
PHYSICAL REVIEW RESEARCH 5, 043008 (2023)

Prethermalization in periodically driven nonreciprocal many-body spin systems
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We analyze a new class of time-periodic nonreciprocal dynamics in interacting chaotic classical spin sys-
tems, whose equations of motion are conservative (phase-space-volume-preserving) yet possess no symplectic
structure. As a result, the dynamics of the system cannot be derived from any time-dependent Hamiltonian.
In the high-frequency limit, we find that the magnetization dynamics features a long-lived metastable plateau,
whose duration is controlled by the fourth power of the drive frequency. However, due to the lack of an effective
Hamiltonian, the prethermal state the system evolves into cannot be understood within the framework of the
canonical ensemble. We propose a Hamiltonian extension of the system using auxiliary degrees of freedom,
in which the original spins constitute an open yet nondissipative subsystem. This allows us to perturbatively
derive effective equations of motion that manifestly display symplecticity breaking at leading order in the
inverse frequency. We thus extend the notion of prethermal dynamics, observed in the high-frequency limit
of periodically driven systems, to nonreciprocal systems.

DOI: 10.1103/PhysRevResearch.5.043008

I. INTRODUCTION

Systems exhibiting nonreciprocal interactions evade New-
ton’s third law, and are intrinsically out-of-equilibrium due
to the absence of energy conservation. As an effective de-
scription of physical systems, nonreciprocity finds a plethora
of applications [1], underlying flocking phenomena in ac-
tive matter [2,3], interactions between microparticles in an
anisotropic plasma [4], and the formation of active chiral
matter in starfish embryos. Outwith biophysics, such in-
teractions arise naturally in systems of colloidal particles
interacting through nonreciprocal electrostatic torques, tune-
able by changing either the salt concentration or the external
electric field [5,6]; moreover, nonreciprocal interactions have
been shown to exhibit out-of-equilibrium phase transitions
[7] and non-Hermitian topology [8] and have recently been
emulated between robots in a programmable way [9].

In this paper, we investigate the consequences of nonre-
ciprocity for the out-of-equilibrium dynamics of spin systems
subject to a time-periodic drive. Floquet-driven, Hamiltonian,
closed, many-body systems generically feature long-lived
metastable states in the high-frequency regime, when drive
frequencies are much larger than the local bandwidth [10,11].
For sufficiently short-ranged interactions, such systems fea-
ture exponentially long-lived prethermal plateaus, where
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energy absorption is severely constrained and slowed down, as
higher-order interaction processes are required [12–18]. Ex-
perimentally, Floquet prethermalization has been instrumental
for the realization of novel engineered properties [19–23],
such as artificial gauge fields for neutral particles [24–26];
discrete time crystalline [27–31] or topologically ordered
[32–34] phases of matter without equilibrium counterparts;
as a stabilization mechanism to create long-lived coherent
dynamics [35–40]; and in providing a long time-window to
realize Trotterized dynamics on digital quantum processors
[41]. For all these reasons, Floquet drives offer a highly ver-
satile toolbox; however, the extent to which nonreciprocal
systems are amenable to Floquet engineering remains unclear
[42,43].

In this paper, we ask whether closed, nonreciprocal
many-body systems, subject to a periodic, conservative (i.e.,
phase-space-volume-preserving) drive, can exhibit long-lived
prethermalization—in other words, can nonreciprocal systems
offer a suitable framework to implement ideas from Floquet
engineering?

We give an affirmative answer by investigating the mag-
netization relaxation of a classical many-body spin chain
[44–51] exposed to such a drive [Fig. 1(a)]. Unlike their
Hamiltonian Floquet counterparts [45,52], nonreciprocal peri-
odically driven equations of motion (EOM) cannot be derived
from any time-dependent Hamiltonian, and, therefore, pos-
sess no well-defined quasienergy. As a consequence, they
cannot, a priori, exhibit energy prethermalization and are
not described by an effective Hamiltonian, even in the high-
frequency regime.

Nevertheless, we show that nonreciprocal time-periodic
dynamics can exhibit quasiconserved quantities which re-
lax through a parametrically controlled long-lived prethermal
plateau, the duration of which scales as the fourth power of
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FIG. 1. (a) An interacting nonintegrable spin chain is subject to
time-periodic two-step dynamics that breaks the reciprocity of the
interactions and the symplectic structure of phase space. In the first
half-cycle spins on one sublattice are held fixed, while the other
spins precess in the exchange field of their neighbors, and vice versa
during the second half-cycle. (b) The spin chain can be embedded in
a larger Hamiltonian system comprised of two interacting dynamical
spin degrees of freedom S j and a j , which restores symplecticity (see
text). (c) The initial condition a j= −S j confines the phase space
dynamics of the (S, a) system to a subspace for all time; the S
subsystem is exactly described by the nonsymplectic drive from (a).
(d) The nonreciprocal drive breaks magnetization conservation: at
large drive frequencies ω, the magnetization of an initial ensemble
(shown by collection of points) exhibits a prethermal plateau whose
lifetime scales as tM ∼ ω4, before it relaxes in a diffusionlike process
(colorcode shows arrow of time from purple to yellow).

the drive frequency. We derive an effective stroboscopic EOM
in the high-frequency regime, by considering the spin chain
as a subsystem of a larger Hamiltonian system [Fig. 1(b)];
the leading-order inverse-frequency correction is sufficient to
capture the magnetization relaxation process [Fig. 1(d)]. The
nonreciprocal periodic drive we investigate is applicable to
various classical spin models, irrespective of their dimension-
ality, support of interactions, and lattice geometry, and thus
defines a distinct class of prethermal states.

II. MODEL

We consider a bipartite lattice of interacting classical spins
S j , governed by the time-periodic EOM

{
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where Jν
i j = Jν

ji denotes the interaction strength,1 i, j label the
lattice sites, and A,B are the two sublattices; in all simula-
tions, we use periodic boundary conditions.

During the first (second) half-cycle, the spins on the B (A)
sublattice are kept frozen, and produce an effective constant
field in which their neighboring spins precess [Fig. 1(a)]; the
roles of the two sublattices are then flipped, and the protocol
repeats. Since the rotation axis depends on the neighboring
spins—the directions of which keep changing—this protocol
gives rise to chaotic nonlinear dynamics over many drive
periods τ ; the frequency of switching is ω = 2π/τ .

We define the infinite-frequency limit by fixing a physical
time in units of J−1 and solving the EOM up to that time as
τ → 0. In this limit, averaging over a period reduces Eq. (1)
to the familiar Bloch equations, Ṡ

μ

j = {Sμ
j , H∞}, generated by

the Hamiltonian,

H∞ = 1

2

∑
i, j

Jμ
i j S

μ
i Sμ

j , (2)

where {·, ·} denotes the Poisson bracket, with {Sα
i , Sβ

j } =
δi jε

αβγ Sγ

j . In all cases, we assume an O(2) isotropy, Jx
i j =

Jy
i j . The infinite-frequency dynamics is thus Hamiltonian,

and conserves both the magnetization Mz = ∑
j Sz

j and the
infinite-frequency energy H∞. At finite frequency, H∞ re-
mains conserved for all time, but the magnetization is no
longer conserved.

