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Machine-learning recognition of Dzyaloshinskii-Moriya interaction from magnetometry

Bradley J. Fugetta ,1 Zhijie Chen,1 Dhritiman Bhattacharya,1 Kun Yue,2 Kai Liu ,1 Amy Y. Liu ,1 and Gen Yin 1,*

1Department of Physics, Georgetown University, Washington, DC 20057, USA
2Nvidia Corporation, Santa Clara, California 95051, USA

(Received 10 April 2023; revised 3 August 2023; accepted 30 August 2023; published 4 October 2023)

The Dzyaloshinskii-Moriya interaction (DMI), which is the antisymmetric part of the exchange interaction
between neighboring local spins, winds the spin manifold and can stabilize nontrivial topological spin textures.
Since topology is a robust information carrier, characterization techniques that can extract the DMI magnitude
are important for the discovery and optimization of spintronic materials. Existing experimental techniques for
quantitative determination of DMI, such as high-resolution magnetic imaging of spin textures and measurement
of magnon or transport properties, are time-consuming and require specialized instrumentation. Here we show
that a convolutional neural network can extract the DMI magnitude from minor hysteresis loops, or magnetic
“fingerprints,” of a material. These hysteresis loops are readily available by conventional magnetometry measure-
ments. This provides a convenient tool to investigate topological spin textures for next-generation information
processing.
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I. INTRODUCTION

The Dzyaloshinskii-Moriya interaction (DMI) is an anti-
symmetric exchange coupling between neighboring spins, and
it is nonzero only in materials with broken central symmetry
[1,2]. The symmetry can be broken intrinsically by the crys-
tal structure, as in the case of B20 compounds [3–8], or it
can be broken extrinsically by designing magnetic multilayer
heterostructures [9–14]. Due to its antisymmetric nature, the
DMI favors perpendicular configurations between neighbor-
ing spins, winding the spin manifold. As a result, it plays
an essential role for topological spin textures, including mag-
netic skyrmions [11], vortices [15], bimerons [16], hedgehogs
[17–20], chiral domain walls [21,22], and hopfions [23].
These textures are either directly stabilized by the DMI, or
their behaviors are strongly impacted by the DMI magnitude.
Such topological spin textures have promising potential as
information carriers in next-generation spintronic devices for
low-power and high-speed applications [11,24,25]. Even in
systems with uniform spins, the DMI can induce phenom-
ena such as nonreciprocal and topological magnon spectra
[26–28], which are useful for radiofrequency devices. Quan-
titative understanding and control of the DMI magnitude in
spintronic systems is therefore important for both fundamen-
tal and application purposes.

Significant efforts have been devoted to the quantita-
tive determination of the DMI magnitude, especially for
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thin-film multilayers, which are essential for device applica-
tions [29]. In fact, for a thin-film multilayer, the magnitude of
the extrinsic DMI can be continuously modulated by carefully
controlling the vertical profile of the heterostructure [30,31].
In addition, tunable control of interfacial DMI has recently
been demonstrated via chemisorption or ionic gating, even
after the materials systems have been synthesized [32–34].
Since details such as chemical bonding and atomic alignment
at interfaces are important, theoretical prediction of extrinsic
DMIs from first principles is very challenging. Experimen-
tally, techniques such as domain-wall imaging [13,35–37],
Brillouin light scattering [31,38–40], and loop-shift measure-
ments using spin-orbit torque setups [37,41–44] can be used
to obtain the DMI magnitude. However, these experiments
are nontrivial and sometimes require trial-and-error iterations
between experiments and modeling.

