure 4 shows the spectral properties for the NB and
its symmetry-projected states. Shown are the results for l =
0, 1, 2, 3. The curves lie on top of each other and agree well
with the GUE curves. Furthermore, curves obtained from the
complete spectrum agree well with the RMT model of block-
diagonal matrices of the same dimensions comprising four
blocks of matrices drawn from the GUE. In Fig. 5 are plotted
intensity distributions of the local current exhibiting similar
patterns to the wave-function intensities of the QB in Fig. 2.
Like in the nonrelativistic QB, it is generally spread over
the whole billiard area. Shown are examples where the local

FIG. 3. (a)–(d) Spectral properties of the QB (violet histogram
and upward pointing triangles) and its symmetry-projected eigen-
states (red histogram and pluses, l = 0; orange histogram and circles,
l = 1; green histogram and inverted triangles, l = 2). They are com-
pared with the results for GOE (black solid curves), Poisson (black
dashed curves), and GUE (black dash-dotted curves) statistics and a
superposition of one GUE and two GOEs (turquoise histogram and
dashed curves). (e)–(h) Ratio distributions P(r) and cumulative ratio
distributions I (r) for the symmetry-projected eigenstates of the QB
with l = 0 (red histogram and circles) and l = 2 (green histogram
and squares) [(e) and (g)] and l = 1 (red histogram and circles) [(f)
and (h)]. They are compared with the results for GOE (black solid
curves) and GUE (black dash-dotted curves) statistics.

current pattern exhibits increased intensity around a cross or
square similar to those shown in Fig. 2. However, the effect of
such states on the spectral properties is much smaller than for
the QB.

In Fig. 6 we compare length spectra, that is, the mod-
ulus of the Fourier transform of the fluctuating part of the
spectral density from wave number k to length l in units
of r0 for the complete eigenvalue sequences. That of the
QB is obtained by summing over all four complex-valued
symmetry-projected Fourier transforms. The length spectra
exhibit peaks at the lengths of the periodic orbits of the CB
of corresponding shape. Generally, in the length spectra of
NBs, peaks at lengths that correspond to orbits with an odd
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FIG. 4. (a)–(d) Spectral properties of the NB (violet histogram
and upward pointing triangles) and its symmetry-projected eigen-
states (red histogram and pluses, l = 0; green histogram and circles,
l = 1; maroon histogram and squares, l = 2; orange histogram
and inverted triangles, l = 3). They are compared with the results
for GOE (black solid curves), Poisson (black dashed curves), and
GUE (black dash-dotted curves) statistics and a superposition of
four GUE (turquoise histogram and dashed curves). (e)–(h) Ratio
distributions P(r) and cumulative ratio distributions I (r) for the
symmetry-projected eigenstates of the NB with l = 0 (red histogram
and circles) and l = 2 (green histogram and squares) [(e) and (g)]
and l = 1 (red histogram and circles) and l = 3 (green histogram and
squares) [(f) and (h)]. They are compared with the results for GOE
(black solid curves) and GUE (black dash-dotted curves) statistics.

number of reflections at the boundary are missing [77]. For
both billiards the first high peak is observed at l/r0 � 3.49.
To understand this, we also plot in Fig. 7 the length spectra
obtained from the fluctuating part of the spectral density of the
symmetry-projected eigenstates. They show additional peaks
at lengths which correspond to pseudo-orbits, that is, orbits
that are periodic in the fundamental domains but not in the full
system [81,82]. In the subspectra of the QB with l = 0, 2 and
in all of them for the NB, the first and second peaks appear at
one-quarter of the lengths of the square orbits shown as green
and orange lines in Fig. 1, respectively.

Length spectra of QBs, whose classical counterpart ex-
hibits a chaotic dynamics, have been shown to be well

FIG. 5. Intensity distribution of the local current of the NB for
the symmetry-reduced eigenstates with l = 0 and n = 212, 214, 239
(first row), l = 1 and n = 206, 234, 240 (second row), and l = 2 and
n = 203, 213, 230 (third row).

reproduced by Gutzwiller’s trace formula [91,92], i.e., a semi-
classical approximation for the fluctuating of the spectral
density in terms of a sum over periodic orbits of the CB
of corresponding shape. In Ref. [81], trace formulas were
derived for the symmetry-projected eigenstates of a quan-
tum system with a discrete M-fold rotational symmetry. We
extended them to NBs in Ref. [72] and provide the results
for the fourfold case in Appendix B. The different contri-
butions to the trace formulas of the QB and NB, given in
Eqs. (B11) and (B12), respectively, contain phase factors of
eil π

2 λ, λ = 0, 1, 2, 3. These lead for both billiards to the can-
cellation of contributions from different pseudo-orbits below
l/r0 � 3. There the amplitudes in the trace formula, that is, the
peak heights in the length spectra, corresponding to l = 0, 2
and l = 1, 3, respectively, are the same whereas the relative
phases are π . To corroborate this statement, we computed
the length spectrum of the full QB by using the eigenvalues
for l = 0, 1, 2, taking into account the degeneracy of those

