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Controlling heat ratchet and flow reversal with simple networks
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We investigate ratcheting heat flow in simple networks consisting of a one-dimensional nonlinear chain with a
self-coupled loop when the average thermal bias is zero. The effects of coupling strength and temporally averaged
environmental reference temperature on the ratcheting heat flow are discussed. It is found that the total heat flow
(THF) will be reversed, while heat flow in the self-coupled loop will disappear with the increase of the coupling
strength. A critical coupling strength exists at which the THF disappears, and heat flow exists in the self-coupled
loop, i.e., eddy ratcheting heat flow displays. The underlining physical mechanisms are analyzed through phonon
spectra and unsteady thermal wave dynamics. Furthermore, a reversal of the THF from a negative to a positive
value can be controlled by increasing the reference temperature. A critical reference temperature exists at which
the negative THF exhibits a maximum value. Phonons dominate the ratcheting heat flow in the self-coupled loop,
while solitons dominate the THF for weak coupling strength. These results can possibly be realized in nanoscale
experiments and will help to further understand the thermal information on coupled nanotubes, polymer chains,
and biological networks.
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I. INTRODUCTION

Heat conduction is one of the most fundamental modes
of energy transport in nature, finding diverse practical appli-
cations. In recent years, significant advancements have been
made in this field, yielding a plethora of insightful find-
ings [1–7]. The development of a high-efficiency thermal
diode [8] has expanded the scope of thermal research beyond
electrons and photons, creating a new area of focus known
as phononics [9]. Phononics emphasizes the study of heat
transport by vibrational waves in solids, invigorating the tra-
ditional field of heat conduction. A microscopic theoretical
mechanism for thermal rectification has been proposed by
coupling several different materials, where at least one sec-
tion of the material is nonlinear, based on the principle of
resonance and the characteristic of phonon spectra varying
with temperature in nonlinear systems [10]. Thermal recti-
fiers based on this mechanism have been shown to achieve
a positive and negative heat flow difference of about twofold,
as demonstrated theoretically [11]. With continued research,
the rectification ratio may be increased by up to 100 or even
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1000 times [12]. The performance of these thermal devices
is critically dependent on the properties of the interface be-
tween the different materials [13]. In addition, the interface
leads to notable alterations in other system properties, such as
the tensions at cell-cell interfaces that govern tissue fluidiza-
tion [14], or the negative energy elasticity resulting from the
self-repulsive interface within the lattice polymer chain [15].

The pursuit of thermal diodes continues with ongoing
research efforts [16–20]. Furthermore, researchers have pro-
posed other theoretical thermal models, including thermal
transistors [21,22], thermal logic gates [23,24], and thermal
memory [25]. Moreover, synthetic electric and magnetic fields
induce nonreciprocal heat transfer and breakdown of detailed
balance [26], generation of phononic frequency combs in
driven nonlinear phononic systems through resonances [27],
and novel heat conduction formalism reveals distinct types of
coherence in thermal phonons [28]. Significant progress has
been made not only in theoretical research but also in related
experimental work. Examples of recent breakthroughs include
thermal rectifiers that deposit heavy molecules on carbon
tubes [29], thermal regulators [30], thermal switches [31], and
thermal manipulation and rectification in π -stacked organic
nanowires [32]. Overall, great strides have been made in the
control of phonon transport, i.e., heat flow, both theoretically
and experimentally.

The previous works on thermal models mentioned above
mainly focus on significant thermal biases, which are difficult
to achieve at the nanoscale. However, inspired by Brownian
motors [33–37], Ref. [38] proposed a nonbiased, temporally
alternating bath temperature to direct a priori energy (heat)
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across a spatially extended nonlinear lattice. Once the system
is connected to another static heat bath temperature, the sys-
tem exhibits a vanishing average thermal bias. It is found that
the heat ratchet effect exists in a weakly coupled asymmetric
Frenkel-Kontorova system. Specifically, when a static tem-
perature gradient exists at both ends of the system, periodic
modulation of the heat bath is found to transport heat from
the low-temperature end to the high-temperature end, in a
direction opposite to the static temperature gradient, resem-
bling the function of a heat pump. Not long after, Ref. [39]
found that the Fermi-Pasta-Ulam β (FPU-β) system had a
stable directional heat flow in such time-varying heat bath,
and the magnitude and direction of heat flow could be tuned
by changing the driving frequency.