Recently, predictive machine-learning models have been
demonstrated to successfully extract DMI magnitudes from
ground-state spin textures with good accuracy [45–48].
These approaches typically use phenomenological Hamilto-
nians considering leading-order terms, such as the symmetric
Heisenberg exchange, the uniaxial anisotropy, the long-range
dipolar interaction, the Zeeman coupling, and the DMI. To
generate the training data, either dynamical or Monte Carlo
simulations are used to find the ground state of a Hamilto-
nian given a set of parameters. A neural network can then
be trained to correlate the ground-state spin texture (inputs)
and the Hamiltonian parameters (outputs) including the DMI.
The success of this practice suggests that the ground-state
spin texture indeed contains information about the intricate
competition between the DMI and other terms in the Hamil-
tonian. This is intuitive since the DMI is the only term in the
Hamiltonian that favors spin winding with a uniform chiral-
ity. However, experimental imaging of spin textures requires
high spatial resolution as well as the ability to resolve the
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magnetization vectors. High-quality, exposed pristine surfaces
are therefore often necessary.

In contrast to magnetic imaging, magnetometry is easily
accessible, e.g., via SQUID (superconducting quantum in-
terference device), vibrating sample magnetometry (VSM),
or the magneto-optical Kerr effect. However, as conven-
tional magnetometry typically measures ensemble-averaged
magnetic responses of a given system, it is not obvious
that information about the DMI can be extracted directly
from magnetometry alone. Nevertheless, magnetometry has
been demonstrated to contain detailed information about the
magnetization reversal process. Specifically, the first-order
reversal curve (FORC) method, which utilizes many partial
hysteresis curves, has been used to “fingerprint” the magne-
tization reversal process, providing information well beyond
the ensemble average extracted from conventional major hys-
teresis loop measurements [49–51].

Here, we show that a convolutional neural network (CNN)
can indeed extract the DMI magnitude from FORCs. With
a data set of FORCs generated for thin films via micromag-
netic simulations, we demonstrate that good accuracy can
be achieved when the FORCs exhibit rich features. The net-
work performs particularly well when the SO(3) symmetry
is not significantly broken, i.e., when the uniaxial anisotropy
is comparable to the shape anisotropy of a thin film. This
neural network provides a convenient tool to extract DMI and
investigate topological spin textures in magnetic multilayers
using magnetometry.

II. FIRST-ORDER REVERSAL CURVES

The FORC method measures a collection of many partial
hysteresis curves, which are known to contain important infor-
mation about the distribution of magnetic properties as well
as interactions between magnetic elements within a system.
Typically, a sample is first saturated in a positive field, then
brought to a particular reversal field HR, and the magnetization
M is measured with increasing applied field H back to positive
saturation, thus tracing out a single FORC. The measurement
is repeated at successively more negative HR, leading to a
family of FORCs. A second-order derivative is taken to extract
a FORC distribution, ρ(H, HR) = −[∂2M(H, HR)/∂H∂HR]/2
[50,52,53]. The FORC distribution has been used to probe
irreversible magnetization switching [50], capture magnetic
distributions [54–56], distinguish different magnetic phases
[57] and switching mechanisms [56], and study magnetic
interactions [51,58,59].

While the FORC distribution mentioned above can be used
to extract useful information, the vast parameter space of
many competing terms in the Hamiltonian makes it difficult
to interpret the DMI magnitude. Specifically, the analysis that
can extract the DMI magnitude from FORCs is essentially
unknown. However, this task can be easily converted to a
pattern recognition problem for artificial intelligence (AI).
With supervised learning, the first several convolutional layers
in a CNN can usually identify complicated, nonlinear filters
to extract needed features autonomously with relatively low
computational and memory costs. To train such a CNN, we
generated labeled data using micromagnetic simulations.

Consider a phenomenological Hamiltonian

H = − J0

∑
〈i, j〉

�si · �s j −
∑
〈i, j〉

D0(ẑ × r̂i j ) · (�si × �s j )

