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Fluid drainage in erodible porous media
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Drainage, in which a nonwetting fluid displaces a wetting fluid from a porous medium, is well studied for
media with unchanging solid surfaces. However, many media can be eroded by drainage, with eroded material
redeposited in pores downstream, altering further flow. Here we use theory and simulation to examine how these
coupled processes both alter the overall fluid displacement pathway and help reshape the solid medium. We
find two drainage behaviors with markedly different characteristics and quantitatively delineate the conditions
under which they arise. Our results thereby help expand the current understanding of these rich physics, with
implications for applications of drainage in industry and the environment.
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I. INTRODUCTION

Drainage is the process by which a nonwetting fluid dis-
places a wetting fluid from a porous medium. It underlies a
broad range of environmental and industrial processes, includ-
ing groundwater contamination, oil migration and recovery,
gas venting from sediments, CO2 sequestration, soil drying,
and the operation of porous membranes [1–17]. Therefore,
extensive research has sought to develop ways to predict the
displacement pathway taken by the nonwetting fluid [18,19],
building on the seminal model of invasion percolation pro-
posed by Wilkinson and Willemsen four decades ago [20].

In this model, the medium is assumed to be composed of a
static solid matrix of uniform wettability (with a prescribed
three-phase contact angle θ ) that houses an interconnected
network of pores with randomly varying sizes. The non-
wetting fluid is taken to be much more viscous than the
wetting fluid, and its flow is considered to be very slow;
in this limit, which characterizes many real-world processes,
capillary forces at the immiscible fluid interface dictate
the resulting displacement pathway as detailed further in
Appendix A. In particular, the nonwetting fluid cannot in-
vade a pore of entrance radius r until the capillary pressure
difference across the interface reaches a threshold �pc ≡
2γ cos θ/r, where γ is the interfacial tension between the
two fluids. Hence, the fluid displacement proceeds one pore
at a time, with the nonwetting fluid invading the largest
pore accessible to it and therefore the lowest capillary pressure
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threshold successively. The fluid displacement pathway is
then determined by random local variations in pore size,
resulting in a characteristic ramified and disordered displace-
ment pattern known as capillary fingering (CF) [18,21–34].

While this foundational model has been validated in highly
controlled laboratory studies, it makes a strong assumption
that often does not hold in practice—that the structure of
the solid matrix is unchanging. In reality, capillary forces
at the immiscible fluid interface can restructure the ma-
trix as detailed further in Appendix B. One way this can
happen is by deforming or fracturing the overall medium
[35,36]. Another way is by eroding frangible [37] and plas-
tocapillary [38] material from the walls of the solid matrix
and redepositing it within the pore space downstream. A
prominent example is the layers of colloidal particles, in-
organic precipitates, and organic matter that frequently coat
the mineral grains making up soils, sediments, and subsur-
face aquifers/reservoirs [39–49]. Field observations indicate
that fluid drainage caused by processes like wetting/drying
cycles and contaminant/oil migration can erode and rede-
posit these materials, impacting subsequent transport over
large scales [50–54]. However, despite their common occur-
rence, studies of the influence of solid erosion and deposition
on fluid drainage in porous media (and vice versa) are
lacking.

Here we incorporate these physics into the classic frame-
work of invasion percolation. Our numerical simulations
reveal two drainage behaviors whose fluid displacement and
solid deposition patterns differ dramatically from standard
CF: rapid clogging (RC), in which redeposited material
rapidly clogs the pore space and arrests subsequent flow,
and erosion-enhanced fingering (EEF), in which constric-
tion of some pores by deposition unexpectedly enables
the nonwetting fluid to invade a greater fraction of the
medium. Furthermore, we use calculations to delineate
the conditions under which these different behaviors arise,
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FIG. 1. Network modeling of fluid drainage in an erodible porous medium reveals different drainage behaviors. (a) Schematic of the 2D
network model, with N × N nodes representing the pore bodies and the edges representing the interconnecting pore throats. (b) Magnified
view of a single-pore body. (c) Pore throats initially have a pristine radius ri,p, with an initial layer (mint) of erodible material td thick. (d) As
the nonwetting fluid enters a pore during drainage, it erodes some of this material, redepositing it into connected throats (blue). Numerical
simulations reveal different drainage behaviors arising from solid erosion and deposition, as represented in the state diagram in (e) showing
magnified views of the final drainage patterns across a wide range of t̃d and �̃. Circular gray and purple markers indicate invaded and clogged
pore throats, respectively, while gray pluses denote invaded pore bodies. We characterize these behaviors in (f) and (g) using the volume
fraction of the pore space filled by the nonwetting fluid after drainage completes, φ, normalized by the case of standard capillary fingering φCF.
Open symbols show the results for the single network used to generate the simulations shown in (e). Closed symbols and gray shading show
the average and standard deviation, respectively, of results obtained over 100 different, but statistically identical, networks. (f) Without erosion
(�̃ = 0), drainage proceeds by CF [magnified view in (e)] until t̃d > t̃∗

d ≈ 0.9, above which the medium starts with so much erodible material
that pores near the inlet are clogged. The medium transitions to rapid clogging, as shown by the top right image of (e). (g) With strong erosion
(�̃ = 0.8), drainage proceeds by CF only until t̃d > t̃∗∗

d ≈ 0.15, above which the nonwetting fluid unexpectedly explores more of the pore
space than in CF. Drainage proceeds by erosion-enhanced fingering, as shown in the bottom left image of (e). With increasing t̃d > t̃∗

d ≈ 0.4,
clogging increasingly dominates and drainage transitions back to RC.

governed by two dimensionless parameters that quantify
how much of, and how easily, the solid matrix can be
eroded.

