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Mesoscopic modeling of the effect of branching on the viscoelasticity
of entangled wormlike micellar solutions
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The effect of branches on the linear rheology of entangled wormlike micelle solutions is modeled by tracking
the diffusion of micellar material through branch points. The model is equivalent to a Kirchhoff circuit model
with the sliding of an entangled branch along an entanglement tube due to the constrained diffusion of micellar
material analogous to the flux of current in the Kirchhoff circuit model. When combined with our previous
mesoscopic pointer algorithm for linear micelles that can both break and fuse, the model adds a branch sprouting
process and therefore enables simulation of the dynamics of structural change and stress relaxation in ensembles
of micelle clusters of different topologies. Applying this model to study the relationships between fluid rheology
and microstructure of micelles, our results show that branches change the scaling law exponents for viscosity
vs micelle strand length. This contrasts with the longstanding hypothesis that branches affect viscosity and
relaxation in the same way that micelle ends do. The model also suggests a process for inferring branching
density from salt-dependent linear rheology. This is exemplified by mixed surfactant solutions over a range of salt
concentrations with flow properties measured using both mechanical rheometry and diffusing wave spectroscopy.
By elucidating the connection between the branching characteristics, such as strand length and branching density,
with the nonmonotonic variation of solution viscosity, the above model provides a powerful tool to help extract
branching information from rheology.
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I. INTRODUCTION

Surfactants, which are at the heart of many chemical and
biological systems [1–6], spontaneously assemble into solu-
tion aggregates, including cylindrical micelles [7–9], driven
by a delicate balance between the solvophilic and solvophobic
parts of the molecule [10–14]. This balance also controls
the densities of two types of thermodynamic defects in the
cylindrical body of the micelle, namely, endcaps and branch
junctions [15–17]. The resulting structure breaks, reforms,
and exchanges surfactants at rates that determine the vis-
coelastic behavior of the surfactant fluid [18–22].

Over many decades, a rich variety of theories and models
that allow micellar structure to be characterized from dynamic
properties such as conductivity, light scattering, and viscoelas-
ticity has been developed [16,23–30]. Among the available
models, that of Cates et al. [1] for linear (unbranched)
micelles has been particularly fruitful, for example, in provid-
ing a means of estimating from linear rheology the average
micelle length 〈L〉, a property that is otherwise inaccessible
when micelles are linear but entangled [5,7,29,31–33]. While
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the underlying Cates model appears to be sound, the earli-
est method of estimating micelle length was too simple to
accurately account for the sensitivity of micellar structure,
including its length and stiffness, on the presence of salts and
additives [8,33–35]. Such deficiencies have been addressed
by a mesoscopic simulation method, the pointer algorithm,
applied to the Cates model by Zou and Larson [36] and Zou
et al. [37]. The pointer algorithm provides a comprehensive
description of disentanglement dynamics, micellar reactions
controlling the average length of the micelle, as well as struc-
tural flexibility, in linear micelles [29,36–39].

For branched micelles, however, experimental detection of
the presence and density of branch points is far more challeng-
ing. A variety of different methods, such as cryo-transmission
electron microscopy (TEM), rheology (small amplitude os-
cillatory shear and extensional), neutron spin echo, and
nonlinear flow measurements, have been used to detect mi-
cellar branches [40–46]. Although light and neutron scattering
can provide evidence for topological branching when micellar
solutions are dilute, their results, when extrapolated to the
entangled regime, remain controversial due to the difficulty in
distinguishing branched micelles from linear entangled net-
works [29,40,47,48]. On the other hand, cryo-TEM, which
differentiates intersecting micelles from branches by their
contrast in the transmitted electron beam, provides defini-
tive evidence of branching [8,12,42,49]. Nevertheless, since
micellar structures are labile to thermomechanical treatment
[17,22,32,50], quantitative characterization of branch junc-
tions by cryo-TEM (which mostly appear to be trifunctional
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Y junctions) is sensitive to sample preparation [3,7,41,49,51].
In addition, unlike branched polymers, surfactants in a micelle
can diffuse through their branch junctions, causing a change
in the topological structure of both the entanglement network
and the micelle itself, thus providing multiple routes for disen-
tanglement and lowering the solution viscosity [31,52]. Since
rheology is highly sensitive to branches, to quantify the effects
of branching on the rheology of micellar solutions, the living
architecture of a branched micelle needs to be modeled effi-
ciently as an evolving set of linear strands that are connected
by multiple junctions and terminated by multiple ends.