FIG. 6. Comparison of the length spectra of the NB (black) and
the QB (red) obtained from the complete eigenvalue sequences.
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FIG. 7. Top: Comparison of the length spectra of, from bottom
to top, the QB [black curve, obtained from the eigenvalues; magenta
curve, obtained by summing over the Fourier transforms of ρ (l )fluc(k)]
for l = 0 (red), l = 1 (green), l = 2 (violet), and l = 3 (orange).
Bottom: Same as the top panel, but for the NB.

for l = 1 and l = 3, shown as the black curve in the top
panel of Fig. 7, and by summing over all four complex-
valued symmetry-projected Fourier transforms, shown as the
magenta dashed curve in the same panel. In the latter curve,
peaks below l/r0 � 3 disappear. Furthermore, the terms in
the symmetry-projected trace formulas for the NB, given in
Eq. (B12), contain additional phase factors originating from
the spin degree of freedom that lead to the cancellation of
pseudo-orbits with an odd number of reflections at the billiard
boundary within a subdomain [72,77]. Especially for the QB
an accumulation of peaks is observed around the length of the
perimeter, L/r0 = 7.32, which is reminiscent of whispering
gallery modes.

III. GRAPHENE BILLIARDS WITH FOURFOLD
SYMMETRY

Due to the symmetry properties of the hexagonal lattice, we
cannot proceed as in the case of a GB with C3 symmetry and
construct a GB with fourfold symmetry by cutting a graphene
sheet into a shape with that symmetry. Indeed, when rotating
an armchair edge of a square GB, the simplest example of
such a shape, by π

2 it will not be mapped into an armchair
edge but into a zigzag edge, and vice versa. Nevertheless, at
the band edges a GB constructed in this way will have the
same spectral properties as the nonrelativistic QB of corre-

FIG. 8. Left: One fundamental domain of the fourfold-
symmetric GB. Right: The full GB is generated by rotating the
fundamental domain three times by π

2 about the right-angled corner.
The total number of sites of the GB is 129 196. A zoom into the
region of two adjacent fundamental domains illustrates the lattice
structure. The green lines connecting the sites along the edges of the
two subdomains, which correspond to a zigzag and an armchair edge,
respectively, are drawn to guide the eye.

sponding shape and thus will exhibit the features outlined
in Sec. II. However, when increasing energy, that is, moving
away from the band edges, the lattice structure starts to pre-
vail, leading to the occurrence of the Van Hove singularities
and the Dirac point, and the absence of the fourfold symmetry
becomes noticeable in the properties of the eigenvalues and
eigenfunctions. Note that in that energy range the removal of
a single site from a GB with a discrete rotational symmetry
suffices to lift degeneracies [72]. Therefore we constructed
the GB by filling one subdomain with a honeycomb lattice,
as illustrated in the left part of Fig. 8, and then rotating it
three times by π

2 about the right-angled corner yielding the
GB shown in the right part of Fig. 8. The sites of the two
interpenetrating triangular sublattices forming the hexagonal
lattice are marked by blue and red dots, respectively, and a
unit cell consists of two adjacent sites, i.e., of one site from
each sublattice. The subdomains are terminated along the cut
lines by a zigzag and armchair edge, respectively. Along the
common borders the lattice has a discontinuity, which can
be seen in the zoom into that region in the right part of
Fig. 8. The distance between the lines formed by the centers
of sites along the zigzag edge of a subdomain and along
the armchair edge of the adjacent subdomain, respectively,
shown as green lines in Fig. 8, is 0.366d0, with d0 denot-
ing the distance between adjacent sites in the honeycomb
lattice.

To obtain the eigenvalues and wave functions of the GB,
we used the TBM [43], with on-site potential t0 = 0, con-
sidering only next-nearest-neighbor hopping, where the size
of the corresponding hopping parameter is inversely propor-
tional to the distances di j between the lattice sites i and j,
t1;i j = td0/di j . It equals t in the bulk of the subdomains. Along
the cut lines only hoppings between sites i, j with distance
di j � d0 are considered. Here, we chose t = 3 in the compu-
tations. Furthermore, we use Dirichlet BCs along the outer
boundary; see Ref. [43].

The elements of the TBM Hamiltonian are given by

ĤTB
i j = t0δi j + t1;i j δ̃(|ri − r j | − di j )

with ri denoting the location of site i and δ̃(x) equal to unity
for x = 0 and zero otherwise. Assuming that each subdomain

043028-6



GRAPHENE BILLIARDS WITH FOURFOLD SYMMETRY PHYSICAL REVIEW RESEARCH 5, 043028 (2023)

comprises N sites, the TBM Hamiltonian is a 4N × 4N di-
mensional matrix which can be brought to the form

ĤTB =

⎛
⎜⎜⎝

Ĥ V̂ 0 V̂ T

V̂ T Ĥ V̂ 0
0 V̂ T Ĥ V̂
V̂ 0 V̂ T Ĥ

⎞
⎟⎟⎠. (14)

Here, the Hamiltonians Ĥ of the subdomains are identical, and
the matrix V̂ and its transpose, V̂ T , account for the coupling
between the sites along the edges of two adjacent subdomains.
By applying a unitary transformation Û †ĤTBÛ with

Û = 1

2

⎛
⎜⎜⎝

1N 1N 1N 1N

1N −i1N −1N i1N

1N −1N 1N −1N

1N i1N −1N −i1N

⎞
⎟⎟⎠, (15)

where 1N denotes the N-dimensional unit matrix, ĤTB is
brought to block-diagonal form,

Û †ĤTBÛ =

⎛
⎜⎜⎜⎜⎝

ĤTB(0) 0N 0̂N 0̂N

0̂N ĤTB(1) 0̂N 0̂N

0̂N 0̂N ĤTB(2) 0̂N

0̂N 0̂N 0̂N ĤTB(3)

⎞
⎟⎟⎟⎟⎠.