− K0

∑
i

(�si · n̂)2−μ
∑

i

(μ0 �Hext + μ0 �Hdipole,i ) · �si (1)

where {�si} denotes the normalized classical spins defined on a
square lattice {i} in the x-y plane, �ri j is the position vector
connecting sites i and j, n̂ is the direction of the uniaxial
anisotropy, and 〈i, j〉 denotes pairs of neighboring sites. The
evolution of the spin texture {�si} governed by the Hamiltonian
given by Eq. (1) can be simulated using micromagnetic simu-
lations implemented by mumax3 [60], taking Aex = J0/2a as
the exchange stiffness, where J0 is the symmetric Heisenberg
exchange energy and a is the lattice constant. Similarly, D =
D0/a2 is the DMI magnitude and Ku = K0/a2t is the uniaxial
anisotropy energy density in a film of thickness t . Both the ex-
ternal magnetic field, �Hext, and the dipolar fields { �Hdipole,i} are
included, assuming periodic boundary conditions within the
thin-film plane and a uniform magnetic moment of μ = a2tMs

within each site, where Ms is the saturation magnetization.
FORCs are then simulated by the average spin of the ground
state during the scan of �Hext applied perpendicular to the
thin film. The thermal fluctuation of finite temperature T is
included by a stochastic effective field.

Each family of FORCs was simulated using a simulation
box with an extent of 120 nm in the x and y directions split
into a 16 × 16 grid with a periodic boundary condition of five
repeats in the plane of the film. All samples had this geometry
and used a damping factor of α = 0.5 to enable fast access to
the ground state. To simulate experimental uncertainty, both
the magnitude of Ku and the direction of the easy axis (n̂)
were given an extra layer of randomness. The direction of the
easy axis n̂(θ, φ) for the entire sample was chosen with the
azimuthal angle φ being uniformly random within [0, 2π ] and
the polar angle θ chosen from a normal distribution centered
at 0 with a standard deviation of σθ , which was itself chosen
from a uniform distribution within [0◦, 10◦]. The magnitude
of Ku for the sample was chosen according to a normal distri-
bution centered at K with a standard deviation of σK , which
were themselves chosen from uniform distributions. We used
Heun’s method implemented in mumax3 to solve the Landau-
Lifshitz-Gilbert equation using adaptive time-stepping with
MinDt = 2.5 × 10−13 s and MaxDt = 5 × 10−12 s. At every
value of �Hext, time first progressed for 0.1 ns and then evolved
in increments of 0.125 ns until 〈sz〉 changed by less than
5 × 10−3 between step increments.

III. MODEL AND TRAINING

To interface FORCs with a CNN, we convert each fam-
ily of FORCs [one typical example shown in Fig. 1(a)] to
an information-dense input image [Fig. 1(b)]. First, the full
range of scanning magnetic field [Hmin, Hmax] is discretized
to 61 steps. A family of FORCs can then be rearranged as
a 61 × 61 image, with each pixel denoting one discrete step
of the field scan. During the scan, the normalized magneti-
zation value given by 〈sz〉 is discretized to integers within
[0,255], which are denoted by the brightness of the pixels
in Fig. 1(b). For each minor loop in Fig. 1(a), the applied
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FIG. 1. Setup of the machine-learning problem. (a) A typical family of FORCs in our data set. One minor loop is shown by the red dashed
line, whereas the full hysteresis loop is denoted by the solid blue line. Other minor loops are illustrated by the gray dotted curves. (b) The
input image corresponding to the FORCs shown in (a), with each pixel denoting one discrete point during the field scan. The magnetization
during the field scan is normalized to a 1-byte integer between 0 and 255, corresponding to the brightness of each pixel. (c) The structure of
the CNN. The top path (red) denotes the distribution matching method, whereas the lower path (blue) represents a conventional regression.
(d) The convergence of the training. The distribution-matching and conventional regression results are denoted by the red and blue curves,
respectively. The inset illustrates the scheme of the loss function in the distribution-matching method.