In this paper, we extend our previous mesoscopic pointer
algorithm for entangled linear micelles that can both break and
fuse, to include branching into treelike clusters of arbitrary
complexity. This is achieved through a constrained diffusion
model, such as that of Lequeux [53], which draws on the
idea that reptationlike intramicellar diffusion produces a flux
of micellar material through each strand, even as it remains
confined within its entanglement tube. The accommodation
of the pointer algorithm to a branch sprouting process is also
explained thoroughly, where the method for moving pointers
is guided by advanced tube theories. A factorial design of
computations by varying micellar parameters demonstrates a
change of scaling law exponents for viscosity as a function
of branching level, in contrast with a longstanding hypothesis
that branch points affect viscosity the same way micelle ends
do. The effect of branching was also studied experimentally
through a serial of mixed surfactant solutions containing both
sodium lauryl one ether sulfate (SLE1S) and cocamidopropyl
betaine (CAPB) over a range of salt ion concentration. By
combining mechanical rheometry and diffusing wave spec-
troscopy (DWS) for viscoelastic characterization, the above
model enables a quantitative evaluation of relationships be-
tween fluid rheology and microstructure of micelles.

II. MODELING AND SIMULATION

A. Constrained diffusion and branched micelle architecture

While the model of Lequeux [53] produced a simple equiv-
alence between the effect of branch points and chain ends on
the overall rheological response, we develop here a quanti-
tative model by extending the pointer algorithm to branched
micelles. We do so by defining a micellar strand as the linear
portion of a micelle terminated by either a free end or a
branch point at each end of the strand. We satisfy overall mass
conservation by imposing a constraint force at each strand
terminus so that the resulting linear displacement �xi j (from i
to j) of the micellar strand bounded by termini i and j is given
by a Langevin equation:

�xi j =
√

6kBT �t

ζi j
ni j + Fi − Fj

ζi j
�t, (1)

where �t is the time step, ζi j is the drag coefficient for strand
(i, j), and ni j is a uniformly distributed random number be-
tween −1 and 1. Note that the first and second terms on the
right side of Eq. (1) represent the intramicellar diffusion and
the effective constraint at terminus i and j, respectively. The
nonzero constrained force Fi at the junction can be understood
as the fluctuating potential that arises from imbalances of

material flux in each strand that would occur in the absence of
this potential. Thus, the contribution from this intramicellar
diffusion to the structural lability of branched micelles (the
length and the number of the strands in a branched micelle
change with time) can be captured by a model of constrained
reptation: The overall diffusion of surfactant molecules in
each strand creates a random flux of micellar material along
entanglement tubes or an analogous current in the Kirchhoff
circuit model of Fig. 1.

Assuming that the effect of the terminus geometry on the
rate of constrained diffusion is small, ζi j will be proportional
to the strand length (= ζ0Li j , ζ0 is drag coefficient per unit
length of micelle), and branch points then act as pointlike
objects. Since no mass can accumulate at a junction, if a net
inward current were to occur there, a high potential just large
enough to suppress this current would be produced. After
numerically labeling the junctions and taking free ends as
junctions with zero potential, the material flux of Eq. (1) in
each arm is rewritten below in a connectivity matrix for the
branched micelle with the architecture of a 3-arm in Fig. 1:⎡
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, (2)

where ai j = �t
ζi j

, bi j =
√

6kBT �t
ζi j

ni j .

In the above, a two-dimensional matrix represents the
connectivity among all the strands in a micelle cluster regard-
less of the overall complexity of the micelle. The fourth to
sixth rows in the connectivity matrix correspond to the three
dangling ends with zero constrained forces (i.e., F1 = F2 =
F3 = 0), while the seventh row imposes the constraint of no
mass loss or accumulation at the branch point.

The transport described by Eq. (2) for a multibranched
micelle is thus equivalent to that of a Kirchhoff circuit in
Fig. 1(b), with the micelle topology mapped onto a bidirec-
tional connectivity matrix with randomly fluctuating voltages.
Such a mapping permits micelles of arbitrary branch structure
to be modeled, including multiple levels of treelike branching,
as well as internal reconnections or loops. Equation (2) or
its generalization to a micelle with many branch points can
then be solved by the conventional numerical tools, such as
LU decomposition. An analogous matrix is constructed for
each branched or linear micelle in the ensemble, where a
linear micelle has only one strand and two free ends and so
is described by a 3 × 3 matrix. A complex treelike micelle is
described by a large (2n + 1) × (2n + 1) matrix, where n is
the number of strands. For a typical simulation of on average
5 branch junctions per micelle, the associated matrices of the
largest micelle can easily become 50 × 50.

