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Photoelectron signature of dressed-atom stabilization in an intense XUV field
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Nonperturbative resonant multiphoton ionization (1 + 1) is studied using the resolvent operator technique.
Scaling parameters for effective two-level Hamiltonians are computed for hydrogen and helium atoms to provide
a quantitative description of Rabi oscillations at XUV wavelengths, which were recently observed using a seeded
free-electron laser [S. Nandi et al., Nature (London) 608, 488 (2022)]. The resulting photoelectron spectra
exhibit a range of Autler-Townes doublets, which are studied for different intensities, detunings, and interaction
times. We identify a photoelectron signature that originates from stabilization against ionization of helium atoms
interacting with intense circularly polarized XUV light. Thus, our study shows how it is possible to test the
prediction of dressed-atom stabilization by Beers and Armstrong [B. L. Beers and L. Armstrong, Phys. Rev. A
12, 2447 (1975)], without the demanding requirement of atomic saturation in the time domain.
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I. INTRODUCTION

Free-electron laser (FEL) facilities around the world pro-
vide intense radiation in the extreme ultraviolet (XUV) and
x-ray regimes [1], which has opened up for studies of nonlin-
ear light–matter interaction at short wavelengths in atoms and
molecules [2–10]. Recent advances include applications of
isolated attosecond pulses [11,12] and attosecond pulse trains
[13,14] from FELs. While high-order harmonic generation
(HHG) can be used to produce highly coherent pulses in
the XUV and soft x-ray ranges [15], the intensity from such
table-top sources is too low to drive nonlinear processes. In
contrast, FEL sources based on self-amplified spontaneous
emission (SASE) can reach high intensities and photon en-
ergies, but the coherence properties of the pulses are limited
[1]. For this reason, laser-seeded FELs present some attractive
properties that include high intensity, when compared with
isolated harmonics from HHG sources, and good coherence
properties and shot-to-shot reproducibility, when compared
with SASE-FEL sources [1,5]. Recently, these properties al-
lowed for observation of Rabi dynamics at XUV wavelengths
in helium atoms using a two-photon resonant photoionization
processes, in an experiment performed by Nandi et al. using
the seeded FEL at FERMI [16].

Rabi oscillations are signatures of nonlinear coherent
quantum dynamics that appear when a system is well de-
scribed as an interacting two-level system [17,18]. Autler and
Townes showed that a consequence of Rabi oscillations is the
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spectroscopic splitting of an absorption line into two lines,
the so-called Autler-Townes (AT) doublet [18]. The two
spectral components of the doublet are separated by the gen-
eralized Rabi frequency W = √

�2 + �ω2. Short-wavelength
FELs have been the inspiration for several theoretical papers
exploring resonant multiphoton ionization both through mod-
els [19–23] and by numerically solving the time-dependent
Schrödinger equation (TDSE) [20,21,23–25]. In seminal pa-
pers, Beers and Armstrong [26], Knight [27], and Holt,
Raymer, and Reinhardt [28] used an effective two-level model
to study resonant multiphoton ionization of atoms, taking
into account the interaction with the rest of the Hilbert space
through effective parameters entering the Hamiltonian of the
two-level system [29]. It was shown that the ionization can not
in general be described by a model with a simple exponential
decay. The total amount of ionization has an intricate de-
pendence on the parameters of the effective Hamiltonian and
the interaction time, with several different parameter regimes
identified [26,28]. It was also predicted that an AT splitting
should appear in the photoelectron spectrum for sufficiently
intense pulses [27]. In the special case of a single ioniza-
tion continuum, it was predicted that interference between
resonant and nonresonant ionization processes could lead to
incomplete ionization [26], which we interpret as a form of
stabilization against photoionization from the atom in a strong
field. Interestingly, the recent experiment by Nandi et al. was
performed at an intensity where the rates of the resonant and
nonresonant processes are comparable [16], but the contin-
uum consisted of two parts (s and d wave). This opens the
question if stabilization against photoionization is possible in
this more general case and if such effects can be inferred from
energy-resolved photoelectron distributions.

In this paper we explore an extension of the model used in
Nandi et al. [16], taking into account the effects of ac Stark
shifts, complex Rabi frequencies and depletion through an ef-
fective Hamiltonian describing the resonant two-level system,
following the the Refs. [26,28]. The article is organized as
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follows. In Sec. II we present the theoretical foundation of our
paper. In Sec. II A the resolvent operator technique is reviewed
and applied to the particular case of an effective two-level
system. In Sec. II B the parameters for couplings in hydrogen
1s − 2p and helium 1s2 − 1s2p are computed by perturba-
tion theory and then contrasted with known values from
literature (see Appendix A). In Secs. II C and II D photoion-
ization rates and energy-resolved photoelectron distributions
are extracted from the effective two-level system. Our results
for two-photon resonant ionization of helium atoms via the
1s2 − 1s2p transition, for both circularly (single) and linearly
(double) FEL pulses (photoelectron continua), are shown in
Sec. III (see also Appendix B). Conclusions are presented
in Sec. IV. Atomic units are used unless otherwise stated:
h̄ = e = 4πε0 = me = 1.

II. THEORY

There have been several studies of energy-resolved pho-
toelectron spectra from resonant multiphoton ionization,
starting with pioneering numerical studies on resonant two-
photon ionization of hydrogen atoms that revealed AT
doublets in the above-threshold ionization (ATI) [24,25], and
in the photoelectron spectra of ionized H2 molecules [30]. In
Ref. [25] attempts were made to model the photoelectrons
of a Rabi cycling atom using the strong field approximation
(SFA), but this failed to capture some aspects of the results
from TDSE simulations. In the same work ac Stark shifts and
ionization rates were estimated from Floquet theory, which
provide information about the dynamics of the atom in the
field, but its connection to a time-dependent picture is not
straightforward [25,28]. Models including envelope effects
have been studied in both two-photon [21–23,31] and three-
photon [20] resonant photonionization, that also include the
effect of ac Stark shifts. An asymmetry of the AT doublet
with respect to detuning of the FEL field was predicted in
Refs. [24,25], and later observed experimentally Ref. [16].
Using theoretical models, it has been shown that the asymme-
try of the AT doublet depends on the relation between resonant
and nonresonant pathways and that the energetic condition of
the symmetric AT doublet is sensitive to associated quantum
interference effects and FEL pulse shape [16,23].

