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Supercurrent interference in HgTe-wire Josephson junctions
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Wires made of topological insulators (TI) are a promising platform for searching for Majorana bound states.
These states can be probed by analyzing the fractional ac Josephson effect in Josephson junctions with the TI
wire as a weak link. An axial magnetic field can be used to tune the system from trivial to topologically nontrivial.
Here, we investigate the oscillations of the supercurrent in such wire Josephson junctions as a function of the axial
magnetic field strength and different contact transparencies. Although the current flows on average parallel to the
magnetic field we observe h/2e, h/4e, and even h/8e periodic oscillations of the supercurrent in samples with
lower contact transparencies. Corresponding tight-binding transport simulations using a Bogoliubov–de Gennes
model Hamiltonian yield the supercurrent through the Josephson junctions, showing in particular the peculiar
h/4e-periodic oscillations observed in experiments. A further semiclassical analysis based on Andreev-reflected
trajectories connecting the two superconductors allows us to identify the physical origin of these oscillations.
They can be related to flux-enclosing paths winding around the TI nanowire, thereby highlighting the three-
dimensional character of the junction geometry compared to common planar junctions.

DOI: 10.1103/PhysRevResearch.5.043021

I. INTRODUCTION

U0 = 600 meV nm In wires made from a three-dimensional
topological insulator (3DTI) the topological surface states
form a two-dimensional conducting electron layer that en-
velops the bulk. The energy spectrum of these wires features
a gap at zero magnetic field which closes when an axial
magnetic flux of φ0 = h/2e threads the wire cross section
[1–5]. With closing of the gap, a nondegenerate perfectly
transmitting mode appears, rendering the wire’s band struc-
ture topologically nontrivial. Whereas semiconductor wires
with strong spin-orbit interaction are the prevailing material
platform so far to search for Majorana bound states ([6–9] and
references therein), mesoscopic wires made of TI material are
a promising alternative [10–16]. Recent experiments utiliz-
ing the fractional Josephson effect in HgTe-based Josephson
junctions (JJ) indeed provided evidence that the 4π -periodic
supercurrents observed for an axial magnetic flux > φ0/4 are
of topological origin [17]. In these experiments two supercon-
ducting contacts are placed across a HgTe wire with the TI
wire constituting the normal region forming a JJ.
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So far, semiconductor wires with strong spin-orbit inter-
action have been the prevailing system class to search for
topological superconductivity. The JJ built from such wire
structures and their behavior in a magnetic field have been
investigated, for instance, in Refs. [18–24]. Related work is
also available on JJs made from Cd3As2 [25] or Bi2Se3 [26]
wires and (Bi, Sb)2Te3 nanoribbons [27].

Here, we investigate the evolution of supercurrent interfer-
ence in HgTe wire-based JJs as a function of an axial magnetic
field. The supercurrent flows between the two superconduct-
ing contacts along the TI and is driven by the difference ϕ

of the superconducting phase between the two contacts. In the
presence of an axial magnetic field the supercurrent amplitude
oscillates as a result of interference between Andreev bound
states acquiring different phases along their quasiclassical
trajectory between the superconducting contacts [28]. In the
case of a junction with the magnetic field perpendicular to the
supercurrent, the supercurrent oscillations are described by
Ic(φ) = Ic(0)|sin(πφ/φ0)/(πφ/φ0)|, identical to the Fraun-
hofer pattern of a single slit experiment. Such a pattern is
not expected for the TI-wire JJ mentioned above, since the
current flows on average parallel to the magnetic field and
the shortest ballistic trajectories should not pick up any phase
from the magnetic flux. Remarkably, we find oscillations in
the supercurrent which are h/2e, h/4e, and even h/8e peri-
odic, thus constituting a highly unusual interference pattern.
While h/2e oscillations have been observed in the supercur-
rent of diffusive Aharonov-Bohm rings in a perpendicular
magnetic field [29], the interference mechanism is different
here because the average current flows parallel to the magnetic
field direction, and transport is mostly ballistic. Below we
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FIG. 1. Sample layout, excess current, and critical current vs. magnetic field B. (a) Cartoon of the sample layout showing the HgTe wire
and the two Nb contacts which form the Josephson junction in axial cut and top view. The niobium leads are in direct contact with the top and
side surface of the HgTe. The topological surface states are shown in red. The magnetic field is oriented parallel to the axis of the wires. (b) I-V
trace of nanowire G (black trace) for B = 0 at a temperature of 27 mK. For high bias voltages, the slope represents the normal-state resistance
RN , while for lower voltages Andreev reflections influence the trace resulting in an excess current Iexc = 2.2 µA. The superconducting gap �

can be extracted from the curve as the trace starts to deviate from the constant normal-state resistance (red curve) if eV < 2� ≈ 1.8 mV. With
these values the parameter Z ≈ 0.98 is estimated. Thus, the transparency is given by D ≈ 0.51. (c) Color map of the differential resistance
dV/dI of sample G as a function of the current I and the magnetic flux φ/φ0 (φ0 = h/2e). For sample G, φ/φ0 corresponds to B ≈ 36 mT.
Superconducting regions are shown in blue. The critical current oscillates with a period φ0/2, while the side maxima at φ = φ0 are most
pronounced. (d) Color map of the differential resistance dV/dI of sample G up to higher values of the magnetic flux. For φ/φ0 > 3, additional
maxima appear resulting in a φ0/4 periodicity.

relate these findings, both experimentally and theoretically in
a consistent way, to the three-dimensional JJ geometry and the
coupling of the superconducting contacts to the TI wire.