II. MODEL DEVELOPMENT

To begin to unravel the complex physics underlying this
problem, we examine a simple, but illustrative, example.
Following the typical approach of pore-network modeling
[55–57], we consider fluid drainage at a constant volu-
metric flow rate Q in a two-dimensional (2D) network of

N × N nodes, which represent the pore bodies, with locations
defined by an adjacency matrix with network connectivity
c [Fig. 1(a)]. The edges between nodes are indexed seri-
ally by i and represent the constrictions (throats) between
pores. Because pc is locally maximum at these constrictions,
they control both pore invasion and solid erosion. We thus
focus our attention on the edges of the network; for simplic-
ity, we assume that they compose the entirety of the pore
space volume and approximate them as cylinders of uniform
length L and pristine radii ri,p drawn randomly from a given
distribution ρ(ri,p).
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To impart erodibility to this static matrix, we consider
the inner wall of each pore throat to also be coated by a
layer of erodible material prior to the initiation of drainage
[47,58], initially of constant thickness td [Figs. 1(b) and 1(c)]
distributed uniformly throughout the medium. The effective
radius of throat i is then given by ri = ri,p − td , with a corre-
sponding capillary pressure threshold �pc(ri ) = 2γ cos θ/ri;
here, we take θ = 0. If td � ri,p for a given pore i, it is
taken to start as clogged and is removed from the network.
Guided by studies in single pores and on flat surfaces [38,59–
67], we account for drainage-induced erosion using a sim-
ple rule: If a pore is invaded by the nonwetting fluid, the
moving immiscible fluid interface erodes material from the
wall [Fig. 1(d)] when �pc(ri ) exceeds a threshold stress σy

that quantifies the material’s durability, analogous to a yield
stress. For ease of notation, we indicate dimensionless quan-
tities by tildes and nondimensionalize all length scales by
rp,max ≡ max{ri,p}. The ratio �̃ ≡ �pc(rp,max)/σy then com-
pares the smallest capillary pressure that can possibly arise in
the porous medium to the threshold erosion stress, that is, it
describes the relative ease with which the immiscible fluid
interface erodes material from the pore walls as it moves.
We therefore call this dimensionless parameter the medium’s
erodibility.

Hence, as the nonwetting fluid invades a pore with throat
radius ri, the amount of material eroded from its walls depends
on �̃. If �̃ < r̃i, erosion does not occur and the dimensions of
the pore remain unchanged after drainage; the radius after the
entire drainage process has completed, r̃′

i , remains equal to r̃i.
Above the threshold �̃ � r̃i, erosion causes the radius to in-
crease to a new value r′

i = 2γ /σy, at which the corresponding
capillary pressure becomes balanced by the threshold stress
for erosion, or equivalently r̃′

i = �̃. However, there is a limit
to how much material can be eroded from a pore: If the
erodibility is so large that this new value 2γ /σy exceeds the
pristine radius ri,p (that is, if �̃ > r̃i,p), then the pore throat
radius saturates at its largest possible value r̃′

i = r̃i,p. Given
that we focus on the limit of capillary-dominated displace-
ment of a low-viscosity wetting fluid, we neglect any possible
coupling between solid erosion/deposition and viscous forc-
ing (Appendix A); however, incorporating such additional
complexities will be an important extension of our theoretical
framework.

Finally, we also incorporate the subsequent deposition of
the eroded material in the nondrained throats j directly con-
nected to a drained eroded throat i. In particular, because we
assume cylindrical pore throats with N � 1, we distribute the
volume eroded from i proportionately to r4

j , following mass
conservation (detailed in Appendix C), reducing the values of
r̃′

j accordingly. However, if this process causes a pore throat j
to become fully clogged, the excess volume of eroded material
is returned to the parent i and the throat is removed from the
network to prevent subsequent flow through it.