B. Micellar breakage and fusion

Micelles change their conformations or relax by both con-
strained diffusion and changes in the topology, without latter
the strands deep inside a treelike cluster would relax only after
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FIG. 1. (a) A 3-arm branched micelle architecture with symbols described by the text and Eq. (1) as well as (b) the corresponding Kirchhoff
circuit with rectangular resistors representing strands and electrical grounds representing ends.

relaxation of peripheral branches. However, this relaxation in
a hierarchical manner is greatly accelerated by breakage and
fusion of micelles, which occur at a rate kbr (i.e., the breakage
rate per unit micelle length) with equal probability at any
point along the micelle. The simulations preserve the initial
average mass or total length 〈M〉 of all strands of a micelle by
stochastically introducing a fusion of two randomly chosen
micelles each time a breakage occurs in any micelle, so that
〈M〉 is by definition the equilibrium micelle size. Thus, kbr and
〈M〉 together set the fusion rate per micelle. These breakage
and fusion reactions are illustrated in Fig. 2, which defines the
notation system that allows the micellar connectivity of arbi-
trary complexity to be specified. Breakage of a strand requires
introduction of two new ends, which are assigned unused
numbers [#15 and #16 in Fig. 2(a)], while fusion eliminates
two ends [#4 and #17 in Fig. 2(b)], and these numbers are
then available for reuse.

C. Micellar bud sprouting

To compensate the gradual loss of branches due to the
constrained diffusion, new branches are randomly added as
infinitesimal buds (with the size of micelle diameter ∼4 nm),

as shown in Fig. 3(a), with equal probability per unit strand
length, at a rate given by the inverse of a newly introduced
time scale τ̄bud. That is, over time, every segment in a strand
is given an equal probability to form a bud. Micelle branches
form as a result thermal fluctuations of local curvature, which
we model by sprouting or growing of those buds [50,54].
As illustrated in Fig. 3(b), any unsprouted bud, i.e., a bud
that shrinks rather than grows on the subsequent time step
(∼1 µs) by constrained diffusion, is annihilated, while a
sprouting bud that grows on the next time step either becomes
a short branch, as shown in Figs. 3(c) and 3(d), or fuses
with another micelle, as shown in Fig. 2. Any time a branch
arm shrinks by constrained diffusion to a negative length,
it is removed. The continual addition of buds or potential
branch junctions balances their destruction by constrained
diffusion, leading in time to an equilibration of the branching
density.

Closed intramicellar loops, which can occur occasionally
via random end-to-end fusion of highly branched strands,
should have relatively small effects on the properties of
branched micellar systems except near a phase transition to
a dense gel state (i.e., an interconnected network), where the
mean-field description of our model fails. Although other

FIG. 2. The micellar breakage and fusion represented by the manipulation of the strand lists between branched clusters: (a) breakage and
(b) recombination. The numbers identify chain ends and branch points. Each strand is thus defined by two numbers, one for each end or branch
point. In the lower panel in (a) and (b), each bracket pairs a single number on the outside of the bracket identifying the branch point, with the
three numbers on the inside of the bracket identifying the other ends of each of the three strands linked to that branch point. Each of these
strands can itself be a branch point, as in the case of strand (13,14), which is bounded at both ends by branch points.
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FIG. 3. The relaxation of branched micelles represented by the movement of pointers in the presence of (a) budding and (b) sprouting
(growing) of new branches with constrained diffusion, as described in the text. Pointers are described by gray solid arrows along a micellar
strand with each dashed rectangular region between two pointers representing an unrelaxed tube. Tube elements shrink between (c) and (d)
due to diffusion of a green and purple branch endpoint into their respective tube segments, feeding micellar material into the growth of orange
sprouts that first appeared in (b).

mechanisms of branch formation and change of micelle
length, such as end splitting and interchange, strand-strand
cross-linking, etc. [1,50,54], could be included in our model,
we neglect them here, as their effects can likely be cap-
tured through modification of the effective rates of strand
fusion/breakage and of budding/unbudding.

D. Evolution of pointers and relaxation mechanisms

Pointers are used to mark the boundaries between unre-
laxed and relaxed point of micellar materials. Over time, the
unrelaxed portions between pointer pairs shrink, and even-
tually, the two pointers meet each other and are removed
from the strand, marking completion of the relaxation of that
portion. Updating the number and positions of the pointers for
each strand, the time-dependent normalized stress relaxation
μ(t ) can then be calculated as the fraction of micellar tube
segments le that are unrelaxed at a given time t . Fast dynam-
ics at time and length scales smaller than le, such as local
Rouse and bending motions, are not captured by movement of
the pointers but are added later using analytical formulas, as
described in earlier publications [36–38,48], thus avoiding the
unnecessary computational cost of tracking them explicitly.
A detailed description of the above pointer algorithm can be
found in our previous publications [36–38,48].

