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Generation of high-dimensional qudit quantum states via two-dimensional quantum walks
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Several quantum protocols, with applications ranging from fundamental studies to cryptographic scenarios,
can be enhanced through the generation and manipulation of quantum states that belong to high-dimensional
Hilbert spaces. For this reason, it is worth devoting efforts to find more efficient methods for complex qudit-
state generation. One-dimensional quantum walks have proved to be efficient and versatile platforms for the
engineering of such complex states. Hitherto, however, using their two-dimensional counterpart for this task
has remained unexplored. In this paper, we consider two-dimensional quantum walk evolution as a tool for
the generation of high-dimensional qudit states. We theoretically prove that a suitable change of the coin
operators at each step permits the generation of a subset of qudit states by using less resources with respect
to the one-dimensional counterpart. Then, we successfully generate qudit states by exploiting two-dimensional
quantum walks on an experimental photonic platform. The walker position is encoded on discrete sets of optical
modes carrying quantized amounts of transverse momentum and the mode couplings are actively controlled via
liquid-crystal devices. The obtained results provide insight into qudit generation for applications in quantum
communication and quantum cryptography.
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I. INTRODUCTION

High-dimensional quantum systems, described by qudit
states, are implemented on several quantum information pro-
tocols for quantum computation [1–3] and quantum sensing
[4]. In comparison with the qubit case, qudit-state imple-
mentations lead to higher security and transmission rates
in quantum communication [5–7] and quantum cryptogra-
phy [8–10] as well as the extension of fundamental studies
due to their naturally richer entanglement structure [11–13].
Qudits have been experimentally realized with different plat-
forms such as superconductive cavities [3,14,15], ion systems
[16–18], and photonic setups [13,19–21]. Photons represent
suitable information carriers to encode and manipulate qudits
by exploiting several degrees of freedom such as polarization
[22,23], paths [24], orbital angular momentum [20,21], tem-
poral modes, and frequency [25–27].

Quantum walks (QWs) [28] have been introduced to model
either the discrete time or continuous time dynamics of a
“walker,” that is, a quantum particle, on a discrete lattice.
Within this paper, we will exclusively refer to the discrete
time case. The movements of the walker at each time step
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depend on the state of its internal degree of freedom, i.e.,
the “coin.” This simple model finds several applications in
quantum information and computation fields, such as quantum
search algorithms [29], quantum gates for universal quan-
tum computation [30–33], and quantum simulations [34–41].
Moreover, QW dynamics enable the generation of complex
qudit states [20,24,42–49]. The output of a QW evolution can
be described as a hybrid-entangled state between walker posi-
tion and coin degrees of freedom [24,43–45,47–49]. This kind
of entanglement involves different degrees of freedom of the
same particle, i.e., it is an intrasystem entanglement [50–53],
representing a resource for quantum information and quan-
tum communication processing [54–56]. One-dimensional
quantum walks (1DQWs) allow manipulating simultaneously
several characteristics of qudit quantum systems [20,46–49].
Two-dimensional quantum walks (2DQWs) have been only
recently exploited for improved performances in different
quantum applications [57–59]. However, their capabilities of
efficiently generating quantum states are currently a less ex-
plored direction.

The 1DQW is a universal tool for qudit generation, i.e.,
it enables the generation of a generic qudit state [20,60].
The aim of the present paper is to investigate the genera-
tion of single-particle qudit quantum states by exploiting a
2DQW evolution. From a theoretical perspective, we inves-
tigate the constraints involved in the generation of qudit states
from a 2DQW with a step-dependent coin. We show that
the quadratic increase of the output-state dimensionality with
the step number in the 2DQW implies that universal state
generation cannot be achieved, regardless of the experimental
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implementation. On the other hand, when targeting the gener-
ation of qudit states with a fixed dimension d , we show that
2DQWs can be devised so as to require less resources with
respect to the 1D counterpart.

For qudit state generation via QWs, we exploit a photonic
2DQW based on g plates [41], i.e., tunable liquid-crystal
devices able to add or subtract a fixed amount of transverse
momentum to photons, depending on their polarization state
being left or right circular, respectively. These devices have
recently been exploited for the simulation of quantum topol-
ogy [41,61], multiparticle QW evolutions [62], and Bloch
oscillation effects [63], and have been recently generalized to
more sophisticated devices enabling the simulation of ultra-
long QWs [64]. In the next sections, we address the theoretical
background of the 2D split-step quantum walk (2DssQW) we
use in our experimental demonstration. Then, we focus on
the amplitude probability constraints of an output state when
evolving within 2DQWs. From the experimental side, we
generate a set of states in both classical and quantum regimes,
showing the capability of reaching high-fidelity values with
respect to target states.

II. THEORETICAL BACKGROUND

Here, we discuss the generation of qudit states via
2DssQWs. By considering a square lattice, a walker is de-
scribed by a state |ψ〉 ∈ H = Hx ⊗ Hy ⊗ Hc. If the coin is
a two-level internal degree of freedom, the walker state is
generally given by

|ψ〉 =
∞∑

i, j=−∞
ci, j,↑|i, j,↑〉 + ci, j,↓|i, j,↓〉, (1)

where the indices (i, j) label the position on the lattice, and
|i, j〉 are the basis vectors of the Hilbert space Hx,y = Hx ⊗
Hy. The internal space Hc is spanned by the basis states
{|↑〉, |↓〉}.

Starting from an initial state |ψ0〉, the state of the system
evolves under the action of a unitary operator Ũ at each step.
In 1DQWs the operator Ũ can be realized as the product of a
coin rotation C and a coin-dependent translation T̃ :

Ũ = T̃C(θ, ξ , ζ ) (2)

with

T̃ =
+∞∑

i=−∞
|i − 1,↑〉〈i,↓| + |i + 1,↓〉〈i,↑|. (3)

The coin operator is defined in terms of three phase parame-
ters θ, ξ , and ζ as

C(θ, ξ , ζ ) = Ix,y ⊗
(

eiξ cos θ eiζ sin θ

−e−iζ sin θ eiξ cos θ

)
. (4)

In order to simplify the treatment, we can now exploit the
fact that, when starting from a single site and depending on
the number of steps, the operator T̃ will populate only odd or
even displaced sites. In particular, the leftmost populated site
on the lattice is obtained by translating by −1 at each step.
Assuming, without loss of generality, that the initial localized
walker state is located in i = 0, these two features allow one

to remap the process in the following equivalent way:

T =
+∞∑
i=0

|i,↑〉〈i,↓| + |i + 1,↓〉〈i,↑|, (5)

in which the negative displacements are replaced by a sta-
tionary step, so as to keep fixed the leftmost populated lattice
site and to compress by a factor 2 the spatial evolution dynam-
ics at all times. Notice that this is a one-to-one mapping, hence
all the considerations that can be made for the quantum walk
with single step operators U = TC(θ, ξ , ζ ) can be extended
to Ũ and vice versa. In the 2DssQW the evolution at each step
is divided in two split-step evolutions which correspond to
the independent action of operators Ux = TxCx and Uy = TyCy

along the x and y direction on the lattice, respectively. Tx and
Ty have the same form of operator T in Eq. (5) acting on
Hx ⊗ Hc and Hy ⊗ Hc, respectively. The operators Cx and Cy

are given by Cx = C(θx, ξx, ζx ) and Cy = C(θy, ξy, ζy), where
the generic coin operator C is defined in Eq. (4). The com-
posed actions of these operators correspond to a single-step
evolution operator U = UyUx. The actions of the split-step
operators are given by

|ϕn〉 = Ux(U n−1|ψ0〉), |ψn〉 = U n|ψ0〉, (6)

where n is the index of the step, and |ϕn〉 and |ψn〉 are the states
obtained by evolving the initial state |ψ0〉 under the action of
odd and even split-step operators, respectively. They can be
written as

|ϕn〉 = ∑
i, j l (n)

i, j,↑|i, j,↑〉 + l (n)
i, j,↓|i, j,↓〉, (7)

|ψn〉 = ∑
i, j u(n)

i, j,↑|i, j,↑〉 + u(n)
i, j,↓|i, j,↓〉, (8)

where l (n)
i, j,σ and u(n)