III. MODEL IMPLEMENTATION

To characterize the influence of solid erosion and depo-
sition on fluid drainage, we perform numerical simulations
of this model with N = 200, c = 4, and ρ(r̃i,p) given by a
uniform distribution spanning r̃i,p ∈ [0.83, 1]; we find results

similar to those described below when exploring other val-
ues of N , c, and forms of ρ(r̃i,p), including those obtained
from real-world media, as shown in Appendix D. For each
simulation condition tested, parametrized by prescribed input
values of (t̃d , �̃), we run 100 unique iterations, each with r̃i,p

randomly sampled from the same ρ(r̃i,p). In each simulation,
the pore bodies and throats all start saturated with the wetting
fluid. We then initiate drainage by introducing the nonwetting
fluid at the four central pore bodies. This choice of invasion
starting from a central position is frequently made in pore net-
work models [35,68]; however, we find similar results when
drainage is initiated from one edge of the network instead
(Appendix E), indicating that our findings hold more gener-
ally. During each time step, we then determine the connected
component clusters of undrained pore bodies; the boundaries
with these clusters delineate the invading nonwetting fluid
interface or trapped wetting fluid regions. Following standard
invasion percolation, we then identify the largest pore throat
i, with the smallest capillary pressure threshold �pc ∼ 1/r̃i,
along the invading nonwetting fluid interface. We fill the
corresponding pore throat and body, keeping trapped wetting
fluid regions unchanged to model an incompressible fluid and
incorporating solid erosion and deposition following the rules
described above. We then iterate through time steps until the
nonwetting fluid reaches the periphery of the network or is
completely surrounded by clogged pores.

IV. SOLID EROSION AND DEPOSITION ENGENDER
FUNDAMENTALLY DIFFERENT DRAINAGE BEHAVIORS

As a baseline, we first establish the classic case of in-
vasion percolation without any erosion (t̃d = 0, �̃ = 0). As
expected, drainage occurs through a series of successive bursts
along a ramified disordered pathway characteristic of typical
CF (see movie S1 in [69]). The resulting nonwetting fluid
pathway fills a fraction φ = φCF = 0.10 ± 0.04 of the total
pore space volume and has a fractal dimension [70] d f =
1.86 ± 0.04 (Appendix D), in good agreement with previous
studies of CF [18,19,23]. Furthermore, slightly increasing the
amount of erodible material, but without any erosion (0 <

t̃d < 0.9, �̃ = 0), still results in CF [see Figs. 1(e) and 1(f)
and movie S2 in [69]], as expected, since in this case all pores
are simply constricted uniformly. However, increasing further
above a threshold value t̃d = t̃∗

d ≈ 0.9 causes a precipitous
drop in φ [Figs. 1(e) and 1(f)] as pores near the inlet start
off clogged, preventing fluid drainage from occurring (movie
S3 in [69]). We therefore call this behavior rapid clogging.

Next we explore the case of high erodibility (�̃ = 0.8).
When the amount of material that can be eroded is small
(t̃d � 0.1), the influence of erosion and deposition is minimal
and drainage again proceeds through typical CF [Fig. 1(g),
circles]. We observe dramatically different behavior with
increasing t̃d . Above a threshold value t̃d = t̃∗∗

d ≈ 0.15,
the nonwetting fluid volume fraction is larger than in CF
[φ/φCF > 1, Fig. 1(g), stars], that is, as more erodible material
is added to the pore space, the nonwetting fluid is somehow
able to form new, ramified fingers and thereby drain more of
the pore space [see Figs. 1(e) and 1(g) and movie in S4 [69]].
We therefore call this behavior erosion-enhanced fingering.
This surprising behavior persists with increasing t̃d until it
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FIG. 2. Examining the probability density function (PDF) of
r̃′

i/(1 − t̃d ), the pore sizes after drainage relative to the largest starting
pore size, elucidates the origins of different drainage behaviors. We
consider the representative case of strong erosion (�̃ = 0.8) shown
in Fig. 1(g). The initial uniform distribution is shown in region II for
the pristine case without any erodible material (t̃d = 0). Above the
threshold to transition to EEF t̃d ≈ 0.15, two subfractions of smaller
and larger pores (regions I and III) split off, reflecting pores that
have had material eroded from and redeposited in, respectively. At
larger t̃d above the threshold t̃d ≈ 0.4, increasing clogging (peak in
region I) causes a transition to RC. Insets show magnified views of
the resulting patterns of nonwetting fluid displacement (gray) and
pore clogging (purple) for t̃d = 0.35 and 0.45.

eventually becomes suppressed by pore clogging; in this case,
we again observe a transition to RC, characterized by a pre-
cipitous drop in φ/φCF, above a threshold value t̃d = t̃∗

d ≈ 0.4
[Fig. 1(g), squares].

V. ORIGINS OF THESE DRAINAGE BEHAVIORS

Why do these fascinating drainage behaviors arise in erodi-
ble porous media? Inspecting changes in the distribution of
pore sizes after drainage, which quantifies how the nonwet-
ting fluid displacement has reshaped the pore space structure,
provides a clue. In particular, we examine the distributions
of r̃′

i/(1 − t̃d ) = r̃′
i/r̃i,max, which describe the pore sizes af-

ter drainage relative to the largest starting pore size r̃i,max ≡
max{r̃i}. We focus on the highly erodible case of �̃ = 0.8
described in Fig. 1(g) as a representative example. When the
medium only has a little erodible material (t̃d < 0.15), the
initial uniform distribution of pore sizes remains unaltered
(region II in Fig. 2). However, as exemplified by t̃d = 0.25 in
Fig. 2, just above the threshold t̃∗∗