Unlike linear micelles, relaxation of branched micelles, as
illustrated in Figs. 3(c) and 3(d), includes constrained diffu-
sion under which the movement of the micelle allows pairs
of pointers to gradually move toward each other, representing
stress relaxation. This continues along dangling ends, which
can be created by either micellar breakage or sprouting of a
bud. However, pointer movement is not permitted along inner
backbones that are terminated with branch junctions at both
ends. Therefore, movement of a pointer along a dangling end
must halt when the free end fuses with another free end to
create a new backbone strand. This halting of pointers on a
strand occurs even as the micellar material along that strand
continues to flow into other strands by constrained diffusion

since the stress is stored in the tube segments, not the micel-
lar material. Strand breakage creates new dangling ends and
releases pointers on that strand to move again. Thus, by track-
ing the unrelaxed portions of micelles (marked by pointers),
the above pointer algorithm provides the only opportunity
at present to simulate the linear viscoelastic properties of
well-entangled branched micellar solutions with a hierarchy
of length and time scales.

E. Simulation setup and equilibration

A typical simulation starts by equilibrating an exponen-
tial distribution of linear micelles [55–57] of average length
〈L〉in via micellar reactions, constrained diffusion, and bud-
sprouting processes. To obtain robust statistics, N = 2000
micelles, initially all linear, are used, each of which may grow
into branched micelles that can consist of multiple strands.
Like our previous work on linear micelles [36–38,48], a unit
length ls, comparable with the persistence length lp, is used
to discretize the locations of breakage and budding points
along the micelle. A cutoff length Lc = 5〈L〉in is also cho-
sen as the maximum initial micelle length allowed in the
ensemble to prevent the appearance of giant micelles with
probability <0.5% in the ensemble. Given the total number
N of micelles and maximum allowable length Lc in the initial
linear ensemble, ls can be chosen such that its value (see
Eq. (S6) in the Supplemental Material [58]) has minimal effect
on the macroscopic relaxation, as confirmed by our simula-
tions. Details regarding simulation setup and data processing
can also be found in the Supplemental Material [58].

As illustrated in Fig. 4(a), branched micelles are formed
from initially linear micelles during the equilibration. To
increase the efficiency in approaching equilibrium while
avoiding the artificial effects of imposing rigid cutoffs,
two dynamically varying cutoffs are set, i.e., the maxi-
mum allowed number of branched junctions per micelle Jc

and the maximum length of a strand contained in a mi-
celle Sc. Here, Jc (= 5〈J〉 = 5β〈M〉) and Sc (= 5〈S〉) vary
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FIG. 4. (a) Evolution of micelle ensemble showing attainment of the well-equilibrated composition with final average strand length 〈S〉 =
0.645 µm and branching level β = 0.595 per µm. Note that the equilibration starts from an ensemble of linear micelles of average size
〈L〉in = 2.50 µm with breakage/fusion time kbr = 4.0 per µm of micelle, semiflexibility αe = 2 (the ratio of the entanglement length le to the
persistence length lp), and lp = 50 nm. After equilibration, this yields (b) the strand length distribution and (c) the micelle number density
and number of branched junctions per micelle as functions of micelle size. Note that, in (b), the overlap of three different types of strand
length distribution plus their linearity on a semilog plot are the result of their creation by a Poisson random process, while (c) shows that the
distributions of micelle size become noisy for giant micelles (M > 10 µm) due to the small number of them in the ensemble.

dynamically during the simulation in response to changes
in their corresponding ensemble-averaged values. With equal
rates of stochastic breakage and fusion events, the equilibra-
tion process holds the average micelle size 〈M〉 or length
of all strands of a micelle fixed, and 〈M〉 = 〈L〉in (the aver-
aged length in the initial linear ensemble before equilibration)
which remains fixed because of the equal rates of micelle
breakage and micelle fusion imposed by the algorithm. Due
to the stochastic nature of creation and destruction of branch
junctions and ends, at equilibrium, the length of a micelle
strand must obey a Poisson (i.e., exponential) distribution
with identical average length 〈S〉 regardless of its type, i.e.,
whether it is a linear micelle, a dangling arm, or an inner
backbone, as shown by Fig. 4(b). The overall micelle size
distribution, in Fig. 4(c), contains both many micelles that are
too short to have many branches as well as a few, but very
large, micelles with multiple branches due to fusion at a rate
proportional to the number of branch ends. Since 〈S〉 and the
branching density β are independent equilibrium parameters,
empirical correlations to better guess their values from 〈M〉

and the budding time τ̄bud (a kinetic parameter), which must
be set before equilibration, are established as elaborated in the
Supplemental Material [58].