i, j,σ are defined as the amplitude coefficients
of the state after odd or even split-step evolution. At each step,
the single-step operator depends on all the coin parameters
that continuously change through the entire evolution. For this
reason, the evolution of the initial state at the N th step is given
by

|ψN (w)〉 =
N∏

i=1

(TyCy,iTxCx,i )|ψ0〉, (9)

where the operators Cx,i = C(θx,i, ξx,i, ζx,i ) and Cy,i =
C(θy,i, ξy,i, ζy,i ) are arbitrary coin operators at each step.
Hence, the entire evolution is characterized by the set of coin
parameters given by w = {θy,i, ξy,i, ζy,i, θx,i, ξx,i, ζx,i}N

i=1. An
alternative way to describe the final state of the 2DssQW is
given by the vectors 	l (n)

i, j and 	u (n)
i, j for odd and even split-step

evolutions. These vectors regroup the complex amplitudes of
the modes at the N th step that are generated by the same mode
(i, j) at the previous split-step evolution. These vectors are
defined respectively as [60]

	l (n)
i, j =

⎛
⎝ l (n)

i, j,↑

l (n)
i+1, j,↓

⎞
⎠ = Cx,n

⎛
⎝u(n−1)

i, j,↑

u(n−1)
i, j,↓

⎞
⎠, (10)

	u (n)
i, j =

⎛
⎝ u(n)

i, j,↑

u(n)
i, j+1,↓

⎞
⎠ = Cy,n

⎛
⎝l (n)

i, j,↑

l (n)
i, j,↓

⎞
⎠. (11)
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FIG. 1. Definition of the vectors 	l (n)
i, j and 	u (n)

i, j for the initial
three split-step evolution. In order to highlight the components of the
vectors 	l (n)

i, j and 	u (n)
i, j for each split step, we show the initial three

split-step evolution on different planes. The up and down arrows
represent the coin state of each site. The dashed circles regroup the
components of the vectors 	l (n)

i, j for odd split steps and 	u (n)
i, j for even

split steps. The different colors refer to different vectors. Finally,
the arrows that connect the sites belonging to different planes show
which site at the previous step originates the components of the
vectors 	l (n)

i, j and 	u (n)
i, j .

We stress here that these vectors do not represent the polariza-
tion states of the site (i, j). Indeed, they are not normalized.
In this sense, Eqs. (10) and (11) have to be read as numerical
relations between complex numbers. The validity of these nu-
merical relations is guaranteed by the action of the translation
operators. Indeed, starting from the site i, the action of the
translation operator consists in shifting and flipping the |↑〉
component to site i + 1 without changing the phase-amplitude
relation between orthogonal coin states. Figure 1 depicts the
relation between the coefficients of the QW state at each site
and the vectors defined in Eqs. (10) and (11).

In the following section, we find specific constraints for a
generic state |ψN 〉 produced by QW evolutions.

III. THEORETICAL RESULTS

In this section, we illustrate a procedure for the generation
of qudit states |φ〉 through a 2DssQW evolution of a seed state
|ψ0〉 and a projection on a generic coin |p〉. This procedure
for qudit generation is sketched in Fig. 2. As a first step, we
provide constraints for the output states |ψN 〉 of a 2DssQW
that belong to the Hilbert space H = Hx ⊗ Hy ⊗ Hc. By pro-
jecting these states on an arbitrarily chosen coin, we obtain
the set of states, denoted as |φ〉, that live in the Hilbert space
Hxy = Hx ⊗ Hy. In 1DQWs, this procedure has been demon-
strated to be a universal tool for qudit generation [20,60]. Here
we theoretically prove that the states that can be generated
with this approach by using 2DssQW evolution do not span
the whole Hilbert space Hxy. Moreover, we show that the

FIG. 2. Conceptual scheme of a quantum state generation via an
N th-step quantum walk evolution. The seed state |ψ0〉 ∈ H evolves
within a 2DQW with arbitrary coin operators denoted as Ci,x and Ci,y,
where i is the step index. The operators Tx and Ty denote the trans-
lation operators along x and y directions, respectively. By changing
the coin parameters at each step and by projecting on the polarization
state |p〉, we can obtain the output states |φ〉 ∈ Hxy.

generation of qudits by using this procedure is not univer-
sal for all 2DQW evolutions. On the other hand, it enables
generating high-dimensional qudits using significantly less
resources with respect to the 1D implementation. In the fol-
lowing, we show and discuss in detail these results.

A. Constraints on the output states

Starting from an initially localized state in the position
(0,0) of the lattice, with a generic coin state as seed state

|ψ0〉 = u(0)
0,0,↑|0, 0,↑〉 + u(0)

0,0,↓|0, 0,↓〉, (12)

we derive the constraints on the amplitudes for each odd and
even split step. The constraints on the amplitudes of the output
state of the 2DQW at the N th step derive from the unitarity
of the single-step operator U . In particular, the translation
operator along the x or y direction always splits a localized
state in two orthogonally polarized states, positioned in the
two adjacent sites, as shown in Fig. 1. For instance, the local-
ized state |ψ0〉 in the site (0,0) evolves in a superposition of
|0, 0,↓〉 and |1, 0,↑〉, by applying the translation operator Tx.
By considering |0, 0,↓〉 and |1, 0,↑〉 as a localized initial state
of the 2DQW, the corresponding evolved states UyCx|0, 0,↓〉
and UyCx|1, 0,↑〉 will be orthogonal, because of the unitarity
of Uy and Cx. It then leads to the constraints on the amplitudes
of the evolved state |ψ1〉 = U |ψ0〉, reported below. The com-
plete and detailed demonstration of the constraints for each
odd and even split step is reported in Appendix A.

The general constraint rules for an odd and even split step
of a 2DssQW are given in the following. Even split steps N =
2M correspond to real 2DQW steps with constraints given by

u(N )
i,0,↓ = u(N )

i,N,↑ = 0, (13)

N−h∑
i=0

N−k−1∑
j=0

	u(N )†
i, j · 	u(N )

i+h, j+k = 0

{
h = 1, . . . , N

k = 0, . . . , N − 1
, (14)

N−h∑
i=0

N−k−1∑
j=0

	u(N )†
i, j+k · 	u(N )

i+h, j = 0

{
h = 0, . . . , N

k = 1, . . . , N − 1
. (15)
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The conditions for the odd split steps N = 2M + 1 are
given by

l (N )
0,i,↓ = l (N )

N,i,↑ = 0, (16)

N−h∑
i=0

N−k∑
j=0

	l (N+1)†
i, j · 	l (N+1)

i+h, j+k = 0

{
h = 1, . . . , N

k = 0, . . . , N
, (17)

N−h∑
i=0

N−k∑
j=0

	l (N+1)†
i, j+k · 	l (N+1)

i+h, j = 0

{
h = 0, . . . , N

k = 1, . . . , N
. (18)

In Appendix A, we also show a graphical approach to obtain
these conditions at the 2M and 2M + 1 split steps. It is worth
noticing that the number of conditions grows quadratically
with the number of steps. As we explain in the following, the
number of independent parameters increases linearly with the
number of steps. For this reason, it is not possible to realize
an arbitrary state in the 2D walker space. This constraint
provides a condition on the states that can be generated using
a 2DssQW platform.