II. DEVICE PARAMETERS AND EXPERIMENTAL SETUP

We considered nine devices (labeled A–J, ordered by
descending JJ transparency D) made from wafers with an
80 nm thick, strained HgTe film, which is grown on CdTe
by molecular beam epitaxy. A thin Cd0.7Hg0.3Te buffer layer
was introduced in between to improve the quality of the
samples [30]. Finally, the wafers are capped by Cd0.7Hg0.3Te
and CdTe. Figure 1(a) a sketches the wafer structure and
the device. Typically, the Fermi level μ is located at the top
of the valence band, and surface electrons as well as bulk
holes coexist. The electron density is of order ne ∼ 1011 cm−2.
Additionally, In-doping was added to the Cd0.7Hg0.3Te layers
for specific wafers (samples D, G). This increases the electron
density up to one order of magnitude, since the Fermi level
μ is shifted to the conduction band. While bulk electrons
and holes may contribute to the supercurrent (see [17] and

corresponding Supplemental Material) they play no role in
the effect discussed here, as interference of bulk states does
not cause, e.g., h/2e-periodic oscillations. We fabricate the
nanowires using electron beam lithography and wet-chemical
etching [17,31]. Due to the wet-chemical etching, the wires
have a trapezoidal cross section. In the following, we use
the average width, which typically ranges between 500 nm to
700 nm. The wire perimeter is always shorter than the phase
coherence length, which is of the order of several microns
[31], and transport is thus coherent. The superconducting Nb
(∼60 nm–80 nm) contacts are placed on the surface of HgTe
after removing the capping layers by wet-chemical etching. To
enhance contact quality, we clean the HgTe surface by gentle
in situ Ar+-sputtering and add a thin Ti layer (∼3 nm), grown
in situ by thermal evaporation, below the Nb. As Nb tends
to oxidize, we add a thin layer of Pt (∼3 nm) to protect the
Nb. The distance between adjacent superconducting contacts
is between 50 nm to 240 nm. The samples are cooled down
in a dilution refrigerator with a base temperature of 27 mK.
The B-field is aligned parallel to the wire’s axis so that the
magnetic flux through the wire is φ = BA, where A is the
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TABLE I. Sample transparencies and geometries. Junction width
w, length L, and width WS of the deposited superconducting niobium
fingers for samples A–J, ordered by sample transparency D.

Sample A B C D E F G H J

D 0.70 0.66 0.64 0.63 0.62 0.57 0.51 0.49 0.43
w [nm] 450 900 570 600 470 700 700 540 520
L [nm] 50 160 100 180 65 70 110 40 240
WS [µm] 1.3 1.3 1.3 1.3 2.3 4.3 0.6 4.3 0.6

cross-sectional area of the wire. The measurements are taken
using standard dc techniques, while the dc lines are filtered
by π -filters at room temperature and Ag-epoxy filters [32]
as well as RC-filters in the mixing chamber. The differential
resistance dV/dI is measured by superimposing the dc bias
with a small ac signal using lock-in amplifiers.

The transparency of the superconducting contacts is de-
termined by voltage-biased measurements. An I-V trace,
exemplary shown for sample G, is plotted in Fig. 1(b). The
slope of the trace stays constant and represents the normal-
state resistance Rn for bias voltages V > 1.8 mV, while for
lower voltages Andreev reflections modify the slope [33,34].
The change of the resistance gives an estimation for the super-
conducting gap of Nb � = eV/2 ≈ 0.95 meV. The additional
current flowing across the junction is the excess current Iexc =
2.2 µA. With the extracted values we calculate eIexcRn/�, and
extract the dimensionless parameter Z which describes the
average transparency D = 1/(1 + Z2) using the expression of
Niebler et al. [35], which is based on the work of Flensberg
et al. [36] and the OBTK theory [34]. The typical measure-
ment error to determine D is about 2%. Inserting the values
of sample G, we get Z ≈ 0.98 and D ≈ 0.51.1 An overview
of the individual sample geometries and transparencies is
displayed in Table I.

III. EXPERIMENTAL RESULTS

In a Josephson junction, a magnetic field parallel to the
current direction is expected to act as a pair-breaker [37–39].
In this scenario, the critical current of the device decreases
monotonously with increasing magnetic field strength. For
some of our devices, however, we found a strong modulation
of the critical current IC as a function of the axial magnetic
field B. Figure 1(c) presents a color map of the differential
resistance dV/dI for sample G as a function of current I
and magnetic flux φ, threading the cross-sectional area of
the nanowire. This device has a critical current IC ≈ 600 nA
and shows the most prominent oscillations of IC . With the
width of the wire w ≈ 700 nm, one superconducting flux
quantum φ0 = h/2e corresponds to B ≈ 36 mT. Blue regions
in the color map illustrate superconducting states. The pattern
displays maxima of IC for φ = n · φ0/2 with n an integer,
while IC is fully suppressed in between them. Furthermore,

1We are aware that OBTK theory fails for low junction transparen-
cies, because it does not correctly take into account interferences
from multiple reflections (see, e.g., [13–15] in the supplement to
[17]).

the maxima at multiples of φ0 are more pronounced than the
φ0/2 maxima. Data of the same device up to higher fluxes
are shown in Fig. 1(d). Here, additional maxima at φ = n ·
φ0/4, n ∈ Z, appear. The h/4e periodicity eventually changes
to h/8e at higher magnetic fields. The envelope of this pattern
can be ascribed to the expected pair-breaking mechanism.
We note at this point that roughly h/2e periodic oscillations
were observed by Stampfer et al. and ascribed to oscillations
of the transmission due to the conventional Aharonov-Bohm
effect [24]. Nonmonotonic behavior of IC (B) with multiple
nodes and lobes but without clear periodicity were observed
in semiconductor nanowire JJs in an axial field [19,20].

Only a fraction of the investigated junctions show an oscil-
latory interference pattern of the critical current as a function
of the flux, while the critical current monotonously decreases
with the magnetic field for other samples. Even the exact
shape and periodicity of the pattern, if it exists, differs for var-
ious devices. Therefore, we will analyze the emergence of the
IC (B) oscillations in the following for different experimental
parameters like contact transparency and gate voltage.