ĤTB(0) = Ĥ + [V̂ + V̂ T ],

ĤTB(2) = Ĥ − [V̂ + V̂ T ],

ĤTB(1) = Ĥ − i[V̂ − V̂ T ],

ĤTB(3) = Ĥ + i[V̂ − V̂ T ]. (16)

Each block corresponds to one of the irreducible symmetry
classes labeled by l = 0, 1, 2, 3 for fourfold rotational sym-
metry. The transformation properties under rotation by π

2 of
the eigenvectors are given in Eq. (8); that is, those of ĤTB(0)

are rotationally invariant. Furthermore, ĤTB(0) and ĤTB(2)

are real matrices, whereas ĤTB(1) and ĤTB(3) are complex
conjugate to each other and thus have the same eigenvalues.
Accordingly, the spectrum of ĤTB consists of two subspectra
of singlets and two identical subspectra of doublets.

We chose r0 = 230 and d0 = 1 so that a honeycomb lattice
with N = 32 299 sites fits into each subdomain. The TBM
Hamiltonian was diagonalized separately for each symmetry
class. The density of states (DOS) ρ( f ) = 1

N

∑N
n=1 δ( f − fn),

with fn denoting the eigenfrequencies, is shown in Fig. 9 only
for the singlets with l = 0 (red dots), because it is indistin-
guishable from those for the other symmetry classes. The
black solid curve shows the smoothed DOS, which is obtained
by replacing the δ functions by Lorentzians of finite width �L,

ρsmooth( f ) = π

N

∑
m

�L

( f − fm)2 + �2
L

, (17)

where we chose �L = 0.01. The peak at the Dirac point at
f /t = 0 results from the edge states that are localized at the
zigzag edges of the outer boundary, and depending on the
size of the hopping parameters between the sites of adjacent
subdomains, also at zigzag edges along these cut lines.

Examples of wave functions of the GB are shown in Fig. 10
for the four subspaces around the lowest band edge, Van Hove
singularities, and Dirac point. They are indistinguishable for

FIG. 9. Density of states of the singlets of the GB. It consists of
4N = 129 196 sites. The DOS (red dots) has two Van Hove singu-
larities at f = ±t and a peak at the Dirac point due to edge states
localized at the zigzag edges of the GB. The black curve shows the
smoothed DOS.

the symmetry classes l = 1, 3. In the vicinity of the Dirac
point, they may have a high intensity at the zigzag edges of the
outer boundary and also along the cut lines, whereas around
the Van Hove singularities they are localized along interior
zigzag edges, leading to the one-dimensional stripe structure.
In some cases the wave functions change abruptly around the
cut lines. We checked that, nevertheless, they are continuous
there.

The corresponding momentum distributions are exhibited
in Fig. 11. They are obtained from the Fourier transform
of the wave functions from configurational space (x, y) to

FIG. 10. Intensity distributions of the wave functions of the GB
corresponding to eigenstates with eigenvalue kn around the band
edge (n = 66, first row), the lower Van Hove singularity (n = 5168,
second row), and the Dirac point (n = 6897, third row) for, from left
to right, l = 0, 1, 3, 2. The color code changes from dark blue for
vanishing intensity to red at the maximum value.
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FIG. 11. Similiar to Fig. 10, but for the momentum distributions.
The first Brillouin zone is composed of two hexagonal ones that are
rotated by π

6 with respect to each other.

quasimomentum space (qx, qy) [43],

�(qx, qy) =
∫

�

�(x, y)e−i(qxx+qyy)dxdy. (18)

To guide the eye, we also show the first Brillouin zone of
a honeycomb lattice (red lines) and a copy of it, which is
rotated by 30◦ with respect to it (orange lines). Indeed, the
momentum distribution clearly demonstrates that the band
structure of propagating modes f (qx, qy) exhibits 12 saddle
points and 12 Dirac points. Namely, near the band edges
the momentum distributions are peaked along circles around
the � point at the center of the hexagons, where the band
terminates, whereas close to the Van Hove singularities they
are localized along the isoenergy lines connecting respectively
six of the saddle points located at the centers between the
corners of the hexagons. In the vicinity of the Dirac points,
they are nonzero only at the corners of the hexagons, i.e., at
the 12 Dirac points.