A key feature of Eq. (1) is that, for finite drive frequencies,
it cannot be derived from any Hamiltonian, time-dependent
or static, since nonreciprocity breaks the symplectic structure
(Appendix A 1). Nevertheless, it is curious to note that Eq. (1)
still preserves the phase space volume,2 and hence the dynam-
ics remains incompressible at all frequencies.

The lack of a Hamiltonian implies that the dynamics of
Eq. (1) is not directly amenable to Floquet theory (but see
Ref. [52]). This raises two questions: (i) what are the similar-
ities and differences between nonreciprocal and Hamiltonian
Floquet systems and (ii) how can we effectively describe their
thermalizing dynamics?

III. LONG-LIVED METASTABLE PLATEAU

We address these questions numerically before present-
ing a theoretical description. We initialize the chain in a
canonical ensemble at temperature β−1, magnetized along
the z-direction; more specifically, this ensemble is thermal
with respect to the Hamiltonian H̃ = 2H∞ + h

∑
j Sz

j , at
h/|J| = 0.7. We then evolve each state in the ensemble up
to a sufficiently long time and measure the expectation value
(ensemble-average) of the magnetization.

Since H∞ is conserved for each state in the ensemble, the
system cannot heat with respect to H∞—nevertheless, it can
still absorb energy with respect to the Hamiltonian H̃ that

1Despite the symmetry of the interaction coupling, Jν
i j = Jν

ji, the
interactions between the spins are nonreciprocal during each half-
step by construction.

2The phase space volume is preserved independently during each
half-cycle and, hence, also by the entire dynamics.
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FIG. 2. Magnetization relaxation in the nonreciprocal drive,
Eq. (1), occurs via a prethermal plateau whose lifetime is controlled
by the drive frequency ω. The models shown are the XXZ spin chain
(Jx = Jy = 1, Jz = 
) and the Heisenberg model (Jx = Jy = Jz =
1) on the chain, square lattice, and triangular lattice. The inset shows
the relaxation curves for the Heisenberg chain for drive periods τ =
0.1 (blue, rightmost) to 1.0 (cyan, leftmost), in steps of 0.1—their
intersection with the horizontal line defines tM . The main plot shows
that the relaxation timescale tM∼ω4 scales with the fourth power of
the drive frequency ω (dotted lines), regardless of the particular spin
model. The data have been shifted vertically for clarity. All ensemble
averages are taken over 2000 initial states, at temperature β = 1
and initial applied field hz = 0.7. The system size for the chains is
L = 128, and the linear sizes for the 2D lattices are L = 16 (square)
and 15 (triangular). The nonreciprocal drive for the triangular lattice
does not follow Eq. (1) (it is not bipartite), but follows an analogous
three-step protocol (Appendix C).

generated the initial ensemble; this gives rise to magnetization
relaxation, and we therefore colloquially refer to the dynamics
as “thermalizing.”

To quantify the rate at which this happens as a function of
ω, we study the magnetization relaxation for several spin mod-
els: the XXZ spin chain (Jx=Jy=1, Jz=
), for both easy-axis
and easy-plane anisotropy, and the nearest-neighbor isotropic
Heisenberg model (Jx=Jy=Jz=1) on the chain, square lat-
tice, and triangular lattice. Figure 2 (inset) shows the time
evolution of 〈Mz〉 for different values of the drive frequency.
Despite the lack of symplecticity in Eq. (1), the overall behav-
ior appears similar to Hamiltonian Floquet drives: the system
first prethermalizes to a frequency-dependent plateau above
the infinite-frequency magnetization value, which lasts until
a time tM , parametrically controlled by ω, when the ensem-
ble starts approaching the 〈Mz〉 = 0 state. Since no effective
Hamiltonian exists that describes the prethermal plateau, there
exists no canonical ensemble description of the state and no
effective temperature can be assigned to it. Therefore non-
reciprocal prethermal states should be understood within the
microcanonical ensemble as maximum-entropy states on the
accessible phase-space manifold. Curiously, however, we ob-
serve a power-law scaling tM ∝ ωα with α = 4, independently
of the particular spin model . This is in stark contrast to
both the exponential scaling in locally interacting Hamiltonian

Floquet systems [45], and the α = 2 Fermi’s Golden rule
regime characteristic of long-range systems [14]. We empha-
size that the proofs of rigorous upper bounds on energy ab-
sorption explicitly use the Hamiltonian formalism [10,11,53],
and hence do not apply to nonreciprocal dynamics.

To contrast the nonreciprocal drive from its reciprocal
counterpart, let us specialize to the isotropic Heisenberg
chain, H∞ = J

2

∑
j S j · S j+1, and consider the Hamilto-

nian Floquet drive H (t ) = ∑
j J j (t )S j ·S j+1 with Jj (t ) =

J/2[1+(−1) jsgn(sin ωt )]. Both drives share the same
infinite-frequency Hamiltonian H∞—at finite frequency, how-
ever, the Hamiltonian structure implies the heating timescale
is exponentially suppressed (Appendix B), in accordance with
the theorem of Ref. [45].

IV. EFFECTIVE DESCRIPTION

The numerical observation of prethermalization calls for a
theoretical description; this is complicated, however, by the
fact that nonreciprocity precludes the description of the spin
dynamics using an effective Floquet Hamiltonian. We sidestep
this issue by explicitly constructing a larger, Hamiltonian (i.e.,
reciprocal) system, of which the original spins constitute an
open but nondissipative subsystem.

Each half-cycle of the dynamics governed by Eq. (1) can be
realized in the presence of local external magnetic fields that
cancel the precession of the static spins. For this to happen
during both half-cycles, the external fields have to change
both their direction and lattice support in time; we thus need
to promote them to dynamical degrees of freedom. We intro-
duce an auxiliary spin a j on every lattice site, which obeys
{aα

i , aβ
j } = εαβγ aγ

j δi j and {aα
i , Sβ

j } = 0, cf. Fig. 1(b). Each a j

couples periodically to the neighbors of S j , giving rise to the
Hamiltonian

H(t ) =
∑
i, j

Jμ
i j S

μ
i Sμ

j +
[

1

2
+g(t )sgn( j)

]
Jμ

i j S
μ
i aμ

j , (3)

where g(t ) = sgn(sin ωt )/2 is a τ -periodic step-drive, and
sgn( j) takes different signs on the two sublattices.

In general, the chaotic dynamics generated by the total
Hamiltonian (3) differs from Eq. (1). One may show, however,
that an initial condition of the form a j (0) = −S j (0) is pre-
served, i.e., a j (t ) = −S j (t ) (Appendix A 2), and, under these
conditions, we recover exactly the EOM for the original spin
chain from Eq. (1).