III. MATERIALS AND EXPERIMENT

A. Materials

To infer the presence of branches by examining the changes
in linear rheology with added salt, a series of micelle solu-
tions was made with the same volume fraction (φ = 4.02%)
but various concentrations of NaCl (with the total counterion
concentration [Na+] from both salt and surfactant ranging
from 0.801 to 1.101 M). The surfactant solutions contain two
types of surfactants, SLE1S and CAPB, along with a simple
salt (sodium chloride, NaCl). SLE1S [see Fig. 5(a)] is an
abbreviation for commercial sodium lauryl ethylene glycol
sulfate (SLES, industrial grade) with one ethoxyl group (EO)
on average (but with a distribution of the number of EOs rang-
ing from 0 to 10). CAPB [see Fig. 6(b), industrial grade] is a
zwitterionic cosurfactant. The weight ratio of SLE1S/CAPB
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FIG. 5. The chemical structure for (a) sodium lauryl one ether sulfate (SLE1S) and (b) cocamidopropyl betaine (CAPB).

in the solution is fixed at 8.57. The activity of the SLE1S paste
was verified using potentiometric anionic surfactant titration,
ASTM D4251. All the samples were then well mixed at ratios
designed to produce the desired surfactant and salt concentra-
tions in the Supplemental Material [58] and allowed to rest
overnight for degassing prior to measurements.

B. Macrorheology

An MCR-702 TwinDrive rheometer (Anton Paar) equipped
with a 50-mm-steel 0.5° cone and plate was used for mea-
surements. The zero-shear viscosity was measured in a flow
experiment at low frequency, where a low-shear viscosity
plateau was observed. The frequency sweep measurements
were conducted with logarithmic variation in the applied
strain amplitude through a built-in RheoCompass software.
Such a variation in the strain amplitude maximizes the torque
signal at lower frequencies while minimizing the effects of
inertia at high frequencies within the linear viscoelastic range
of the samples. The counterrotation mode was also used to
divide the total strain amplitude between the upper and lower
drive which helps limit inertial effects at high frequencies. The
drive, system geometry, and motor were all calibrated or cor-
rected prior to measurement. Only data where the measured
torque deviates from the lower-drive-electric torque by <2%
were included (which is the recommended criterion by Anton
Paar). We sampled 10 data points per decade of frequency
to obtain enough information in a reasonable time. Samples
were freshly loaded each time, and a solvent trap was used
to prevent solvent evaporation near the edge. All rheological
measurements were performed within the linear viscoelastic

regime at 25 °C. Each sample was remeasured, and the stan-
dard deviation of each rheological measurement was found to
be <5%.

C. DWS

As an optical microrheology approach, DWS was also ap-
plied to observe the high-frequency behavior (10−105 rad/s)
of micelle solutions. Details about DWS can be found in
Refs. [30,37,48,59]. The wavelength of light used in the DWS
was 532 nm. Solutions of sulfate latex particles (8.2 wt.%,
analytical grade, from Life Technology) with a bead size of
600 nm were used as molecular probes with final bead con-
centration at 0.5 wt.%. These beads, made of IDC polystyrene
latex with a hydrophobic surface, were stabilized with a low
level of sulfate charges (thus rendering the beads negatively
charged) and were surfactant free. The samples for DWS
measurement were well mixed with 0.5 wt. % beads before
adding 10 wt. % NaCl solutions to avoid shocking of the
samples. A high-speed vortex mixer was also used to ensure
the homogeneity of the samples. After 12 h of equilibration,
scattering from the sample was measured in a 5 mm glass cell
on an LS Instruments RheoLab 7.1.0 system. The transport
mean free path l∗ (=552 µm) was determined from the control
sample with the same size beads in water.

D. Combining mechanical rheology with DWS

When combining the high-frequency rheological data from
DWS with the lower-frequency data from mechanical rheome-
try, ideally, the two sets of data should overlap at intermediate
frequencies (10–100 rad/s). However, it is now well accepted

FIG. 6. The experimental measurements for (a) G′ and (b) G′′ of micelle solutions with the same surfactant volume fraction [4.04% sodium
lauryl one ether sulfate (SLE1S) + cocamidopropyl betaine (CAPB)] but different concentrations of [Na+]. The corresponding values of η0 is
plotted in the inserted plot, each coded with the same color as the corresponding rheological curves.
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FIG. 7. Dependence of zero-shear viscosity η0 as a function of (a) branching density β at a series of fixed micelle sizes 〈M〉 (in µm) and
(b) average strand length 〈S〉 at fixed β. The dotted lines in the log-log plot of (b) are power law fits with the exponent indicated. Note that
η0 values are extracted from the terminal regions of G′ and G′′ curves given by Fig. S5 in the Supplemental Material [58] with breakage rate
kbr = 4.0 per µm of micelle, semiflexibility αe = 2, and persistence length lp = 50 nm. 〈M〉 can be calculated from the values of 〈S〉 and β

since only two of these parameters are independent. Small statistical errors (1–2%, shown in Fig. S6 in the Supplemental Material [58]) and
obtained by repeating simulations (see Supplemental Material [58] for details) are within the size of the symbols.