B. Projection on the coin state

The output state |ψN 〉 of the 2DssQW evolution at the N th
step can be written as

|ψN 〉 =
N∑

i=0

u(N )
i,0,↑|i, 0,↑〉 + u(N )

i,N,↓|i, N,↓〉

+
N∑

i=0

N−1∑
j=1

u(N )
i, j,↑|i, j,↑〉 + u(N )

i, j,↓|i, j,↓〉, (19)

where the coefficients u(N )
i, j,↑ fulfill the constraints in Eqs. (14)

and (15). In Appendix B, we report the set of coin operators
necessary to generate such states |ψN 〉. If we project the output
on a generic coin, we obtain a state |φ〉, that lives in the Hilbert
space Hxy = Hx ⊗ Hy and that can be written as

|φ〉 =
N∑

i=0

N∑
j=0

ui, j |i, j〉. (20)

This state can also be seen as the projection of the state |ψN 〉
on the coin state |p〉 given by

|p〉 = cos
θ

2
|↑〉 + sin

θ

2
eiϕ |↓〉. (21)

In this term we can write the state |φ〉 as

|φ〉 =
N∑

i=0

(
cos

θ

2
u(N )

i,0,↑|i, 0〉 + sin
θ

2
e−iϕu(N )

i,N,↓|i, N〉
)

+
N∑

i=0

N−1∑
j=1

(
cos

θ

2
u(N )

i, j,↑ + sin
θ

2
e−iϕu(N )

i, j,↓)|i, j〉
)

. (22)

By comparing Eq. (20) with Eq. (22) we obtain the following
equations:

ui,0 = cos
θ

2
u(N )

i,0,↑, ui,N = sin
θ

2
e−iϕu(N )

i,N,↓,

ui, j = cos
θ

2
u(N )

i, j,↑ + sin
θ

2
e−iϕu(N )

i, j,↓ with j 
= 0, N. (23)

Hence, the state ui, j can be generated if there exist u(N )
i, j

(complex variables) and θ, ϕ (real variables) that simulta-
neously fulfill the constraints of Eqs. (13)–(15) and (23).
It is straightforward to demonstrate that the number of in-
dependent variables is lower than the number of constraint
equations at each step. Hence, we can only realize a 2D state
that belongs to a subset of the complete Hilbert space Hxy. The
nonuniversality of the 2DQW generation is addressed in detail
in the following section.

C. Nonuniversality of 2DQWs

In this section, we address the capability of 2DQWs of gen-
erating quantum states in the Hilbert space Hxy = Hx ⊗ Hy.
In particular, we will prove that there is a natural limit related
to the universality of the states that can be constructed through
2DQW evolutions by using an intuitive argument. In a 1DQW,
the independent parameters of the coin and the state increase
linearly. This condition is necessary for a universal generation
of qudit states in a 1DQW, as theoretically and experimentally
proved in Refs. [20,60].

The single-step operator U of a 2DssQW is composed
by two arbitrary coin operators, i.e., SU(2) unitary matrices,
which have three independent real-valued parameters. Then
we can freely choose a coin |p〉 to project the QW output state,
which adds two independent real-valued parameters. Hence,
at the N th step, we can control 6N + 2 real-valued parameters,
while the generated state belongs to a Hilbert space of dimen-
sion (N + 1)2. For this reason, the independent real-valued
parameters are 2(N + 1)2 − 2, where the two constraints are
the normalization and the arbitrariness of the global phase of
the state. Hence, the independent parameters related to the
coin operators and projection are not enough to completely
determine all the coefficients of the output state.

The same argument can be exploited for a 2DQW with
coins of arbitrary dimensions and with translation invariant
symmetry, i.e., that do not admit the presence of space-
dependent operations. Indeed, the number of coin operators
always increases linearly with the number of steps, while the
dimension of the output states increases quadratically. The
argument reported here is valid regardless of the experimen-
tal platform for the 2DQW implementation. For this reason,
2DQWs are not universal for qudit state generation.

On the other hand, the quadratic increase in the dimen-
sion of the Hilbert space for the output states allows one to
realize a state involving a fixed number of modes by using
less resources with respect to the 1D counterpart. In fact, the
generation of a state with (N + 1)2 modes through 1DQW
evolutions requires at least (N + 1)2 − 1 steps. In a 2DQW
evolution, a state with (N + 1)2 modes can be realized by
only implementing N steps. Experimentally, a lower number
of steps corresponds to requiring less devices to perform the
complete evolution, thus leading to reduced losses for the
generation of the same state. Finally, the 2D platform may be
employed to generate intraparticle entanglement between two
orthogonal walker components, as described by Eq. (20) [21].

In the following, we provide a numerical characterization
for the set of states that can be generated by exploiting one,
two, and three steps of 2DssQW evolutions. For this purpose,
we calculate the state at the output of the two-dimensional
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FIG. 3. Histograms of fidelity values for qudit states generated by one, two, and three steps of 2DssQW evolutions. We calculate the fidelity
between 1000 randomly chosen qudit states with dimensions (a) d = 4, (b) d = 9, and (c) d = 16 and the states generated through 2DssQW
evolution that represents the best approximation of the randomly chosen states. The fidelity values are collected. In order to verify which class
of states can be better generated by 2DssQW evolution, we impose different conditions (insets) on the chosen qudit states.

quantum walk for one, two, and three steps. Then, we ran-
domly generate qudit states with dimensions d = 4, 9, and 16
for the first, second, and third step, respectively. We evalu-
ate the fidelity F = |〈φout|φran〉|2 between the output and the
randomly generated states as a function of the parameters of
the quantum walk evolution and we minimize with respect to
these parameters the cost function G = 1 − F . As a result
of each minimization, we obtain a qudit state |φopt〉 which
maximizes the fidelity value with the randomly chosen qubit
and it is achievable via a 2DssQW evolution. In order to
quantify the goodness of the approximation, we calculate the
fidelity Fopt = |〈φopt|φran〉|2 between each randomly chosen
qudit state and the correspondent qudit state obtained as a
result of the minimization.

In Fig. 3, we report different histograms of Fopt by im-
posing different conditions on randomly chosen qudit with
dimension d = 4, 9, and 16, respectively. In particular, we
randomly extract qudits and we act on them so that they satisfy
all constraints. We notice that the mean fidelity increases, by
reducing the number of qudit-state independent parameters.
For instance, for one-step evolutions, by considering the con-
dition u∗

0,0u1,0 + u∗
0,1u0,0 = 0 on the randomly chosen states

the fidelity values are all equal to 1. This means that all states
satisfying this constraint can be generated via this method.
For d = 4, 9, and 16, we find classes of states that can be
generated with a mean fidelity over 0.9. A more detailed
analysis is presented in Appendix C.

Finally, in order to show the potentiality of the protocol
in cryptographic scenarios, we provide a general proce-
dure to generate two mutually unbiased bases (MUBs) in a
2n-dimensional Hilbert space with a 2DssQW evolution in
Appendix D.

IV. EXPERIMENTAL RESULTS

We experimentally realize 2D qudit states by performing
single-particle 2DssQWs in the transverse momentum space
of a single photon and by projecting the evolved state onto an
arbitrary polarization at the end of the evolution. The QW is
implemented by using polarization gratings, called g plates
[41,61,63]. A g plate adds or subtracts a fixed amount of
transverse momentum along a given direction depending on

the polarization of the photon. The action of a g plate on a
transverse momentum component ki can be described as

|ki, R/L〉 = |ki ± k, L/R〉 (24)

where the |R〉 and |L〉 are, respectively, the circular right-
handed and left-handed polarization, while the direction i and
the fixed amount k depend on fabrication settings of the plate.
The g plates implement the translation operator T̃ , defined by
Eq. (3), along the directions x and y in transverse momentum
space. The coin operators are implemented by using tunable
waveplates, i.e., waveplates with tunable optical retardation
controlled by an external electric field. The QW evolution
is controlled by changing the optical retardation parameters
of the tunable waveplates at each step. The scheme of the
experimental platform is shown in Fig. 4. Single photons
were generated by spontaneous parametric down-conversion
process, composed of a nonlinear beta barium borate crystal
pumped by a pulsed laser with λ = 392.5 nm. For each pair
of generated photons (λ = 785 nm), one of them is sent to
the QW platform, while the other one is used as a trigger
to measure twofold events. After the evolution, a waveplate
and a polarizing beamsplitter are used to project the photon
state onto an arbitrary polarization. The measurement with
coherent light is realized by injecting a coherent laser source
(not shown in the experimental setup) at the input of the
2DQW platform. The coherent source is a pulsed laser with
a wavelength λ = 785 nm.

The qudit states are generated by exploiting one-, two-, and
three-step QW evolutions. A generic qudit state is given by

|φexp〉 =
N∑

i=0

N∑
j=0

ui, j |ik, jk〉, (25)

where ui, j is the complex amplitude associated with the
transverse momentum mode (kx, ky) = (ik, jk), which can be
written as ui, j = ai, jeiδi, j , where ai, j is the modulus and δi, j is
the phase. We use the following notation for the target states:

|φ〉 =

⎛
⎜⎝u0,N · · · uN,N

...
. . .