The Hamiltonian (3) sheds new light on our problem, as it
allows us to think of the S spins as an open system. Note, how-
ever, that the dynamics described by Eq. (1) is conservative,
since the Poincaré recurrence theorem is satisfied.3

Adopting this view, we find that for a j (t )=−S j (t ), the to-
tal energy of the system vanishes identically, H(t ) ≡ 0. Since
the energy of the S-spin subsystem is independently con-
served, it follows that the energy absorbed from the periodic

3One can convince oneself that both conditions for Poincaré’s re-
currence theorem are met for any fixed number of spins: the phase
space flow is incompressible, cf. Appendix A 1 and all orbits are
bounded since the spin phase space is compact.
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drive in the total system remains trapped in the interaction
term between the two systems. Moreover, the magnetization
of the total system also vanishes identically,

∑
j S j +a j ≡0.

Thus we can interpret the slow magnetization relaxation in
the high-frequency limit as scrambling dynamics within the
M = 0 shell of the full system.

Let us emphasize that the specific choice of initial condi-
tion for the total system should not be viewed as fine-tuning.
Indeed, we are interested in the dynamics of the S subsystem,
for which the initial condition is arbitrary; the a subsystem
helps us to make analytic progress in a familiar and structured
way. Due to the nonlinearity of the EOM generated by Eq. (3),
we expect that small deviations from this initial condition lead
to unstable dynamics that leaves the a = −S manifold and
features fundamentally different properties.

V. FLOQUET-MAGNUS EXPANSION

Hamiltonian (3) enables the application of Floquet theory.
Since prethermalization requires high frequencies, let us con-
sider the inverse-frequency expansions (IFE). For the purpose
of deriving an effective EOM, it suffices to focus on the
stroboscopic dynamics which governs the motion of the slow
degrees of freedom. Out of the different variants, we choose
the Floquet-Magnus expansion since it does not require kick
operators that modify the initial conditions.4

From this point, we will, for concreteness, focus on the
isotropic Heisenberg chain. A straightforward calculation of
the Floquet Hamiltonian yields (Appendix A 2)

HF = H(0)
F + H(1)

F + O(ω−2), H(n)
F ∝ ω−n,

H(0)
F = J

∑
j

S j · S j+1 + 1

2
a j · (S j−1 + S j+1),

H(1)
F = −J2τ

8

∑
j

(−1) ja j · [(S j + S j−2) × S j−1

+ (S j+2 + S j ) × S j+1]. (4)

The zeroth-order term is the period-averaged Hamiltonian,
and includes static interactions between the original and
the auxiliary spins. The first-order correction contains a j-
mediated nearest-neighbor interactions between the spins S j ,
and breaks time-reversal symmetry.

VI. EFFECTIVE STROBOSCOPIC DYNAMICS

Equation (4) immediately yields the stroboscopic equa-
tions of motion, ȧ j ={a j,H(0+1)

F } and Ṡ j ={S j,H(0+1)
F }.

Again, it may be shown that a j (0)=−S j (0) implies
a j (t )=−S j (t ) within the effective dynamics (Appendix A 2).
Using this to eliminate the a-spins, we obtain an effective

4Classically, kick operators give rise to canonical transformations
that are more difficult to apply, as compared to unitary change of
basis in quantum mechanics. The latter is the case for the van-Vleck
expansion [20].

FIG. 3. Comparison between the effective stroboscopic dynam-
ics and the exact dynamics in the isotropic Heisenberg chain. Main
figure shows the magnetization dynamics within the first three or-
ders of the inverse-frequency expansion (IFE): Mz is conserved at
zeroth-order; the first-order curve relaxes faster than the exact curve;
whilst the second-order curve takes longer, hinting at a possible
oscillatory convergence. Even at first order, the IFE captures the
short-time quenched dynamics that drives the state into the “prether-
mal” plateau. The inset shows that the power-law scaling of the
relaxation time, tM ∼ ω4 (dotted lines). is also captured at first order
in the IFE. Simulation parameters are the same as in Fig. 2, with
β = 1. The curves in the main figure correspond to τ = 0.8.

EOM for the S spins:

Ṡ j = J

2
(S j−1 + S j+1) × S j − J2τ

8
(−1) j

× [(S j + S j−2) × S j−1 + (S j+2 + S j ) × S j+1] × S j .

(5)

As expected, the zeroth-order term corresponds to the
time-averaged Heisenberg dynamics, Eq. (2). More inter-
estingly, the first-order terms (S j × S j±1) × S j represent
non-Hamiltonian corrections; they cannot be derived from
any S-subsystem Hamiltonian Heff via (∂Heff/∂S j ) × S j

(Appendix A 2 d). Symplecticity is thus already broken at
leading order in ω−1. On the other hand, the O(ω−1) dynamics
conserves the infinite-frequency energy H∞. Since the exact
dynamics also conserves H∞, we conjecture that this is true at
all orders in the IFE.

However, the ω−1 correction breaks magnetization con-
servation. Figure 3 shows a comparison between the exact
and effective magnetization dynamics up to and including
O(ω−2). Note that magnetization relaxation, including the
prethermal plateau, is already captured by the O(ω−1) terms.
This contrasts with energy relaxation in Hamiltonian Floquet
systems (Appendix B), where the effective dynamics does not
capture heating to infinite temperature at any order [54] and
the Floquet-Magnus expansion diverges [11]. Curiously, we
find that the O(ω−1) dynamics relaxes magnetization faster
than the exact dynamics. This is peculiar, since taking into
account all higher-order corrections (i.e., considering the ex-
act dynamics) adds more long-range and multibody terms to
the effective EOM, which one would expect to lead to faster
relaxation. At the same time, our analysis reveals that the
scaling of the relaxation time is tM ∼ ω4 in both the first- and
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second-order effective EOM [Fig. 3 (inset)]; the differences
in relaxation times are, therefore, caused by a nonuniversal
truncation-order-dependent prefactor c(n): t (n)

M = c(n)ω4. We
observe that the second-order dynamics leads to magnetiza-
tion relaxation that is slower than the exact dynamics, hinting
at the possibility of an oscillatory convergence to the exact
magnetization curve as we include higher-order terms of the
IFE.5

The origin of the particular exponent, α = 4, governing
the prethermal lifetime remains unclear; however, it cannot be
explained perturbatively using the IFE: Instead of the Floquet-
Magnus IFE, one might be tempted to consider the van Vleck
IFE [20]—since the latter is manifestly independent of the
initial time; for a linearly polarized, real-valued Hamiltonian
H(t ), a straightforward calculation shows that the O(ω−1)
terms vanish, and hence Heff ∼ H(0)

eff + H(2)
eff . In the high-

frequency regime, H(2)
eff ∈ O(ω−2) would then play the role

of a weak S-magnetization breaking perturbation; a Fermi’s
golden rule-type argument would then imply that the mag-
netization relaxation rate cannot be faster than �M∼(ω−2)2,
the inverse of which defines the prethermal lifetime scaling as
seen in Fig. 2.