We analyzed the spectral properties of the singlets and
doublets around the band edges (first row of Fig. 11) and the
Dirac point (third row of Fig. 11) obtained from 1600 and
780 eigenvalues for each symmetry class, respectively. Since
the DOS is symmetric with respect to the Dirac point, we
considered only the eigenvalues at the lower band edge and
above the Dirac point. Here, we excluded the edge states, that
is, the frequency range of the peak of the DOS around f = 0.
These are nonuniversal due to the localization properties of
the associated wave functions and thus lead to deviations from
RMT predictions [43,44]. For the unfolding, we proceeded
as in Ref. [72]; namely, we ordered the eigenvalues by size,
Ei � Ei+1, and shifted them such that E1 = 0, Ẽi = Ei − E1.
Then we replaced them by the smooth part of the integrated
spectral density, εi = N smooth(ki ) with ki denoting the effective
wave numbers, where ki =

√
Ẽi at the band edge and ki = Ẽi

at the Dirac point. The smooth part N smooth(ki ) was deter-
mined by fitting a second-order polynomial to N (ki ) around

FIG. 12. Upper four panels: Same as Figs. 3(a)–3(d), but for
the GB around the lower band edge. Lower four panels: Same as
Figs. 3(a)–3(d), but for the GB around the Dirac point.

the band edge [43] and a straight line to it around the Dirac
point.

Figure 12 shows the spectral properties for the singlets and
doublets around the band edges (upper four panels in Fig. 12)
and Dirac point (lower four panels in Fig. 12), and Fig. 13
exhibits the corresponding distributions of the ratios [85,86]
of the nonunfolded eigenvalues. Agreement with GOE statis-
tics for the singlets and with GUE statistics for the doublets is
very good. Furthermore, we show in Figs. 12–14 results for
the spectral properties obtained when taking into account all
eigenvalues. They are well described by those of the superim-
posed spectra of two GOEs and one GUE. Note that this good
agreement and also that for the symmetry-projected eigen-
states with RMT predictions were achieved after extraction
of contributions from nonuniversal orbits, such as the shortest
connected periodic orbits shown in Fig. 1, that manifest them-
selves as slow oscillations Nosc(ki ) in the fluctuating part of
N (ki ), Nfluc(ki ) = N (ki ) − N smooth(ki ). Their contributions are
removed by proceeding as in Refs. [72,79,93] and replacing
ki by εi = N smooth(ki ) + Nosc(ki ). The corresponding length
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FIG. 13. Upper four panels: Same as Figs. 3(e)–3(h), but for
the GB around the lower band edge. Lower four panels: Same as
Figs. 3(e)–3(h), but for the GB around the Dirac point.

FIG. 14. Ratio distributions P(r) and cumulative ratio distribu-
tions I (r) for the GB for all eigenstates (a) and (c) around the band
edge and (b) and (d) around the Dirac point (green histogram and
squares). They are compared with the results for block-diagonal
matrices comprising two matrices from the GOE and one from the
GUE (red histogram and circles), and with GUE (black dash-dotted
curves) and GOE (black solid curves) statistics.

FIG. 15. Top: Comparison of the length spectra of, from bottom
to top, the GB (black curve) around the band edge for l = 0 (red
curve), l = 1 (green curve), l = 2 (violet curve), and l = 3 (orange
curve). The cyan curve is obtained from the Fourier transform of the
slow oscillations in the fluctuating part of the DOS. Bottom: Same as
the top panel, but around the Dirac point.

spectra, deduced from the Fourier transform of ρosc(k) =
d/dkNosc(k), are shown as cyan-colored curves in Fig. 15
together with those computed from the eigenvalues of each
of the subspectra around the lower band edge (top panel in
Fig. 15) and around the Dirac point (bottom panel in Fig. 15).
In distinction to the length spectra of the NB and QB, those
of the GB and the symmetry-projected states exhibit peaks of
considerable height below l/r0 ≈ 2. They are also present in
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FIG. 16. Intensity distributions of the wave functions of the GB
with eigenstate numbers n = 84, 140, 346, 350 corresponding to ro-
tationally invariant eigenstates with l = 0, which are scarred around
a disconnected orbit bouncing back and forth between the cut lines
and the billiard boundary, and cross orbits.

the length spectra obtained by taking into account all eigenval-
ues, implying that they do not correspond to pseudo-orbits, but
to orbits bouncing back and forth between the cut lines and the
boundary, and thus are due to the lattice structure of the GB.
This is illustrated in Fig. 16, where we show in the first two ex-
amples wave functions that are localized around these orbits.
The patterns are more pronounced than in the corresponding
QB, thus corroborating the idea that deviations from GOE and
GUE behavior and from the results for the QB originate from
such additional orbits. From the good agreement of the spec-
tral properties with those of a QB with fourfold symmetry we
may conclude that the GB, which is constructed by coupling
four identical finite-size honeycomb lattices, corresponds to
one system and not four independent ones.