In this paper we make use of the resolvent operator for-
malism, which was used by Beers and Armstrong [26] for
resonant multiphoton ionization of atoms. The main advan-
tage of this approach is that the resulting model for an
effective two-level system is fully analytical and that its
parameters can be unambiguously determined using pertur-
bation theory [29]. The problem is formulated using quantum
optics with the total “coupled” Hamiltonian

H = HA + HF + HAF , (1)

where the “uncoupled” atom–field Hamiltonian H0 = HA +
HF is the sum of the atomic HA and field HF parts, while
V = HAF describes the coupling of the atom with the field.
We consider an atom in its ground state ψa with a single
mode of radiation in a Fock state with N0 photons of fre-
quency ω0, which is an eigenstate of the uncoupled atom-field
Hamiltonian H0|a〉 = Ea|a〉, where Ea = εa + N0ω0 and |a〉 =
|ψa, N0〉. We assume that there is one excited atomic state

ψb that is strongly coupled through absorption of one photon
by the atom |b〉 = |ψb, N0 − 1〉 with Eb ≈ Ea, as shown in
Fig. 1(a). The strength of the coupling is determined by half
the Rabi frequency, 〈b|V |a〉 = �0/2 = zbaE0/2, where zba is
the atomic dipole matrix element and E0 is the electric field
strength in the semiclassical approximation. The detuning
of the interaction, denoted �ω = Eab = ω0 − (εb − εa) with
Eab = Ea − Eb, is assumed to be small compared to other
bound transitions |�ω| < |Eci| with i ∈ {a, b}, which implies
that V is “weak” outside the strongly coupled two-level sub-
space P spanned by |a〉 and |b〉, see Fig. 1(a). The orthogonal
complement Q = P⊥ is spanned by complement atomic and
field states |c〉. In this paper we will consider up to two
exchanged photons, |�N | � 2, as shown in Fig. 1(b). Net
absorption of two photons, N0 → N0 − 2, leads to ionization
into the photoelectron continuum with angular momentum �,
and kinetic energy εkin ≈ 2ω0 − Ip, where Ip is the binding
potential of the atom.

Effects beyond the rotating-wave approximation (RWA)
are incorporated in the model, such as the Bloch-Siegert shift
of the resonance, ac Stark shifts due to other states and con-
sistent photoionization from the two-level system including
quantum interference effects. All that is required is an effective
two-level Hamiltonian

Heff =
[

haa hab

hba hbb

]
, (2)

which is non-Hermitian with complex matrix elements,
haa, hbb, hab = hba ∈ C. This type of effective models is
sometimes considered as phenomenological, c.f. [25] with
intensity-dependent parameters estimated by Floquet theory
[28] or by comparison with TDSE simulations [23]. Here,
however, we compute the parameters using level-shift scal-
ing factors from first-principle perturbative expansions [29].
Calculations are performed for hydrogen and helium, at the
level of configuration-interaction singles (CIS) [32], with a
numerical technique called exterior complex scaling (ECS)
to take into account integration over intermediate continuum
states [33,34]. Our use of perturbative expansions does imply
that the field strengths accessible by this effective two-level
method are limited, but this is not a problem when compared
with recent experiments [16].

The effective Hamiltonian has eigenstates, which are
dressed by the field |±〉, with associated eigenvalues

λ± = haa + hbb

2
± 1

2

√
(haa − hbb)2 + 4h2

ab. (3)

Since Heff is non-Hermitian, its eigenstates will not in general
be orthogonal in the standard inner product, i.e., 〈±|∓〉 is not
necessarily zero. The complex generalized Rabi frequency is
defined as

W =
√

(hbb − haa)2 + 4h2
ab. (4)

When viewed from a semiclassical perspective, the model
has the disadvantage that it is restricted to an atom interacting
with a flat-top envelope FEL pulse, which implies that more
general features that depend on the FEL envelope are in-
tractable. In future works, however, parameters provided here
could be used in more general semi-classical models to study
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FIG. 1. Panel (a) shows a schematic atomic level diagram of the situation under consideration, with the subspaces P and Q indicated.
Panel (b) shows examples of the processes starting in state |a〉 considered in each order of perturbation theory. The processes starting from |b〉,
and the other time orderings can be constructed analogously. Absorption and emission of a photon is indicated by a wavy line on the left and
right sides of the diagram, respectively. The resonant intermediate states are excluded from the intermediate state sums by projection operators.
(c) Map of relevant timescales for a He atom undergoing Rabi oscillations to the 1s2p state. The colored regions denote the domains where the
resonant (I) or nonresonant (II) processes dominate. (d) Rabi frequency �, ac Stark shifts of the states in P due to interaction with the states in
Q, and ponderomotive shift Up as a function of FEL intensity. The field-free resonance energy �εba and the distance �εcb to the nonresonant
state closest in energy to b are shown as horizontal lines. [(e),(f)] Populations in the two-level system and ionization probability for one Rabi
period at an intensity of 1 × 1012 W/cm2 (e) or 3 × 1014 W/cm2 (f).

the role of envelope effects, or with more elaborate description
of the quantum field.

A. Resolvent operator formalism and subspace considerations

Consider the evolution of a coherent system governed by
the time-independent total Hamiltonian H in Eq. (1), with the
initial condition, |
(0)〉 = |a〉 at t = 0. The time-dependent

amplitude for state |c〉, at t > 0, is obtained as

Uca(t ) = − 1

2π i
lim

η→0+

∫ ∞

−∞
dEe−iEt Gca(E + iη), (5)

where Gca(z) = 〈c|G(z)|a〉 is a matrix element of the resol-
vent of the total Hamiltonian

G(z) = 1

(z − H )
, (6)
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where |a〉 and |c〉 are eigenstates of the uncoupled Hamilto-
nian H0 [29]. Subspace projection operators for P and Q are
defined as

P = |a〉〈a| + |b〉〈b|, Q = 1 − P, (7)

and they satisfy the usual properties of orthogonal projection
operators

P2 = P, Q2 = Q, PQ = QP = 0. (8)

The interaction V is responsible for the coupling between P
and Q as

PHQ = PV Q, PH0Q = QH0P = 0. (9)

The model relies on a perturbative expansion of the cou-
pling between the subspaces P and Q, where both direct
coupling and indirect coupling between between |a〉 and |b〉
is treated nonperturbatively [29]. The resolvent equation for
subspace P is

PG(z)P = P
1

z − PH0P − PR(z)P
P, (10)

where the level-shift operator is defined as

R(z) = V + V Q
1

z − QH0Q − QV Q
QV. (11)

The operator in the denominator of Eq. (10),

Heff = PH0P + PR(z)P (12)

is an effective Hamiltonian for dynamics in subspace P , where
PR(z)P accounts for effects due to coupling to subspace Q.
The matrix elements of the effective Hamiltonian can be writ-
ten as

haa = Ea + Raa, hbb = Eb + Rbb,

hba = Rba, hab = Rab,
(13)

where Ri j are matrix elements of R(z). We will use the pole
approximation for the matrix elements of R, which amounts
evaluating them at a fixed energy. This is a good approxima-
tion near the resonance [26,27].