The relationship between the network and heat conduction
has been a subject of recent research interest. For instance,
it has been demonstrated that the addition of silicon car-
bide nanowires to epoxy composites can significantly enhance
thermal conductivity, with irregularly arranged nanowires
showing the most promising results [40]. In contrast, using
silicon carbide particles of similar size and quantity does
not yield the same heat conduction improvement. Under-
standing the underlying mechanisms that govern the heat
transfer in such networked systems and identifying more
efficient network structures for enhanced heat conduction
is an area that requires further investigation. Furthermore,
recent studies have utilized cycle flow ranking in network
analysis to unveil the fundamental working mechanisms of
quantum thermal devices [41]. In the presence of the ther-
mal bias, heat flows spontaneously from a high temperature
to a low one, and heat conduction in complex networks
have been studied [42–45]. Some interesting works reveal the
thermal-siphon phenomenon and thermal/electric conduction
for complex networks [44]. Moreover, in polymer chains,
drawing amorphous polyethylene reduces self-coupled en-
tanglements, leading to a significant increase in thermal
conductivity [46]. In biological networks, such as protein
or gene regulatory networks, the presence of self-coupled
phenomena holds significance in the transmission and reg-
ulation of information [47]. So, for simple networks with a
self-coupled loop, a challenging question is whether we can
control the ratcheting heat flow by using the coupling interface
when the average thermal bias is zero, and if yes, how to do
it. In this paper, we shall investigate the ratcheting heat flow
in a homogeneous nonlinear system, namely, the self-coupled
FPU-β chain that is driven by a one-sided temperature mod-
ulated heat bath, as depicted in Fig. 1. By utilizing this
time-varying heat bath, the heat conduction behavior in a
self-coupled system can be explored without relying on a
fixed thermal bias. Our study reveals that the ratcheting heat
flow in the self-coupled FPU-β chain can be controlled by
adjusting the driving frequency of the time-varying heat bath,
the interface coupling strength, etc. Such investigations have
significant applications for designing thermal devices in the
coupled nanotubes, polymer chains, and biological networks.

II. THE MODEL

We consider the dimensionless Hamiltonian for FPU-β
lattice H = ∑

i[p2
i /2 + Vi(xi+1 − xi )], where V (x) = x2/2 +

FIG. 1. Schematic setup of a self-coupled FPU-β chain, being
coupled to two heat baths at temperatures TL (t ) := TL = T0[1 +
A cos(ωt )] and TR(t ) := TR = T0. The positive direction of heat flow
is indicated by the green arrow.

x4/4, xi denotes the displacement, and pi denotes the momen-
tum from equilibrium position for the ith particle with i =
1, 2, . . . , N . We use fixed boundary conditions x0 = xN+1 =
0. The first and last particles, namely, x1 and xN , are coupled
with the Langevin heat baths, respectively. Therefore, the
equation of motion of the system can be expressed as

ṗi =
{− ∂H

∂xi
− λpi + ξi(t ), i = 1, N,

− ∂H
∂xi

, i = 2, 3, . . . , N − 1,
(1)

where Gaussian white noise 〈ξ1(N )(t )〉 = 0 and
〈ξ1(N )(t )ξ1(N )(t ′)〉 = 2λkBTL(R)(t )δ(t − t ′). 〈· · · 〉 denotes
averaging over noise realizations, the coupling strength
between the system and heat bath λ = 1.5, and the
dimensionless Boltzmann constant kB = 1. Symmetry
breaking is a well-established prerequisite for achieving
a finite directional heat flow. So far, symmetry breaking has
primarily been achieved through the introduction of a thermal
bias. However, maintaining a significant thermal bias over
small distances poses inherent challenges at the nanoscale.
In fact, changes in temperature have some periodic behavior
on earth, which is caused by a departure from a balance
between the incoming and outgoing radiation [48]. To create
a system free from thermal bias over extended time averages
and induce symmetry breaking, we employ a typical periodic
temperature modulation [39]:

TL(t ) := TL = T0[1 + A cos(ωt )],

TR(t ) := TR = T0,
(2)

where T0 is the temporally averaged environmental reference
temperature of the system. A and ω are the intensity and
driving frequency aid of the thermostat cycle modulation at
the left end, respectively. For all of our chosen frequencies ω,
the timescale 2π/ω of the temperature modulation of the heat
bath is much smaller than the timescale to reach local thermal
equilibrium. Here the dynamics of the system driven by this
heat bath displays a vanishing average thermal bias, i.e.,

	T (t ) ≡ TL(t ) − TR(t ) = 0. (3)

The time-dependent and asymptotic heat flow Ji(t ) corre-
sponds to the periodicity of the external driving period 2π/ω

after the transients have died out [38]. At these asymptotic
long times, the heat flow is equivalent to the average of the
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thermal Brownian noise [49],

Ji(t ) =
〈

pi
∂V

∂xi

〉
. (4)

The stationary heat flow J then follows as the cycle average
over a full temporal period, i.e.,

J (t ) := J = ω

2π

∫ 2π/ω

0
Ji(t )dt, (5)

which becomes independent of particle position i after aver-
aging. Due to the ergodicity being obeyed, this double average
equals as well the long-time average

J = pi∂V/∂xi = lim
t→+∞

1

t

∫ t

0
pi(t )∂V/∂xi|t dt . (6)

It is this heat flow that we generally focus on in our research.
Suppose that there is a coupling of strength k between nodes
i and j of the chain; then we have an additional new potential
V ′

i j = k[(xi − x j )2/2 + (xi − x j )4/4]. The equations of nodes
i and j become [50]

ṗi = −∂H

∂xi
− ∂V ′

i j

∂xi
, ṗ j = −∂H

∂x j
− ∂V ′

i j

∂x j
. (7)

The equations of motion are integrated by the symplectic
velocity Verlet algorithm with a small time step h = 0.005.
The system is simulated at least for a total time ttotal = 109

to allow it to reach a nonequilibrium steady state with local
thermal equilibrium, where the local heat flow is constant
along the chain. We take the length of the FPU-β lattice as
N = 500 in the following simulations.

III. THE RESULTS

The two interface particles create a self-coupled loop in
the chain, and their coupling position is called the junction.
Thus, the heat flow of the system comprises the total heat
flow (THF), the heat flow in the self-coupled loop, and the
heat flow passing through the interface, denoted by JT , JL,
and J int, respectively. This paper investigates the influence of
time-varying heat bath and coupling interface on ratcheting
heat flow when the temperature of the left heat bath is time
varying, and the temperature of the right heat bath is constant.
To eliminate the impact of an asymmetric structure on heat
flow, we maintain the self-coupled loop equidistant from the
left and right heat baths. In Figs. 2–5, we select the junction
as i = 11, j = 490.

With the left and right temperatures exhibiting equality
in the long-time average, a pertinent inquiry arises: How
can time-varying temperature on the left be manipulated to
induce ratcheting heat flow? Furthermore, does the presence
of an additional interface impact the conditions under which
ratcheting heat flow occurs? In pursuit of answers to these
fundamental questions, we first investigate the cycle-averaged
ratcheting heat flow J as a function of the driving frequency
ω (a) and driving strength A (b), as depicted in Fig. 2. In
Fig. 2(a), it is evident that when the value of ω surpasses a
critical threshold, the left- and right-end particles experience
time-averaged constant temperatures, which corresponds to
effective thermal equilibrium. Consequently, the heat flows

FIG. 2. The cycle-averaged ratcheting heat flow J as a function
of the driving frequency ω (a) and the driving strength A (b) for
the reference temperature T0 = 0.5. The black hollow squares are
the heat flow for k = 0. The red squares are the total heat flow, the
blue triangles are the heat flow in the self-coupled loop, and the
black circles are the heat flow going through the interface for k = 1.
Continuous lines are a guide to the eye.

approach zero with or without coupling. At lower frequencies,
the ratcheting heat flow occurs. As expected, it can be seen
from Fig. 2(b) that when A → 0, the temperature at both ends
is almost equal at all times, which indicates that the system
is close to thermal equilibrium, resulting in near-zero heat
flows with or without coupling. As the value of A increases,
the direction of heat flows remains unchanged, but their
magnitude escalates with the increase in A. In short, the gen-
eration of ratcheting heat flow necessitates both a sufficiently
small frequency and a significant amplitude. Hence we set
ω = 2π × 10−4 and A = 0.5 below.