A. Gated devices

Figure 2(c) shows the data of sample J. This device has
a critical current IC = 136 nA and an average transparency
D = 0.43, while one flux quantum φ0 = h/2e corresponds to
B ≈ 50 mT. For this sample we also observe IC (φ) oscilla-
tions. However, only maxima at φ = n · φ0 are visible leading
to a h/2e periodicity. For more detailed studies, a top gate
was added to the junction. This allows to investigate the IC (φ)
oscillations as function of the gate voltage VG. The structure
of a gated device is sketched in Fig. 2(a). An insulator made
of ∼30 nm SiO2, grown by plasma enhanced chemical vapor
deposition, and ∼100 nm Al2O3, grown by atomic layer depo-
sition, was deposited above the junction. The top-gate voltage
VG is applied via a metallic Ti/Au layer. Figure 2(b) shows
the critical current IC as a function of the top-gate voltage
VG. By tuning VG from 0 V to 3 V, IC increases by a factor
∼1.7. Figure 2(d) illustrates dV/dI (φ, I ) of sample J for
VG = 3 V. Additional maxima appear at φ = (2n + 1) · φ0/2
in contrast to the data at Vg = 0. Hence, the h/4e periodicity
is recovered by increasing VG. This observation emphasizes
that the h/2e oscillations are the dominating ones and are
observable for any VG. The maxima at φ = (2n + 1) · φ0/2
cannot be resolved for Vg = 0 due to the low IC at these
positions. By increasing VG, the number of contributing chan-
nels increases and the increased IC enables to resolve IC at
φ = (2n + 1) · φ0/2. Compared to sample G, however, IC (φ)
oscillations with a period h/8e are not observable, although
the transparency of the devices are similar. Sample G was
fabricated from a doped wafer. Its electron density, and thus
the number of transport channels contributing to the signal, is
much higher than in the undoped sample J, even when the lat-
ter is gated at high voltages. This suggests that for observing
higher harmonics in the IC (φ) oscillations a sufficiently large
number of transport channels is necessary.

B. Influence of the transparency

In addition to differences in geometry, the transparency
of the superconductor/nanowire interface is the decisive
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FIG. 2. Gate dependence of IC (B) oscillations. (a) Sketch of the sample layout. An insulator and a metallic top gate is placed on top of the
junction. (b) The critical current IC increases for higher gate voltages VG. (c) Color map of the differential resistance dV/dI of sample J as a
function of the current I and the magnetic flux φ/φ0 at VG = 0. The critical current oscillates with a period of φ0. (d) The corresponding color
maps at VG = 3 V. Additional oscillations of IC appear recovering the φ0/2 periodicity.

parameter that differentiates the devices studied. Figure 3
shows color maps of the differential resistance dV/dI as a
function of the normalized current I/IC for several samples
with different transparency. The transparency was calculated
using the I-V characteristics, as explained above and explic-
itly demonstrated for sample G. Here, it should be mentioned
that the extracted transparency gives a value averaged over
all contributing transport channels. Thus, it can vary locally
at the superconductor/nanowire interface. In Fig. 3, the color
maps are ordered by the device transparency, descending from
higher to lower values from top left to bottom right, (a) → (i).
Moreover, the labeling of the devices A–J follows the labeling
in panels (a)–(i). Thus, devices A and B have the highest
transparencies, D ≈ 0.70 and D ≈ 0.66, among the samples
investigated. For these high-transparency devices the critical
current IC monotonously decays with increasing magnetic flux
φ. For samples with slightly lower transparency D ≈ 0.64 and
D ≈ 0.63, as in samples C and D, the monotonic decrease
of the critical current still prevails but an additional shoulder
comes out. This shoulder can be considered as a precur-
sor of the supercurrent interference appearing at still lower
transparencies. The oscillations start for device E (D ≈ 0.62).
Initially, IC decreases and is almost fully suppressed below
φ = φ0. Then, IC increases again and shows a maximum
around φ = φ0. The oscillations become more pronounced for
samples F (D ≈ 0.57), G (D ≈ 0.51), H (D ≈ 0.49), and J
(D ≈ 0.43) which have an even lower transparency.

These samples show clear IC (B) oscillations with periodic-
ities h/2e or h/4e. For samples G and J, the maxima appear
exactly at positions φ = n · φ0/2 and φ = n · φ0, respectively,
while the positions are slightly shifted for devices E and F,
where the observed oscillation periods deviate by about 10
percent of a flux quantum from h/4e and h/2e. For sample H,
the observed periodicity is approximately 20 percent smaller
than what one would expect from geometry. These deviations
occur in samples with much wider superconducting contacts
(see Table I), suggesting that the larger contacts might affect
the flux distribution in the junction.

Based on these experimental observations we conclude
that the transparency D is a phenomenological indicator that
determines whether IC (B) oscillations occur or not. The os-
cillations appear preferentially for samples with low average

transparency, while they are fully absent for high transparen-
cies.

IV. THEORY

To proceed we summarize the desiderata and key aspects
of the physical problem from a more theory-oriented point of
view:

(i) there must be sufficiently many open surface channels
between the two superconducting electrodes to ensure a fairly
high IC ;

(ii) a number of open channels must be sensitive to the
flux threading the nanowire cross section, otherwise no φ-
periodicity would show up;

(iii) imperfect contacts, representing barriers for the trans-
port electrons, suppress contributions from flux-insensitive
channels relative to flux-sensitive ones.