Expansion of the level-shift operator R(z) in the operator
QV Q allows for Eq. (11) to be rewritten as a series

R(z) = V + V Q
1

z − QH0Q
QV

+ V Q
1

z − QH0Q
QV Q

1

z − QH0Q
QV + · · · , (14)

which is diagrammatically exemplified in Fig. 1(b) up to
fourth order. The first diagram (term) corresponds to the usual
Rabi interaction in the two-level system, Vba = Vab = �0/2.
The second diagram (term) corresponds to second-order ac
Stark shift via states outside the two-level system. The second-
order term also accounts for depletion of the excited atomic
state by photoionization. The third diagram (term) corre-
sponds to a complex correction to the Rabi frequency due to
coupling of |a〉 and |b〉 via other states. The fourth diagram
(term) corresponds to fourth-order ac Stark shift by other
states, which is required for a depletion from the ground state
due to nonresonant photoionization. All permutations of time
orders of the interactions in the diagrams are included in

our calculations (not shown), which implies that transitions
beyond the RWA are taken into account to fourth order in
the interaction, or to second order in the intensity of the field,
V 4 ∝ E4

0 ∝ I2.
Using Eqs. (12) and (14), the elements of the effective

Hamiltonian in Eq. (2), can now be evaluated, up to any de-
sired order in the power of the field. Introducing the level-shift
scaling factors ρ

(n)
i j to separate the field dependence from the

atomic contribution, we can write the matrix elements of the
level-shift operator as

Ri j =
∞∑

n=1

En
0

2n
ρ

(n)
i j . (15)

In this paper we include terms up to n = 4.
The diagonal elements of R can be split into real and

imaginary parts, where the real part is responsible for energy
shifts, and the imaginary part is related to the ionization rate,

Rii = δi − i
γi

2
, i ∈ {a, b}. (16)

In Fig. 1(c) the associated life times, τi = 1/γi of the atomic
states are shown and two different domains of photoioniza-
tion, I and II, are indicated, where the atom is predominately
ionized from the excited state and ground state, respectively
[16]. We note that the Rabi period is much smaller than the
life times of the atomic states, T = 2π/� < τi.

The real part of the off-diagonal elements gives the effec-
tive Rabi frequency, while the imaginary part relates coherent
transitions between the two states in P , via intermediate
continua in Q. As the effective Hamiltonian is complex sym-
metric, we denote the off-diagonal elements as

Rba = Rab = � + iβ

2
, (17)

where � �= �0 since our perturbative expansion of the level-
shift operator is to fourth order. In Fig. 1(d) the ac Stark shifts
due to other states are compared with the Rabi frequency �

and ponderomotive energy Up as a function of FEL intensity.
Since the excited state has a positive energy shift, δb > 0, and
the ground state has a negative energy shift, δa < 0, the photon
energy needed to fulfill the resonance condition increases with
FEL intensity, �εba + δb − δa. The role of Up is to dress the
continuum states, but since this effect is smaller than all other
effects, it will be neglected in our model. Physically, it would
amount to a small red shift of the photoelectron distribution in
kinetic energy by −Up. In the high-intensity range we see the
Rabi frequency crosses the energy gap to the closest comple-
ment atomic state, � ≈ �εbc, which implies that the effective
two-level model starts to break down. The Rabi frequency is
much smaller than the energy difference in the atomic two-
level system, � < �εba, which implies that interactions are
within the “weak-coupling” regime, and that a break down
of Rabi oscillations by “strong coupling” can not be reached
for a two-level model of the helium atom [18]. Indeed, clear
Rabi oscillations are present in both domain I and II, as shown
in Figs. 1(e) and 1(f), respectively. In the high-intensity case,
shown in Fig. 1(f), there is noticeable photoionization losses
over a single Rabi period of a few percent, in agreement with
the two orders of magnitude ratio between the life-time and
Rabi period, see domain II in Fig. 1(c).
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TABLE I. Critical fields for Rabi-cycling hydrogen and helium
atom. Intensity is obtained from the electric-field amplitude as
I[W/cm2] = 3.51 × 1016 × E2

0 [au].

Atom γa = γb �0 = �εbc

H E0 = 0.123 au E0 = 0.0932 au
He E0 = 0.0558 au E0 = 0.1645 au

B. Parameters for the effective Hamiltonian

The scaling factors ρ
(n)
i j in Eq. (15), can be used to deter-

mine the parameters for the effective Hamiltonian in Eq. (2) at
any intensity, provided that the two-level model itself is valid.
In order to estimate the range of validity for the model, we
present in Table I two critical field conditions for hydrogen
and helium atoms. The first condition, γa = γb, implies that
both states ionize at the same rate independently, which means
that strong quantum interference effects and stabilization may
be present. The second condition, �0 = �εbc, implies that
the Rabi energy shift is on the order of the level spacing
to the closest coupled state |c〉 from the excited state |b〉,
which means that the effective two-level model is not justi-
fied [29]. It is found that the condition for equal rates from
both states is not within the realm of allowed intensities for
the hydrogen atom. This implies that more advanced few-
level effective models are required for quantitative studies of
stabilization of hydrogen atoms. In contrast, the equal rates
condition is reached for the helium atom within the valid-
ity of the two-level model, which implies that quantitative
studies of quantum interference and stabilization mechanisms
can be performed for the helium atom within the analytically
tractable two-level model.