d ≈ 0.15, two subfractions of
smaller and larger pores (regions I and III, respectively) split
off from this distribution. These reflect the increasing fraction
of pore throats that have had solid material eroded from and
redeposited in, respectively; indeed, the eroded pores reach
a uniform size set by the balance of capillarity and erosion,
with r̃′

i/r̃i,max ≈ 1.1 = �̃/(1 − t̃d ), as expected. Notably, the
smaller pores still have sizes r̃i > 0, indicating that they have

not yet reached the threshold for clogging. We observe sim-
ilar behavior in Fig. 2 for the cases of t̃d = 0.35 and 0.45,
for which the eroded pores now reach the expected sizes
r̃′

i/r̃i,max = �̃/(1 − t̃d ) ≈ 1.2 and 1.5, respectively.
Thus, we expect that EEF begins when capillary forces

become just large enough to begin eroding the solid matrix,
and the redeposition of this material constricts downstream
pores slightly, just enough to force the nonwetting fluid to
explore new pathways through the pore space that it otherwise
would not have. We quantify this expectation for the onset
of EEF by balancing the smallest capillary pressure that can
possibly be encountered during drainage, �pc(rp,max − t∗∗

d ),
with the threshold erosion stress σy. In nondimensional form,
our prediction is

t̃∗∗
d = 1 − �̃. (1)

This prediction yields t̃∗∗
d = 0.2, in good agreement with the

value of t̃∗∗
d ≈ 0.15 found from the simulations for the case of

�̃ = 0.8.
As t̃d increases above t̃∗∗

d , we expect that the increasing
amount of erodible material increases the propensity of pores
to become clogged, giving rise to the nonmonotonic variation
of φ shown in Fig. 1(g). Consistent with this expectation, a
larger fraction of pores in region I becomes clogged (shown
by the growing peak at r̃′

i = 0, also indicated by the purple
points in the insets in Fig. 2 and movies S5 and S6 in [69]).
The height of the peak in region III concomitantly decreases,
indicating that fewer pores are ultimately eroded.

Thus, we expect that EEF transitions to RC when pore
clogging is so prevalent that it chokes off fluid drainage. We
quantify this expectation for the onset of RC by balancing the
volume of solid material that can be eroded from a pore i,
proportional to (2γ /σy)2 − (ri,p − t∗

d )2, with the characteristic
available volume in the adjacent connected pores j, propor-
tional to α(r j,p − t∗

d )2, where the constant α ≈ 4
3 accounts for

the network connectivity (Appendix F). While both ri,p and
r j,p are broadly distributed, we make the assumption that both
are approximately rp,max. With this simplification, in nondi-
mensional form, our prediction is

t̃∗
d = 1 − �̃√

1 + α
. (2)

This prediction yields t̃∗
d = 0.4, in excellent agreement with

the value of t̃∗
d ≈ 0.4 found from the simulations, for the case

of �̃ = 0.8.

VI. UNIFIED STATE DIAGRAM FOR DRAINAGE
IN AN ERODIBLE POROUS MEDIUM

As a final test of the predictions given by Eqs. (1) and
(2), we perform a total of 44 100 numerical simulations over
a broad range of (t̃d , �̃). We characterize the drainage pat-
tern that emerges for each condition tested using the volume
fraction and fractal dimension [70] of the nonwetting fluid
pathway φ and d f , respectively. Our results are summarized
in Fig. 3 and Appendix D. Consistent with the observations
shown in Figs. 1 and 2, CF emerges for small (t̃d , �̃) (circles),
transitioning to EEF for t̃d � t̃∗∗

d (stars), and then transitioning
to RC for t̃d � t̃∗

d (stars). The boundaries between these dis-
tinct drainage behaviors agree well with the predictions given
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FIG. 3. State diagram of different drainage behaviors in an erodi-
ble porous medium. Colors show the normalized nonwetting fluid
volume fraction φ/φCF; each symbol shows the average of 100 differ-
ent simulations testing different, but statistically identical, networks.
We observe the emergence of three distinct drainage behaviors: cap-
illary fingering (circles, 0.9 < φ/φCF < 1), rapid clogging (squares,
φ/φCF < 0.9), and erosion-enhanced fingering (stars, φ/φCF > 1).
The boundaries between these regimes, shown by the lower and
upper black solid lines, are given by Eqs. (1) and (2), respectively.
As shown in Appendix D, these distinct drainage behaviors can also
be characterized by the distinct fractal dimensions of the resulting
drainage patterns. In particular, all simulations in the CF regime
are characterized by a constant fractal dimension df = 1.86 ± 0.04.
By contrast, in the EEF regime, the measured fractal dimensions
are more varied, indicating that different (�̃, t̃d ) combinations yield
nonwetting fluid patterns with more varied ramification: We find
a maximum measured fractal dimension of df = 1.93 ± 0.01 for
(�̃, t̃d ) = (0.9, 0.4), indicating a slightly more compact pathway,
and a minimum measured fractal dimension of df = 1.71 ± 0.05 for
(�̃, t̃d ) = (0.15, 0.85), indicating a slightly more ramified pathway
than capillary fingering.

by Eqs. (1) and (2), shown by the lower and upper solid lines
in Fig. 3, respectively, despite the simplifying assumptions
made therein. Thus, not only has our extended model of inva-
sion percolation shown that the coupling between nonwetting
fluid displacement and solid erosion and deposition engen-
der fascinating drainage behaviors, but our analysis provides
quantitative principles to help predict when they arise.