Based on these premises we first define the model geom-
etry, sketched in Fig. 4 and introduced in detail below. An
assumption that will turn out to be critical is that the Nb
fingers induce superconductivity only close to the contact
regions (shaded green areas in Fig. 4), i.e., the nanowire
bottom surface remains normal conducting.2 We will later
demonstrate that modes formed by Andreev retro-reflection
(partially) winding around the circumference of the 3DTI
nanowire pick up an Aharonov-Bohm phase and lead to the
experimentally observed supercurrent oscillations. To reach
our conclusions we combine semiclassical analytics with
tight-binding numerical simulations. Semiclassics allow us to
identify the fundamentals of the transport problems in terms of
families of electronic paths which enclose (or do not enclose)
a magnetic flux. This picture is validated by rigorous quantum
transport simulations based on a tight-binding implementation
of the corresponding Bogoliubov–de Gennes (BdG) Hamilto-
nian, see below. Our analysis shows that the relevant aspects
of the problem are geometrical (nonplanar surface conduction,
winding vs. straight propagation, nanowire perimeter not fully

2Except for the highest-quality samples, see the discussion in
Sec. V.
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FIG. 3. Impact of sample transparency on IC (B) oscillations. Color maps of the differential resistance dV/dI as a function of the current
normalized I/Ic and the magnetic flux φ/φ0 for different samples. The color maps are ordered by decreasing transparency of the junctions,
with the highest transparency shown in (a) to the lowest in (i). (a), (b) Samples A and B with high transparency (D ≈ 0.70 and D ≈ 0.66)
show no oscillations as a function of the magnetic field. (c), (d), (e) Intermediate transparencies in samples C, D, E (D ≈ 0.64, D ≈ 0.63, and
D ≈ 0.62, respectively): the shape of the critical current contour starts to deviate and first nodes and antinodes are observable. (f), (g), (h), (i)
Samples F–J with the lowest transparencies (D ≈ 0.57 to D ≈ 0.43) show distinct oscillations as a function of applied magnetic field.

superconducting), while the Dirac or trivial (quadratic) nature
of the carriers seems to play a secondary role.

A. Geometry and model

The upper panel of Fig. 4 shows the model geometry of the
3D nanowire JJ and the lower panel its unrolled surface. In the
figure, w and h denote the nanowire width and height, L the
junction length, and WS the width of the superconducting con-
tacts. We also introduce the perimeter P = 2w + 2h and the
interfacial boundary C = w + 2h which describes the length
of the perimeter covered by the superconducting contacts.

For the samples used in the experiment the detailed struc-
ture of the interfaces between normal and superconducting
parts is not known; presumably they are rather inhomoge-
neous with locally varying transparencies. Since we do not

have access to the transparencies at microscopic scales, we
minimize the number of phenomenological parameters by
using a simple effective model with δ-like barriers at the
interfaces between normal and superconducting parts,

U (z, s) = U0�(s)�(w + 2h − s)[δ(z) + δ(z − L)], (1)

in the transverse direction only. These barriers are marked
in orange in Fig. 4. They account for the fact that the
supercurrent oscillations appear in the less transparent
junctions; see Fig. 3. Indeed, the barriers turn out to be
essential for the observation and understanding of the
supercurrent oscillations with a flux-periodicity of h/4e.
Note that the presence of barriers which are stronger on
the upper nanowire section and weaker at the bottom are
compatible with the fabrication process, in particular with the
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FIG. 4. Geometry of the system used in the theoretical model.
The upper panel shows a 3D sketch of the nanowire Josephson
junction while the lower panel is a 2D sketch of the rolled out
and periodically continued nanowire surface. Regions with induced
superconductivity are shaded green, normal conducting regions gray.
Superconductivity is not induced around the whole circumference,
the bottom area is still considered as normal conducting. Additional
barriers used in the model are marked as vertical orange lines in the
lower panel. The different type of retro-reflected paths arising from
our semiclassical analysis, Sec. IV B, are shown in red, purple, and
blue, respectively.

incomplete removal of the HgTe capping layer from the top
surface. The complex physics of the interface between Nb and
capped/uncapped HgTe is simplified but, we think, essentially
captured by the presence of transverse δ barriers and the
absence of longitudinal ones—that is, at the horizontal lines
at s = w + 2h and s = 2(w + h) in Fig. 4. Note also that
strong barriers throughout would fully suppress Andreev
bound states and the associated supercurrent.

Starting from this geometrical model the JJ system is quan-
tum mechanically described by the Bogoliubov–de Gennes
Hamiltonian

H =
(

he �eiϕ

�e−iϕ hh

)
, (2)

where he and hh describe the electron and hole Hamiltonians
and � and ϕ denote the absolute value and phase of the pairing
potential.

The topological surface states are described by the Dirac
model Hamiltonian [2,40]

he/h = ±h̄vF

[
k̂zσx +

(
k̂s ± φ

φ0

π

P

)
σy

]
∓ μ ± U, (3)

the upper (lower) sign denoting the electron (hole) Hamilto-
nian. Here, z and s are the coordinates along the wire axis
and along the perimeter, and k̂z and k̂s the respective momen-

tum operators. Furthermore, μ is the chemical potential and
U denotes the barriers at the normal-superconducting (NS)
interfaces, see also below.

Only the nanowire surface in direct contact with the super-
conductor, shaded green in Fig. 4, is affected by the proximity
effect. Its bottom surface, grey in Fig. 4, remains normal.
Accordingly, the absolute value of the pairing potential is
modelled as follows:

� =
⎧⎨
⎩

�0 for 0 � s � C and −WS � z � 0,
�0 for 0 � s � C and L � z � L + WS ,
0 otherwise.

(4)

Furthermore, we assume that the thickness of the Nb contacts
is much smaller than the London penetration depth of Nb
such that no supercurrent develops around the perimeter and
the magnetic field is not screened. Thus, the superconducting
phase ϕ, defined only in the regions WS � z � 0 and L � z �
L + WS , satisfies

ϕ =
{

− 1
2ϕ0 + 2π

φ

φ0

s
P for −WS � z � 0,

+ 1
2ϕ0 + 2π

φ

φ0

s
P for L � z � L + WS

(5)

with ϕ0 being the phase difference between the supercon-
ducting leads across the Josephson junction and the unitary
transformation V (φ)H (φ)V †(φ) = H (0) holds for

V (φ) = exp

(
iπ

φ

φ0

s

P
τz

)
. (6)

The transformation also modifies the boundary condition of
the wave function

(V 
)(s + P) = ± exp

(
−iπ

φ

φ0
τz

)
(V 
)(s), (7)

necessary for the calculation of the Andreev bound states.
Note that Eq. (5) for ϕ can also be derived using Ginzburg-

Landau theory: The free energy density is proportional to the
supercurrent JS = −2(enS/m)(h̄∇ϕ + 2eA). Minimizing JS

leads to ∇ϕ = −2eA/h̄ [41–43].