In Table II we provide ρ
(n)
i j parameters for hydrogen and

helium atoms. The scaling factors are computed from first
principles, using perturbative expansion at the level of CIS,
with ECS to enforce outgoing boundary condition. Expected
symmetry between the off-diagonal elements is obtained as
ρ

(3)
ba = ρ

(3)
ab .

In the following we will focus on the helium atom, but
first we benchmark our methodology with a comparison of
parameters for the effective Hamiltonian given in Ref. [28].

We find these older parameters for hydrogen are not correct
and must be updated, see Appendix A. In order to verify
our results, we have performed additional calculations that
confirm our numerical values using the extrapolation method
[35].

C. Two-level photoionization rates

According to Holt et al. the rate of ionization is given by

dC

dt
= γa|a(t )|2 + γb|b(t )|2 − 2βRe[a∗(t )b(t )], (18)

which depends on the time-dependent state-resolved popula-
tion of the atom, |a(t )|2 and |b(t )|2, but also on an interference
term that is proportional to the β coefficient, see Eq. (17). This
nonlinear time-dependent photoionization process is shown in
Fig. 1(e) [and 1(f)] for regime I [and II], where photoion-
ization is strongest when the atom is in its excited (ground)
state. Alternatively, ionization can be described in terms of the
dressed states |±〉, with the initial condition, |a〉 = c+|+〉 +
c−|−〉, as

C(t ) = 1 − |c+|2e−γ+t − |c−|2e−γ−t

− 2Re[c+c∗
−e−i(λ+−λ∗

− )t 〈−|+〉], (19)

where γ± = −2Im[λ±]. Equation (19) corresponds to
Eq. (13) in Beers and Armstrong [26], and it is clear that if
one of γ± goes to zero the atom will be stabilized in the corre-
sponding dressed state. Differentiating Eq. (19) with respect
to time gives Eq. (18) in the dressed-state picture

dC

dt
= γ+|c+|2e−γ+t + γ−|c−|2e−γ−t

+ 2Re[i(λ+ − λ∗
−)c+c∗

−e−i(λ+−λ∗
− )t 〈−|+〉], (20)

where the first two terms correspond to exponential decay at
two different rates, while the third term is an interference term
that modulates and decays over time.

Given resonant multicycle Rabi oscillations, t � T =
2π/�, with negligible photoionization losses, C(t ) � 1, the
period-averaged rate is approximately given by〈

dC

dt

〉
T

≈ 1

2
(γa + γb) ≈ 1

2
(γ+ + γ−), (21)

TABLE II. The level-shift scaling factors for helium 1s2 − 1s2p, and hydrogen 1s − 2p, with linear polarization (L) and circular
polarization (C). The number in parentheses indicate the power of ten, and atomic units are used for all quantities.

ρ
(n)
i j Atom/Pol. n = 1 n = 2 n = 3 n = 4

aa H/L 0 −4.299 0 1452 − 233.1i
ab H/L 0.7449 0 54.26 + 9.322i 0
ba H/L 0.7449 0 54.26 + 9.322i 0
bb H/L 0 11.70 − 0.5223i 0 2888 − 95.57i
aa He/L 0 −2.853 0 155.6 − 10.32i
ab He/L 0.4040 0 8.533 + 0.2326i 0
ba He/L 0.4040 0 8.533 + 0.2326i 0
bb He/L 0 2.010 − 7.871i(−3) 0 120.0 − 0.2154i
aa He/C 0 −2.853 0 126.6 − 15.25i
ab He/C −0.4040 0 −5.149 − 0.3737i 0
ba He/C −0.4040 0 −5.149 − 0.3737i 0
bb He/C 0 1.971 − 9.159i(−3) 0 85.35 − 1.831i(−3)
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which implies a period-averaged linear photoionization prob-
ability in accordance with Fermi’s golden rule [16]. The 1/2
factor in Eq. (21) can be interpreted as due to the time-
averaged populations of the ground state and excited state,
or as due to the equally populated dressed states, which are
two alternative views to describe Rabi-cycling atoms with
�ω = 0.

D. Two-level photoelectron amplitudes

According to Beers and Armstrong, the interference term
β may cause stabilization against photoionization in the long-
time limit [26]. However, this stabilization effect is difficult
to measure experimentally because the photoionization rate is
nonexponential and changes over time [26,28]. In this paper,
we propose that photoelectron spectra can be used to study
the stabilization mechanism in the alternative energy domain,
which should be experimentally feasible with modern FEL
sources [5]. To this end, we now derive expressions for photo-
electron spectra within the resolvent operator formalism. The
resolvent equation for coupling from P to Q is [29]

QG(z)P = 1

z − QHQ
QHPG(z)P. (22)

Provided we have an expression for PG(z)P, we can derive
a perturbative expression for QG(z)P, which will be required
for finding the photoelectron amplitudes,

QG(z)P = 1

z − QH0Q
QV PPG(z)P + 1

z − QH0Q
QV Q

× 1

z − QH0Q
QV PPG(z)P + · · · (23)

So the resolvent matrix element for finding a photoelectron in
state |ε〉 ∈ Q is then to second order in V ,

Gεa(z) = 〈ε| 1

z − QH0Q
QV PPG(z)P|a〉 + 〈ε| 1

z − QH0Q

× QV Q
1

z − QH0Q
QV PPG(z)P|a〉. (24)

The interpretation of this expression is that we first propagate
within the space P with the effective Hamiltonian resulting
from the interaction with Q, and then we transition to the
space Q through one interaction, where our perturbative ex-
pression allows for one more transition within Q.

Using Eq. (5) to translate Eq. (24) into a time-dependent
amplitude, we find

U (1)
εa±(t ) = ∓iE0zεb

hab

W
exp

[
− i

t

2
(Eε + λ±)

]
sin

[
t
2 (Eε − λ±)

]
(Eε − λ±)

, (25)

U (2)
εa±(t ) = ∓iE2

0 zε �=b
(λ± − hbb)

2W
exp

[
− i

t

2
(Eε + λ±)

]
sin

[
t
2 (Eε − λ±)

]
(Eε − λ±)

, (26)

for the two dressed-state eigenvalues in Eq. (3) and complex
generalized Rabi frequency in Eq. (4). The total first- and
second-order amplitudes are

U (1)
εa (t ) = U (1)

εa+(t ) + U (1)
εa−(t ), (27)

U (2)
εa (t ) = U (2)

εa+(t ) + U (2)
εa−(t ), (28)

respectively. Shorthand notation for energy, Eε − λ± = ε −
2ω − λ±, and atomic transition elements

zεb = 〈ψε |z|ψb〉, (29)

zε �=b =
∑
c �=b

〈ψε |z|ψc〉〈ψc|z|ψa〉
Ea − Ec

, (30)

are used, where z is the z component of the position operator
used for linear polarization. In the case of circular polarization
the following substitution is made, z → 2−1/2(x + iy).