However, we demonstrate explicitly in Appendix C that
such a naïve perturbative argument based on the IFE is
incorrect: the nonreciprocal dynamics of any time-reversal-
breaking periodic drive has a nonvanishing first-order correc-
tion H(1)

eff ∈ O(ω−1), which, by the above argument, would
predict a prethermal lifetime tM ∼ ω2. The three-step drive
for the triangular lattice—where, analogously to Eq. (1), we
evolve the spins on the three sublattices in an ABCABC
pattern—breaks time-reversal symmetry because there is no
time t0 about which this drive is even; time-reversal will
always flip this to a CBACBA pattern (by contrast, the bi-
partite drive (1) is time-reversal symmetric about t0 = τ/4).
Consequently, its effective Hamiltonian has a nonvanishing
first-order correction [Appendix C], but, as shown in Fig. 2,
the triangular lattice unambiguously evinces the same ω4 scal-
ing as the bipartite models.

Finally, we mention that a Hamiltonian description is not
required to derive the effective EOM (Appendix A 3). We have
independently derived Eq. (5) by using two-times perturbation
theory and the phase-space density approach. We believe that
an alternative Lagrangian description exists as well [55].

VII. DISCUSSION AND OUTLOOK

In summary, we have identified a novel class of prethermal-
izing dynamics in classical periodically driven spin systems,
characterized by conservative, nonreciprocal chaotic dynam-
ics; the systems we study thus differ from conventional
periodically driven dissipative systems. The long-time be-
havior of the magnetization dynamics features a prethermal
plateau, whose lifetime scales as the fourth power of the drive
frequency. By considering the spins to be part of a larger
system, we have derived an approximate description for the

5Fewer data points are available at second order, since the slower
relaxation makes determining tM infeasible for ω/2π � 3 over the
accessible timescales t ∼ 106.

effective dynamics using the IFE, which captures the magne-
tization relaxation.

Our extended model H(t ) can be viewed as an example of
nonergodic scarred dynamics [56–59] in classical many-body
systems: the attainable phase space of the total (S, a)-system
is constrained via the initial condition for all time [Fig. 1(c)]. It
will be intriguing to explore the information spreading in such
constrained systems [60–64]. Other interesting directions that
go beyond the strict periodicity of the drive include gen-
eralizations to random multipolar driving and quasiperiodic
extensions [16,65–67].

Furthermore, our analysis is in practice directly related
to classical ODE solvers designed to conserve integrals
of motion exactly. Prethermalization establishes the para-
metric stability of symplectic integrators [68,69], which
conserve certain integrals of motion exactly [70]; however,
energy conservation is usually lost [71]. While nonsymplectic,
energy-conserving integration schemes can be implemented
instead [72], the analysis of their stability is confounded by
the absence of conjugate variables and Poisson brackets—
conventionally required to apply the high-frequency expan-
sion in the analysis of higher-order heating processes. Similar
to recent work on Floquet trotterization in quantum systems
[41], the analysis of prethermal plateaus can improve the
techniques for simulating equations of motion, allowing us
to probe the hydrodynamic regimes of these systems with
simulations of larger systems and longer times. Thus our
work establishes a direct relation between the thermalizing
dynamics of nonreciprocal systems and the accuracy of non-
symplectic integrators.

Finally, this work demonstrates that Floquet engineering
can be used beyond Hamiltonian systems. Particularly inter-
esting in this context is the possibility to suppress leading-
order non-Hamiltonian corrections using model parameters,
and engineer quasiconservation laws in nonreciprocal dynam-
ical systems. This sheds new light on the applicability of the
Floquet toolbox to, e.g., biophysics, where systems without a
Hamiltonian description are abundant.
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APPENDIX A: ANALYTICAL PROPERTIES OF THE
NONRECIPROCAL DRIVE

Throughout this Appendix, we will specialize, for con-
creteness, to the isotropic Heisenberg chain. The analogous
results for other nonreciprocal bipartite spin models following
Eq. (1) are straightforward.
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1. Proof of the lack of symplectic structure in the dynamics of Eq. (1)

Here we demonstrate explicitly that the EOM in Eq. (1) are not symplectic [68,69]; that is, they cannot be generated by any
Hamiltonian. To this end, we first introduce the relevant notions from differential geometry.

The phase space for a system of L classical spins is defined as

P = {(S1, . . . , SN ) : |S j |2 = 1, ∀ j ∈ {1, . . . , L}}, (A1)

with S j a unit vector in three-dimensional space. To incorporate the norm constraint, we can parametrize each spin using its
azimuthal angle ϕ j and its projection on the z axis, z j :

S j =
(√

1 − z2
j cos ϕ j,

√
1 − z2

j sin ϕ j, z j

)t
. (A2)

Using these coordinates, the symplectic form ω with respect to the conjugate variables (ϕ j, z j ), can be locally defined as

ω =
L∑

j=1

dϕ j ∧ dz j . (A3)

A smooth function f : P → P is called symplectic, if and only if it preserves the symplectic form, i.e., f ∗ω = ω, where the
asterisk denotes the pullback. Given an energy function H , Hamilton’s equations of motion read as

ϕ̇ j = ∂z j H, ż j = −∂ϕ j H. (A4)

A vector field X generates a flow on phase space defined as the solution to

d

dt
S j (t ) = X (S j (t )). (A5)

Hamilton’s equations are associated with the Hamiltonian vector field X H , definedimplicitly by ιX H ω = dH , where ι is the
exterior derivative. The flow generated by X H is called the Hamiltonian flow.

A major result in symplectic geometry is that any Hamiltonian flow is symplectic; conversely, if the flow of a complete vector
field X is symplectic, then ιXω = dK is a closed form (ddK = 0), and hence the flow is locally generated by some Hamiltonian
K [68].

a. Nonsymplecticity of the exact EOM in Eq. (1)

Having introduced these definitions, we can now demonstrate that the flow generated by the EOM (1) is not symplectic. To
do this, without loss of generality we set J = 1, and consider the vector field X that generates the first half-cycle motion:{

Ṡ j = (S j−1 + S j+1) × S j, j even

Ṡ j = 0, j odd.
(A6)

We will demonstrate that the form ιX ω is not closed, i.e., dιXω 
= 0. Thus the flow is not locally generated by a Hamiltonian,
and hence it is not symplectic.