B. Semiclassical analysis

1. Method

A semiclassical approach is justified in the limit kF L � 1,
which is fulfilled in our system, see Sec. IV D. We thus follow
the procedure from Ref. [28]. First we identify all classical
self-retracing trajectories � that arise from pure retro-
reflections at the left and right NS contacts. Such trajectories
are thus composed of electron-like and hole-like path seg-
ments. Each trajectory � is then assigned a wave mode bound
to a small tube of width λF = 2π/kF and contributes a current
of j(�) to the total current. The total current follows by
integrating the contributions j(�) over all paths � at the Fermi
surface. Choosing a cut z = zcut through the normal part, the
paths can be characterized by the s coordinate along this cut
and the axial wave number ks such that the integral reads [28]

I = 1

2π

∫
ds

∫
dks j(s, ks)

= kF

2π

∫
ds

∫
dθ cos(θ ) j(s, θ ) (8)

with θ the path angle with respect to the z direction.
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The expression (8) contains a significant simplification: It
does not account for specular normal reflection at the NS
interfaces, which would modify the definition of the current
in terms of paths. The inclusion of additional paths from such
normal reflections substantially complicates the calculations
of j(�) and I and requires the use of resummation techniques
beyond the scope of this work. Moreover, we will establish
a posteriori via quantum mechanical simulations that only
perfectly retro-reflected paths are particularly important. Note
also that there is no bending of the paths due to the B-field,
since the Lorentz force points perpendicular to the nanowire
surface. Finally, for simplicity we stick to the short junction
limit, L 	 ξ = h̄vF /�0, although we expect our findings to
qualitatively hold for long junctions as well.

2. Classification of the trajectories

The classical trajectories can be divided into different cat-
egories. First, we can assign a “crossing number” n to each
path which counts the crossings through the nonproximitized
bottom surface. Formally, one can define a line cut s = scut

with C < scut < P and count the (directed) crossings through
this cut. We emphasize that this integer n does not correspond
to a proper winding number around the perimeter. It only
counts the transverse crossings of the nonproximitized bottom
surface.

Second, we can group the paths according to their start and
end points, see Fig. 4:

(1) Type-1 paths start and end on the z = 0 and z = L NS
interfaces;

(2) Type-2 paths are “mixed” paths, where start and end
points are located on a z = const and a s = const interface;

(3) Type-3 paths comprise paths with start and end points
on the s = 0 and s = C interfaces.

Type-2 paths can be further subdivided into type-2L and
type-2R paths, where type-2L paths start on the z = 0 in-
terface and type-2R paths end on the z = L interface. It is
important to notice that type-2 and type-3 paths only exist for
n 
= 0, in other words there are only type-1 paths with n = 0.

For given initial coordinates (s0, z0) and final coordinates
(s1, z1), the trajectories are parametrized as

s(t ) = s0 + t
ks

kF
and z(t ) = z0 + t

kz

kF
, (9)

where the wave numbers satisfy

kz

ks
= z1 − z0

s1 − s0
and k2

z + k2
s = k2

F . (10)

3. Current contributions

To calculate the current contribution j(�) for each classical
trajectory �, we employ the scattering matrix formalism intro-
duced by Beenakker for one-dimensional Josephson junctions
[44]. In the short junction limit L → 0, one gets for the ener-
gies of the the Andreev bound states (ABS) [44,45]

E = ±�0

√
1 − τ sin2

(
1
2ϕ0 − γ

)
. (11)

Here, the gauge-invariant phase difference ϕ0 − 2γ appears
[41], where

γ = e

h̄

∫
�

ds · A = nπ
φ

φ0
(12)

is the Aharonov-Bohm (AB) phase of the classical trajectory.
In Eq. (12) the parameter τ depends on the transparency and is
different for the different types of paths. For zero temperature,
the current contribution reads [44,45]

j = e�0

4h̄

τ sin(ϕ0 − 2γ )√
1 − τ sin2(ϕ0/2 − γ )

, (13)

approaching, in the limit τ → 1,

j = e�0

2h̄
sin

(
1

2
ϕ0 − γ

)
sgn

[
cos

(
1

2
ϕ0 − γ

)]
, (14)

where sgn is the sign function. For the different types m of
paths, one obtains different τm, namely,

τ1 = 1

sin2(ϕN ) + X 2 cos2(ϕN )
, (15)

τ2 = 1

1 + Z2(1 + Z2)−1 tan2(θ )
, and τ3 = 1 (16)

with the dimensionless barrier strength Z = U0/h̄vF [34]. The
parameters ϕN and X are given by

ϕN = 2 arctan

(
cos(θ ) + Z tan(θ )

Z − sin(θ ) − [1 + Z2 + Z2 tan2(θ )]1/2

)
(17)

and

X = [1 + 2Z2(1 + Z2)−1 tan2(θ )]. (18)

C. Numerical simulations

Besides the semiclassical approach we also employ nu-
merical tight-binding simulations with the PYTHON package
Kwant [46]. Using the finite difference method, the BdG
Hamiltonian Eq. (2) and its components, consisting of non-
trivial surface states with a linear dispersion Eq. (3), are
evaluated on a discrete square grid with lattice constant a.
Note that by putting the Dirac Hamiltonian on a lattice, the
well-known Fermion doubling problem arises [47–51]. This
issue can be circumvented by considering an additional Wil-
son mass term HW = EW a/(4h̄vF )(k2

z + k2
s )σz [47,52], which

gaps out the artificial Dirac cones at the borders of the first
Brillouin zone. This term is important to avoid nonphysi-
cal intervalley scattering introduced by the potential barriers
U (z, s), Eq. (1), in the JJ. Also, regarding these δ barriers,
one has to appropriately scale the amplitude for the discrete
representation. This is achieved by fixing U ′

0 = U0/a.
Connecting the lattice sites with coordinates (z, s = 0) and

(z, s = P) by a hopping with phase factor exp(iπ ) we in-
troduce antiperiodic boundary conditions. Moreover, the flux
through the wire cross section is accounted for by a Peierls
substitution with the additional phase factor exp(i2π a

P
φ

2φ0
).