For sufficiently long times, the amplitudes in Eqs. (25)
and (26) will be peaked near the dressed-state energies λ±
given in Eq. (3). In contrast to our earlier theoretical work
[16], which was based on time-dependent perturbation theory,
these ionization amplitudes incorporate effects of ac Stark
shifts and depletion. The different signs of the amplitudes in
Eqs. (25) and (26) are essential to interpret the photoelectron
interference effects in the AT doublet, but also the phases
of the elements of the complex effective Hamiltonian enter
and must be considered for a complete description of the
interference phenomenon.

III. RESULTS

We now present our results, which were obtained with the
model described in Sec. II. In Secs. III A–III C we work with
linearly polarized light, and study how the AT doublet depends
on intensity, detuning, and interaction time. In Sec. III D we
study stabilization of one of the dressed states, and show how
this effect is sensitive to the polarization of the light. The main
result of this section is the identification of a signature in the
photoelectron spectrum that originates from stabilization.

A. Photoionization domains

In Fig. 2 we study the contributions of the two bare states
|a〉, |b〉 to the photoelectron signal, in the regions I and II
where γa < γb and γa > γb, respectively. For Figs. 2(a) and
2(b) we used the intensity I = 1 × 1012 W/cm2, which puts it
in region I, while (c) and (d) uses I = 3 × 1014 W/cm2, which
corresponds to region II. The interaction time for the different
cases are 1 Rabi period (a), 3/2 Rabi period (b), 1/2 Rabi
period (c), and 1 Rabi period (d). As shown in previous paper,
the ultrafast build-up time of an AT doublet is shorter from the
ground state than from the excited state [16]. This is due to the
different interaction times required for the Rabi amplitudes,
a(t ) = cos(�t/2) and b(t ) = −i sin(�t/2), to change sign.
Full contrast is obtained when the positive and negative parts
of the integrated corresponding Rabi amplitude add up to zero.
More precisely, it takes one (two) complete Rabi period(s)
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FIG. 2. Photoelectron spectrum in the two predicted regions of resonant photoionization. (a) and (b) show an intensity in region I (1 ×
1012 W/cm2) for interaction times of 1 and 1.5 Rabi periods, respectively. (c) and (d) show an intensity in region II (5 × 1014 W/cm2) with
interaction times of 0.5 and 1 Rabi periods, respectively. The intensity and pulse duration used for each subplot is indicated in Fig. 1(c).

for an AT doublet with full contrast to form from the ground
(excited) state in the resonant case.

We can now notice some differences and similarities be-
tween the two regions. In both regions the photoelectron
signal develops an AT doublet when the interaction time is
sufficiently long (b and d), however, the number of Rabi
periods it takes for the doublet to be noticeable (on reso-
nance h̄ω = 21.69 eV) is different between the two regions,
in agreement with earlier paper [16]. Here it is also clear that
on these timescales the structure of the AT doublet is fun-
damentally different in the two regions, with the AT doublet
in region II displaying a clear asymmetry between the upper
and lower components of the doublet as the photon energy is
changed, while in region I the components have nearly equal
strengths for all photon energies. Further, since the general-
ized Rabi frequency increases with detuning we observe a
transition from a single peak to a double peak with increased
detuning in Fig. 2(a). The AT doublet from the ground state
is more difficult to distinguish in the detuned case, due to the
asymmetry of the ground-state contributions. Nonetheless, the
formation can be observed as the central photoelectron peak,
shown in Fig. 2(c), is split into two central peaks, shown in
Fig. 2(d). Beyond the AT-doublet structure, we will refer to
“fringes” found in the photoelectron distributions as external
and internal sidebands.

External sidebands

Faint sidebands are observed below and above the main
photoelectron structure for all considered cases presented in

Fig. 2. These faint sidebands originate from the oscillatory
Fourier transform of the flat-top envelope of the electric field
in our quantum model. In the case of a more realistic—
smoother—envelope function, which could easily be studied
within the semiclassical picture, we expect these external
sidebands to be reduced or vanish.

B. Interference-induced asymmetry

Figure 3 shows the contributions of ionization from the
excited state [Fig. 3(a)], and from the ground state [Fig. 3(b)]
at the intensity where the rates γa and γb are equal and the
pulse duration corresponds to N ≈ 4 Rabi periods. In Fig. 3(c)
the coherently added signal is shown. Due to interference
between the two signals the symmetric AT doublet in the
photoelectron spectrum is shifted away from the resonance
condition, towards higher photon energies. We stress that it
is the relative weight of the probabilities between the upper
and lower AT peak that changes, while the position of the AT
peaks remains the same. At resonance it is easy to understand
this phenomenon using the usual Rabi amplitudes, a(t ) ∼
ei�t/2 + e−i�t/2 and b(t ) ∼ −ei�t/2 + e−i�t/2, which shows
that the ground (excited) state has spectral components with
equal (opposite) signs. Thus addition of the contributions will
enhance one spectral component and decrease the other (see
Supplementary information of Ref. [16] for more details about
photoionization based on the Rabi model). As mentioned in
Ref. [16], this shift will in general depend on the exact shape
of the FEL pulse, since an envelope will change the instanta-
neous ionization rates during the pulse.
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FIG. 3. Photoelectron spectra for an intensity where the ionization rates of the two bare states are of similar magnitude, leading to
interference between the resonant and nonresonant ionization paths. (a) shows the contribution from the excited state, (b) the contribution
from the ground state, and (c) the combined signal. The pulse parameters are 1.09 × 1014 W/cm2 and 27.0 fs, which correspond to four Rabi
cycles in the resonant case. We have also marked this position in parameter space in Fig. 1(c) with the label “Fig. 3”.