FIG. 3. The cycle-averaged ratcheting heat flow J as a function
of the coupling strength k for the reference temperature T0 = 0.5,
where the red squares are the total heat flow, the blue triangles are
the heat flow in the self-coupled loop, and the black circles are the
heat flow going through the interface. The green arrow indicates the
adiabatic linear transport result derived from Eq. (8), as explained in
the text. Continuous lines are a guide to the eye.
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FIG. 4. Phonon spectra of particles 11 (black solid line), 12 (blue
solid line), 489 (green solid line), and 490 (red solid line) for k =
0.17 (a), k = 0.6 (b), and k = 2.8 (c). Same parameter values as in
Fig. 3.

The cycle-averaged ratcheting heat flow J as a function of
the coupling strength k is depicted in Fig. 3. When considering
the limit as k → 0, the influence of the interface becomes
negligible. Consequently, JT → JL and J int → 0. Moreover,
the slow modulation of temperature allows us to view the
periodic effect of dynamic thermal bias as an average, inte-
grated quasistationary flow resulting from the instantaneous
static thermal bias. In a linear transport mechanism, this heat
flow can be approximated by the linear transport law: Ji(t ) =
Ji[	T (t )/N] = κ{[TL(t ) + TR]/2}	T (t )/N . Therefore, in the
leading order, the adiabatic net heat flow assumes the follow-
ing expression [39]:

Jad = ω

2π

∫ 2π/ω

0
κ

[
TL(t ) + TR

2

]
TL(t ) − TR

N
dt

= ω

2π

∫ 2π/ω

0
κ

[
T0 + AT0 cos(ωt )

2

]
AT0 cos(ωt )

N
dt . (8)

In the regime of dimensionless temperature T (t ) < 1, the
thermal conductivity of the considered FPU-β lattice ex-
hibits a temperature-dependent behavior, indicated by κ (T ) ∝
1/T [51,52]. Consequently, the approximate value of Jad can
be obtained by integrating Eq. (8). This result is indicated by
a green arrow in Fig. 3, demonstrating a general agreement
with our numerical findings. When the coupling strength is no
longer approaching zero, the presence of an additional inter-
face prevents us from theoretically predicting the magnitude
of the heat flow a priori. Even predicting the direction of the
heat flow becomes challenging.

Due to the relatively weak coupling strength (k < 0.17),
JL exhibits relative stability initially within this region. As the
coupling strength further increases, the absolute value of JL

gradually decreases until it approaches zero. This behavior
can be intuitively understood as the formation of a short-
circuit heat flow at the junction under strong coupling, similar
to the short-circuit current. It should be noted, without loss of
generality, that regardless of the coupling location, JL tends
towards zero as the coupling strength becomes relatively large

FIG. 5. Fitting of the average value of periodic local heat flow
of each particle in the trunk, self-coupled loop, and interface in
one cycle of temperature modulation. The line with red squares,
blue triangles, and black circles represents JT , JL , and Jint and the
solid, half-solid, and hollow symbols represent k = 0.17, k = 0.6,
and k = 2.8, respectively. Same parameter values as in Fig. 3. The
figures on the line are just for the eyes to distinguish.