...

u0,0 · · · uN,0

⎞
⎟⎠, (26)
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FIG. 4. Platform for qudit generation and state measurement. (a) The generation of the state is performed by evolving the initial Gaussian
state with |H〉 polarization within the 2DssQW platform. The QW is performed in the transverse momentum space by using a cascade of
liquid-crystal devices, i.e., g plates along x (Gx), y (Gy), and a waveplate with tunable optical retardation (W ), as highlighted in the inset (b).
After the evolution, the state is projected onto an arbitrary polarization by using a waveplate and a polarizing beamsplitter. The reconstruction
of the state requires determining the probabilities (squared moduli) and the phases of all transverse momentum modes. For squared-modulus
measurement, we do not perform any transformation on the state (S = I), as shown in the inset (c). The measurement of the phase difference
is accomplished by letting the spots interfere, applying an additional translation, and finally projecting onto a linearly polarized coin. The
measurements of squared moduli and the phase differences are performed with classical light with a CCD camera. Classical light was generated
by a coherent pulsed laser with λ = 785 nm. The single-photon measurements were performed by counting twofold coincidence events between
“trigger” photons and the evolved “signal” photons generated by the spontaneous parametric down-conversion process. The evolved photons
at the output of the reconstruction stage are coupled into a 2D fiber array. Each fiber of the latter is connected to an avalanche photodiode
detector. Legend: BBO - Beta Barium Borate, BS - Beam Splitter, PBS - Polarizing Beam Splitter, CCD - Charge Coupled Device.

where ui, j is the complex amplitude of the mode |i, j〉 of the
state |φ〉. We benchmark the platform by generating the fol-
lowing qudit states with nine and seven modes, respectively,
by exploiting two-step evolutions:

|φ1〉(2) = 1

2
√

5

⎛
⎜⎜⎝

e−i 3
4 π

√
2 ei 3

4 π

√
2 2

√
2

√
2

ei 3
4 π

√
2 e−i 3

4 π

⎞
⎟⎟⎠, (27)

|φ2〉(2) = 1√
10

⎛
⎜⎝

−i i 0

1 2 1

0 i −i

⎞
⎟⎠. (28)

The chosen states fulfill Eq. (23) as well as the constraints
in Eqs. (13)–(15). We experimentally realize these states by
using coherent light and single photons. Then, we generate
two complete bases belonging to a set of two MUBs in a four-
dimensional qudit Hilbert space by using coherent light. We
can represent the computational basis {|φi〉(M )} and the basis
{|φ̃i〉(M )} as

|φ1〉(M ) =
(

0 0
1 0

)
, |φ2〉(M ) =

(
0 1
0 0

)
,

|φ3〉(M ) =
(

0 0
0 1

)
, |φ4〉(M ) =

(
1 0
0 0

)
, (29)

|φ̃1〉(M ) = 1
2

(
i 1
1 i

)
, |φ̃2〉(M ) = 1

2

(
i −1
1 −i

)
,

|φ̃3〉(M ) = 1
2

(
i 1

−1 −i

)
, |φ̃4〉(M ) = 1

2

(
i −1

−1 i

)
. (30)

Final measurements concern the generation of three qu-
dit states with coherent light by exploiting three-step QW

evolutions. The detailed list of these states is reported in
Appendix E1.

The fidelity F between the target |φtar〉 and experimental
states |φexp〉 is defined as

F = |〈φtar|φexp〉|2. (31)

This value quantifies the accuracy of the generation of the
target state. To compute this quantity, we need to fully recon-
struct the experimental state. Hence, we measure the squared
moduli of the amplitudes |ai, j |2 and the differences between
the phases δi, j of adjacent modes of each experimental state.

A. State reconstruction

In the following, we describe in detail the complete anal-
ysis for two chosen states (|φ1〉(2) and |φ2〉(2)), performed
with coherent light and single-photon events. The squared
moduli of the amplitudes |ai, j |2 are measured by setting the
transformation S in Fig. 4(a) equal to the identity, as shown
in Fig. 4(c). They can be measured by mapping the trans-
verse momentum modes into spatially separated modes. This
transformation is performed by a convex lens on the focal
plane. For classical light, the intensity of each spatial mode is
proportional to the squared moduli of the amplitudes |ai, j |2 of
the corresponding transverse momentum mode (i, j). The in-
tensity pattern can be retrieved by using a CCD camera. In the
single-photon regime, the squared moduli of the amplitudes
|ai, j |2 is proportional to the number of photons in the trans-
verse momentum mode (i, j). In this case, measurements are
performed by coupling each mode into a 2D-multimode fiber
array. The uncertainties on the squared moduli are obtained
by considering a Poissonian statistic for the photon counting
process. Each fiber is connected to an avalanche photodiode
detector (APD). The squared modulus value of each mode is

043025-6



GENERATION OF HIGH-DIMENSIONAL QUDIT … PHYSICAL REVIEW RESEARCH 5, 043025 (2023)

0
0

/2/4/8 3  /8

10

6

2

I(arb. units)

θ0 (rad)

1 2

3 4

5 6

FIG. 5. Intensity of the intermediate modes as a function of the
angle θ0. We report as an example the variation of intensity of the
intermediate modes vs the inclination of the half-wave plate optic
angle θ0 by using coherent light. The intermediate modes are gener-
ated by applying a g plate along the x direction at the output of the
QW platform. In this way, the horizontal adjacent modes interfere
in the intermediate modes. Then, all the modes are projected on a
linear polarization by using a half-wave plate with optical angle θ0

and a polarizing beamsplitter. The intensities of modes depend on θ0

as I ∝ − cos (4θ0 − �δ
(x)
i, j ). In the inset, a real picture of intermediate

modes is reported. The numeration on the inset allows one to recog-
nize the corresponding curve in the graphics. The intensity values are
reported in arbitrary units.

proportional to the number of photons counted in that mode.
We count only the twofold events, i.e., the photons detected
by the APD at the same time of the trigger photon.

The measurement of the phase differences between adja-
cent modes of the experimental states is performed by setting
the transformation S equal to a translation T along x and y,
as shown in Fig. 4(d). Experimentally, these translations are
performed by a g plate along x and y, respectively. These fur-
ther transformations move at the same site as the modes that

are adjacent along horizontal and vertical directions, respec-
tively. As an example, we consider the adjacent modes |i, j〉
and |i + 1, j〉 and the respective amplitudes ui, j and ui+1, j .
These two amplitudes interfere on an intermediate mode by
applying a g plate along x. By using a half-wave plate rotated
θ0 degrees and a polarizing beamsplitter, we project this mode
on a generic linear polarization inclined by 2θ0 with respect to
the horizontal polarization:

|2θ0〉 = 1√
2
|R〉 + ei4θ0

√
2

|L〉. (32)

After the projection, the intensity value of the intermediate
mode is proportional to

I (θ0) ∝ − cos
(
4θ0 + �δ

(x)
i, j

)
, (33)

where �δ
(x)
i, j is the phase difference δi, j − δi+1, j between the

mode (i, j) and (i + 1, j). Hence, the intensity as a function
of θ0 allows us to directly measure the value �δ

(x)
i, j with the

respective error. The same procedure allows measuring the
value �δ

(y)
i, j by setting the transformation S as Ty, implemented

by a g plate along y. In Fig. 5, the intensities of the intermedi-
ate modes are provided as function of θ0 by using coherent
light, when considering the target state |φ1〉(2). The phase
differences are exploited to obtain the value of the phases δi, j

with their errors, as shown in Appendix E2. We calculate the
phase distribution for the states generated with coherent light
and with single photons. The distributions of squared moduli
and phases for the states |φ1〉(2) and |φ2〉(2) in classical and
single-photon regimes are shown in Fig. 6.