Internal sidebands

Similar to our results in Fig. 2, we observe faint external
sidebands in all cases shown in Fig. 3. In addition, faint
internal sidebands are observed between the two AT peaks
in Fig. 3(a). In contrast to the external sidebands, the manifes-
tation of internal sidebands is a more general phenomenon,
which is also present for smooth envelopes [36,37]. The
number of internal sidebands in partial photoionization from
the excited state can be interpreted as nb = N − 2, where
N = 2, 3, ... is the number of Rabi oscillations performed by
the atom. In Fig. 3(a) we observe an increase in the number
of internal sidebands, from nb = 2 to nb = 4 (nb = 3), for
red (blue) detuning, due to the increasing generalized Rabi
frequency at the considered pulse parameters.

We now turn to the question if internal sidebands form
from the ground state. In Fig. 3(b), we show that the partial
photoionization signal from the ground state does not exhibit
internal sidebands at resonance. However, weak asymmet-
ric internal sidebands are found when the laser is detuned.
These sidebands look quite similar to the external sidebands.
Surprisingly, the total signal, which contains the coherent
contributions from both excited and ground state, shows beau-
tiful internal sidebands, as shown in Fig. 3(c). Two internal
sidebands are found, n = 2, which is in agreement with the
contribution from the excited state, nb = N − 2 = 2. When
the laser is detuned, however, the internal sidebands become
asymmetric, reflecting the influence of the photoionization
contribution also from the ground state. In contrast to the
partial contribution from the excited state, the total photoion-
ization has clear internal sidebands for all detunings (also
corresponding to half-integer Rabi periods). This suggests that
measurements of internal sidebands could present a way to
study rich interference effects between ground and excited
states from Rabi cycling atoms.

C. Depletion-induced asymmetry

Figure 4 shows the effect of having different ionization
rates for the two dressed states. The strength of the compo-
nents in the AT doublet will change over time, if the ionization
rate of the two dressed states are different. This is illustrated
in Fig. 4(a) for a 10-fs pulse and a 80-fs pulse, at an intensity

of 3 × 1014 W/cm2 and a photon energy of 22.17 eV. For the
80 fs pulse, the relative strength of the upper component of the
AT doublet has increased when compared to the 10 fs pulse.
Initially the component associated to the dressed state with
the higher rate will be stronger. However, as the state with
the higher rate becomes depleted, the other component will
start to catch up. The initial population of the dressed states
will also have an effect on the strength of the components
in the doublet. In Fig. 4(b), we can see that the |+〉 state is
initially more populated for this combination of photon energy
and intensity. The small oscillations that can be seen in the
survival probability come from the cross-term in Eq. (19).
Similar oscillations in the ionization probability are seen more
clearly in Figs. 1(e) and 1(f).

D. Dressed-atom stabilization

Beers and Armstrong predicted that there should exist
combinations of photon energy and intensity for which the
ionization rate of one of the dressed states vanishes if both
ionization rates in Eq. (18) are equal, γa = γb [26]. In their
paper, as well as in Holt et al. [28], it was assumed that
β = ±√

γaγb. This assumption is valid in the case when there
is only a single ionization continuum available; however, it
is not valid when several continua are available, as shown

FIG. 4. (a) Photoelectron distributions for a pulse duration of
10 fs, and a pulse duration of 80 fs. (b) Population left in the two-
level system for the 80 fs pulse computed by interaction amplitudes
Pa+b and dressed-atom amplitudes {|c+|2, |c−|2} weighted by their
associated depletion factors. The two vertical lines indicate the pulse
durations used in (a).
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FIG. 5. Top row: Comparison of γ+ for linear and circular po-
larization, as a function of the intensity and the photon energy. The
left column corresponds to linear polarization and the right column
to circular polarization. The red line in the circular plot shows for
which combinations of photon energy and intensity the ionization
rate of the |+〉 state goes to zero. The white dashed line indicates the
field-free resonance photon energy. Bottom row: Comparison of the
ionization rates of the dressed states |±〉 as a function of intensity at
the field-free resonance. Also the cycle averaged rates (γ+ + γ−)/2
and (γa + γb)/2 are included for comparison.

in Appendix B. In this paper we compute general values of
β, see Eq. (17), by a systematic expansion of the level-shift
operator, see Eq. (14). For the systems considered here there
are always two continua available for the photoelectron when
the FEL pulse is linearly polarized (s and d wave with m = 0).
In contrast, the dipole selection rules for circularly polarized
FEL pulses only allow for a single ionization continuum for
two-photon ionization (d wave with |m| = 2). We find that it is
the dressed state |+〉 that can be stabilized. In general it is the
relative sign of � and β that determines which of the dressed
states, |+〉 or |−〉, that is stabilized. This point is explained in
Appendix B.

Figure 5 shows a comparison of the ionization rate γ+
of |+〉, as a function of intensity and photon energy for lin-
ear and circular polarization. There we can observe that γ+
vanishes for certain FEL parameters for circularly polarized
light (along the red line in the plot), which implies that |+〉
is stabilized. The same phenomena is not observed for linear
polarization in helium. Consider the photoionization process
from the ground s state and excited p state, which for a
linearly polarized field lead to final s and d waves. We have
showed, in the supplemental information of Ref. [16], that the
relative strength of the resonant and nonresonant ionization
processes can be different for s- and d waves. Therefore it is
not possible to “rotate” the s- and d continua into a single ef-
fective continuum channel for both resonant and nonresonant
ionization simultaneously. Thus, linear polarization leads to
“genuine” multiple continua, with effects beyond the earlier
works [26,28]. This means that stabilization will not happen
for linearly polarized light, but it may happen for circular
polarization.

Single-continuum stabilization could in principle be ob-
served as a “dip” in the ionization probability at a specific
intensity and photon energy combination [26]. However, ion-
ization will still take place from the |−〉 state, and for short
times this will compensate for the lack of ionization from |+〉,
see lower panels in Fig. 5 and Eq. (21). It is only for pulses
long enough to significantly deplete |−〉 that the stabilization
effect can be observed in the total ionization probability. For
helium this would require a pulse duration of thousands of
Rabi cycles. Since the required intensity for the resonant sta-
bilization is fixed, this implies that the pulse must be 1000
longer and thus 1000 times more energetic, which is unreal-
istic given present technology. Here we present an alternative
signature of this stabilization effect, by considering the asym-
metry of the AT doublet in the photoelectron spectrum as a
function of photon energy at fixed intensity.