(see Appendix A). The behavior of JT experiences a transition
from negative to positive with the gradual increase of coupling
strength. Notably, there exists a critical coupling strength
(k = 0.17) at which JT disappears and heat flow exists solely
in the self-coupled loop, namely, the eddy ratcheting heat
flow displays; this phenomenon may explain mechanisms of
thermal effect for Moore’s law in nanodevices. As the value
of the coupling strength k continues to increase, JT reaches
saturation. Furthermore, our simulation results are consistent
with Kirchhoff’s first law of heat transfer, where the THF is
the sum of the heat flow in the self-coupled loop and the heat
flow through the interface, i.e., JT = JL + J int. In summary,
there are three coupling strengths of particular interest: (i) at
the critical coupling strength k = 0.17, the heat flow through
the shortcut rarely flows to the trunk but to the self-coupled
loop, resulting in JT = 0 and JL = −J int; (ii) when k = 0.6,
the results indicate that JT and JL are equal in magnitude and
opposite in direction, thus J int being twice as much as JT or
−JL; and (iii) when the coupling strength is very large (e.g.,
k = 2.8), JL = 0 and JT = J int. The coupling strength acts as
a switch that not only tunes the magnitudes of the THF, heat
flow in the self-coupled loop, and heat flow passing through
the interface, but also controls the direction of the THF.

To comprehend the heat ratcheting mechanism at play,
we begin by analyzing the phonon spectra of the interface
particles for varying coupling strengths of k = 0.17, 0.6, and
2.8. This analysis provides us with essential insights into
the system’s underlying behavior. The phonon spectra of the
system are defined as

E (ω′) = F (〈v(t )v(0)〉), (9)

where F (· · · ) represents Fourier transform and 〈v(t )v(0)〉
represents the time correlation average of velocity.
The match/mismatch of the phonon spectra of the two
interface particles controls the ratcheting heat flow. Figure 4
shows the phonon spectra of four particles 11, 12, 489,
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and 490 when the system is coupled at the junction
i = 11, j = 490, in which the three coupling strengths
mentioned above are taken.

In Fig. 4(a), it can be observed that for k = 0.17, the
phonon spectra of the four particles are concentrated near
0.42 of frequencies. Notably, the phonon spectra of interface
particles 11 and 490 overlaps with the phonon spectra of their
neighboring particles 12 and 489 in the self-coupled loop.
This indicates that the ratcheting heat flow at the junction is
likely to enter the self-coupled loop, which causes the ratch-
eting heat flow inside the self-coupled loop to increase, and
consequently, the THF disappears. In Fig. 4(b), for k = 0.6,
the phonon spectra of the two interface particles are concen-
trated near 0.45 of frequencies. However, the phonon spectra
of their neighboring particles 12 and 489 are concentrated
near 0.42, implying a decrease in the overlap. As a result, the
ratcheting heat flow inside the self-coupled loop decreases,
leading to an increase in the THF. Finally, at k = 2.8, Fig. 4(c)
displays a mismatch between the phonon spectra of the in-
terface particles and their neighbors. The phonon spectra of
interface particles 11 and 490 are concentrated near 0.5, while
the phonon spectra of their neighboring particles 12 and 489
are still concentrated near 0.42. This causes the ratcheting
heat flow to exit the self-coupled loop and not reenter it,
resulting in a zero ratcheting heat flow inside the self-coupled
loop and a maximum THF. In a word, with the increase of
coupling strength, the phonon spectra matching degree of the
two interface particles gradually becomes higher, while the
phonon spectra matching degree between interface particles
and the neighboring particles in the self-coupled loop gradu-
ally becomes lower, which leads to the gradual decrease of JL,
while JT gradually becomes larger, until the phonon spectra
are completely mismatched and JL = 0, thus maximizing JT .
To further understand the variations of the THF, the heat flow
in the self-coupled loop, and the heat flow passing through the
interface, we analyze the unsteady thermal wave dynamics of
the ratcheting heat flow. In one period [t ∈ (0, 2π/ω)], the
average of the periodic local heat flow is

JT/L/int (t ) = 1

nT/L/intn1

nT/L/int∑
i

n1∑
j

Ji(t + 2 jπ/ω), (10)

where nT/L/int represents the total number of heat flows pass-
ing through the trunk, inner self-coupled loop, and interface,
and n1 is the number of periods. We recorded data points
every t = 100 in one cycle, then averaged the data over 50 000
cycles for each point. The resulting values were then fitted to
obtain the magnitude of the ratcheting heat flow, as shown in
Fig. 5.