field starts from positive saturation Hmax (the top right corner),
then hits the reversal field HR, and eventually goes back to
positive saturation (red arrows a → b → c). Correspondingly,
the pixel in Fig. 1(b) first scans horizontally from the left
to the right (arrow a). When the scanning field in Fig. 1(a)
reaches HR, the scanning pixel hits the diagonal green dotted
line in Fig. 1(b). This pixel then scans vertically downwards
(arrows b → c) as the field in Fig. 1(a) scans back to positive
saturation. With this arrangement, each minor loop traced out
by a FORC in Fig. 1(a) is mapped to a horizontal and a vertical
segment of pixels in Fig. 1(b) connected at the dotted green
line. When HR = Hmax, the minor loop in Fig. 1(a) shrinks to
zero, contributing only a bright pixel at the lower left corner
in Fig. 1(b). As HR becomes more negative, the minor loops
in Fig. 1(a) enlarge, and eventually recover the full hysteresis
loop when HR = Hmin. Correspondingly, the path in Fig. 1(b)
gradually becomes larger and eventually completes the image
by filling the outermost row and column of pixels (d → e).
In our simulations, the range of the scan is [−3.6 T,+3.6 T].
Each pixel in the image thus corresponds to one step of 0.12 T.
This choice of step size balances feature resolution and simu-
lation time.

To ensure data diversity, each family of simulated FORCs
is parametrized by {Ms, T , Aex, Ku, D, t , θ , φ}, with each
element being a double-precision floating-point number ran-

domly generated using the values and bounds shown in
Table I. The normalized DMI magnitude d = D−Dmin

Dmax−Dmin
is

used as the label. We determined the range of these material
parameters based on reported experimental values. For Ms,
we set the upper bound according to bulk cobalt, whereas
the lower bound is set to mimic the reduced value in typical
magnetic multilayers with nonmagnetic or antiferromagnetic
components [57,61–64]. Aex is set to vary between the cobalt
value obtained in first-principles calculations [65] and those
values previously obtained in soft magnetic multilayers or
alloys [66,67]. The value of K is set between zero and a
typical value for a Co/Pd multilayer with strong perpendicular
magnetic anisotropy [57,61]. As the main target of this work,
we set the DMI magnitude from zero to 5 × 10−3 J/m2, an
upper bound exceeding most observed DMIs in multilayers
[62,68,69]. We chose the bounds of temperature based on

TABLE I. The bounds of simulation parameters.

Ms T Aex K D t σθ σK

(A/m) (K) (J/m) (J/m3) (J/m2) (nm) (deg) (%)

Min 2 × 105 135 1 × 10−12 0 0 10 0 0
Max 14 × 105 19 420 35 × 10−12 106 0.005 100 10 20
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TABLE II. Parameters of our CNN.

Layer Input Output Kernel Size Dropout

Conv1 61 × 61 59 × 59 3 × 3 0
Conv2 59 × 59 57 × 57 3 × 3 0.5
FCL1 52 560 4096 N/A 0.5
FCL2 4096 11 N/A 0.5

a rough estimate of the Curie temperature: TC ≈ Aexa
kB

, such
that T ∈ [min(TC ) − 	T, max(TC ) + 	T ], leaving margins
of 	T = 3

4 min(TC ) to sample the cases of T < TC and T >

TC . Note that these are the simulation temperatures. In mi-
cromagnetic simulations, the coarse-graining process leads to
an effective physical temperature that is rescaled from the
simulation temperature. In our case, the maximum effective
temperature is estimated to be roughly 10–20 times smaller
than the maximum simulation temperature [70,71].

We utilized Pytorch, a machine learning framework with
a Python interface, to construct and train our CNN. The
specific model of our CNN is illustrated in Fig. 1(c), where
two convolutional layers (Conv1 and Conv2) and two fully
connected layers (FCL1 and FCL2) are employed with ReLU
(Rectified Linear Unit) activation function. The details of the
model are listed in Table II. During training, a dropout rate
of 0.5 was applied to Conv2 and all fully connected layers.
The configuration of our CNN was informed by a series of
trial-and-error tests in which we varied, among other things,
the number of convolutional layers, the amount of feature
maps in each layer, the size and number of fully connected
layers, the activation functions between the layers, and the
combination of dropout rates used for the layers. Similarly, we
surveyed the parameters of the ADADELTA adaptive learning
rate method, and eventually used a momentum of ρ = 0.9, a
learning rate of γ = 0.01, and a weight decay of λ = 0 [72].