VII. CONCLUSION

To our knowledge, these different drainage behaviors have
never been observed in experiments. Our predictions provide
guidelines for future studies to search for them. For example,
2D microfluidic channels could be designed to mimic the pore
networks studied here [71], with a fixed thickness td of col-
loidal particles or polymeric material coating the inner walls
prior to drainage; the threshold stress for erosion σy could then
be tuned by changing the physicochemical interactions be-
tween the particles or polymers and the walls. With increasing
amounts of this erodible material, we predict a transition from
CF to EEF and ultimately to RC, during drainage.

Inherent in our model are simplifications and approxima-
tions, as with all theoretical models. Future work could build
on the framework developed here by exploring a broader
range of fluid viscosity ratios [29] and flow rates (extending
Lenormand’s classic phase diagram [72]), as well as different
forms of pore space structure and dimensionality [33,73–80],
and different rules for erosion, clogging, and potential clog
erosion as described further in Appendixes A–C. Ultimately,
such extensions of our work could lead to improved prediction
and control of coupled fluid and solid transport in diverse
environmental and industrial media.
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APPENDIX A: INFLUENCE OF THE NATURE
OF THE DRIVING FORCE FOR DRAINAGE

In practice, the driving force for drainage can be either an
imposed flow rate starting at the central injection point or a
pressure drop between the injection point and periphery of the
medium. However, our work explores the limit in which cap-
illary forces dominate over other forces, including the driving
force, characteristic of many real-world settings. In particular,
our work examines the commonly investigated limit in which
two criteria hold.

First, the threshold capillary pressure difference across the
immiscible fluid interface �pc ∼ γ /r is much larger than
the viscous pressure drop across a pore �pv,nw ∼ μnwq/r;
here γ is the interfacial tension, r is the characteristic pore
size, μnw is the dynamic shear viscosity of the invading non-
wetting fluid, and q is the characteristic flow speed given by
the Darcy velocity q = Q/A, where Q is the volumetric flow
rate and A is the cross-sectional area of a three-dimensional
medium. The ratio of these defines what is commonly referred
to as the capillary number Ca ≡ μnwq/γ , which is typically
much less than 1 in all the applications that motivate our work.

Second, the dynamic shear viscosity of the invading non-
wetting fluid μnw is much larger than that of the displaced
wetting fluid μw. The ratio of these defines the parameter
M ≡ μnw/μw, which is often much greater than 1 in the
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applications that motivate our work. Therefore, any viscous
pressure gradient that may arise during flow will be primarily
in the nonwetting fluid, not the displaced wetting fluid.

In this limit, regardless of the driving force for invasion
(imposed pressure drop or flow rate), the fluid displacement
proceeds sequentially, one pore at a time, and is solely de-
termined by the geometry of the pore space; specifically, at
each step of the drainage process, the nonwetting fluid invades
the largest pore accessible to it, characterized by the lowest
capillary pressure threshold, bursting through until it reaches
the next pore. That this sequential invasion process is dictated
by pore geometry, and not the driving force, has been verified
in numerous previous studies (e.g., Refs. [18,21–34]) and
thus has been the convention in the field since the seminal
model of invasion percolation was developed by Wilkinson
and Willemsen four decades ago [20]. Consequently, the exact
nature of the driving force does not play a role in the simula-
tions and therefore is not explicitly specified in such studies.
We also note that while wetting film effects may also play a
role during drainage, they are neglected from our model for
simplicity and would be interesting to explore in future work.

With the addition into the model of (i) erosion of material
by the invading fluid interface and (ii) deposition of eroded
material downstream of the fluid interface, the nature of the
driving force may play a role in the drainage process. How-
ever, given the limit of capillary-dominated displacement of a
low-viscosity wetting fluid considered in our present work,
possible coupling between erosion/deposition and viscous
forcing likely does not play an important role in determining
the key physics. Specifically, as noted above, given that M �
1, any viscous pressure gradient that may arise during flow
will be primarily in the nonwetting fluid, not the displaced
wetting fluid. Thus, erosion and/or deposition of material
downstream of the invading fluid interface in the wetting fluid
(where it could influence subsequent fluid displacement) will
likely not be affected by coupling with viscous forcing. Put
another way, our work focuses on the limit in which the
pore-scale viscous pressure drops in the displaced wetting
fluid �pv,w ∼ μwq/r = �pv,nw/M 
 1, since M � 1, and
therefore is much smaller than the threshold yield stress σy

required to erode material from the pore walls. The ratio
between σy and �pv,w defines another dimensionless param-
eter often known as the Bingham number, Bm, which in
our work is much greater than 1. Nevertheless, the added
complexity of possible coupling between fluid forcing and
erosion/deposition (and clogging) may play a role in many
real-life scenarios, and incorporating it into our model will be
an important extension of our theoretical framework.