From Fig. 5, it is apparent that within one period, the
behavior of the THF, the heat flow in the self-coupled loop,
and the heat flow passing through the interface change with
the increase of the coupling strength. When k = 0.17, the
THF is close to zero, while the heat flow in the self-coupled
loop is always negative. Simultaneously, the heat flow passing
through the interface is always positive, and its value is almost
equal to the negative heat flow through the self-coupled loop.
When k = 0.6, the THF is always positive, while the heat flow
in the self-coupled loop is always negative, and their average
values are almost symmetrical about J (t ) = 0. The heat flow

FIG. 6. The cycle-averaged ratcheting heat flow JT as a function
of the reference temperature T0. (a) Coupling at i = 91, j = 410 for
k = 0 (black triangles), k = 0.1 (red squares), and k = 1 (blue cir-
cles); (b) no coupling (black triangles), coupling at i = 151, j = 350
(red squares), and i = 31, j = 470 (blue circles) for k = 1. Contin-
uous lines are a guide to the eye.

passing through the interface is always positive, equal to the
THF minus the heat flow in the self-coupled loop. When
k = 2.8, the THF is always positive, while the heat flow in the
self-coupled loop is close to zero. Furthermore, the heat flow
passing through the interface almost coincides with the THF.
These results are consistent with the behavior of the ratcheting
heat flow depicted in Fig. 3.

Next, we are further interested in how the THF is affected
by the reference temperature in simple networks. The refer-
ence temperature present in the system can induce maximum
and reversal of the THF. The cycle-averaged ratcheting heat
flow JT as a function of the reference temperature T0 is
depicted in Fig. 6. We observe a reversal of the THF from
a negative to a positive value with increasing T0. When the
THF is negative, the THF first increases to a maximum and
then decreases with the increase of T0, which corresponds to
a critical reference temperature that exists at which the neg-
ative THF exhibits a maximum. Simultaneously, for a small
value of weak coupling strength (k = 0.1), the height of the
maximum is decreased, and the position of the maximum is
unaltered compared with no coupling (k = 0). As the value of
the coupling strength continues increasing (k = 1), the height
and position of the maximum are almost unchanged, which
means that the critical reference temperature is not sensitive
to the coupling strength. But as the value of self-coupled
length is increased, the height of the maximum is decreased,
and the position of the maximum is changed to small values
of T0, which means that the critical reference temperature is
sensitive to the self-coupled length. However, when the THF
is positive, the positive THF increases with the increase of T0.
Similarly, in the case of k = 0 (no coupling), where the system
has no extra interface, it can be approximately described by
the linear transport law. Equation (8) is reformulated as

Jad = ω

2π

∫ π/ω

0

AT0 sin(ωt )

N

{
κ

[
T0 + AT0 sin(ωt )

2

]

− κ

[
T0 − AT0 sin(ωt )

2

]}
dt . (11)

At low temperatures, the heat conductivity exhibits a pro-
portionality to κ ∝ 1/T due to the weak coupling limit,
while at high temperatures, the heat conductivity follows a
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scaling behavior of κ ∝ T 1/4, which can be understood from
the perspective of scaling arguments [51,52]. Specifically,
with a low or high T0, the expression κ[T0 + AT0 sin(ωt )/2]
is consistently lower or higher, respectively, than κ[T0 −
AT0 sin(ωt )/2] within the time window of [0, π/ω]. Conse-
quently, the ratcheting heat flow undergoes a transition from
negative to positive as T0 increases. This prediction is demon-
strated to agree with our numerical calculations in Fig. 6. It
is noteworthy that when T0 is less than 0.01, the ratcheting
heat flow remains negative but approaches zero due to the
extremely small value of T0.

According to the above results, the interface particles play
a significant role in influencing both the THF and the heat flow
in the self-coupled loop. By changing the potential energy of
the interface particles, we found that the phonon dominates
the ratcheting heat flow in the self-coupled loop, and the
soliton dominates the THF for weak coupling strength. For
details, see Appendix B.