In practice, since Ms is readily available from typical mag-
netometry measurements, it is feasible to include it, along
with the normalized FORCs, as input to the neural network.
This is similar to the idea of a residual network [73] where
additional information can skip some sections of the network
to mimic long-term memory. In our CNN, Ms is first normal-
ized to [0,10] and then directly fed to FCL1 by appending 576
nodes of the same value, along with the flattened feature maps
extracted by all the convolutional layers. The number of Ms

nodes was large enough to avoid concerns of being dropped
out while being small enough not to overwhelm the feature
map information.

Different from a typical regression model, we implemented
a distribution matching method as described by Eqs. (2)–(4),

�y = exp [ �FCNN(�x)], (2)

L = 〈[ln �y − ln �f (d0)]2〉, (3)

dpred = arg min
d

′[ln �y − ln �f (d )]2, (4)

where �FCNN(�x) is the CNN output given input �x. Unlike
a conventional regression method, the output involves more
nodes than needed (in our case 11). We then map the output

FIG. 2. Performance of the CNN. (a),(b) The statistics of the
training outcome among the training set (a) and the testing set (b).
The dashed green lines denote a prediction error of 20% marking our
threshold for good guesses. The red arrows in (b) denote four repre-
sentative cases [(i)–(iv)] among the faint band of wrong predictions.

to positive values �y > 0, and we train the CNN by matching
�y to some smooth distribution function �f (d ) > 0 centered at
d by using the loss function L defined in Eq. (3), where d0

is the label. When making the prediction, the value of dpred

is determined by an argument minimization searching for the
best fit between �f (d ) and �y. The prime in Eq. (4) denotes
that the search for dpred involves only certain (n) output nodes
centered at arg max

i
(�y). This distribution matching method

allows not only for a bounded, continuous prediction from a
discrete output, but it also enables the possibility to find the
confidence of the prediction ξ [�y, dpred(�y)] using the redundant
output information, as will be discussed later.

In practice, we used Gaussian fi = eCe− 1
2 ( i−d

σ
)2

for �f (d ),
where i is the index of the output layer normalized within
[0,1], and (C = 20, σ = 0.1, n = 5) are chosen for the co-
efficients. This makes Eq. (4) equivalent to the search for a
best-fit parabola based on five given points [Fig. 1(d), inset],
for which the formalism is straightforward (see Appendix A).
In principle, one could train a deep neural network to replace
Eq. (4) and the model would become a standard regression
[74]. To show this, we trained an alternative model by first
feeding FCL2 to another fully connected layer, FCL3, with
501 nodes, from which the prediction is directly extracted,
as illustrated by the lower path in Fig. 1(c). The convergence
paths of the two models are compared in Fig. 1(d), where the
standard regression model converges more slowly and exhibits
more significant fluctuation of the error.

IV. RESULTS

To train the model, we generated 20 000 families of FORCs
with recorded simulation parameters. Several examples of
FORCs are shown in Appendix B. For the training, we used
80% of the data separated into 32 batches, which were shuf-
fled after all batches are accessed during each training epoch.
The rest of the data were held out as a test set, which was used
to examine the performance after each epoch. The training
continued until the best performance was not superseded for
200 epochs straight. After training, the average absolute error
was ∼0.096 and ∼0.155 for the training and the testing sets,
respectively. The statistics for these outcomes are shown in
Figs. 2(a) and 2(b), where the bright major diagonal lines in
both results correspond to accurate predictions. This indicates
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FIG. 3. The statistics of the predictions. The distributions of Aex

and d0 among the testing data are shown in (a) and (b), respectively.
The red histogram denotes the predictions with errors greater than
20%, whereas the blue ones illustrate the entire test set. (c) The
distribution of Ms and Ku among the wrong predictions. (d) The
distribution of

Kshape

Ku
among the wrong predictions (red) and the entire

test set (blue).

that the CNN can indeed extract the magnitude of DMI from
FORCs well beyond random guessing. Further training can
indeed improve the performance for the training set, but not
for the test set, consistent with the trend expected for overfit-
ting. In addition to the main diagonal lines, a faint, nearly flat
background band also shows up in both results, suggesting
that the CNN is unable to make the correct predictions in
certain cases.