that the microrheology overestimates or underestimates the
elastic modulus due to slip and the compression of fluid at
the interface between particle probe and viscoelastic medium
as well as the formation of particle-micelle aggregates [2,59].
Consequently, to merge DWS data with the mechanical data
requires that the magnitudes of G′ and G′′ from DWS be
shifted by a factor that depends on the specific frequency
range over which the two datasets overlap. The following
procedure is therefore used to obtain the combined G′ and G′′
curves: (a) Mechanical rheometric data outside of a frequency
window of 0.5–100 rad/s was removed, beyond which the data
are subject either to the effect of inertia (at high frequency) or
to low signal-to-noise ratio (at low frequency). (b) Truncation
of DWS data is carried out at low (<10 rad/s due to poorly re-
solved terminal behavior) and high frequency (>20 000 rad/s
due to the limitation of Brownian motions of probe particles).
(c) The remaining DWS data are eventually shifted vertically
to allow for the best overlap with those from mechanical
rheometry at frequencies between 50 and 150 rad/s. The
resulting 6-decade frequency spectrum of rheological moduli
G′ and G′′ for a 4.04% SLE1S + CAPB solution is obtained
with the corresponding η0 shown in Fig. 6.

IV. RESULTS AND DISCUSSION

A. Scaling behaviors for micellar viscosity

Given the details on data acquisition and the associated
time-to-frequency transformation in the Supplemental Mate-
rial [58], the flow properties of a micelle solution can be
simulated for a well-equilibrated ensemble containing 2000
micelles, each of which may contain multiple and hierarchical
branches. In Fig. 7, we present scaling laws of the zero-shear
viscosity η0 (extracted from the terminal region of G′ and G′′
curves, see Supplemental Material [58] for details) as func-
tions of a set of micellar parameters including strand length
〈S〉, branching density β, and the average size of micelle 〈M〉.

In Fig. 7(a), we find that viscosity decreases with increasing
β for fixed micelle size 〈M〉. Thus, as the span of the micelle
from one end to the other is decreased, a micellar segment has
a shorter distance to slide by reptation to get from the interior
of the micelle to its exterior, where it can relax. Thus, our
results confirm the prevalent idea that relaxation is accelerated
and viscosity is decreased in branched micelles relative to
linear micelles of the same overall size 〈M〉 by the sliding
of material through junctions [27,53,60]. However, Fig. 7(b)
shows the increase in zero-shear viscosity η0 with increasing
average strand length 〈S〉 is much steeper at larger branch
density β. This contradicts the conclusion of Khatory et al.
[52] Lequeux [53], and Lequeux and Candau [60] that this
dependence should be independent of β, i.e., the viscosity of
a solution of branched micelles with average strand length 〈S〉
should be the same as that of a solution of linear micelles
with average length 〈S〉. An intuitive explanation for the above
steepening of the power law with increasing β is that an in-
crease in 〈S〉 for a highly branched system adds exponentially
to the micellar material located far from the high-mobility
micelle ends and thus is slower to relax.

B. Effect of micellar breakage/fusion on solution viscosity

The effects of micelle breakage/fusion time τ̄br (equivalent
to 1/kbr〈M〉) on η0 and the corresponding rheological moduli
G′ and G′′ of branched micelles are illustrated in Fig. 8. The
increase of viscosity with increasing τ̄br shows a power-law
exponent of 0.48, which is consistent with that of the Cates
theory (0.5) for linear micelles [55,56]. We find that the av-
erage strand length 〈S〉 and branching density β are nearly
unaffected by a change in the breakage/fusion rate in Fig. 8,
which is anticipated given that τ̄br is a kinetic rather than a
thermodynamic parameter. Here, G′ and G′′ shift horizontally
with increased τ̄br except at very high frequencies, where an
overlap is observed. This indicates that the relaxation can be
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FIG. 8. The effects of micellar reaction time τ̄br (s) on zero-
shear viscosity η0 (inserted plot), with each point given the color
also used to plot G′ (dashed lines) and G′′ (dot-dashed lines) vs
frequency ω for branched micelles with identical average strand
length 〈S〉 = 0.96 µm and branching level β = 0.38 per µm. The
ensemble for these simulations was obtained by equilibrating a lin-
ear micelle ensemble of average size 〈M〉 = 3.50 µm with τbud =
0.2 ms, semiflexibility αe = 2, and persistence length lp = 50 nm.
The upward shift of G′′ with increasing τ̄br at low frequencies yields
the increase of η0 with a power-law exponent of 0.48 (R2 = 0.963)
in inserted panel.

effectively accelerated by increasing kbr (i.e., by decreasing
τ̄br), but the microstructure of the micelles remains unaffected
when the semiflexibility ratio αe (the ratio of entanglement
to persistence length le/lp) and the persistence length lp are
held constant. In other words, the breakage/fusion time τ̄br

reflects the living character of the micellar solution, whose
magnitude can be inferred from the deviation of the relaxation
behavior from a single-mode Maxwellian model [55–57], and
is therefore relatively unaffected by branching. The more mi-
croscopic parameters, namely, the persistence length lp and αe

(ratio of entanglement length le to lp), based on our previous
findings [36–38,48], are extracted from rheological data at
high frequencies at which the rheology is also insensitive to
branching.