IV. A POSSIBLE EXPERIMENTAL REALIZATION

A possible experimental realization of GBs with fourfold
symmetry consists of superconducting microwave photonic
crystals. These were successfully used to emulate the spectral
properties of GBs with the shapes of a rectangle, an Africa
billiard [43,44,94], and a billiard with threefold symmetry
[45,72] and, generally, have been employed for more than
a decade to investigate universal features of finite-size and
extended artificial graphene structures [26,41,42,95,96]. The
construction of the DB with fourfold symmetry is similar to
that in Ref. [45], where experiments were performed with a
DB whose shape has a C3 symmetry. A sketch of the DB
is shown in Fig. 17. The design used in the COMSOL MUL-
TIPHYSICS simulations consists of a flat cavity made of a
perfect-electric-conductor material, which has a height 3 mm
and contains metallic cylinders arranged on a triangular grid.
Below the cutoff frequency for the first transverse-electric
mode, f cutoff = 50 GHz, the electric-field strength is perpen-
dicular to the top and bottom of the resonator and fulfills
Dirichlet BCs along the sidewall and at the walls of the
cylinders, implying that there the Helmholtz equation is math-
ematically identical to the Schrödinger equation of a QB
[73–75] with circular holes at the positions of the cylinders.
The honeycomb structure is formed by the voids encircled
by, respectively, three cylinders [41], marked by red and
cyan dots in Fig. 17. The resonator wall, shown in orange in
Fig. 17, passes through voids implying Dirichlet BCs at the
corresponding sites of the honeycomb structure. The eigenfre-
quencies and associated electric-field strengths were obtained
with COMSOL MULTIPHYSICS. We chose r0 defined in Eq. (4) as
r0 = 30aL/

√
3, the distance between the lines connecting the

sites along the edges of adjacent subdomains as 0.366aL/
√

3,

FIG. 17. Sketch of the design of the DB with fourfold symmetry
used in the simulations with COMSOL MULTIPHYSICS. It contains 960
metallic cylinders (gray disks) arranged on a triangular grid. The
number of sites located on a honeycomb lattice, marked by red and
cyan dots, equals 2208. They are positioned at the voids formed
by three metallic cylinders. The honeycomb lattice is terminated by
zigzag and armchair edges and corresponds to the sites in the GB.

and the radius of the cylinders as aL/6 with aL = 12 mm
denoting the lattice constant, yielding N = 9046 eigenmodes
with eigenfrequencies fm below 50 GHz.

Generally, for sufficiently large f cutoff , that is, for suffi-
ciently low height, the band structure of propagating modes
of such DBs exhibits two Dirac points, where the first and
second, respectively, the fourth and fifth bands touch each
other conically, and a nearly flat third band. It was shown
in Ref. [97] that it is well described by a TBM for a lat-

FIG. 18. Density of states of the DB. It exhibits Dirac points at
≈19 GHz and ≈35 GHz that are framed by peaks corresponding to
Van Hove singularities and a broadened flat band of high spectral
density at f � 29 GHz. Above the frequency of the upper Dirac point
the DOS is distorted by adjacent bands of partly high spectral density
[72].
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FIG. 19. Electric-field distribution in the DB corresponding to
eigenstates with the number n corresponding to the eigenfrequency
fn (see main text). Shown are, from left to right, the following: in the
first row, distributions for n = 9, 18, 19, 22 at the lower band edge;
in the second row, intensity distributions for n = 676, 678, 679, 677
around the lower Van Hove singularity, and in the third row, intensity
distributions for n = 999, 1000, 1001, 1002 around the lower Dirac
point. The columns from left to right correspond to l = 0, linear
combinations of l = 1 and l = 3, which yield real electric-field dis-
tributions, and l = 2. In the first row the color code changes from
dark blue for the minimum value to red at the maximal value of the
electric field. Otherwise the color code is the same as in Fig. 10.

tice consisting of a combination of a honeycomb and a
kagome sublattice [45,72,98–101], where the sites of the
kagome lattice are at the centers between adjacent cylinders
[97]. This was confirmed numerically and experimentally
in Refs. [45,102] for a DB with threefold symmetry. The
DOS of the DB, which is shown in Fig. 18 together with

FIG. 20. Similar to Fig. 19, but for the momentum distributions.
Here, we used the complex-valued eigenmodes corresponding to l =
1 and l = 3. The first Brillouin zone is composed of two hexagonal
ones that are rotated by π

6 with respect to each other.

FIG. 21. (a)–(h) Same as Fig. 3, but for the subspectra of the DB,
with each of them comprising 185 eigenfrequencies.

the smoothed DOS (black curve), obtained from Eq. (17)
with �L = 0.1, indeed has the same structure as that of a
honeycomb-kagome lattice. It exhibits Dirac points at f ≈
19 GHz and f ≈ 35 GHz that are framed by Van Hove sin-
gularities, and a broadened flat band of high spectral density
around f ≈ 29 GHz. The increased DOS in the vicinity of the
Dirac points originates from edge states localized at zigzag
edges along the cut lines and the outer boundary. Below the
flat band the properties of DBs are well captured by a TBM
for the GB of corresponding shape [43–45,95]. We consider
only that region in the following.

In Fig. 19 we show examples for intensity distributions of
the electric-field strength. The wave functions of the first and
fourth columns belong to the two singlet groups with l = 0
and l = 2, respectively. The second and third columns show
real-valued superpositions of the electric-field distributions
for l = 1 and l = 3. As in Fig. 10, in some cases the distribu-
tions seem to be discontinuous along the cut lines. We checked
that this is not the case. The structure of the electric-field
patterns is similar to that exhibited by the wave functions of
the GB. In Fig. 20 are plotted the corresponding momentum
distributions. Here, we used the complex-valued electric-field
modes corresponding to l = 1 (second column of Fig. 20) and
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FIG. 22. Ratio distributions P(r) and cumulative ratio distribu-
tions I (r) for the DB for all eigenstates (a) and (c) around the band
edge, comprising 560 eigenfrequencies, and (b) and (d) around the
Dirac point, containing 265 eigenfrequencies (green histogram and
squares). They are compared with the results for block-diagonal ma-
trices comprising two matrices from the GOE and one from the GUE
(red histogram and circles) and GUE (black dash-dotted curves)
statistics.

l = 3 (third column of Fig. 20). As for the GB (see Fig. 11),
they are peaked close to the lower band edge around the center
of the first Brillouin zone, near the lower Van Hove singularity
around the isoenergy lines connecting the saddle points and
near the frequencies of the Dirac points at the corners of the
hexagons.