To see this, we use the definition in Eq. (A3) to calculate

ιXω =
L∑

j=1

ιX (dϕ j ∧ dz j ) =
L∑

j=1

ϕ̇ jdz j − ż jdϕ j =
∑
j even

ϕ̇ jdz j − ż jdϕ j

=
∑
j even

⎛
⎜⎝z j+1 + z j−1 − z j√

1 − z2
j

[√
1 − z2

j−1 cos(ϕ j − ϕ j−1) +
√

1 − z2
j+1 cos(ϕ j − ϕ j+1)

]⎞⎟⎠dz j

−
√

1 − z2
j

[√
1 − z2

j−1 sin(ϕ j − ϕ j−1) +
√

1 − z2
j+1 sin(ϕ j − ϕ j+1)

]
dϕ j, (A7)

where in the second line we used Eq. (A6) written in the coordinate representation from Eq. (A2). A straightforward calculation
now gives dιXω 
= 0, and hence the flow of X is not symplectic. The same argument applies to the second half-cycle. Thus we
conclude that the EOM in Eq. (1) cannot be generated by a Hamiltonian function.

b. Conservation of phase-space volume

Before, we conclude the discussion, let us also prove that the phase space volume remains conserved under Eq. (1). Intuitively,
for a fixed half-cycle, each spin is subject to a rotation about a fixed axis, which conserves the phase-space volume; since this
is true for both half-cycles, it follows that the entire dynamics preserves the phase space volume, and hence the dynamics are
conservative. In the following, we prove this mathematically.
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Formally, the phase space volume is defined by the volume element

dV =
L∧

j=1

ω j = dϕ1 ∧ dz1 ∧ · · · ∧ dϕL ∧ dzL. (A8)

Liouville’s theorem reads as

0 = LX dV = ιX ddV + dιX dV = dιX dV, (A9)

where we used that the volume form is closed, ddV = 0, since the symplectic form itself is closed. Here LX denotes the Lie
derivative along the flow of X .

To demonstrate the validity of Liouville’s theorem for Eq. (A6), it suffices to focus on the second spin S2:

dιX dV = dιX (dϕ1 ∧ dz1 ∧ · · · ∧ dϕL ∧ dzL )

= d

⎛
⎜⎝z3 + z1 − z2√

1 − z2
2

[√
1 − z2

1 cos(ϕ2 − ϕ1) +
√

1 − z2
3 cos(ϕ2 − ϕ3)

]⎞⎟⎠dϕ1 ∧ dz1 ∧ dz2 ∧ dϕ3 ∧ dz3 · · · ∧ dzL

+ d

(
−
√

1 − z2
2

[√
1 − z2

1 sin(ϕ2 − ϕ1) +
√

1 − z2
3 sin(ϕ2 − ϕ3)

])
dϕ1 ∧ dz1 ∧ dϕ2 ∧ dϕ3 ∧ dz3 ∧ · · · ∧ dϕL ∧ dzL

+ all other even spins

= z2√
1 − z2

2

[√
1 − z2

1 sin(ϕ2 − ϕ1) +
√

1 − z2
3 sin(ϕ2 − ϕ3)

]
dϕ2 ∧ dϕ1 ∧ dz1 ∧ dz2 ∧ dϕ3 ∧ dz3 · · · ∧ dϕL ∧ dzL

+ z2√
1 − z2

2

[√
1 − z2

1 sin(ϕ2 − ϕ1) +
√

1 − z2
3 sin(ϕ2 − ϕ3)

]
dz2 ∧ dϕ1 ∧ dz1 ∧ dϕ2 ∧ dϕ3 ∧ dz3 ∧ · · · ∧ dϕL ∧ dzL

+ all other even spins

= 0, (A10)

where in the last equality we used the antisymmetric property of the wedge product.
Every symplectic map preserves the phase space volume, but as we have seen, the converse is not true.

2. Details of the auxiliary spin Hamiltonian description

a. Derivation of the EOM for the coupled S-a system

To construct a Hamiltonian for the nonreciprocal drive, we require additional degrees of freedom to impose the nonreciprocity
on the original spins; to hold just the odd sites fixed, we require an additional field to cancel the effective field of the even
sites—but without simply measuring the even spins and then applying a site-dependent field (which would obviously not be
Hamiltonian). We achieve this by coupling the physical spins S to a set of auxiliary spins a. The full system is illustrated in
Fig. 1(b), with the time evolution generated by the Hamiltonian:

H = J
∑

j

S j · S j+1 + J
∑

j

(
1

2
+ g(t )(−1) j

)
a j · (S j−1 + S j+1), (A11)

where

g(t ) = 1
2 sgn(sin ωt ). (A12)

It should be noted that we do not fix the dynamics of the a spins—they evolve as unit-length spins under the above Hamiltonian
dynamics with their own equations of motion, ȧ = (∂H/∂a) × a. We will, however, impose a particular set of initial conditions.

Setting f j (t ) = 1
2 + g(t )(−1) j , the Hamiltonian equations of motion are

Ṡ j = J
(
S j−1 + S j+1 + f j−1(t )a j−1 + f j+1(t )a j+1

) × S j,

ȧ j = J f j (t )(S j−1 + S j+1) × a j . (A13)

We fix the initial conditions as a j (0) = −S j (0). Now, over the first half-period, 0 < t < τ/2, we have g(t ) = +1/2, which
implies

ȧ j =
{

J (S j−1 + S j+1) × a j, j even
0, j odd (A14)
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and

Ṡ j =
{

J (S j−1 + S j+1) × S j, j even
J (S j−1 + S j+1 + a j−1 + a j+1) × S j, j odd . (A15)

We will now show that, over this half-period, Ṡ j = 0 for odd j (and so for even j, S j evolves in a constant effective field), and,
moreover, that the initial condition is preserved, i.e., ∀ j, ∀t : S j (t ) = −a j (t ). First, observe that for even j, S j and −a j have the
same equation of motion with the same initial condition. Thus S j (t ) = −a j (t ) for even j. This then implies that, for odd j, the
effective field seen by S j vanishes at all times in the half-period, and thus Ṡ j = 0 for all odd j. The equations of motion directly
establish ȧ j = 0 for odd j, and so the initial conditions are preserved.

This argument is clearly symmetric with respect to the parity of j, and so the opposite situation holds over the next half-period.
Since the initial condition is preserved throughout, the Hamiltonian (A11) exactly reproduces the nonreciprocal drive.

b. Derivation of the Floquet-Magnus Hamiltonian

Our goal here is to find the time-independent Floquet Hamiltonian HF [t0] which governs the stroboscopic dynamics of the
combined system consisting of the original spins S and the auxiliary spins a. Note that HF [t0] depends explicitly on the initial
choice for the phase of the drive or, equivalently, on the initial time t0, and we keep track of this dependence below.