APPENDIX B: PHYSICAL MECHANISMS UNDERLYING
SOLID EROSION AND DEPOSITION

As noted in the main text, the influence of solid erosion
and deposition on fluid drainage in porous media comprised
of interconnected networks of many different pores (and vice
versa) has, to our knowledge, never been studied before.
However, the interplay between solid erosion and deposition
and fluid stresses has been examined in studies of individual
pores and on flat surfaces, and the assumptions of our model
are based on the findings of these studies. In particular, our

model builds on these established results and extends them
to larger-scale porous media, in which the coupling between
solid erosion and deposition and fluid flow/capillary stresses
at the pore scale, and transport across multiply connected
pores, leads to the fascinating drainage behaviors revealed by
our study. Below we elaborate on the physical assumptions
inherent in the model and the support from prior studies for
them.

First, we describe the mechanisms of erosion due to cap-
illary stress. As noted in Appendix A, our model considers
the capillary-dominated limit encountered in many real-world
settings, in which capillary stresses that arise at the immisci-
ble interface between the invading nonwetting and displaced
wetting fluids dominate over viscous stresses arising from
fluid flow. In this limit, prior studies in have shown that these
capillary stresses can erode solid material from a surface in
two ways.

(1) As the three-phase (solid surface/wetting
fluid/nonwetting fluid) contact line moves, solid material
protruding from the surface, e.g., predeposited colloidal
particles, inorganic precipitates, and organic matter, blocks
the contact line, causing thinning and rupture of the wetting
liquid film formed between the immiscible fluid interface
and the protrusion and eventually forming a three-phase
contact line on the protrusion at which the capillary
force Fγ ∼ γ d acts; here γ is the interfacial tension
between the fluids and d is the characteristic size of the
solid protrusion. This capillary-induced lift force (as it is
often called) is often many orders of magnitude larger than
the force Fa keeping the protrusion adhered to the solid,
driving erosion. This mechanism of erosion driven by a
moving immiscible fluid interface has been mathematically
analyzed in [59], corroborated by simulations [60], and
validated in numerous experimental studies in simplified
geometries of erosion of predeposited colloidal particles
[60–63] and even bacteria [66] from a solid surface.

(2) The balance of interfacial energies at the three-phase
contact line has a horizontal component, which yields the clas-
sic Young-Dupré equation for the contact angle, but also has
a vertical component γow, which pulls up on the underlying
substrate by a spatial extent z ∼ γow/σy [38], where σy is the
yield stress of the material composing the substrate. While ex-
tensive experimental tests of this mechanism are still required,
the model of [38] suggests that capillary forces can yield and
erode material from a solid substrate if σy if sufficiently small.

Taken together, these prior calculations, simulations, and
experiments indicate that purely capillary stresses, such as
those considered in our model, can erode material from a solid
surface when the capillary pressure exceeds a threshold yield
stress characterizing the material, as formulated in our model.
It is important to note that the complex physics involved
at the instant of erosion of solid material does not play a
role in our model; it simply assumes that erosion will hap-
pen, driven by capillary stresses during drainage as detailed
above. The model then explores what the consequences of
this process are on subsequent drainage after the eroded mate-
rial has been redeposited, using the established formalism of
pore-network modeling of drainage. Thus, while unraveling
the complex physics associated with the process of detach-
ing material will certainly be a useful direction for future
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FIG. 4. Additional state diagrams of nonwetting fluid filled volume fraction φ/φCF for networks with (a) N = 100 and (b) N = 300,
across the full range of deposition t̃d and erodibility �̃ values. For both system sizes, we again observe the emergence of capillary fingering,
rapid clogging, and erosion-enhanced fingering, with the boundaries between these different drainage behaviors remaining unchanging and in
good agreement with the results shown in the main text. The magnitude of φ/φCF increases slightly and then converges to φ/φCF ≈ 1.7 with
increasing N .

work, our model does not explicitly address or rely on those
details.

Next we describe the physical origin of the deposition
process. There are two distinct forms of deposition considered
in our model: (i) the initial coating of the inner walls of each
pore throat of the medium by a layer of erodible material of
initially fixed thickness and (ii) the subsequent deposition of

the eroded material downstream of the moving immiscible
fluid interface at which erosion occurs.