However, as illustrated by Fig. 8 (and additionally in
Fig. S5 in the Supplemental Material [58]), the frequency
dependence of the linear moduli G′ and G′′ of branched mi-
celles is very similar to that of linear micelles. It can thus
be anticipated that a given pair of G′ and G′′ curves can be
fit equally well by either allowing for or ignoring branching,
simply by adjusting other micelle parameters. Although the
fit of the rheology for branched micelles using a model for
linear ones gives a pseudo micelle size 〈M〉 that is much lower
than the true value for the branched micelles, without knowing
the extent to which topology and other micellar properties
can vary with salt concentration or other solution properties,
linear rheology alone is insufficient to differentiate the ef-
fect of branching from other parameters of entangled micelle
solutions.

C. Estimation of degree of micellar branching

Since the linear rheology can be fit well by ignoring
branches, a possible method to infer their presence is to

examine the changes in linear rheology with added salt, using
an assumed dependence of other micelle properties on salt
concentration. Here, linear rheology of micelle solutions (with
the same volume fraction φ = 4.02%) was obtained by the
combination of optical microrheology and mechanical rheom-
etry at a series of salt concentrations. A linear micelle regime
of the above surfactant solutions was studied in our previ-
ous work with a similar experimental protocol [38,48,61].
Details regarding the micellar material and the associated
rheological measurements can be found in the previous
section.

According to Fig. 6 (inserted plot) or Fig. 9(a), a maxi-
mum in η0, i.e., the so-called salt peak, at [Na+] = 0.851 M,
was observed beyond which the effect of branching becomes
dominant as confirmed by SANS [47]. We seek to quantify
the topology of micelles by first fitting linear rheology data
by assuming pseudo linear micelles with average length 〈L〉
as shown by the × symbols in Fig. 9(b). The corresponding
estimates of other branching-independent micellar properties,
i.e., reaction time τ̄br, entanglement length le (= αelp), and
persistence length lp, are given in Figs. 9(c) and 9(d): A
decrease in le is observed with nearly constant lp at high ratios
of [Na+]/[SLE1S + CAPB]. This results in a slight increase
of entanglement modulus with increasing salt concentration,
indicating micelles are more densely entangled with smaller
entanglement spacing, possibly due to stronger electrostatic
screening at higher salt concentration.

Taking as examples two micelle systems on the right side
of the salt peak, with [Na+] = 0.901 and 0.950 M (and
results for other salt concentrations given in Fig. S7 in the
Supplemental Material [58]), the model predictions under the
assumption of linear micelles (given by the dashed lines)
match well with the experimental measurements (denoted by
hollow symbols) over six decades of frequency in Figs. 9(e)
and 9(f). However, since we show below that similar fitting
is obtained when allowing branching, additional information
is required to estimate the true micelle size 〈M〉. This can be
achieved by extrapolating the micelle size 〈M〉 = 〈L〉 obtained
for the two salt concentrations on the left side of the salt curve
in Fig. 9(b) to the right side of the salt curve. The extrapolation
is carried out here by assuming a linear dependence on salt
concentration of scission free energy Esc (i.e., the free energy
to break a cylindrical micelle, creating two new endcaps) [48]
using 〈M〉 ∝ exp(Esc/2kBT ).

This allows us to estimate the true average micelle size 〈M〉
beyond the salt peak [denoted by + in Fig. 9(b)] in contrast
to the apparent decrease of the pseudo length 〈L〉 obtained
when fitting without allowing branches [i.e., × symbols in
Fig. 9(b)]. The branching density β can then be obtained by
fitting to the experimental measurements in Figs. 9(e) and 9(f)
with average strand length 〈S〉 determined by its dependence
on 〈M〉 and β. Detailed values of scission free energies Esc,
micelle sizes 〈M〉, strand lengths 〈S〉, and branching densities
β at various [Na+] are listed in Table S1 in the Supplemental
Material [58].