To understand the origin of the faint nearly flat band in
Figs. 2(a) and 2(b), we compare the simulation parameters
for the group of FORCs with “wrong” predictions to those for
the entire data set. Here, we define “wrong” predictions to be
those where |dpred − d0| � 0.2 [i.e., those points not between
the green dashed lines in Fig. 2(b)]. Since the parameters are
uniformly random, the test set is well balanced for all simula-
tion parameters. This can be seen from the total histograms
(blue) of Aex and d0 in Figs. 3(a) and 3(b), respectively.
However, among the wrong predictions (red), a skew towards
larger values of Aex can be clearly seen. This is intuitive
considering that the Heisenberg exchange is the symmetric
part of the exchange coupling that directly competes with the
antisymmetric DMI. On the other hand, the histogram of d0

has a dip near the center and rises near the edges, which is
consistent with the faint flat band of wrong predictions in
Figs. 2(a) and 2(b).

The main reason of the prediction uncertainty can be un-
covered by comparing the statistics of Ms and Ku for the wrong
predictions among the test set. As one can see in Fig. 3(c), the
wrong predictions are heavily populated where either Ku is
large and Ms is small or vice versa. This suggests that the com-
petition between the easy-axis and the shape anisotropy plays
an essential role. When magnetized uniformly, the demagne-
tization field contributed by the long-range dipolar interaction
can be effectively seen as an easy-plane shape anisotropy with

FIG. 4. Example inputs corresponding to uncertain predictions.
(a)–(d) The hysteresis loops for Cases (i)–(iv) highlighted in
Fig. 2(b). The inset in each case illustrates the corresponding input
image fed to the CNN.

Kshape = 1
2μ0M2

s . This results in a perpendicular hard axis that
competes with the easy axis intrinsically hosted by the mate-
rial. When these two terms almost cancel in the Hamiltonian,
for each site the SO(3) rotation symmetry is restored in the
case of uniform spin. The average magnetization thus depends
more on the exchange interactions between neighboring sites.
This makes the competition between Aex and D more pro-
nounced, which makes it easier for the CNN to recognize
the features of the DMI. Figure 3(d) shows histograms of
Kshape/Ku for the full test set (blue) and the erroneous portion
(red), which demonstrates that the CNN has more difficulty
when either anisotropy dominates. This difficulty originates
from the fact that the FORCs are featureless in either case.
This can be seen in four representative FORCs [Figs. 4(a)–
4(d)] corresponding to the wrong predictions highlighted in
Fig. 2(b) as cases (i)–(iv). When Ku is very large [cases (i)
and (iii)], the FORCs switch abruptly such that almost no
minor loops show up within our 61-step resolution of HR. On
the other hand, when Kshape dominates [Cases (ii) and (iv)],
the switching is gradual but the hysteresis vanishes, leaving
a featureless curve that carries no information of the detailed
spin texture. These FORCs remain featureless for both large
and small values of D, suggesting that the DMI information is
indeed overwhelmed.

The faint flat band formed by the wrong predictions in
Figs. 2(a) and 2(b) can be understood by checking the learn-
ing strategy during training. At different stages of training,
the statistics on the testing set are recorded, among which
three representative snapshots are shown in Figs. 5(a)–5(c).
It seems that the CNN first learns to guess around a single
number because even this naive strategy reduces the average
loss from random guesses by a factor of 5. After this, it
starts to recognize the patterns associating the FORCs with
the DMI and gradually forgets the naive strategy. As training
continues, the CNN starts to make more accurate predictions
for nearly all FORCs with better pronounced features, leaving
the featureless FORCs in the faint band of wrong guesses
due to the memory of the naive strategy. Note that further
training can indeed remove this memory for the training data,
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FIG. 5. Evolution of CNN performance. (a)–(c) The evolution of the CNN performance during training. The three panels (a)–(c) correspond
to Epochs 3, 50, and 385, respectively.

whereas the performance on the testing data does not improve,
suggesting overfitting. Videos showing the evolution of the
CNN performance can be found in [75].