B. Fidelity measurement

We calculate the value of the fidelity resulting from the
experimental evolutions [see Eq. (31)] (1) F (c)

1 = 0.974 ±
0.003 and F (c)

2 = 0.981 ± 0.002 using coherent light and (2)
F (q)

1 = 0.9849 ± 0.0008 and F (q)
2 = 0.9723 ± 0.0008 using

single-photon inputs, where the indices 1 and 2 refer, re-
spectively, to the states |φ1〉(2) and |φ2〉(2). We evaluated the
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FIG. 6. Theoretical and experimentally reconstructed values of squared moduli and phases of two states generated by the 2DQW platform.
Theoretical and experimental reconstruction of squared moduli and phases relative to the states |φ1〉(2) (a), (c) and |φ2〉(2) (b), (d), defined in
Eqs. (27) and (28). The reported experimental data are obtained by using both coherent light and single-photon acquisition. For single-photon
acquisition, the error bars are calculated by bootstrapping approach. Error bars are too small to be visible. On the right, we report the intensity
distribution as it appears on the CCD camera.
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TABLE I. The fidelity values of the generated states that belong
to a set of MUBs in a four-dimensional Hilbert state, where |φi〉(M )

is the standard computational basis defined in Eq. (29) and |φ̃i〉(M )
is

defined in Eq. (30).

State Fidelity (F (c)) State Fidelity (F (c))

|φ1〉(M ) 0.9936 ± 0.0004 |φ̃1〉(M )
0.9645 ± 0.0011

|φ2〉(M ) 0.9944 ± 0.0003 |φ̃2〉(M )
0.9987 ± 0.0009

|φ3〉(M ) 0.9955 ± 0.0004 |φ̃3〉(M )
0.9892 ± 0.0008

|φ4〉(M ) 0.9958 ± 0.0002 |φ̃4〉(M )
0.975 ± 0.002

uncertainties on the fidelity through a bootstrapping approach.
These values of fidelity show a good agreement between tar-
get and experimental states. We can also note a remarkable
agreement between the measurements performed with coher-
ent light and single photons, which confirms the stability and
reliability of our experimental platform.

We realize the computational basis {|φi〉(M )} and the basis
{|ψi〉(M )} defined above. In Table I, we report the obtained
fidelities. Finally, we generate qudit states with coherent light
by exploiting three steps of a 2DQW evolution. These states
are reported in Appendix E1 and correspond to 16, 14, and 8
modes, respectively. Table II reports the obtained values of the
mean fidelity between the target and the experimental states.

V. CONCLUSIONS AND DISCUSSION

In conclusion, we demonstrate that 2DQWs with a two-
level coin are a useful tool for the generation of a subset
of high-dimensional quantum states. We theoretically prove
that the nonuniversality of 2DQW derives from the quadratic
increase in dimension of the Hilbert space of the output states
at each step. On the other hand, this scaling permits the gener-
ation of high-dimensional states by using less resources with
respect to the 1DQW.

We experimentally implement a set of quantum states be-
longing to the subset of states which fulfill the conditions
in Eqs. (13)–(15). Here, we demonstrate the feasibility of
the platform to manipulate the transverse momentum of the
output photons. We exploit coherent-light and single-photon
sources, obtaining similar results for the target states |φ1〉(2)

and |φ2〉(2). Moreover, we experimentally proved the potential
of our protocol for applications in quantum cryptography by
showing a procedure that allows one to generate two bases
belonging to a set of MUBs in the 2n-dimensional Hilbert
space.

TABLE II. The fidelity values of the generated states using three
steps of QW. The state reconstructions are performed by using co-
herent light. The list of generated states is reported in Appendix E1.

State Modes Fidelity (F (c))

|φ1〉(3) 16 0.943 ± 0.003

|φ2〉(3) 14 0.855 ± 0.003

|φ3〉(3) 8 0.9842 ± 0.0006

This paper provides insight towards the generation of
single-particle high-dimensional states, that have already
found large applications in quantum cryptography and quan-
tum information protocols [65–68]. By exploiting a platform
that encodes the spatial dimension in two independent de-
grees of freedom, it is possible to generate qudit states with
intraparticle hybrid correlations between different degrees of
freedom. In parallel, further prospects of this paper involve
a full characterization of 2DQW dynamics when injected
with multiparticle input states [62], to investigate the potential
of multiqudit state generation via this platform. This finds
a straightforward application in the field of secure quan-
tum communication protocols, requiring the implementation
of complex entangled qudit states. Indeed, spanning Hilbert
spaces of greater dimensions allows for improved information
capacity and noise resilience, leading to enhanced quantum
information processing. In general, these kinds of states find
applications in several quantum information fields beyond
quantum communication [46,69–73].
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APPENDIX A: CONDITIONS FOR THE 2DSSQW
OUTPUT STATES

Here we show the action of split-step operators Ux,1, Uy,1,
and Ux,2 on an initial state localized at the (0,0) position
of the lattice with a generic coin state. This analysis allows
recognizing the conditions for the output states evolved by
the initial three split-step evolution, and generalizing these
constraints to the output states evolved by N single-step evo-
lutions. The states that can be realized by 2DssQW evolutions
represent a subset of the total Hilbert space, hence we provide
a characterization for the subsets of one-, two-, and three-step
evolution. Finally, we show the procedure to reconstruct an
evolution of the 2DssQW of the output states that belong to
the subset.

The first split-step evolution is obtained by applying the
operator Ux,1 = TxCx,1 to the seed state |ψ0〉. We consider the
initial state |ψ0〉 as the following seed state:

|ψ0〉 = u(0)
0,0,↑|0, 0,↑〉 + u(0)

0,0,↓|0, 0,↓〉, (A1)

i.e., a localized state in the position (0,0) of the lattice with
a generic coin state. The coin operator Cx,1 rotates the coin
state into another generic superposition. Then, the translation
operator Tx moves to the left the |↓〉 coin element and flips it
over. Similarly, the coin element |↑〉 is translated to the right
and flipped. For this reason, after each Ux,i operator, the sites
on the right boundary are only populated by |↓〉 components
and the left boundary is only populated by |↑〉 components.
Thus, the state |ϕ1〉 is given by

|ϕ1〉 = Ux,1|ψ0〉 = l (1)
0,0,↑|0, 0,↑〉 + l (1)

1,0,↓|1, 0,↓〉, (A2)
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1st split-step 2nd split-step=1st step

3rd split-step 4th split-step=2nd step

FIG. 7. Pictorial representation of the boundary and scalar
product conditions within a 2DQW evolution. Four split steps rep-
resenting two steps of the quantum walk are depicted. Red arrows
on each lattice site represent the coin state of the site after Ux,i

or Uy,i operation. At each Ux,i evolution (green spots) the states of
the lattice sites at the left (right) boundary only present |↓〉(|↑〉)
components. Equivalently, after each Uy,i evolution (blue spots) the
states of the lattice sites at the bottom (top) boundary only present
|↓〉(|↑〉) components [see Eq. (5)].

and the two boundary conditions follow:

l (1)
0,0,↓ = 0, l (1)

1,0,↑ = 0. (A3)

By considering Eqs. (10) and (11), the state in Eq. (A2) can
be equivalently described by the single vector 	l (1)

0,0 equal to

	l (1)
0,0 =

⎛
⎝l (1)

0,0,↑

l (1)
1,0,↓

⎞
⎠ = Cx,1

⎛
⎝u(0)

0,0,↑

u(0)
0,0,↓

⎞
⎠. (A4)

The index of the vector 	l (1)
0,0 takes into account that both the

coefficients l (1)
0,0,↑ and l (1)

1,0,↓ come from the same site (0,0) as
in the previous step.

We consider the second split-step evolution given by the
operator Uy,1:

|ψ1〉 =Uy,1|ϕ1〉
= u(1)

0,0,↑|0, 0,↑〉 + u(1)
0,1,↓|0, 1,↓〉

+ u(1)
1,0,↑|1, 0,↑〉 + u(1)

1,1,↓|1, 1,↓〉. (A5)

Using an argument similar to the case of Ux,i, four boundary
conditions arise:

u(1)
0,0,↓ = u(1)

1,0,↓ = 0, u(1)
0,1,↑ = u(1)

1,1,↑ = 0. (A6)

In Fig. 7, the boundary conditions for the initial four split
steps are graphically represented. The state can be described
by two nonzero vectors 	u(1)

0,0 and 	u(1)
1,0:

	u (1)
i,0 =

⎛
⎝u(1)

i,0,↑

u(1)
i,1,↓

⎞
⎠ = Cy,1

⎛
⎝l (0)

i,0,↑

l (0)
i,0,↓

⎞
⎠ with i = 0, 1. (A7)

2nd split-step=1st step

3rd split-step 4th split-step=2nd step
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(2) u11

(2) u21
(2)

l00
(2) l10

(2)
u00

(2) u10
(2) u20

(2)

l00
(1)

1st split-step

FIG. 8. Pictorial representation of the scalar product conditions
within a 2DQW evolution. Scalar product conditions for the first,
second, third, and fourth split step are depicted. Each populated
position indicates vectors described by Eqs. (10) and (11) for odd
and even split steps, respectively. Each arrow represents the scalar
products between the two vectors at the tail and at the head of the
arrow. For the first split step we have only one vertex, hence there is
no scalar product condition. For the second split step, the two vertices
are connected by one arrow. The first condition [see Eq. (A8)] is
obtained by setting to zero the scalar product represented by the
arrow. At the third split step, the conditions represented by the arrows
increase. All the scalar products represented by parallel arrows of the
same length have to be summed and zeroed.