As also illustrated in Figs. 9(e) and 9(f), the good fits
obtained by allowing for branches (filled symbols) and the
corresponding values of 〈S〉 and β indicate that obtain-
ing branching parameters from linear rheology is under
determined unless additional information is provided. The
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FIG. 9. (a) The experimentally measured zero-shear viscosity η0. (b) The pseudomicelle length 〈L〉 and true micelle size 〈M〉 (from
an assumed linear dependence of scission free energy Esc on [Na+]), (c) micellar breakage/fusion time τ̄br, and (d) the entanglement le

and persistence length lp, extracted by fitting the pointer algorithm to the rheology assuming linear micelles. (e) and (f) Experimental
measurements and corresponding fits assuming no branches (dashed lines) and allowing for branches (filled symbols) for rheological moduli
G′ and G′′ of micelle solutions at 25 ◦C with the same surfactant volume fraction (4.04%) with (e) [Na+] = 0.901 M and (f) [Na+] =
0.951 M, each coded by a color also used in (a)–(d). Note that the inserted tables show the estimates for the branching-associated topological
parameters: average strand length 〈S〉 and branching density β whose values are determined under the assumption that τ̄br, le, and lp are
unaffected by the presence of branching. Error bars of the parameters (c) and (d) estimated from rheology are based on their insensitivity
percentages. This is the percentage by which the parameter can be allowed to vary from the best-fit value while retaining an average absolute
fitting error <10%, with other parameters allowed to adjust to compensate to the extent possible. (The slightly better fit to the data obtained
from the linear micelle model is due to the better optimization for this model than for the more expensive branched micelle model.)

assumptions made above (i.e., that micelle scission free
energy increases linearly with increasing salt concentration)
provide an example of how this can be done. Of course, the
method needs to be checked and possibly corrected, in case
the scission free energy is not linear in salt concentration
or other micelle parameters vary with salt differently than
assumed here. We believe that nonlinear rheological data fitted
using a nonlinear model, such as the recent adaptation of the
slip-spring model to micelles proposed by Sato et al. [62],
may provide a means to validate and improve our estimation
of branching parameters.

V. CONCLUSIONS

We presented a mesoscopic model for the relaxation and
linear rheology of branched micelle solutions, which we used
to model the nonmonotonic dependence of viscosity on salt
concentration observed for many surfactant solutions. We
modeled the evolution of branched micelles by combining

branch formation and dynamics with diffusion of micelles
within entanglement tubes, with micellar scission and fu-
sion reactions taken from our previously developed pointer
algorithm for entangled linear micelles. Analogously with
the Kirchhoff circuit model, our constrained diffusion model
maps the micelle topology onto a bidirectional connectivity
matrix that tracks reptation of micellar mass through branch
junctions under the constraint of no accumulation of sur-
factant at the branch point. Branch formation from a linear
segment is introduced and controlled by an associated branch
budding time scale and thus offers an avenue towards ana-
lyzing micellar solutions containing very large and complex
branched clusters with up to hundreds of branch points and
tens of microns in size.

The result is a mesoscale simulation model for the rheology
of a branched micellar solution with independent parameters
to account for micelle size and topology (i.e., average strand
length 〈S〉 and branching density β), reaction kinetics kbr,
dimensionless entanglement spacing αe, as well as the micelle
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flexibility (persistence length lp). This model allows the deter-
mination of scaling exponents for micelle solution viscosity
against micelle strand length, or branching density, results that
are difficult or impossible to determine experimentally. Our
results clearly demonstrate shear viscosity scales differently
with end and branch-point densities during the transition from
linear to branched structure. The scaling exponent for viscos-
ity as a function of strand length 〈S〉 (a strand is a portion of
the micelle terminated on each end by either a micelle end or a
branch point), increases dramatically for micelles with higher
branching densities and thus contradicts the hypothesis that
the viscosity of a solution of branched micelles is the same
as that of linear micelles whose mean length equals the strand
length of the branched micelles.

The model also offers a practical method for inferring
properties such as micelle size, branching density, and break-
age rate from their linear rheology. Assuming a linear
dependence of the scission energy on the added salt concen-
tration and that other micelle parameters including breakage
time are the same as those obtained by fitting rheology
using a code for linear micelles, the commonly observed
decrease in solution viscosity at increased salt concentra-
tion can be fitted by allowing for increasing branching with

increasing salt concentration. This demonstrates that, by fit-
ting the experimental linear viscoelastic data (i.e., G′ and G′′)
over a range of salt concentrations on the low-salt side of the
diagram where branching can be neglected, the dependence of
micelle scission free energy can be inferred and extrapolated
to the high-salt side, thereby allowing the branching density
as a function of salt concentration on the high-salt side to
be inferred. Checking the assumptions underlying this ap-
proach, for example, using nonlinear rheological data, should
be a high priority for future work. This model thus provides
an important step toward establishing the structure-property
relationship for entangled micellar solutions over the entire
range of salt curve.
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