Then, using the Floquet-Magnus expansion [20], we can construct the Floquet Hamiltonian as a series in the drive period τ :

HF [t0] =
∞∑

n=0

H(n)
F [t0], (A16)

where the superscript (n) means H(n)
F ∝ O(τ n) = O(ω−n). The lowest-order contributions to the Floquet Hamiltonian are,

explicitly,

H(0)
F = H0, (A17)

H(1)
F [t0] = 1

2!τ

∫ τ+t0

t0

dt1

∫ t1

t0

dt2{H (t1), H (t2)}, (A18)

H(2)
F [t0] = 1

3!τ

∫ τ+t0

t0

dt1

∫ t1

t0

dt2

∫ t2

t0

dt3({H (t1), {H (t2), H (t3)}} + {H (t3), {H (t2), H (t1)}}). (A19)

In the subsequent discussion, it will be convenient to separate out the time-averaged term H0 and the time-dependent term V ,

H(t ) = J
∑

j

[
S j · S j+1 + 1

2
a j · (S j−1 + S j+1)

]
+ g(t )J

∑
j

(−1) ja j · (S j−1 + S j+1
) = H0 + g(t )V . (A20)

The explicit time-dependence is now only carried by the function g(t ), and the first-order term becomes

H(1)
F [t0] = 1

2!τ

∫ τ+t0

t0

dt1

∫ t1

t0

dt2(g(t1) − g(t2)){V,H0} =
(

t0
2

− τ

8

)
{V,H0}. (A21)

A straightforward calculation yields the required Poisson bracket,

{V,H0} = J2
∑

j

(−1) jεμνλ
(
aμ

j + aμ
j−2

)(
Sν

j + Sν
j−2

)
Sλ

j−1. (A22)

Rewriting this in terms of dot and cross products, and shifting some site labels, we arrive at the first-order term,

H(1)
F [t0] =

(
t0
2

− τ

8

)
J2

∑
j

(−1) ja j · [(S j + S j−2) × S j−1 + (S j+2 + S j ) × S j+1]. (A23)

c. Effective EOM

The equation of motion to order ω−1 can be derived from the effective Hamiltonian H(0)
F + H(1)

F . We fix the Floquet gauge by
setting t0 = 0 and thus obtain

ȧ j = ∂H(0)
F

∂a j
× a j + ∂H(1)

F

∂a j
× a j =

(
J

2

(
S j−1 + S j+1

) − τJ2

8
(−1) j[(S j + S j−2) × S j−1 + (S j+2 + S j ) × S j+1]

)
× a j . (A24)

Using the conditions a j (t ) = −S j (t ), we find

Ṡ j = J

2
(S j−1 + S j+1) × S j + τJ2

8
(−1) j[(S j + S j−2) × S j−1 + (S j+2 + S j ) × S j+1] × S j . (A25)
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Showing that the initial condition a j (0) = −S j (0) is conserved by the effective dynamics is a simple matter of deriving the
general equation of motion for the S spins directly, and checking that we obtain the same effective equation of motion (A25).
We have, to first order,

Ṡ j = ∂H(0)
F

∂S j
× S j + ∂H(1)

F

∂S j
× S j

=
(

J (S j−1 + S j+1) + J

2
(a j−1 + a j+1) + τJ2

8
(−1) j

[
(a j + a j−2) × S j−1

+ (a j+2 + a j ) × S j+1 + (a j+1 + a j−1) × (S j+1 + S j−1)

])
× S j, (A26)

which, upon inserting the condition a j = −S j , may be readily seen to reduce to the same effective equation of motion, Eq. (A25).
In a similar manner, we derive the second-order contribution to the Floquet-Hamiltonian, H(2)

F . Setting t0 = 0, the effective
equations of motion are, to second-order,

Ṡ j = J

2
(S j−1 + S j+1) × S j − J2τ

8
(−1) j[(S j + S j−2) × S j−1 + (S j + S j+2) × S j+1] × S j

+ J3τ 2

96

(
2[S j−1 · S j−2] S j−3 + [S j−1 · (S j+1 + S j + S j−2 − 2S j−3) − 1]S j−2

+ [S j · (S j+1 + S j−1 − S j−2) + S j−2 · (S j−1 − S j+1) − 2]S j−1

+ [S j · (S j−1 + S j+1 − S j+2) + S j+2 · (S j+1 − S j−1) − 2]S j+1 + [S j+1 · (S j−1 + S j + S j+2 − 2S j+3) − 1]S j+2

+ [2S j+1 · S j+2] S j+3

)
× S j + O(τ 3). (A27)

d. Proof that the effective EOM are nonsymplectic

The effective equations of motion for the S subsystem break symplecticity at first order. To see this, rather than considering
the flow of vector fields, let us note that we have terms of the form

Ṡ = (S × h) × S + . . . (A28)

in the first-order EOM. For such a term to arise from Hamilton’s equations, Ṡ = ∂H
∂S × S, we would require a Hamiltonian H

containing a term K such that

∂K

∂Sμ
= εμνλSνhλ. (A29)

Up to an irrelevant constant, such a K must be quadratic in S and linear in h, for which the most generic possibility is

K = AμνλSμSνhλ, (A30)

for some arbitrary rank-3 tensor A. However, now we obtain

∂K

∂Sμ
= (Aμνλ + Aνμλ)Sνhλ, (A31)

and since Aμνλ + Aνμλ = εμνλ is a contradiction (the left-hand-side is symmetric with respect to μ ↔ ν, while εμνλ on the
right-hand side is antisymmetric by definition), we conclude that such terms as (A28) cannot be obtained from a Hamiltonian,
and, thus, are nonsymplectic.

3. Alternative derivations of the effective EOM

In this Appendix, we provide two alternative ways to derive the effective equations of motion using (i) two-times perturbation
theory and (ii) the equation of motion for the phase space density (Liouville’s equation). Both methods can be generalized to
higher orders in τ in a straightforward way.

a. Two-times perturbation theory

Here we illustrate an alternative method via two-times perturbation theory [73] to derive the effective EOM for the
nonreciprocal drive.

We start by considering the exact EOM, given by

Ṡ j = −J
[

1
2 + (−1) jg(t )

]
S j × (S j−1 + S j+1), (A32)
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FIG. 4. Time dependence of the periodic driving function g(t ) (period τ ) and the antiderivative G(t ), as well as the product g(t )G(t ).

where g(t ) = 1
2 sgn(sin ωt ). To derive an ansatz for the structure of the fast motion variable, we explicitly separate the time-

average from the rest:

Ṡ j = −J

2
S j × (S j−1 + S j+1) + J (−1) jg(t ) S j × (S j−1 + S j+1). (A33)

For fast drivings, the local energy scale separates from the driving frequency, ω � J . Therefore one can decompose the resultant
time evolution for spin S j into a fast motion variable (denoted by η j) and slow motion (denoted by σ j). The slow motion reduces
to the Heisenberg EOM in the fast driving limit, ω → ∞, and the fast motion captures additional corrections for any finite ω.

Thus we consider the following decomposition:

S j =
√

1 − η2
jσ j + η j, (A34)

which satisfies the properties η j � σ j, , |σ j | = 1, η j · σ j = 0. The first relation, η j � σ j , is the statement that the fast-varying
field is a small correction to the slow-varying field σ j in the high-frequency limit; the second condition imposes normalization
for the slow variable σ j ; together with the first two, the orthogonality relation, η j · σ j = 0, ensures the normalization of the spin
vector S j at all times:

S2
j = (

1 − η2
j

)
σ2

j + η2
j + 2

√
1 − η2

jσ j · η j = 1. (A35)

Note that a similar decomposition is commonly used in spin wave theory [74].
The time-average term exhibits slow dynamics by construction and does not contribute to the fast motion η j ; we thus use the

remaining term to find the dependence of the fast motion η j on the slow motion σ j . To do so, we integrate the right-hand side of
Eq. (A33) with respect to the fast time, i.e., we treat the slow motion variables σ j as constant; the leading order contribution to
the fast motion is thus given by

η j (t ) = −J (−1) j

(∫ t

0
dt ′g(t ′)

)
σ j × (σ j−1 + σ j+1) := −J (−1) jG(t )σ j × (σ j−1 + σ j+1). (A36)

Note that G(t ), shown in Fig. 4, has the maximum value τ/4, and is thus O(ω−1). The fast motion η j is therefore also O(ω−1)
and, as expected, vanishes as ω → ∞.