Around the band edge we were able to separate the
spectrum which was obtained with COMSOL MULTIPHYSICS

into the subspectra of, respectively, 185 singlets and nearly
degenerate doublets based on electric-field intensity distribu-
tions and by checking the fluctuating part of the integrated
spectral density, which exhibits jumps when there are missing
or spurious eigenfrequencies [45]. Around the Dirac point,
in total 265 eigenfrequencies could be identified. For the
unfolding we proceeded as in Sec. III. In Fig. 21 we show
results for the spectral properties around the lower band edge
for the eigenfrequencies corresponding to l = 0, 1, 2, and in
Fig. 22 we show the ratio distributions for all eigenstates
irrespective of their symmetry classes around the lower band
edge [Figs. 22(a) and 22(c)] and the Dirac point [Figs. 22(b)
and 22(d)]. Deviations from the expected RMT results are
attributed to contributions of electric-field modes, which are
localized along short periodic orbits. Examples are shown in
Fig. 23. Hence the spectral properties and the electric-field

FIG. 23. Intensity distributions of the electric field in the DB cor-
responding to n = 148, 193 and l = 1 and n = 497, 518 and l = 0.

distributions of the DB exhibit similar features to the eigen-
values and wave functions of the GB.

V. CONCLUSION

We realize a GB whose boundary has a fourfold rotational
symmetry. This is done by constructing a honeycomb-lattice
sheet which has the shape of one-quarter of the GB and
rotating it four times about the right-angled corner. The GB
has defect lines along the common boundaries of two ad-
jacent subdomains, which are terminated there by a zigzag
edge and an armchair edge, respectively. The dynamics of
the corresponding CB is chaotic. The eigenstates are com-
puted separately for each symmetry class. For this the TBM
Hamiltonian is brought to the form given in Eq. (16). We
demonstrate that the spectral properties comply in the regions
around the band edges and Dirac point with those of the
QB of corresponding shape, i.e., with the RMT predictions
for quantum systems with fourfold symmetry and a chaotic
classical counterpart. Here, we excluded eigenstates, whose
eigenfunctions are localized at zigzag edges along the bound-
ary and the cut lines, that lead to the peak of exceptionally
high DOS around the Dirac points in Figs. 9 and 18 and are
nonuniversal. More precisely, in the region around the Dirac
point, no agreement is found with those of the relativistic
NB of corresponding shape, even though there the excitation
energies of graphene are effectively described by the same
Dirac equation (2). This is attributed to the backscattering
at the billiard boundary, which leads to a mixing of valley
states. This is corroborated by the momentum distributions of
the symmetry-projected eigenstates which are peaked at all
corners of the first Brillouin zone in that energy range. Actu-
ally, the momentum distributions reveal that the first Brillouin
zone is formed by two hexagonal ones that are rotated by 30◦
with respect to each other. We propose an experimental setup
consisting of a DB and perform COMSOL MULTIPHYSICS com-
putations. These confirm that the DB provides an appropriate
system to investigate experimentally the properties of the
eigenvalues and wave functions of the GB of corresponding
shape. Generally, a GB whose shape has a discrete rotational
symmetry can be constructed by cutting a graphene sheet to
its shape, if it complies with that of the hexagonal lattice. We
demonstrate, using a GB with fourfold rotational symmetry,
that, if this is not the case, the GB can be constructed by
gluing together sheets with the shape of a subdomain and
that the properties of their eigenstates agree with those of
quantum systems with the same symmetry properties, despite
the unavoidable defect lines. The same procedure can be used
for GBs whose shape has an M-fold symmetry with M > 4;
however, with increasing number of defect lines, deviations
from RMT predictions will become noticeable.
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APPENDIX A: THE BOUNDARY-INTEGRAL EQUATIONS
FOR QBs AND NBs

The eigenvalues of the QB and NB were obtained from
the corresponding boundary-integral equations (BIEs). For the
QB the BIE is given by [88]

u(ϕ′) =
∫ 2π

0
dϕ|w′(ϕ)|QQB(k; ϕ, ϕ′)u(ϕ) (A1)

= Q̂QB(k)u(ϕ′), (A2)

with

QQB(k; ϕ, ϕ′) = i
k

2
cos[α(ϕ′) − ξ (ϕ, ϕ′)]H (1)

1 (kρ), (A3)

where H (1)
m (kρ) = Jm(kρ) + iYm(kρ) is the Hankel function

of the first kind of order m, u(s) = ∂nψ (s) denotes the normal
derivative of the wave function ψ (s), s refers to the arclength
parameter,

s(ϕ) =
∫ ϕ

0
|w′(ϕ̃)|dϕ̃, s ∈ [0,L), ds = |w′(ϕ)|dϕ

(A4)
with w′(ϕ) = dw(ϕ)

dϕ
and L being the perimeter, and

eiξ (ϕ,ϕ′ ) = w(ϕ) − w(ϕ′)
|w(ϕ) − w(ϕ′)| , ρ(ϕ, ϕ′) = |w(ϕ) − w(ϕ′)|.