Form (i) describes the initial condition of our model, taken
to be a pore network that is saturated with the wetting fluid,
prior to any possible erosion by capillary stresses arising
from drainage by a nonwetting fluid. In practice, the material
that is initially deposited on the walls of the medium could

FIG. 5. Additional state diagrams of nonwetting fluid filled volume fraction φ/φCF for networks with connectivity (a) c = 3 and (b) c = 6,
across the full range of deposition t̃d and erodibility �̃ values. In both cases, we again observe the emergence of capillary fingering, rapid
clogging, and erosion-enhanced fingering, as in the main text. The erosion-enhanced fingering regime spans a smaller (larger) range of (t̃d , �̃)
and the corresponding φ/φCF is smaller (larger) for the case of c = 3 (c = 6). These changes are captured by our theory when we account for
network connectivities. When c = 3, α = 2

3 , and when c = 6, α = 5
2 .
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FIG. 6. Additional state diagrams of nonwetting fluid filled volume fraction φ/φCF for wider uniform distributions, (a) r̃i,p ∈ [0.68, 1] and
(b) r̃i,p ∈ [0.58, 1], across the full range of deposition t̃d and erodibility �̃ values. In both cases, we again observe the emergence of capillary
fingering, rapid clogging, and erosion-enhanced fingering, as in the main text. The erosion-enhanced fingering regime spans a smaller range of
(t̃d , �̃) as the distributions become wider.

be, e.g., colloidal clay or silica particles, inorganic precip-
itates, and organic matter, which are typically transported
from the wetting fluid via passive diffusion or fluid advection
and attach to the pore walls due to adhesive forces such as
van der Waals attraction or entropic depletion attraction (see,
e.g., [58] for more details). In this case, as noted earlier,
given that our model considers the capillary-dominated limit
in which erosion is solely determined by capillary stresses,
there is no erosion.

Form (ii) describes the process by which eroded material,
due to capillary stresses, as described above, is redeposited
downstream of the fluid interface. In practice, this redeposi-
tion process again arises due to transport of eroded material in
the wetting fluid downstream of the invading immiscible fluid
interface via passive diffusion or fluid advection, followed by
subsequent reattachment to the downstream pore walls due to
adhesive forces such as van der Waals attraction or entropic
depletion attraction. Therefore, our model simply distributes
the volume eroded from a given pore to the downstream pores
following mass conservation.

Much work remains to be done to completely unravel
the complexities associated with solid erosion and deposition
in porous media. Nevertheless, the assumptions inherent in
our model provide a simple way of capturing the essential
physics of erosion of deposited material by capillary forces,
and redeposition of that eroded material, in a manner that
is motivated by the physical arguments presented above, as
well as the results of the prior theoretical, computational, and
experimental studies noted above.

APPENDIX C: DISTRIBUTION OF ERODED MATERIAL
ACROSS ADJACENT CONNECTED PORES

To estimate how much material eroded from drained throat
i is redeposited into the nondrained throats j that are directly

connected to it, we consider the pressure drop δp j across
each of j. Because the length of an individual pore throat, as-
sumed to be uniform throughout the network, is much smaller
than the overall length of the pore network (i.e., N � 1), we
assume that δp j is approximately constant across each down-
stream pore j, as given by the Hagen-Poiseuille equation.
Thus, the flux of material into each throat j is proportionate to
r4

j ; we therefore assume that the new volume added to each
of the n connected throats j, δVj , after a volume Verode is

eroded by drainage in throat i is given by δVj = r4
j∑n

k=1 r4
k
Verode.

However, if δVj causes r̃ j < 0, the excess volume is returned
to the drained throat i to conserve mass. This implementation
represents a simple possible choice that explicitly incorpo-
rates differences in the flux of redeposited material due to
differences in pore geometry; exploring the influence of other
choices, such as by making redeposition proportional instead
to the throat areas, could be interesting to explore in future
work.

APPENDIX D: SIMILARITY OF RESULTS
WITH VARYING PARAMETERS

Figures 4–7 show results similar to those described in
Fig. 3 of the main text but for other values of N , c, and
forms of ρ(r̃i,p), including those obtained from real-world
media. Furthermore, Fig. 8 shows data obtained from the
same simulations as in Fig. 3 but instead showing the fractal
dimension d f of the nonwetting fluid displacement pathway
after drainage through the medium has concluded.

APPENDIX E: INSENSITIVITY OF OUR RESULTS
TO THE CHOICE OF INJECTION CONDITIONS

In many of the applications that motivate our work, fluid
invasion starts from a surface on one edge, including in
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FIG. 7. Additional state diagrams of nonwetting fluid filled volume fraction φ/φCF for nonuniform ρ(ri,p) that are representative of two
real-world examples as obtained from [81]: (a) Berea sandstone and (b) a monodisperse bead packing. The Berea sandstone has ρ(ri,p) =

15
4(rmax−rmin ) (1 − ri,p−rmin

rmax−rmin
)
√

ri,p−rmin
rmax−rmin

, with rmin = 1 µm and rmax = 25 µm. The bead packing has ρ(ri,p) = 6
(rmax−rmin )

√
ri,p−rmin
rmax−rmin

√
1 − ri,p−rmin

rmax−rmin
,

with rmin = 15 µm and rmax = 40 µm. In both cases, we again observe the emergence of capillary fingering, rapid clogging, and
erosion-enhanced fingering, as in the main text.