Our goal is to derive an EOM to order ω−1 for the slow motion σ j . Taking the full time derivative of Eq. (A34) (with respect
to the time t , which contains both the slow and the fast time variable), one obtains

σ̇ j = Ṡ j − η̇ j√
1 − η2

j

+ η̇ j · η j

1 − η2
j

σ j . (A37)

We now want to eliminate the η j and S j dependence from the right-hand side. We first use the fact that η j is O(ω−1) to simplify
the denominators by discarding any terms of higher-order than ω−1 in inverse-frequency, which yields√

1 − η2
j = 1 + O(ω−2), 1 − η2

j = 1 + O(ω−2). (A38)

Then we can find an expression for Ṡ j by inserting the ansatz from Eq. (A34) into Eq. (A32), which leads to

Ṡ j = −J
[

1
2 + (−1) jg(t )

]
(σ j + η j ) × [(σ j−1 + η j−1) + (σ j+1 + η j+1)] + O(ω−2), (A39)

where we also made use of Eq. (A38). At the same time, taking the derivative of Eq. (A36) with respect to the full time variable
(fast and slow), we arrive at

η̇ j = −J (−1) jg(t ) σ j × (σ j−1 + σ j+1) − J (−1) jG(t ) d
dt [σ j × (σ j−1 + σ j+1)]. (A40)

The two equations above for the derivatives η̇ j and Ṡ j can now be inserted in Eq. (A37):

σ̇ j = Ṡ j − η̇ j + η̇ j · η jσ j + O(ω−2)

= −J
[

1
2 + (−1) jg(t )

]
[σ j × (σ j−1 + σ j+1) + η j × (σ j−1 + σ j+1) + σ j × (η j−1 + η j+1)]

+ J (−1) jg(t ) σ j × (σ j−1 + σ j+1) + J (−1) jG(t )
d

dt
[σ j × (σ j−1 + σ j+1)]

+ J2G(t )g(t ) σ j[σ j × (σ j−1 + σ j+1)]2 + O(ω−2), (A41)
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where, again, Eq. (A38) has been used. There are two remaining sources of fast motion on the right-hand side of this equation.
We eliminate the first, the variable η j , using Eq. (A36). The second source is the time-dependence of the functions g(t ) and G(t ),
which oscillate rapidly in the high-frequency regime ω � J - we thus also need to average over the fast timescale.

To do this, for any function h(t ), we define h = τ−1
∫ τ

0 h(t )dt as the time averaged value over one period τ and obtain (cf.
Fig. 4)

g(t ) = 0, G(t ) = τ

8
, g(t )G(t ) = 0, (A42)

see Fig. 4. Next, we insert Eq. (A36) into Eq. (A41) and perform the time average of the resulting equation over a single period
τ . In the limit ω � J , one may assume that the slow variable σ j does not change over the time τ . This yields

σ̇ j = −J

2
σ j × (σ j−1 + σ j+1) + (−1) jJ2G

2
[σ j × (σ j−1 + σ j+1)] × (σ j−1 + σ j+1)

− J2(−1) jG

2
σ j × [σ j−1 × (σ j−2 + σ j ) + σ j+1 × (σ j + σ j+2)]

+ J (−1) jG [σ̇ j × (σ j−1 + σ j+1) + σ j × (σ̇ j−1 + σ̇ j+1)] + O(ω−2). (A43)

Finally, in order to derive a self-consistent EOM for σ j , we need to eliminate σ̇ j from the terms on right-hand side. This can
be done by noting that all such terms come with an O(ω−1) prefactor, since G is O(ω−1). Hence, the derivatives σ̇ j on the
right-hand side can be eliminated by using the EOM, Eq. (A43) itself, but in this instance retaining only terms of O(1),

σ̇ j = −J

2
σ j × (σ j−1 + σ j+1) + O(ω−1). (A44)

Inserting this back in Eq. (A43), we arrive at the effective EOM for the slow variable σ j ,

σ̇ j =J

2
(σ j−1 + σ j+1) × σ j − (−1) j J2τ

8
[(σ j−2 + σ j ) × σ j−1 + (σ j + σ j+2) × σ j+1] × σ j + O(ω−2). (A45)

b. Effective Liouville equation approach

The modern theoretical analysis of prethermalization is based on Floquet’s theorem, which requires the linearity of the
equations of motion (EOM) [75]. Since thermalization can microscopically be traced back to chaotic trajectories, and chaos
in classical systems can only occur in nonlinear EOM [76], this might at first appear paradoxical. A similar “problem” with
Floquet’s theorem occurs for quantum dynamics in the Heisenberg picture, where the EOM are also nonlinear. The application
of Floquet’s theorem in these cases is justified by the linearity of the alternative Schrödinger picture based on the Liouville-von
Neumann equation for the density operator (phase-space density) [52], which is defined by means of a commutator (Poisson
bracket) structure in Hamiltonian mechanics [45]. For classical systems, it is equivalent to the existence of conjugate variables,
and induces a symplectic structure on phase space.

Yet a third way to obtain the effective EOM in a systematic expansion controlled by ω−1 is as follows: note that the Liouville
equation, Eq. (A9), is a linear, time-periodic ODE for the phase space density. Although, for our system, it cannot be written in
its familiar form using the Poisson bracket due to the lack of a symplectic structure, the latter is not required to apply Floquet’s
theorem.

Indeed, by exploiting this fact, it was shown in Ref. [52] that the Floquet-Magnus expansion can be applied to differential
equations of the form

�̇S = �X (�S, t ), �X (�S, t + τ ) = �X (�S, t ), (A46)

where �S denotes all spin variables of the system, and �X is a (possibly nonlinear) but time-periodic vector field flow.
The slow dynamics of the system is then captured by the effective EOM

�̇S = �X eff (�S); (A47)

To leading order in the inverse frequency, the Floquet-Magnus expansion, we have

�X eff =
∞∑

n=0

�X (n)
eff , �X (n)

eff ∝ ω−n, �X (0)
eff = 1

τ

∫ t

0
dt �X (�S, t ),

�X (1)
eff = 1

4πω

∫ t

0
dt1

∫ t1

0
dt2

[ �X (�S, t1), �X (�S, t2)
]
L, (A48)

where the Lie bracket [·, ·]L of two vector fields �X (�S) and �Y (�S) is defined as

L �X �Y = [ �X (�S), �Y (�S)
]
L = �X (�S) · �∇�S �Y (�S) − �Y (�S) · �∇�S �X (�S). (A49)