Finally, superconductivity is introduced as simple on site
s-wave pairing given by Eq. (4). For the numerics we assume
semi-infinite leads, i.e., Ws → ∞, because we directly attach
translationally invariant superconducting leads to the normal

043021-7



WOLFGANG HIMMLER et al. PHYSICAL REVIEW RESEARCH 5, 043021 (2023)

FIG. 5. Critical current for the TI nanowire-based Josephson junction. The results from the semiclassical (left panel) and numerical
calculations (right) are shown for four different strengths of the interfacial barrier potential, Eq. (1). The barrier predominantly suppresses
contributions from direct paths which do not cross the bottom surface of the wire, such that the peaks at φ = h/4e = φ0/2 and 3h/4e = 3φ0/2
emerge. For larger barrier strengths, those peaks start to appear and become observable in comparison to the peaks at integer multiples of φ0.

JJ part to keep the numerical cost to a minimum. Additionally,
we consider the local phase modulation of � introduced in
Eq. (5).

To access the current-phase relation and incorporate all
geometrical junction details we compute the supercurrent fol-
lowing Ref. [53]. Furthermore we exploit part of the code
package provided in a repository of Ref. [19], and adapt it to
our implemented tight-binding model. The core of the numer-
ical method is the computation of the current-phase relation
via Green’s functions. The supercurrent is given by

ILR(ϕ0, φ) = 2
ekBT

h̄

∞∑
n=0

∑
i∈R
j∈L

Im
(
HjiG

r
i j (iωn) − Hi jG

r
ji(iωn)

)
,

(19)
where ωn = kBT

h̄ (2n + 1)π are fermionic Matsubara frequen-
cies. The labels i and j run over lattice sites in two adjacent
transversal lattice rows R and L. In Eq. (19) the terms Hi j and
Gi j denote the hopping matrix elements and the off-diagonal
elements of Green’s function, respectively, connecting those
sites. Furthermore, the phase difference ϕ0 is incorporated
into the hopping matrix elements as a phase factor. This is
simply introduced by performing a gauge transformation that
shifts the phase difference into a vector potential inside the
JJ. For more details of the methodology we refer the reader to
Refs. [19,28]. For a fixed magnetic flux, the critical current is

Ic(φ) = max
ϕ0

|ILR(ϕ0, φ)|, (20)

i.e., the maximum of the corresponding current-phase rela-
tion.

D. Semiclassical and numerical results for the critical current

We are now in a position to combine semiclassics and
quantum mechanical simulations to explain the central experi-
mental findings for the critical current reported in Sec. III. For
the realistic JJ setup discussed in Sec. IV A we choose the fol-
lowing parameters to model the SNS-junction geometry, see
Fig. 4: w = 300 nm, h = 80 nm, L = 100 nm, WS = 1000 nm,
h̄vF = 330 meVnm, μ = 30 meV, and �0 = 0.8 meV, in

accordance with Refs. [17,31,54]. The corresponding Fermi
wave number is kF ≈ 0.09 nm−1, i.e., the Fermi wavelength
λF ∼ 70 nm, and kF L ≈ 10. Hence, the semiclassical limit
(kF L � 1) is well justified. Since the coherence length reads
ξ ≈ 400 nm, working in the short junction limit is also justi-
fied. In the semiclassical calculations we include only paths
with crossing numbers n = 0,±1, since their angle θ is small
and maximizes the cos θ factor in the integral (8). Paths
with higher crossing number |n| have lower weight, and in-
deed we checked that including them modifies our results
only marginally. Furthermore higher-crossing paths quickly
approach the coherence length cutoff, i.e., phase coherence
is lost before the electron crosses the junction. The value of
μ is chosen to have a high number of open channels while
still keeping the numerical simulations in an energetically
converged regime.

Numerical and semiclassical results for the critical current
are shown and compared to each other in Fig. 5. On the whole
the numerics (left panel) and semiclassics (right panel) show
qualitative agreement. It is convenient to start by looking at
the numerics, which show peaks only at integer values of φ0 =
h/2e in the case of perfect interface transparency, i.e., with-
out any barrier (U0 = 0). We note that in high transparency
samples no oscillation was measured at all. Our theory model
predicts no oscillation for fully proximitized systems, which
is indeed more likely when the NS junction is good. In a
fully proximitized nanowire there is no phase variation around
the perimeter, except in integer multiples of 2π , describing a
vortex. Without any kind of accounting for the vector potential
in the superconducting phase, the gap and therefore also the
critical current will show just an exponential decay. Fully cap-
turing the dependence of the spatial extend of the proximity
induced gap in the TI nanowire requires a detailed modeling
of the complex hybrid structure. This problem deserves at-
tention on its own and does not belong here. Our effective
model includes the proximity effect on a phenomenological
footing and can capture the relevant physical signatures, i.e.,
monotonous decay or periodic oscillations of the supercurrent,
by adjusting the relevant parameters. This is also directly
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related to the assumption of simple δ-like barriers, which
suppress the junction transparency.

Moreover, we note that panels c, d, and e of Fig. 3 show
shoulder like features, which correspond to an intermediate
regime between the monotonous decay and the regime of
clear-cut oscillations. Our model can also be adjusted to show
such supercurrent features. However, it is necessary to assume
an additional parameter describing a local gating in the prox-
imitized regions. This corresponds to a local band bending
due to the different Fermi energies in niobium and HgTe.
This aspect is not treated in this work, as we concentrate
on the oscillatory component and do not address this spe-
cific signature. In summary, our model is not microscopically
sample-tailored for a precise quantitative analysis, but gives
general insight into the necessary physical properties of JJs
behind the observed flux-periodic supercurrent oscillations.