In Fig. 6 a comparison is made between the photoelectron
spectra for linearly and circularly polarized light, each for the
intensity where the ionization rates γa and γb are equal. Two
pulse durations are considered (two and 10 Rabi cycles). In
the case of circular polarization, a “node” in the strength of
the upper component of the AT doublet can be observed close
to resonance. This node is associated with lack of ionization
from the |+〉 state. No such node can be seen with linear po-
larization because |+〉 is not stabilized for any photon energy.

These phenomena can be studied in more detail by consid-
ering the asymmetry of the spectrum with respect to the peaks
associated to the eigenvalues λ±. We consider the asymmetry
parameter

A = |S+ − S−|
S+ + S−

, (31)

where S± is the height of the peak associated to eigenvalue
λ±. This would mean measuring the heights along the dashed,
yellow lines in Fig. 6. This gives rise to the dashed lines in the
right column of Fig. 6. We can see that for a particular photon
energy, the asymmetry parameter of the spectrum for circular
polarization goes to one, meaning that one of the peaks has
vanished. This does not occur for linear polarization. We can
also define the S± as being the integrated spectrum above
or below the position of the single photoelectron peak (if
there was no AT splitting). This is indicated by the green
line in the spectra, and the corresponding asymmetry values
are indicated by full lines in the asymmetry plots. Due to the
presence of strong sidepeaks in the two Rabi cycle case, the
asymmetry does not reach one for circular polarization, but
a maximum is observed at the same location. As the pulse
duration is increased the strength of the sidepeaks is reduced
and the integrated definition approaches that of evaluating the
peak heights.

IV. CONCLUSIONS

In this paper we have studied nonperturbative resonant
two-photon ionization (1 + 1) of atoms at XUV wavelengths
using the resolvent operator formalism. Matrix elements of
the level-shift operator were calculated using perturbative
expansion, up to fourth order in the strength of the electric
field, and scaling parameters for helium and hydrogen were
presented. It was showed that helium atoms can be stabilized
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FIG. 6. Photoelectron spectra for linear (left column) and circular (middle column) polarization at the intensity when the rates γa and γb

are equal. The interaction time is two Rabi cycles (upper row), and 10 Rabi cycles (bottom row), respectively. A shift of the symmetric doublet
away from the resonance is observed in both cases. In the case of circular polarization, the higher peak (corresponding to λ+) has a “node”
close to the resonance, which implies stabilization of |+〉. In the case of linear polarization the same effect is not observed. At red detuning,
ω < 21.69 eV, the strength of the higher peak is weaker than the lower peak, which implies that photoionization from |+〉 is lower than from
|−〉. Asymmetry parameters for the doublet is shown in the right column (see main text for details).

against resonant two-photon ionization with circularly polar-
ized XUV fields, which has a natural explanation in terms
of dressed states. Surprisingly, we find that it is the most
energetic dressed state |+〉 that is stabilized. In contrast, linear
polarization does not show this effect, but ionization from one
of the dressed states is suppressed relative to the other one.

Our paper provides a quantitative physical explanation for
why dressed states may have different ionization rates for
linearly polarized XUV pulses, an effect that was first pre-
dicted by Girju et al. using Floquet theory for hydrogen atoms
[25]. The scaling parameter presented in this paper allowed
us to study a range of nonlinear photoionization domains,
as originally proposed by Beers and Armstrong [26]. We
computed analytically the photoelectron distributions to the
lowest photoelectron peak using the non-Hermitian dynamics
of the two-level system as the atomic source. Above-threshold
ionization, which has previously been observed by numerical
propagation of TDSE [24,25], was not considered in this pa-
per, but could be computed by further perturbative expansion
in Q.

Finally, we have predicted that the stabilization effect can
be identified through the asymmetry of the AT doublet in
the photoelectron spectrum, with pulse parameters accessible
to seeded FEL sources, such as FERMI [5,16]. Our most
surprising result is that an atom that undergoes ten Rabi cy-
cles exhibits a single photoelectron peak in the stabilization
regime. This clearly shows that there is no direct relationship
between population of dressed states and the correspond-
ing photoelectron probability distribution in the stabilization
regime.

Partial stabilization of IR dressed autoionizing states has
recently been observed in a transient absorption experiment
[38]. There the stabilization mechanism is attributed to in-
terference between radiative ionization and autoionization
processes, whereas the stabilization studied in this paper is
due to interference within the photoionization process alone.
The multiple continua involved in the autoionization process
prevents complete stabilization, which similarly to the single
peak we observe in the stabilization regime would lead to
a single window resonance rather than two resonances with
different widths.

We envision that stabilization effects will be interesting
to study in future experiments with intense coherent XUV
pulses. As an example, Ramsey-like interference structures
have been shown by Wollenhaupt et al. in pump-probe ex-
periments on alkali atoms [39]. Due to phase discontinuities,
pump-probe experiments allow for selective preparation of
dressed states [40]. In the stabilization regime, we predict
that novel interference patterns will be present, compared to
previous studies on alkali atoms (in domain I) [39].

Although we have restricted our study to monochromatic
pulses (a single Fock state in quantum optics), our results
are closely related to the control of ionization in two-photon
resonant ionization with linearly polarized chirped pulses,
first predicted by Saalmann et al. [41]. This is because rapid
adiabatic passage (RAP) triggered by chirped pulses leads to
transient population of a dressed state [40], either |+〉 or |−〉,
depending on the sign of the chirp of the pulse. Therefore,
we predict that RAP with circularly polarized chirped pulses
can be used to further improve control of photoionization, by
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TABLE III. Parameters of effective Hamiltonian for the case of resonant two-photon ionization of H via the 2p state and He via the 1s2p
state. The number in parentheses indicate the power of ten, and atomic units are used for all quantities.