Our CNN is different from a standard regression model
since it interprets the prediction using the distribution
matching method mentioned above. The redundant output in-
formation can be used to identify a function ξ [�y, dpred(�y)] that
extracts the confidence of each prediction without knowing
the correct answer d0. Although classification models natu-
rally have this capability, the confidence interpretation for a
typical regression model is nontrivial [76].

In our particular case, we empirically observed that the
average log distance between the proper distribution and
the output (	x = 〈ln [ �f (dpred)] − ln �y〉) is strongly correlated
with dpred. This can be seen in Fig. 6(a), where the variance of
d0 is illustrated for different combinations of 	x and dpred. We

FIG. 6. Confidence metric established from the distribution-
matching method. (a) The distribution of the variance of d0 among
the test set illustrated as a function of 	x and dpred, where the red
solid line denotes our selected boundary separating confident and
uncertain predictions. The statistics within each pixel are only shown
if the sample size is more than seven points. (b) The absolute error
distribution of all predictions made among the test set. The dark line
in (b) is the same as the red solid line in (a). (c)–(e) The separa-
tion between confident and uncertain predictions by modulating the
threshold coefficient α.

can then identify a linear function that separates the confident
and uncertain predictions, 	x = dpred

0.2 + 0.9, as shown by the
red line in Fig. 6(a). To further examine the validity of such
observations, we illustrate the relation between 	x and the
absolute error in Fig. 6(b), where the confident predictions
are mainly contributed by those with errors less than 20%.
Note that we do have correct predictions above the dark line
in Fig. 6(b), which are essentially lucky guesses since the
corresponding variance is large, as shown in Fig. 6(a). Finally,
we define the overall metric of confidence within (0,1) by
ξ [�y, dpred(�y)] = σ [−α(	x − dpred

0.2 − 0.9)], which is a sigmoid
function centered at the red line in Fig. 6(a), with the tolerance
modulated by α. As shown in Figs. 6(c)–6(e), when modulat-
ing α one can eventually separate the confident predictions
from the entire test set. This is not possible with a conven-
tional regression model, where the only output information is
the prediction. Note that ξ [�y, dpred(�y)] is not unique, and the
boundary of confident predictions is not necessarily a linear
function. In principle, one can build another neural network
to find a ξ [�y, dpred(�y)] that performs better, which is beyond
the scope of this work.

V. CONCLUSION

To conclude, we demonstrate that the magnitude of the
DMI is indeed contained in the hysteretic magnetometry
data. Without any information of spin-texture details, a CNN
can recognize the DMI magnitude from feature-rich FORCs
with an error of ∼15%. The prediction is particularly con-
fident when the intrinsic perpendicular easy-axis anisotropy
is comparable to the shape anisotropy, which can be fine-
tuned in experiments. This brings about the possibility to
evaluate the magnitude of DMI without any spin-texture
characterization. Future directions to improve accuracy in
applications to experimental data include the generation of
higher-resolution simulation data within parameter ranges of
particular experimental interest, as well as the injection of
noise into the training data. Our results also suggest that
there may exist a model that relates the DMI magnitude with
the ensemble-averaged magnetization, which invites further
theoretical investigations.