It is worth noticing that the number of nonzero vectors that
describes the walker state is always equal to the number of
populated sites in the previous split step. From the boundary
conditions of the first split step [see Eq. (A3)], it immediately
follows that

	u(1)†
0,0 · 	u(1)

1,0 = 0. (A8)

Indeed, the boundary conditions in Eq. (A3) allow us to write

	u (1)
0,0 = Cy,1

(
l (0)
0,0,↑

0

)
, 	u (1)

1,0 = Cy,1

⎛
⎝ 0

l (0)
1,0,↓

⎞
⎠. (A9)

The vectors before the transformation Cy,1 are orthogonal.
Since Cy,1 is a unitary transformation, the orthogonality is
preserved for the transformed vectors. This condition is graph-
ically depicted in Fig. 8, where the arrow between two sites
indicates that the scalar product between two vectors is zero. It
is straightforward to reconstruct the scalar product conditions
by just considering the graph of populated sites in the previous
split step. The third split step |ϕ2〉 = Ux,2|ψ2〉 can be described
by the four nonzero vectors:

	l (2)
i, j =

⎛
⎝ l (2)

i, j,↑

l (2)
i+1, j↓

⎞
⎠ = Cx,2

⎛
⎝u(1)

i, j,↑

u(1)
i, j,↓

⎞
⎠, (A10)
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FIG. 9. Constraints on the amplitude coefficients when increasing the number of steps. The arrows represent the constraints and the
colors are related to the arrow length. The number of associated constraints increases quadratically with the number of steps. The number of
independent parameters of the coin operators increases linearly instead, thus limiting the space of states to be realized. Number of conditions:
(a) 18 (three steps), (b) 32 (four steps), and (c) 200 (ten steps).

where i and j can assume the integer values [0,1]. The bound-
ary conditions are obtained from the action of the operator
Ux,2 and are given by

l (2)
0,0,↓ = l (2)

2,0,↓ = 0,

l (2)
0,1,↑ = l (2)

2,1,↑ = 0. (A11)

We can obtain three scalar-product conditions for the output
state at the third split step |ϕ2〉 by using the same argument as
in the previous split step:

	l (2)†
0,0 · 	l (2)

1,1 = 	l (2)†
0,1 · 	l (2)

1,0 = 0,

	l (2)†
0,1 · 	l (2)

0,0 = 	l (2)†
1,1 · 	l (2)

1,0 = 0. (A12)

A further condition can be derived through Eq. (A8):

0 = 	u (1)†
0,0 · 	u (1)

1,0 = u (1)∗
0,0,↑u (1)

1,0,↑ + u (1)∗
0,1,↓u (1)

1,1,↓. (A13)

By considering the boundary conditions provided by the
first step described in Eq. (A6), we can add the null quantities
u (1)∗

0,0,↓u (1)
1,0,↓ + u (1)∗

0,1,↑u (1)
1,1,↑:

u (1)∗
0,0,↑u (1)

1,0,↑ + u (1)∗
0,1,↓u (1)

1,1,↓ + u (1)∗
0,0,↓u (1)

1,0,↓ + u (1)∗
0,1,↑u (1)

1,1,↑ = 0.

By recalling the definitions provided in Eq. (10), we obtain

	l (2)†
0,0 · 	l (2)

1,0 + 	l (2)†
0,1 · 	l (2)

1,1 = 0, (A14)

by using Cx,2C
†
x,2 = I. All the conditions for the third split

step are graphically depicted in Figs. 7 and 8. In Fig. 8,
we can recognize each arrow as a scalar product between
two vectors represented by the vertices. We reconstruct the
constraints in Eq. (A12) by reducing to zero the scalar product
represented by the vertical and diagonal arrows. In order to
obtain the constraints in Eq. (A14), we sum up the scalar prod-
ucts represented by the horizontal arrows in the same graph.

Starting from the graphical representation of the conditions,
we obtain the condition for the output states after N single-
step evolutions [see Eqs. (13)–(18)]. In Fig. 9, the conditions
for the third, fourth, and tenth step are graphically depicted.
The number of conditions increases quadratically with the
number of steps, as opposed to the number of independent
parameters, increasing linearly with the number of steps. For
this reason, it is not possible to realize an arbitrary state in the
two-dimensional walker space.

APPENDIX B: SET OF COIN OPERATORS
GENERATING A STATE

Here, we explain how to derive the coin operators that
generate the state |ψN 〉 at any even split step 2M = N . The
output state of a 2DssQW at the N th step satisfies the con-
straints of Eqs. (13)–(15). In order to find the coin operators
that generate this state, we focus on one of the two constraints
corresponding to h = N and k = N − 1:

	u(N )†
0,0 · 	u(N )

N,N−1 = 0, 	u(N )†
0,N−1 · 	u(N )

N,0 = 0. (B1)

To find the coin operator Cy,N , we can choose one of these two
equations. By considering the first equation, the vector 	u(N )

0,0

and 	u(N )
N,N−1 can be written as

	u(N )
0,0 = Cy,N

(
l (N )
0,0,↑

0

)
,

	u(N )
N,N−1 = Cy,N

⎛
⎝ 0

l (N )
N,N−1,↓

⎞
⎠, (B2)

where l (N )
0,0,↓ = l (N )

N,N−1,↑ = 0 for the boundary condition of the
previous split step, thus implying the following equations for
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the coin operator:

C†
y,N 	u(N )

0,0 =
(

l (N )
0,0,↑

0

)
,

C†
y,N 	u(N )

N,N−1 =
⎛
⎝ 0

l (N )
N,N−1,↓

⎞
⎠. (B3)

The coin operator Cy,N is a generic 2 × 2 matrix:

Cy,N =
(

a1 b1

a2 b2

)
. (B4)

From Eq. (B3) it follows that

	b† · 	u(N )
0,0 = 0, 	a† · 	u(N )

N,N−1 = 0, (B5)

with 	a = (a1, a2) and 	b = (b1, b2). By merging these equa-
tions with Eq. (B1), we can directly deduce

	a = eiβ 	u(N )
0,0 , 	b = eiα 	u(N )

N,N−1. (B6)

A quantum state is defined up to a global phase, hence we can
set β = 0 and the coin operator becomes

Cy,N =
⎛
⎝u(N )

0,0,↑ eiαu(N )
N,N−1,↑

u(N )
0,1,↓ eiαu(N )

N,N,↓

⎞
⎠. (B7)

The coin operator is defined up to a relative phase between
the first and the second column. Hence, the evolution that
permits us to reproduce the designed final state |ψN 〉 is not
unique. The second equation in Eq. (B1) leads to the same
results for Cy,N .

By applying the operator U †
y,N = C†

y,N T †
y to the state |ψN 〉

we obtain the state |ϕN 〉 corresponding to the split step 2M −
1. It satisfies all the constraints of an odd split-step quantum
walk state. In particular, we focus on

	l (N )†
0,0 · 	l (N )

N−1,N−1 = 0, 	l (N )†
0,N−1 · 	l (N )

N−1,0 = 0. (B8)

Using the same argument as 2M split steps, we can obtain the
coin operator Cx,N as

Cx,N =
⎛
⎝l (N )

0,0,↑ eiαl (N )
N−1,N−1,↑

l (N )
1,0,↓ eiαl (N )

N,N−1,↓

⎞
⎠. (B9)

These arguments can be applied back to the first split step. In-
deed, there is no constraint equation at this split step. For this
reason, the coin operator is calculated directly by imposing⎛

⎝u(0)
0,0,↑

u(0)
0,0,↓

⎞
⎠ = C†

x,1

⎛
⎝l (1)

0,0,↑

l (1)
1,0,↓

⎞
⎠. (B10)

In conclusion, we can reconstruct the whole QW evolution
that allows one to obtain a given output state.