(A5)

The BIEs for the two wave-function components of a NB
can be written in the form

ψ†[r(ϕ′)]

=
∮

∂�

dϕ|w′(ϕ)|ei ��(ϕ,ϕ′ )
2 Q̂NB[k; r(ϕ′), r(ϕ)]ψ†[r(ϕ)]

= Q̂
NB

(k)ψ†[r(ϕ)], (A6)

where we introduced the notations ��(ϕ, ϕ′) = α(ϕ′ )−α(ϕ)
2

and Q̂
NB
i j (k) = Q̂

NB
j (k)δi j . The integral operator Q̂

NB
j (k) is ap-

plied to ψ∗
j (ϕ) to obtain ψ∗

j (ϕ′). For the first component the
BIE is given by

ψ∗
1 (ϕ′) =

∫ 2π

0
dϕ|w′(ϕ)|ei ��(ϕ,ϕ′ )

2 QNB
1 (k; ϕ, ϕ′)ψ∗

1 (ϕ), (A7)

QNB
1 (k; ϕ, ϕ′)

= i
k

2

{
i sin

(
��(ϕ, ϕ′)

2

)
H (1)

0 (kρ)

+ cos

(
α(ϕ′) + α(ϕ)

2
− ξ (ϕ, ϕ′)

)
H (1)

1 (kρ)

}
. (A8)

The corresponding equations for ψ∗
2 (ϕ′) and QNB

2 (k; ϕ, ϕ′)
are obtained with Eq. (3) by multiplying the integrand with
e−i��(ϕ,ϕ′ ).

To compute the symmetry-projected eigenstates, the BIE is
separated into individual BIEs for each symmetry class. This
is done for a billiard with M-fold symmetry by employing the
periodicity properties

w

(
ϕ + λ

2π

M

)
= eiλ 2π

M w(ϕ), (A9)

w′
(

ϕ + λ
2π

M

)
= eiλ 2π

M w′(ϕ), (A10)

eiα(ϕ+λ 2π
M ) = eiλ 2π

M eiα(ϕ), (A11)

with λ = 0, 1, 2, . . . , M − 1 to restrict the integration range of
ϕ and ϕ′ to one fundamental domain, ϕ, ϕ′ ∈ [0, 2π

M ), yielding
the BIEs

u(l )(ϕ′) =
∫ 2π

M

0
dϕQ̃(l )(k; ϕ, ϕ′)u(l )(ϕ) (A12)

with l = 0, 1, , 2, . . . , M − 1 and u(l )(ϕ) = ∂nψ
(l )(ϕ) for the

QB and u(l )(ϕ) = ψ (l )∗(ϕ) for the NB.

Q̃(l )(k; ϕ, ϕ′) =
M−1∑
λ=0

ei 2lπ
M λM̃λ(k; ϕ, ϕ′), (A13)

where

M̃λ(k; ϕ, ϕ′) = Q̃

(
k; ϕ + λ

2π

M
, ϕ′

)
. (A14)

Here, Q̃ stands for QQB, QNB
1 , or QNB

2 .

APPENDIX B: TRACE FORMULA FOR
FOURFOLD-SYMMETRIC QBs AND NBs

The derivation of the trace formula of a typical fourfold-
symmetric QB with a chaotic classical dynamics and of the
corresponding NB starts from the BIEs [77,103,104] given in
Eqs. (A1)–(A3), (A6)–(A8), and (A12). These equations have
nontrivial solutions at the zeros of the spectral determinant

det(1 − Q̂(l )(k)) = 0. (B1)

Here, Q̂ stands for Q̂QB defined in Eq. (A1) or Q̂
NB

given in
Eq. (A6). The spectral density is obtained from [103,105]

ρ(k) = ρsmooth(k) − 1

π
Im

d

dk
ln det[1 − Q̂

(l )
(k)]

= ρsmooth(k) + 1

π
Im

∞∑
p=1

1

p

d

dk
[Tr(Q̂

(l )
)p(k)], (B2)

with

Tr(Q̂
(l )

)p(k) =
∮

∂�̄

ds1

∮
∂�̄

ds2 · · ·
∮

∂�̄

dspPp, (B3)

where we introduced the abbreviations sr = s(ϕr ) with sp+1 =
s1, and ∂�̄ denotes the boundary of one subdomain, i.e., of the
symmetry-reduced configurational space of the billiard. For
the QB, Pp is obtained from Eq. (A3),

Pp =
p∏

r=1

QQB(l )[k; r(ϕr ), r(ϕr+1)], (B4)

and for the massless NB from Eq. (A8),

Pp = 2 cos

(
p∑

r=1

��(ϕr+1, ϕr )

2

)