The database “HoyaFORCs” and the example code to train
the CNN are available in Ref. [77].
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APPENDIX A: DISTRIBUTION-MATCHING METHOD

Our choice of target distribution function is fi =
eCe− 1

2 ( i−d
σ

)2
, where i is the index of the output node normalized

within [0,1]. As discussed in the main text, the prediction of
the model is given by fitting a parabola to five points using
the least-squares method. The choice of five points is accord-
ing to our optimization balancing between estimation quality
and computational efficiency. The chosen five points are cen-
tered around the maximum value of the output, as shown
in Fig. 7(a). The loss function is defined as the fitting error
averaged among all the discrete points, which is effectively the
sum of the gray areas denoted in Fig. 7(a). Distinct from a typ-
ical classification problem, the distribution-matching method
allows the prediction of continuous values within a specified
range, using the output values among a discrete set of output
nodes (in our case 11). The best-fit parabola y = ax2 + bx + c
can be given by Eq. (A1), where the upper bar denotes the
average among the discrete fitting points {xi, yi}. The corre-
sponding prediction is given by Eq. (A2). When the maximum
output value occurs near a boundary of the range, the five
points closest to the boundary, within the range, are selected,
as shown in Fig. 7(b),

⎡
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x2 x 1
x3 x2 x
x4 x3 x2
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2a
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FIG. 7. Method to extract dpred. (a) An example of the
distribution-matching method. Only five output points near the max-
imum output node are selected to make the prediction. The loss
function is defined by the average fitting error (gray area) between
the target parabola (blue) and the output points (red). The prediction
error is the distance between the blue and the red vertical lines.
(b) Treatment for special cases when the maximum output node is
near the boundary.

FIG. 8. Separation between confident and uncertain predictions.
The values of labels d0 corresponding to predictions within 0.4 <

dpred < 0.5 are denoted by the light-blue points. The most accurate
predictions are within the horizontal transparent bar denoting 0.4 <

d0 < 0.5. The red line corresponds to our choice of separation, which
leads to the choice of the solid red line in Fig. 5(a) (main text).

The extra information provided by the output layer is used
to extract the confidence of the prediction without knowing
the correct values of d0. As discussed in the main text, we ob-
served that the quantity 	x = 〈ln [ �f (dpred)] − ln �y〉 is highly
associated with the variance of d0 given a range of dpred.
As shown in Fig. 8, the distribution of d0 within the range
0.4 < dpred < 0.5 is almost uniformly random for large values
of 	x, whereas more accurate predictions can be found on
the left. There seems to be a clear boundary between the two
regions, which is denoted by the red solid line. The range of
dpred shown in Fig. 8 corresponds to the intersection between
the main diagonal line and the faint band of wrong predictions
shown in Figs. 2(a) and 2(b) in the main text. We carried out
a similar analysis for all other ranges of dpred, resulting in the

choice of the overall separation as 	x = dpred

0.2 + 0.9. Finally,
we define the overall metric of confidence within (0,1) by
ξ [�y, dpred(�y)] = σ [−α(	x − dpred

0.2 − 0.9)], where σ is a sig-
moid function and α is a parameter controlling the separation
sharpness. As shown in Movie S3 [75], increasing the value
of α gradually separates confident predictions away from the
uncertain ones.

APPENDIX B: THE DATABASE HOYAFORCS

The data used to train and test the CNN contain 20 000
families of FORCs with different simulation parameters
evenly distributed within the bounds listed in the main text.
Six examples of the simulated magnetometry data and their
corresponding input images are illustrated in Fig. 9. Note that
we have identified 559 samples (out of 20 000) that do not
reverse magnetization within the range of [−3.6 T,+3.6 T].
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FIG. 9. Examples of items included in HoyaFORCs. Six examples of magnetometry data (left panels) and their corresponding input images
(right panels) are demonstrated here. The blue curves are the full hysteresis loops, whereas the dashed gray lines show the minor loops. One
example of the minor loops is highlighted by the red dashed line in each panel. The pixels in the input images corresponding to the full loops
and the highlighted minor loops are also denoted by the solid blue and dashed red lines, respectively. The number in each panel is the ID of
the item in the database.

In the spirit of taking a hands-off approach in the construc-
tion of the data set and avoiding post-simulation processing

to select data, we decided to keep these samples in the
data set.
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