For increasing barrier strength U0, the interfacial trans-
parencies τ1,2 decrease, leading to an overall reduction of the
critical current. At the same time, with increasing U0 new
maxima emerge and grow at fluxes φ = h/4e = φ0/2 and
3h/4e = 3φ0/2, reaching a peak height of nearly one-half the
major peaks (for U0 = 600 meVnm).

The semiclassical results from the right panel of Fig. 5
show a corresponding trend: a decreasing critical current
with increasing barrier height and the emergence of addi-
tional peaks at φ = h/4e and 3h/4e. In the semiclassical
calculation the dominant peaks arise mainly from the short
lead-connecting trajectories marked as type-1 paths with
crossing number n = 1 in Fig. 4. Upon increasing the barrier
height contributions from such type-1 paths are suppressed
relative to those from type-2 and type-3 paths with n = ±1,
since the former involve two barrier reflections while the latter
only one, or none at all. For instance, the current associated
with type-3 paths is not influenced by the barrier at all. The
growing relevance of paths with n = ±1 and no barrier reflec-
tion leads to the emergence of the peaks at h/4e and to their
increase relative to the peaks at h/2e.

To conclude the comparison, semiclassical and numerical
results agree on the fundamental aspects: they both predict the
emergence of peculiar h/4e peaks for larger barrier strength
U0, the increase of their magnitude relative to the h/2e peaks,
and the broadening of all peaks with increasing U0.

A few differences between them, however, remain: Nu-
merics give a considerably smaller value of the current, and
the peak current also decreases faster with increasing barrier
strength U0. With regard to this, first note that the actually
induced “effective” gap of each of the ABSs as obtained in the
numerical calculations is smaller than �0; see the Appendix
for a detailed discussion. To fix this issue in the semiclas-
sical calculation, one would need to introduce an effective
gap �eff < �0 (possibly different for each mode). Second, as
mentioned in Sec. IV B 1 the semiclassical method neglects
contributions from paths with normal specular reflection. We
expect the resulting effects to reduce the current further, as
more normal electron reflection reduces the contribution of
Andreev reflection. Furthermore, numerics is not limited to
the short junction limit, and in fact fully captures effects of
finite length and finite temperature. For shorter junctions the
difference between the semiclassical and numerical current
magnitude is indeed smaller, an explicit hint that the short

junction assumption of semiclassics loses accuracy for longer
systems.

To conclude the theory discussion, the semiclassical ap-
proach is approximate but enables us to interpret the different
peculiar peaks in terms of specific (quantized) relevant fam-
ilies of trajectories. The emergence of the additional peaks
related to paths (partially) winding around the nanowire high-
lights the three-dimensional character of the SNS junction
geometry, compared to common planar junctions.

V. COMPARISON OF EXPERIMENT AND THEORY

We finally compare the experimentally measured criti-
cal currents with the corresponding theoretically calculated
results.

Consider first measurements for samples with high average
transparency, as shown in Fig. 3(a), 3(b). The experimental re-
sults exhibit a monotonous decay of the critical current, while
our theoretical results for high transparency, corresponding
to U0 = 0, show clear oscillations with period h/2e, see the
uppermost black curve in Fig. 5(a). This apparent discrepancy
between experiment and theory can be related to the fact that
the measurements on high-transparency samples are not ap-
propriately described by our model geometry (Fig. 4), where
superconductivity is not induced around the whole circum-
ference. However, as mentioned in Sec. IV A, a high-quality
NS interface allows for superconducting pairing to be induced
along the entire nanowire perimeter. Indeed, if we adapt our
model geometry and assume a closed external superconduct-
ing shell, i.e., superconducting pairing developed around the
full circumference, we find numerically (not shown) that the
critical current decays exponentially without any oscillation,
as observed in the high-transparency samples. In such a model
geometry, there can be no phase variation around the perime-
ter, as given by Eq. (5), and the Andreev bound states become
similar to those of planar Josephson junctions. In such a sce-
nario the magnetic field simply destroys the pair correlations,
and the superconducting gap decreases monotonically with
increasing field strength leading to the corresponding decrease
of the critical current.

On the contrary, flux periodic supercurrent oscillations
are observed in samples with low average transparency. In
Sec. IV A we argued that the junction transparency might be
reduced due to an imperfect removal of a capping layer, which
lowers the interface quality between the superconducting Nb
and HgTe. The imperfect interface was modelled both semi-
classically and numerically via barriers of varying strength,
whose presence suppresses the large current contributions
which have no or only a h/2e periodicity. Vice versa, the
h/4e-periodic current components are not affected and their
signatures emerge, providing a clear explanation for the ob-
served behavior of low-transparency junctions.

Irrespective of the sample quality, all measurements show
also a decrease of the current for increasing magnetic field.
This is expected and attributed to the reduction of the in-
duced superconducting gap by the magnetic field [13], which
weakens pairing correlations. One can phenomenologically
account for this behavior by multiplying the theoretical
data with an appropriate envelope function, mimicking the
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FIG. 6. Introducing an exponential envelope function to mimic
the pair breaking mechanism of the applied flux leads to a good
agreement between theoretical results and the experimental obser-
vations. The blue curve corresponds to the originally calculated
numerical data, while the orange curve shows the adjusted data.

weakening of the BdG pairing amplitude �0 of Eq. (4).3

An example is shown in Fig. 6, where we assumed a simple
exponential decay of the pairing potential with respect to the
applied flux. The data were numerically computed with the
same system parameters as for Fig. 5, except that the length
was increased to L = 200 nm to better match the experimen-
tal dimensions. The blue curve is the raw simulation data,
while the orange one is adjusted with the phenomenologi-
cal flux-induced decay. The adjusted critical current exhibits
all qualitative features of the experimental curve plotted in
Fig. 3(g). In particular the peak at φ/φ0 = 1 is larger than the
first half-integer one.