Atom E0 ω δa δb γa γb β

Ha 0.001 0.375 −1.0748(−6) 2.9244(−6) 2.9135(−11) 2.6118(−7) 2.3304(−9)
Hb −1.07(−6) 2.92(−6) 6.0(−10) 2.61(−7) 2.9(−9)
Ha 0.005 −2.6815(−5) 7.3218(−5) 1.8209(−8) 6.5368(−6) 2.9130(−7)
Hb −2.54(−5) 7.17(−5) 9.1(−8) 6.54(−6) 3.6(−7)
Ha 0.01 −1.0658(−4) 2.9423(−4) 2.9135(−7) 2.6237(−5) 2.3304(−6)
Hb −9.59(−5) 2.81(−4) 8.8(−7) 2.55(−5) 2.8(−6)
Hea 0.001 0.7972 −7.1329(−7) 5.0258(−7) 1.2901(−12) 3.9355(−9) 5.8140(−11)
Hea 0.005 −1.7826(−5) 1.2569(−5) 8.0629(−10) 9.8403(−8) 7.2675(−9)
Hea 0.01 −7.1233(−5) 5.0332(−5) 1.2901(−8) 3.9381(−7) 5.8140(−8)

aThis paper.
bReference [28].

taking advantage of transient stabilization, which may find
future applications in quantum control experiments.
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APPENDIX A: EFFECTIVE HAMILTONIAN
PARAMETERS FOR HYDROGEN

Here we study the parameters of the effective Hamiltonian
for light resonant with 2p in hydrogen. A comparison is made
with our perturbative approach and that of Ref. [28], where the
analytically continued non-Hermitian Floquet Hamiltonian
was used [42]. The results are presented in Table III. At a field
strength of E0 = 0.001 a.u., there is good agreement for all
parameters except γa and β. As the field strength is increased
the agreement is worse for all parameters, but still γa has the
biggest discrepancy. The disagreement with tabulated values
could potentially be explained by limited numerical accuracy
for especially γa, since it is acknowledged by Holt et al. that
their values of γa and β are potentially unreliable [28]. Com-
paring our values for the scaling parameters for hydrogen with
the values extracted by comparison with TDSE calculations in
Ref. [23] gives a fair agreement (≈10 − 35% relative differ-
ence) for ρ (2)

aa , ρ
(2)
bb , and Im[ρ (4)

aa ]. The third-order off-diagonal
contribution, e.g., β, which is essential for stabilization, and
fourth-order shifts for |b〉 are not included in their model. We
note that often used “local approximation” in time-dependent
essential state models does not either include off-diagonal
complex contributions because its original application was
to “weak” fields [43]. In this paper we considered “strong”
fields, which give rise to Rabi oscillations and nonlinear ways
to photoionize the atom. In this case, complex off-diagonal
matrix elements should be used, also in time-dependent
essential state models, to describe interference effects to
the continuum.

APPENDIX B: ROLE OF β IN STABILIZATION
OF DRESSED STATES

In this Appendix we clarify the role of β in the stabilization
of dressed states. We start by deriving an expression for β. The
amplitude M for the third-order process in Fig. 1(b), which is
responsible for the imaginary part of Rba, is given by

M =
∑

c �=b,c′

〈b|V |c′〉〈c′|V |c〉〈c|V |a〉
(Ea + iη − Ec′ )(Ea + iη − Ec)

. (B1)

In terms of the atomic states and energies, Eq. (B1) can be
written as

M =
∑

c �=b,c′

E3
0 〈ψb|z|ψc′ 〉〈ψc′ |z|ψc〉〈ψc|z|ψa〉

23(εa + 2ω + iη − εc′ )(εa + ω + iη − εc)
. (B2)

Here linear polarization has been assumed, and in the case
of circular polarization the z operator should be replaced by
2−1/2(x + iy) for absorption and 2−1/2(x − iy) for emission.
When taking the η → 0+ limit, the denominator involving εc′

will lead to a pole in the continuum and Eq. (B2) becomes

M = p.v.
E3

0

23

∑
c �=b,c′

〈ψb|z|ψc′ 〉〈ψc′ |z|ψc〉〈ψc|z|ψa〉
(εa + 2ω − εc′ )(εa + ω − εc)

− iπ
E3

0

23

∑
c �=b

∑
�

〈ψb|z
∣∣ψ�

ε

〉〈
ψ�

ε

∣∣z|ψc〉〈ψc|z|ψa〉
εa + ω − εc

, (B3)

where the sum over � corresponds to a sum over the avail-
able continua and p.v. denotes the principal value. Following
Eqs. (29) and (30), the imaginary part of M can be expressed
as

Im[M] = −π
E3

0

23

∑
�

z�
bεz�

ε �=b. (B4)

Since β = 2Im[M], we can write

β = −π
E3

0

22

∑
�

z�
bεz�

ε �=b = −
∑

�

σ�

√
γ �

b γ �
a , (B5)

where γ �
i is the partial rate for ionization from state i ∈ {a, b}

to continuum �, and σ� is the sign of z�
bεz�

ε �=b. When only one
ionization continuum is available β = ±√

γaγb, but this does
not hold in general.
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Next, we consider the dressed-state energies, λ±, given in
Eq. (3). For simplicity we consider the case haa = hbb, which
means no detuning,

Ea + δa = Eb + δb = E , (B6)

and that the ionization rates are equal,

γb =
∑

�

γ �
b = γa =

∑
�

γ �
a = γ . (B7)

The dressed-state energies are then reduced to

λ± = E − i
γ

2
± 1

2

√
(� + iβ )2. (B8)

The square root can be written (using the principal branch) as√
(� + iβ )2 = |�| + sgn(�)iβ, (B9)

so that λ± takes the form

λ± = E − i
γ

2
± 1

2
{|�| + sgn(�)iβ}. (B10)

Stabilization occurs when the imaginary part of one of the
dressed energies vanishes, i.e., if

γ = ±sgn(�)β. (B11)

Since γ is a positive number, it follows that stabilization can
occur in only one of the dressed states. If � and β have the
same sign, then the |+〉 state with λ+ will be stabilized, other-
wise the |−〉 with λ− has the possibility to be stabilized. In the
circular polarization case considered in the main text � and β

are both negative, which explains why the stabilization occurs
in the more energetic |+〉 state, see Fig. 5 (right column). For
Eq. (B11) to hold in the case of multiple continua we must
have γ �

a = γ �
b for every �, and σ� = σ�′ for all � and �′.

In the case of linear polarization, both hydrogen and helium
have positive values for � and β, which implies that it is
again the |+〉 state that could be stabilized. However, two
different continua are present, and Eq. (B11) is not satisfied.
This results in a reduction of γ+, when compared with γ−, but
it does not go to zero, see Fig. 5 (left column).
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