IV. CONCLUSIONS AND DISCUSSIONS

In this paper, we investigate the ratcheting heat flow in
simple networks consisting of a one-dimensional nonlinear
chain with a self-coupled loop. We keep the self-coupled
loop equidistant from the left and right heat baths, in which
the temperature of the left heat bath is time varying and the
temperature of the right heat bath is constant. The effects of
coupling strength and temporally averaged environmental ref-
erence temperature on the ratcheting heat flow are discussed,
respectively. When the system is coupled at the junction
i = 11, j = 490, the absolute value of the heat flow in the
self-coupled loop gradually decreases until it is almost close
to zero with the gradual increase of coupling strength. The
behavior of the THF experiences a transition from negative to
positive with the increase of coupling strength. There exists
a critical coupling strength where the THF disappears and
heat flow exists in the self-coupled loop, namely, the eddy
ratcheting heat flow displays. The THF reaches saturation as
the coupling strength continues increasing. The underlining
heat ratcheting mechanisms are analyzed by the phonon spec-
tra of the interface particles and the unsteady thermal wave
dynamics of the ratcheting heat flow. We show a reversal of the
THF from a negative to a positive value with increasing ref-
erence temperature. When the THF is negative, the THF first
increases, reaches a maximum, and then decreases with the in-
creasing of the reference temperature, which corresponds to a
critical reference temperature that exists at which the negative
THF exhibits a maximum. The critical reference temperature
is sensitive to the self-coupled length by comparison with the
coupling strength. For weak coupling strength, the phonon
dominates the ratcheting heat flow in the self-coupled loop,
and the soliton dominates the THF. In addition, the findings
of effective temperature distribution support the behavior of
ratcheting heat flow (see Appendix C).

Self-coupling phenomena are commonly observed in poly-
mer chains and biological networks, making them practical
examples for studying these effects [53]. When self-coupling
occurs, a coupling interface is added to the system, and an
appropriate coupling strength may lead to the eddy heat flow.
To date, controlling heat flow has mainly depended on ma-

nipulating temperature gradients, with the system producing
different thermal conductivity or rectification rates through
heterogeneous structures. However, it is challenging to main-
tain a significant temperature gradient over short distances at
the nanoscale [54]. By generating ratcheting heat flow through
heat baths with an average zero thermal bias, we were able
to use a dimensionless ambient reference temperature that
falls within the controllable temperature range of laboratory
experiments [49]. Moreover, homogeneous structures are eas-
ier to prepare, more programmable, and reusable compared
to heterogeneous structures. Therefore, using a time-varying
temperature heat bath to manipulate heat flow and transfer
heat information by altering temperature, coupling position,
and strength is more feasible. We are optimistic that our re-
sults, such as the eddy ratcheting heat flow, can be understood
mechanisms of thermal effect for Moore’s law in nanodevices
and look forward to seeing their practical implementation.
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APPENDIX A: DIFFERENT COUPLING POSITIONS

In this section, the cycle-averaged ratcheting heat flow J
as a function of the coupling strength k for the coupling
at i = 11, j = 490 (a), i = 21, j = 480 (b), i = 31, j = 470
(c), and i = 151, j = 350 (d) is shown in Fig. 7. The find-
ings demonstrate that as the coupling strength increases, the

FIG. 7. The-cycle averaged ratcheting heat flow J as a function
of the coupling strength k for the coupling at i = 11, j = 490 (a), i =
21, j = 480 (b), i = 31, j = 470 (c), and i = 151, j = 350 (d). The
red circles are the total heat flow and the blue triangles are the heat
flow in the loop. Same T0, A, and ω values as in Fig. 3. Continuous
lines are a guide to the eye.
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FIG. 8. The cycle-averaged ratcheting heat flow J as a function
of the coupling strength k, where the red solid line and squares are
the total heat flow, and the blue solid line triangles are the heat flow
in the self-coupled loop. The cross represents harmonic coupling,
and the × represents nonlinear coupling. The JT and JL correspond-
ing to the solid line are consistent with Fig. 3. Same coupling position
and T0, A, and ω values as in Fig. 3.

heat flow in the self-coupled loop gradually decreases until
it stabilizes at zero. Notably, the THF gradually moves in a
positive direction when the two coupling particles are weakly
coupled (k < 1), whereas it remains relatively stable when the
coupling strength is strong (k > 1). Furthermore, the analysis
indicates that the THF gradually moves in a negative direction
as the self-coupled loop length decreases. Note that only when
the coupling loop is long, as discussed in the text, will the THF
disappear or reverse as the coupling strength increases.