APPENDIX C: CHARACTERIZATION OF THE SUBSET

Two-dimensional quantum walk protocols allow generat-
ing states that belong to a subset of the whole Hilbert space.
In Sec. III C of the main text, we give a numerical charac-
terization of this subset. It consists in the calculation of the

fidelity between a randomly chosen state and the best approx-
imation of this state given by the output state of the quantum
walk. Here, by following the same principle, we calculate the
fidelity values by considering more stringent conditions on the
randomly chosen states for the two- and three-step evolution.
In Fig. 10, we report different histograms of fidelity values by
imposing different conditions on randomly chosen qudits with
dimensions d = 9 and 16.

APPENDIX D: GENERATION OF MUTUALLY UNBIASED
BASES IN A D-DIMENSIONAL HILBERT SPACE

Here, we provide a procedure to generate a basis |ψ (n)
i 〉 that

is mutually unbiased with the computational basis |e(n)
l,m〉, i.e.,

∣∣〈ψ (n)
i

∣∣e(n)
l,m

〉∣∣ = 1√
d

(D1)

where d = 2n is the dimension of the Hilbert space. The
computational basis is defined as

|el,m〉 =
N∑

i=0

N∑
j=0

δi,lδ j,m|i, j〉. (D2)

The vectors of the computational basis satisfy the conditions
given by Eqs. (13) and (14). Hence, it is possible to generate
the computational basis for each dimension N2 where N is the
number of steps.

The procedure to generate the vectors |ψ (n)
i 〉 consists in

applying an evolution operator U (n) on the initially localized
state |ψ0〉 = |0, 0〉|↑〉 and then projecting the evolved state
onto the coin |+〉, given by (|↑〉 + |↓〉)/

√
2, in the following

equation: ∣∣ψ (n)
i

〉 = 〈+|U (n)|ψ0〉. (D3)

The operators U (n) are composed by the single-step operators,
defined as follows: (1) U↗↙↖↘(ζx, ζy) that lead to the evolution
of both states |i, j〉|↑〉 and |i, j〉|↓〉 in a balanced superposi-
tion of four different localized states on the lattice sites; (2)
U↖↘(ζx ) and U↗↙(ζx ) that evolve the state |i, j〉|↑〉 along the
diagonal and the antidiagonal axes with opposite coin states
|↑〉 and |↓〉; and (3) U↗, U↖, U↘, and U↙ that correspond
to shifting the localized state |i, j〉|↑〉 along the diagonal and
antidiagonal axes in the four directions. Note that the same
operators translate the state |i, j〉|↓〉 exactly in the opposite
direction. The actions of the operators are shown in Fig. 11.
The parameters of the coin operators for each single-step
operator defined above are given in Table III.

For n = 2, the dimension of the basis is d = 22 = 4 and the
operator U (2) is given by the operator U↗↙↖↘(ζx, ζy). The spatial
distribution of the basis vectors on the lattice is reported in
Fig. 12(a). Four different basis vectors are generated when
each of the parameters ζx and ζy takes values −π/2 and π/2
according to Table IV. For d = 23 = 8, operator U (3) is given
by

U (3) = Uo
(
ζ (2)

x

)
U↗↙↖↘

(
ζ (1)

x , ζy
)
, (D4)

where Uo(ζ (2)
x ) = U↘U↗↙(ζ (2)

x ). The spatial distribution of the
basis vectors on the lattice is reported in Fig. 12(b). The eight
basis vectors are generated when each of these parameters

043025-11



CHIARA ESPOSITO et al. PHYSICAL REVIEW RESEARCH 5, 043025 (2023)

)b()a(

(c) (d)

Generic

0.4 0.5 0.6 0.7 0.8 0.9 1.0

100

200

300

400

500

600

0.4 0.5 0.6 0.7 0.8 0.9 1.0

50

100

150

200 Generic

(e) (f)

(g) (h)

Generic

0.2 0.4 0.6 0.8 1.0

20

40

60

80

100

0.2 0.4 0.6 0.8 1.0

20

40

60

80

100
Generic

Generic

0.2 0.4 0.6 0.8 1.0

20

40

60

80

100

Generic

0.2 0.4 0.6 0.8

20

40

60

80

100

Generic

Qudit dimension d=9

Qudit dimension d=16

0.4 0.5 0.6 0.7 0.8 0.9 1.0

Generic

20

40

60

80

100

120

140

0.4 0.5 0.6 0.7 0.8 0.9 1.0

Generic

20

40

60

80

100
Generic

FIG. 10. Histograms of fidelity values for qudit states generated by two and three steps of 2DssQW evolutions. We calculate the fidelity
between 1000 randomly chosen qudit states and the best approximation of the states that it is possible to generate by using a 2DssQW evolution
and collect the obtained values into histograms for qudit dimension d = 9 [(a)–(d)] and d = 16 [(e)–(h)]. To further improve the mean fidelity,
we tighten the requirement for each condition considered in Fig. 3. We observe that the histograms in the insets (a), (b), and (e)–(h) do not
significantly change by imposing more stringent constraints. On the other hand, in insets (c) and (d), the mean fidelity values increase if we
impose the same conditions for the states.
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(a) Localized state 

U

(b)     U

U U

(c)     U   U

U
U

(d)  U  U  U  U

U
U

FIG. 11. Action of the single-step operators. Here, we sketch the
action of the single-step operators U↗↙↖↘(ζx, ζy ) (b), U↖↘(ζx ) (c), and
U↗↙(ζx ), U↗, U↖, U↘, and U↙ (d) on the localized state |ψ0〉 =
|0, 0〉|↑〉 (a). The operators U↗↙↖↘(ζx, ζy ), U↖↘(ζx ), and U↗↙(ζx ),U↗
evolve the state on a superposition of states localized in different
positions with orthogonal coin. The operators U↗↙(ζx ), U↗, U↖, U↘,
and U↙ only shift the state on a new adjacent position.

TABLE III. Coin parameters of the single-step operators. Start-
ing from the definition of the single-step operator U = UyUx and
from the relative coin operator in Eq. (4), we provide the values for
the parameters of the coin that allow us to realize the single-step
operators U↗↙↖↘(ζx, ζy ), U↖↘(ζx ), U↗↙(ζx ),U↗, U↖, U↘, and U↙. These
operators are fundamental to illustrate the procedure generating a
2n-dimensional basis which is mutually unbiased with the compu-
tational one.

Operators ξx ζx θx ξy ζy θy

U↗↙↖↘ 0 ζx π/4 0 ζy π/4

U↖↘ 0 ζx π/4 0 −π/2 π/2

U↗↙ 0 ζx π/4 0 0 0

U↗ 0 −π/2 π/2 0 0 0

U↖ 0 0 0 0 −π/2 π/2

U↘ 0 −π/2 π/2 0 −π/2 π/2

U↙ 0 0 0 0 0 0

TABLE IV. Four different basis vectors are obtained when each
of the parameters ζx and ζy takes values −π/2 or π/2.

|ψ (2)
i 〉 ζ (1)

x ζy

|ψ (2)
1 〉 − π

2 − π

2

|ψ (2)
2 〉 − π

2
π

2

|ψ (2)
3 〉 π

2 − π

2

|ψ (2)
4 〉 π

2
π

2

TABLE V. Eight different basis vectors are obtained when each
of the parameters ζ listed takes values −π/2 or π/2.

|ψ (3)
i 〉 ζ (1)

x ζ (2)
x ζy

|ψ (3)
1 〉 − π

2 − π

2 − π

2

|ψ (3)
2 〉 − π

2 − π

2
π

2
...

...
...