FIG. 8. State diagram for the same simulations as in Fig. 3
but instead showing the fractal dimension df of the nonwetting
fluid displacement pathway after drainage through the medium
has concluded. As in Fig. 3, each symbol shows the average of
100 different simulations testing different, but statistically identi-
cal, networks. The capillary fingering regime is characterized by
a constant fractal dimension df = 1.86 ± 0.04. However, in the
erosion-enhanced fingering regime, the measured fractal dimensions
are more varied, indicating that different (�̃, t̃d ) combinations yield
nonwetting fluid patterns with more varied ramification: We find
a maximum measured fractal dimension of df = 1.93 ± 0.01 for
(�̃, t̃d ) = (0.9, 0.4), indicating a slightly more compact pathway,
and a minimum measured fractal dimension of df = 1.71 ± 0.05 for
(�̃, t̃d ) = (0.15, 0.85), indicating a slightly more ramified pathway
than capillary fingering. The open circles indicate the rapid clogging
regime, in which the filled volume fraction of the pore network is too
low to accurately obtain df .

soil drying and in gas venting from sediments. In other ap-
plications, such as groundwater remediation, enhanced oil
recovery, and CO2 sequestration, fluid injection from a well
bore into a porous subsurface rock is instead better repre-
sented using a central starting invasion point in which the
immiscible fluid spreads out radially. Thus, both invasion
conditions arise in real-world settings.

As a result, fluid invasion starting from a central posi-
tion (as we use in our work) is a convention in this field,
although invasion from an edge is also commonly stud-
ied. References [35,68] provide two representative examples
of invasion percolation studied using the former approach
(invasion from a central position), whereas seminal studies
of invasion percolation in the 1980s, e.g., Refs. [20,23], used
the latter approach (invasion from one edge). Notably, the
fractal dimension of capillary fingering that results from tra-
ditional invasion percolation is consistent across both sets of
references (and with our findings), suggesting that the results
of simulations performed using either invasion condition are
equivalent.

Nevertheless, to confirm this equivalence more directly,
we also performed simulations representative of the three
drainage behaviors characterized by our work, i.e., capillary
fingering, rapid clogging, and erosion-enhanced fingering, but
with fluid invasion from one edge. The results of these simu-
lations, shown in movies S7–S9 in [69], show that the features
of these drainage behaviors are consistent across both invasion
conditions.

APPENDIX F: ONSET OF RAPID CLOGGING

To estimate when pore clogging is so prevalent that it
chokes off fluid drainage, causing irreversible clogging, we
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FIG. 9. Schematic of fluid drainage proceeding from the initial-
ization of a simulation. The light gray pore bodies connected by
light gray pore throats represent the injection source used in all
simulations. The pore throats in layer 0, labeled � = 0, are invaded to
fill the first layer of pore bodies, shown in darker gray (� = 1). The
volume eroded from the pore bodies in the first layer is then eroded
into its connected pore throats, which are shown in mint green. We
expect clogging to occur at � = 1, when the ratio of available pore
throats to previously invaded pore bodies provides a value of α = 4

3 .

balance the volume of solid material that can be eroded from
a pore i, Verode ∝ (2γ /σy)2 − (ri,p − t∗

d )2, with the cumulative
total available volume in the adjacent connected nondrained

pore throats j, Vavailable ∝ (r j,p − t∗
d )2. For tractability of

computation, we make the assumption that both ri,p and
r j,p ∼ rp,max. Thus Verode ∝ �̃2 − (1 − t̃∗

d )2 and Vavailable ∝
(1 − t̃∗

d )2. This assumption that ri,p, r j,p ∼ rp,max allows us
to make the approximation that fluid drainage will expand
radially in sequential annular layers from the central in-
jection point (Fig. 9), as opposed to the ramified invasion
patterns typical of invasion percolation. On a square lattice
of connectivity c = 4, layer � experiences 8� + 4 invasions,
yielding a total eroded volume (8� + 4)Verode, which gets re-
deposited onto 8(� + 1) available pore throats with a total
available volume of 8(� + 1)Vavailable. Thus, taking a mean-
field approximation layer by layer, we expect clogging to
occur at � = 1 when (8� + 4)Verode ∼ 8(� + 1)Vavailable, or
Verode ∼ 4

3Vavailable.
The same result can similarly be obtained for lattices with

c = 3 and 6. For a lattice with connectivity c = 3, layer
� experiences 6(2� + 1) invasions, yielding a total eroded
volume 6(2� + 1)Verode, which gets redeposited onto 6(� +
1) available pore throats with a total available volume of
6(� + 1)Vavailable. If we similarly expect clogging to occur
at � = 1, Verode ∼ 2

3Vavailable [Fig. 5(a)]. For a lattice with
connectivity c = 6, layer � experiences 6� + 6 invasions,
yielding a total eroded volume (6� + 6)Verode, which gets
redeposited onto 12(� + 1) + 6 available pore throats with a
total available volume of [12(� + 1) + 6]Vavailable. If we sim-
ilarly expect clogging to occur at � = 1, Verode ∼ 5

2Vavailable

[Fig. 5(b)].
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