APPENDIX B: DIFFERENT COUPLING POTENTIALS

When the two particles are coupled by harmonic terms,
only phonons can pass smoothly, whereas when the two
particles are coupled only by nonlinear terms, only solitons
can pass through smoothly due to the phonon vacuum ef-
fect [55–58]. Thus an interesting question is, how do the
harmonic or nonlinear terms in the interface-coupled potential
affect the THF and heat flow in the self-coupled loop? To
answer this question, we assume the three different coupling
potentials

V ′
i j =

⎧⎪⎪⎨
⎪⎪⎩

k[(xi − x j )
2/2 + (xi − x j )

4/4],

k(xi − x j )
2/2,

k(xi − x j )
4/4.

(B1)

The THF and heat flow in the self-coupled loop as a function
of the coupling strength k is shown in Fig. 8. When the
two particles are coupled with harmonic potential, for weak
coupling strength (k < 1), the change trend of JL2 is consistent
with the behavior of JL, and JT2 is far from JT . When the
two particles are coupled with a quartic potential, for weak
coupling strength (k < 1), the change trend of JT4 is consistent
with the behavior of JT , and JL4 is far from JL. That is, the
phonon dominates the ratcheting heat flow in the self-coupled

FIG. 9. Effective temperature distribution Teff (i) for the self-
coupled loop (a) and the outer part of the loop (inset) and the
cycle-averaged ratcheting heat flow distribution J (i) (b) for k = 0.1
(black squares), k = 0.17 (red circles), k = 0.6 (blue triangles), and
k = 2.8 (green inverted triangles). Same coupling position and T0, A,
and ω values as in Fig. 3. Continuous lines are a guide to the eye.

loop, and the soliton dominates the THF for weak coupling
strength.

APPENDIX C: THE EFFECTIVE TEMPERATURE
AND RATCHETING HEAT FLOW DISTRIBUTIONS

To further understand the ratcheting heat flow in simple
networks consisting of a one-dimensional nonlinear chain
with a self-coupled loop when the average thermal bias is
zero, we need to go to the definition of effective temperature.
In computer simulations, it is more convenient to compute
the averages of kinetic energy by following a single trajectory
over time. This is often referred to as the time average, which
can be expressed as [39]

Teff (i) = lim
Nt →∞

∑Nt
t=1 p2

i (t )

Nt
= p2

i . (C1)

The temperature is a measure of the kinetics of the particle,
i.e., it is an ensemble (time) average of the kinetic energy.
Without coupling, the middle particle at a chain is connected
only by its two nearest neighbors. After coupling, the mid-
dle particle is connected with three particles which change
its equation of motion. This introduces not only an inter-
face thermal resistance at the junction but also a junction
to the transfer of energy. We plot the effective temperature
and ratcheting heat flow distributions with different coupling
strength k in Fig. 9. There is always a temperature jump at
the end particle linked to the time-varying heat bath which
is shown in Fig. 9(a). When the chain is self-coupled to-
gether, regardless of k, there is also a temperature jump at
the junction and the coupled particles have roughly the same
temperature. With increasing k, the temperature of the ma-
jority of the self-coupled loop progressively rises from below
the reference temperature to approximate it. Correspondingly,
the temperature of the outer part of the loop, which is linked
to one side of the thermostatic heat bath, increases from be-
low the reference temperature to above it. These changes in

043009-7



WANG, ZENG, ZHU, WANG, AND LI PHYSICAL REVIEW RESEARCH 5, 043009 (2023)

temperature are reflected in the magnitude and direction of
the heat flow. As shown in Fig. 9(b), when k increases, we
can see that the heat flow in the self-coupled loop is negative,
and its absolute value decreases to zero gradually. The THF

experiences a reversal from negative to positive with the in-
crease of k. There exists a critical coupling strength k = 0.17
where THF disappears and heat flow exists in the self-coupled
loop.
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