...

|ψ (3)
7 〉 π

2
π

2 − π

2

|ψ (3)
8 〉 π

2
π

2
π

2

ζ (1)
x , ζ (2)

x , and ζy takes values −π/2 and π/2 according to
Table V. For d = 24 = 16, the operator U (4) is given by

U (4) = Ue
(
ζ (3)

x

)
U (3) (D5)

where Ue(ζ (3)
x ) = U↗U↖↘(ζ (3)

x ). The spatial distribution of the
basis vectors on the lattice is reported in Fig. 12(c). The 16
basis vectors are generated when each parameter ζ (1)

x , ζ (2)
x ,

ζ (3)
x , and ζy takes values −π/2 and π/2 according to Table VI.

Subsequent steps can be generated as follows. For d = 25 =
32, the operator U (5) is given by

U (5) = (U↘U↙)Uo
(
ζ (4)

x

)
U (4). (D6)

For d = 26 = 64, the operator U (6) is given by

U (6) = (U↗U↖)Ue
(
ζ (5)

x

)
U (5). (D7)

We report the spatial distribution of the basis vectors for n = 5
and 6 in Figs. 12(d) and 12(e). In general, the operator U (n)

can be derived from the operator U (n−1) by applying splitting
operators Ue(Uo) for n even (odd) values of n. The appli-
cation of UeU (n−1)(UoU (n−1)) on the initial state generates a
superposition of two different states with orthogonal coins |↑〉
and |↓〉 respectively. They have equal spatial distributions that
overlap on some sites. An example is provided in Fig. 13 for
the particular case of n = 5. In order to remove the overlap
between these two states, we apply U↗U↖(U↘U↙) operators
that translate both orthogonal states until the state is no longer
in a superposition.

From these considerations, we write the operator U (n) for
n > 2 as follows: (1) n odd

U (n) = (U↘U↙) f (n)Uo
(
ζ (n−1)

x

)
U (n−1) (D8)

with f (n) = 2
n−3

2 − 1 and (2) n even

U (n) = (U↗U↖)g(n)Ue
(
ζ (n−1)

x

)
U (n−1) (D9)

TABLE VI. Sixteen different basis vectors are obtained when
each of the parameters ζ listed takes values −π/2 or π/2.

|ψ (4)
i 〉 ζ (1)

x ζ (2)
x ζ (3)

x ζy

|ψ (4)
1 〉 − π

2 − π

2 − π

2 − π

2

|ψ (4)
2 〉 − π

2 − π

2 − π

2
π

2
...

...
...

...
...

|ψ (4)
15 〉 π

2
π

2
π

2 − π

2

|ψ (4)
16 〉 π

2
π

2
π

2
π

2
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(a)     n=2 (b)    n=3 (d)       n=5 (e)       n=6(c)    n=4

FIG. 12. Spatial distributions of the |ψ (n)
i 〉 basis. We sketch the spatial distributions on the lattice sites of the |ψ (n)

i 〉 basis with dimension
d = 2n with n = 2, 3, 4, 5, 6 (a)–(e). The probability at each site is the same and equal to 1/d .

with g(n) = 2
n
2 −2 − 1. We always have n independent pa-

rameters ζ (1)
x , ζ (2)

x , . . . , ζ (n−1)
x , ζy that allows us to generate

2n basis vectors when they take the values −π/2 and π/2
according to Table VII.

Note that the number of steps required in a 2DssQW for
generating the basis vectors |ψ (n)

i 〉 scales with
√

d , where d =
2n. Hence, there is a quadratic gain with respect to the 1DQW,
where the number of steps scales linearly with d .

The procedure shown above is not the only one that permits
generating bases that are mutually unbiased with respect to the
computational one. As an example, a basis state for d = 4 can
be generated as reported in Eq. (30) with a different procedure.
More specifically, the basis vector is obtained by applying the
operator U↗↙↖↘(ζx, ζy) to the localized initial state |0, 0〉|+〉. The
four different vectors of the basis are generated by setting ζx

equal to zero, by setting ζy equal to −π/2 and π/2, and by
projecting the final state on the coin state |+〉 and |−〉.

APPENDIX E: EXPERIMENTAL DETAILS

1. List of states

We exploit a photonic platform to generate the quantum
states by exploiting one, two, and three steps of the quantum
walk evolution. Here we provide the list of states that are
realized with one and three steps of 2DssQW evolutions.

For target states |φtar〉, we use the notation in Eqs. (25) and
(26). The list of the target states that we have experimentally
implemented is reported in the following: (1) one-step states
(N = 1)

|φ〉(1) = 1√
2

(
1 0
0 1

)

FIG. 13. Application of the operator UoU (n−1) to the initial state
|ψ0〉 for n = 5. We sketch the spatial distributions of the state
UoU (4)|ψ0〉. This state is a superposition of two states with orthog-
onal coins |↑〉 (yellow) and |↓〉 (cyan). The probability at each site of
the two states is equal to 1/d with d = 25. The spatial distributions
of both states overlap (green).

and (2) three-step states (N = 3)

|φ1〉(3)∝

⎛
⎜⎜⎜⎝

1 −(1+2i) (2 + i) −i

−(1+2i) −3 3i (2 + i)

(2 + i) 3i −3 −(1+2i)

−i (2 + i) −(1+2i) 1

⎞
⎟⎟⎟⎠,

|φ2〉(3) ∝

⎛
⎜⎜⎜⎝

1 −(1 + i) i 0

−2 −(2 + i) −(1 − i) 1

1 −(1 − i) −(2 + i) −2

0 i −(1 + i) 1

⎞
⎟⎟⎟⎠,

|φ3〉(3) ∝

⎛
⎜⎜⎜⎝

0 i 1 0

i 0 0 1

1 0 0 i

0 1 i 0

⎞
⎟⎟⎟⎠.

2. Estimation of the phases by the phase difference values

We have shown the procedure to measure the phase differ-
ences �δ

(x)
i, j and �δ

(y)
i, j between the modes in the output states.

Here, we explain how we exploit them to obtain the value of
the phase δi, j . In order to obtain the phase value δi, j , we define
the quantity ε given by ε = εx + εy, where

εx =
N−1∑
i=0

N∑
j=0

∣∣δi, j − δi+1, j − �δ
(x)
i, j

∣∣2

σ
(x)2
i, j

,

εy =
N∑

i=0

N−1∑
j=0

∣∣δi, j − δi, j+1 − �δ
(y)
i, j

∣∣2

σ
(y)2
i, j

. (E1)

TABLE VII. Generalization of the basis vectors is obtained when
each of the parameters ζ listed takes values −π/2 or π/2.

|ψ (n)
i 〉 ζ (1)

x . . . ζ (n−1)
x ζy

|ψ (n)
1 〉 − π

2 . . . − π

2 − π

2

|ψ (n)
2 〉 − π

2 . . . − π

2
π

2

...
...

...
...

...

|ψ (n)
2n−1〉 π

2 . . . π

2 − π

2

|ψ (n)
2n 〉 π

2 . . . π

2
π

2
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Values �δ
(x)
i, j and �δ

(y)
i, j are the measured value of the phase

differences along x and y direction, the values σ
(x)
i, j and σ

(y)
i, j

are the corresponding errors, and the δi, j are the independent
variables. We minimize the function ε with respect to the
independent variables δi, j with circular errors. The function ε

presents a large number of local minima. In order to improve
the capability of the minimization procedure to find the global
minimum, we search for all the possible solutions of the
following linear system:

δi, j − δi+1, j =�δ
(x)
i, j

(E2)
δ j,i − δ j,i+1 =�δ

(y)
j,i

with i = 0, . . . , N and j = 0, . . . , N − 1. The number of the
variables is (N + 1)2, while the number of the equations is

2N (N + 1). This system is overdetermined. Furthermore, it
does not consider the error on the �δ

(x)
i, j and �δ

(y)
i, j values. In

order to find a solution for the system, we can delete N2 − 1
equations to obtain a linear system having a single solution.
By changing the deleted equations, the obtained solution also
changes. Hence, we obtain the complete set of all possible
solutions for the system by deleting all the possible subsets
of N2 − 1 equations. Then, this set of solutions is used as
the initial condition for the effective minimization of function
ε. Indeed, the minimization routine explores all the initial
points, and it chooses the one for which the cost function
takes the minimum value. In this way, we calculated the phase
distribution for the states generated with coherent light and
single photons. The uncertainties of the phases are obtained
through a bootstrapping approach.
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