×
p∏

r=1

QNB(l )
1 [k; r(ϕr ), r(ϕr+1)]. (B5)
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To obtain the symmetry-projected trace formulas, we replace Q̂
(l ) = QQB(l ), QNB(l )

1 by the sums in Eq. (A13),
p∏

r=1

Q(l )[k; r(ϕr ), r(ϕr+1)] =
p∏

r=1

{
3∑

λ=0

eil π
2 λMλ(k; ϕr, ϕr+1)

}
=

3∑
λ=0

eil π
2 λMp(l )

λ (k; {ϕi}), (B6)

with

Mp(l )
λ (k; {ϕi}) =

p∑
N0=1

p∑
N1=1

p∑
N2=1

p∑
N3=1

δ̃(N0 + N1 + N2 + N3 − p)δ̃
({

[N1 + 2N2 + 3N3]
π

2

}
modulo(2π ) − λ

)

×
∑
{πr}

N0∏
r=1

M0(k; ϕπr , ϕπr+1 )
N0+N1∏

r=N0+1

M1(k; ϕπr , ϕπr+1 )
N0+N1+N2∏

r=N0+N1+1

M2(k; ϕπr , ϕπr+1 )
p∏

r=N0+N1+N2+1

M3(k; ϕπr , ϕπr+1 ).

(B7)

Here, the sum over {πr} = {π1, π2, . . . , πp} is over all permutations π of {1, 2, . . . , p}.
The integrals in Eq. (B3) can be solved in the semiclassical limit h̄ → 0 or k → ∞ with h̄k fixed. For this we replace the

Hankel functions in Eqs. (A3) and (A8) and the corresponding one for ψ∗
2 (ϕ′) by their asymptotic values for k → ∞ [106] and

extract them from Mp(l )
λ (k; {ϕi}),

H0(kρr+1,r ) �
√

2

πρr+1,r
eikρr+1,r− i

4 π , (B8)

H1(kρr+1,r ) � 1

i
H0(kρr+1,r ), (B9)

with ρr+1,r = ρ(ϕr+1, ϕr ). Inserting these asymptotic approximations of the Hankel functions into Eq. (B7), in the semiclassical
limit each of the summands of Mp(l )

λ (k; {ϕi}) in Eq. (B7) can be split into a factor M̄p(l )
λ ({ϕi}), which does not depend on k and

h̄, and an integral over the product of the semiclassical approximations for H0(kρr+1,r ) [77,104],

Tr(Q̂
(l )

)p(k) �
2∑

λ=0

eil π
2 λ

p∑
N0=1

p∑
N1=1

p∑
N2=1

p∑
N3=1

δ̃(N0 + N1 + N2 + N3 − p)

× δ̃
({

[N1 + 2N2 + 3N3]
π

2

}
modulo(2π ) − λ

)∑
{πr}

(
i

4
k

)p

M̄N0,N1,N2,N3
λ

({ϕπr })

×
∑
{πr}

∮
∂�̄

ds1 · · ·
∮

∂�̄

dsp

p∏
r=1

[√
2

πρr+1,r
eikρr+1,r− i

4 π

]
. (B10)

The p integrals are performed by applying the stationary
phase approximation [103]. In the semiclassical limit the non-

vanishing contributions to Tr(Q̂
(l )

)p(k) are periodic orbits of
order p complying with the symmetry class l . They are the
same as in the usual Gutzwiller trace formula for periodic
orbits in the fundamental domain, and we can use the results
of Refs. [81,82,103] to obtain, for the symmetry-projected
trace, the formula

ρ (l )fluc(k) = 1

π
Re

∑
γ l

p

3∑
λ=0

eil π
2 λAγ l

p
e

i�
γ l

p (B11)

for the QB [81,82] and

ρ (l )fluc(k) = 1

π
Re

∑
γ l

p

(−1)p cos
(
�γ l

p

)
cos

(
p
π

2

)

×
3∑

λ=0

eil π
2 λAγ l

p
e

i�
γ l

p (B12)

for the NB.

The sum over γ l
p stands for the sums over N0, N1, N2, and

N3 yielding periodic orbits with p reflections at the boundary
and is over all orbits which are p periodic in the fundamental
domain corresponding to the irreducible representation l . Fur-
thermore, Aγ l

p
and �γ l

p
denote amplitudes and phases as in the

usual Gutzwiller trace formula with

Aγ l
p
= l (l,p)

PO

r (l,p)
PO

√∣∣TrM (l,p)
PO − 2

∣∣ ,

�γ l
p
= kl (l,p)

PO − π

2
μ

(l,p)
PO , (B13)

with l (l,p)
PO , μ

(l,p)
PO , and M (l,p)

PO being the length, Maslov index,
and monodromy matrix of the periodic orbit and r (l,p)

PO being
the number of repetitions of the primitive periodic orbit in the
respective fundamental domain. Note that these orbits are not
necessarily periodic after unfolding them to the full system.
For the NB, periodic orbits with an odd p cancel out. Thus,
as in the full massless NB, only periodic orbits with an even
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number of reflections [21,107] contribute to the trace formula.
This feature originates from the chirality property and the

additional spin degree of freedom, i.e., the vectorial character
of the Dirac equation [21,90,108].
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