We further remark that also oscillations with a period
of h/8e were observed in sample G. From the semiclas-
sical model such a periodicity is to be expected if paths
with crossing number n = ±2 contribute considerably to the
current flow. This should be possible in the presence of a
large overall number of conducting channels, with sufficiently
many belonging to the n = ±2 family to make their signature
visible—recall that such paths are identified by a large angle
θ , such that the weight of a single path in Eq. (8) is usually
very low. This agrees with the observation that sample G
has indeed the highest number of open transport channels.
Our argument is also in line with the behavior from sample
J: A gating potential of VG = 3 V has to be applied to the
junction, such that the h/4e periodic oscillations can be mea-
sured. The gating potential increases the Fermi energy, ergo
the number of open transport channels. As a consequence the

3A microscopic description would require a self-consistent treat-
ment of the superconductor in its electromagnetic environment,
which is beyond the scope of the present work.

contribution of type-2 and type-3 paths grows and maxima at
φ = (2n + 1) · φ0/2 appear.

VI. CONCLUSIONS

We realized Josephson junctions made of HgTe 3D
topological insulator nanowires and demonstrated the fine
sensitivity of surface supercurrents to a coaxial magnetic
field. The field does not pierce the topologically protected
surface states of the wires, yet Fraunhofer-like critical cur-
rent patterns develop, notably with unusual noninteger flux
periodicity in lower-quality samples. Our theoretical analy-
sis shows that such peculiar magnetotransport properties are
essentially resulting from a series of nontrivial geometrical
constraints. First, contrary to standard Josephson junctions,
propagating electronic modes form Andreev bound states
uniquely on a nonplanar surface enclosing the insulating
HgTe bulk. Second, such states may have a purely longitu-
dinal character—associated with semiclassical paths roughly
parallel to the axial direction—or a partially transverse
behavior—corresponding to paths winding fully or partially
around the wire perimeter—and are differently affected by the
quality of the NS contacts along different directions. Third,
superconductivity is in general not induced across the entire
nanowire perimeter, nor is the magnetic field screened by the
Nb fingers, which are thinner than the London penetration
depth. As a consequence the partially transverse Andreev
bound states pick up an Aharonov-Bohm phase which is not
necessarily integer, i.e., electrons are not limited to enclosing
a fixed number of vortices. This yields the observed peculiar
critical current oscillations.

On the other hand, while the existence of surface states
is necessary, spin-momentum locking of topological Dirac
states appears to play a minor role. We numerically found
similar overall features for surface states obeying an effective
Schrödinger equation.

For further studies it is certainly desirable and interest-
ing also to measure the current-phase relation. Due to the
Aharonov-Bohm phase, which is picked up by the Andreev
bound states, related signatures could be observable in such
measurements and serve as an additional check for the theo-
retical model.
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APPENDIX: NUMERICAL CALCULATION OF ANDREEV
BOUND STATE SPECTRA FOR PARTIALLY

COVERED NANOWIRES

The difference in current magnitude of the semiclassical
analytical approach and the numerical data can be partially
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explained by the difference in the spectra of the ABS. For the
analytical approach the ABS spectrum for each mode is as-
sumed to be given by the standard expression Eq. (11), where
the amplitude factor is determined by a constant gap �0.
However, in the numerical calculation, this is not the case. Due
to the partial coverage of the nanowire circumference with the
s-wave superconductor, each mode in the surface state spec-
trum experiences an effective induced gap. We can show this
by numerically computing the ABS spectrum of such a sys-
tem. The eigenenergies of this nanowire Josephson junction
can be determined by diagonalization of a finite tight-binding
system with long superconducting reservoirs. The advantage
of this method is the natural incorporation of the complex
geometry. The superconducting reservoirs are connected by a
periodic boundary hopping, where the superconducting phase
difference enters again in a longitudinal hopping in the center
of the normal region. In Figs. 7(a) and 7(b) the calculated
ABS spectra are plotted for U0 = 0 and U0 = 600 meVnm,
respectively. For simplicity we neglect here the axial mag-
netic flux and choose a relatively narrow nanowire with width
w = 120 nm. The reason for that lies in the reduced number
of open sub-bands, such that the relevant spectrum features
are more clearly observable. Again we assume that the top,
as well as the side surfaces are proximitized by the external
s-wave superconductor, while the wire bottom remains normal
conducting. Note that the ABS energies are normalized by �0.
In Fig. 7(a) we see that the ABS spectrum remains ungapped
due to the missing barriers. Still, contrary to standard clean
Josephson junctions, the ABS branches for different modes
are no longer degenerate. At phase difference zero, where the
energies are typically located at the band gap �0, the different
branches exhibit very different values. This indicates that each
mode experiences a different effective pairing strength, de-
pending on their angular momentum quantum number. Also,
the values at ϕ0 = 0 differ quite strongly from �0, which is
used in the semiclassical analysis. Therefore, the difference in
current magnitude between numerics and semiclassics can be
partially explained by the simplified assumption of a constant
superconducting gap in the ABS energies in the latter case.
This holds also true for the case of a non-zero barrier, which is
illustrated in Fig. 7(b). The differently induced gaps for each
mode are still present, only the spectra become gapped at a
phase difference of ϕ0 = π .

FIG. 7. Andreev bound state spectrum of a TI Josephson junction
which is partially covered by an s-wave superconductor (see Fig. 4).
The wire has a width w = 120 nm and a height h = 80 nm, while
the junctions have a length of L = 200 nm. The lattice constant is
fixed to a = 5 nm and the chemical potential is set to μ = 22 meV.
In (a) the local barrier strength is set to zero, while in (b) the barrier
value is set to U0 = 600 meVnm. For both panels the axial magnetic
field is set to zero. The spectrum is computed by diagonalization of a
finite tight-binding system. Due to the partial covering the branches
in the spectrum have different effective gaps �eff . This explains the
difference in the current of the numerical and analytical calculations.
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