Performing the derivatives and calculating the time-ordered integral, we arrive at the effective EOM in Eq. (5).
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FIG. 5. Comparison between the magnetization loss in the nonreciprocal drive (left) and Floquet heating in the reciprocal (Hamiltonian)
drive (right), for the same initial ensemble (2000 states, β = 1, L = 128). (Top) Both drives exhibit a prethermal plateau (see insets), but
heating in the reciprocal drive is suppressed exponentially, compared to the power-law suppression in the nonreciprocal drive. Inset for the
nonreciprocal drive shows the curves from τ = 0.1 (rightmost) to τ = 1.0 (leftmost); inset for the reciprocal drive shows the curves from
τ = 0.8 (rightmost) to τ = 1.8 (leftmost). The functional form of the suppression is independent of the threshold value (controlled by κ)
used to define tM and tE —the dotted lines in the insets correspond to κ = 0.5 (top) and 0.9 (bottom). (Bottom) show convincingly that the
nonreciprocal drive is not described by an exponential suppression, and, conversely, that the reciprocal drive is not described by a power-law
suppression.

APPENDIX B: COMPARISON BETWEEN HAMILTONIAN (RECIPROCAL) AND NONRECIPROCAL DRIVES

In the main text, we have analyzed a nonreciprocal drive for the classical Heisenberg chain, given by the successive evolution
of even and odd-numbered sites. A natural complement of this is to consider a drive given by the successive evolution of even
and odd-numbered bonds.

In contrast to the nonreciprocal site-based drive considered in the main text, the bond-based drive is reciprocal, and is
generated by the time-dependent Hamiltonian

Hrec(t ) = J
∑

j

(
1

2
+ (−1) jg(t )

)
S j · S j+1, (B1)

which has the same infinite-frequency limit H∞ as the nonreciprocal drive; the two drives differ in the way they approach the
infinite-frequency limit.

As in the nonreciprocal case, each step of the reciprocal drive is exactly solvable. In contrast to the nonreciprocal drive, the
reciprocal drive exactly conserves the magnetization; it does not, however, conserve the energy H∞ (at finite frequency). This is
the canonical situation to which rigorous estimates for the rate of energy absorption [45] apply, and we numerically verify these
predictions.

We take the same initial ensemble at β = 1 as we used for the nonreciprocal evolution in the main text. In Fig. 5, we find that
the system heats up to the maximum entropy state consistent with the conserved magnetization (i.e., 〈E〉 → J〈M〉2), and that, as
expected from Ref. [45], the heating time tE is exponentially suppressed with the driving frequency, tE ∼ exp(−c ω), for some
model-dependent constant c. This stands in stark contrast to the algebraic suppression observed for the nonreciprocal drive in
the main text.
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FIG. 6. The tripartite drive for the triangular lattice. (Top left) An example tripartite decomposition of the triangular lattice. (Top right)
Configuration of couplings f and g (blue and orange lines, respectively), for each step of the drive (ABC, from the top down); the black
lines show the S − S couplings, which are always on. S degrees of freedom are represented by filled circles; the auxiliaries by empty circles.
(Bottom) The values of the couplings f and g across one drive period for the tripartite drive.

APPENDIX C: TIME-REVERSAL-SYMMETRY BREAKING DRIVES—THE TRIANGULAR LATTICE

The bipartite nonreciprocal drive from Eq. (1) considered in the main text and above preserve time-reversal symmetry, in the
sense that there exists a Floquet gauge t0 [20] in which the drive is symmetric under time reversal. This implies that the first-order
correction in the van Vleck IFE must vanish [20], and hence Heff ∼ H(0)

eff + H(2)
eff . As discussed in the main text, this may lead

one to the incorrect conclusion that the ω4-scaling arises perturbatively in the IFE using Fermi’s golden rule.
As we explain in detail below, however, this is not the case. To see why, notice first that according to Floquet theory, drives

that break time-reversal symmetry necessarily have a nonvanishing first-order correction H(1)
eff [20]. Fermi’s golden rule would

then naively imply an ω2 scaling. However, the triangular lattice Heisenberg model, under a time-reversal-symmetry breaking
drive, that we discuss below in detail, exhibits an ω4 prethermal behavior (Fig. 2, triangles). This shows that the ω4 law is not
captured by the perturbative IFE.

The general tripartite nonreciprocal periodic drive has the equations of motion:⎧⎪⎨
⎪⎩

Ṡ
μ

j = εμνλ
(∑

i Jν
i jS

ν
i

)
Sλ

j , j ∈ A
Ṡ j = 0, j ∈ B
Ṡ j = 0, j ∈ C;

for t ∈ [
0, τ

3

)
,

⎧⎪⎨
⎪⎩

Ṡ j = 0, j ∈ A
Ṡ

μ

j = εμνλ
(∑

i Jν
i jS

ν
i

)
Sλ

j , j ∈ B
Ṡ j = 0, j ∈ C;

for t ∈ [
τ
3 , 2τ

3

)
,

⎧⎪⎨
⎪⎩

Ṡ j = 0, j ∈ A
Ṡ j = 0, j ∈ B
Ṡ

μ

j = εμνλ
(∑

i Jν
i jS

ν
i

)
Sλ

j , j ∈ C;

for t ∈ [
2τ
3 , τ

)
, (C1)
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where A, B, C denote the three sublattices, cf. Fig. 6. The ABCABC pattern of this drive (where each step is labeled by the
sublattice which is evolving) violates time-reversal because there is no time t0 about which this drive is even—time-reversal will
always flip this to a CBACBA pattern. By contrast, the bipartite drive, as written in Eq. (1), is time-reversal symmetric about
t0 = τ/4.

Like Eq. (1), this nonreciprocal drive is not generated from any Hamiltonian for the S-degrees of freedom alone. Again,
however, we may use the auxiliary degrees of freedom to construct a Hamiltonian amenable to analysis by IFE. This is more
involved than in the bipartite case, since we now require couplings between different auxiliaries. We write the Hamiltonian of
the extended system as

H(t ) =
∑
i, j

Ji jSi · S j +
∑
i, j

ai · ( fi j (t )S j + gi j (t )a j ). (C2)

Note that fi j (t ) 
= f ji(t ). We show the values of these couplings in Fig. 6.
Now, following Ref. [77], the first-order term in the van Vleck IFE is

H(1)
eff = 1

2!τ

∫ τ

0
dt1

∫ t1

0
dt2

2

τ

[(τ

2
− (t1 − t2)

)
modτ

]
{H(t1),H(t2)}. (C3)

A straightforward calculation shows that the relevant Poisson bracket can be calculated as

{H(t1),H(t2)} =
∑
i jl

εμνλ
(
Ji j[ fl j (t2) − fli(t2) − fl j (t1) + fli(t1)]aν

l Sμ
i Sλ

j + fl j (t1) fil (t2)aμ
i Sν

j Sλ
l

+ [ fil (t1) f jl (t2) − 2 fil (t1)gi j (t2) − 2gi j (t1) fil (t2)]aμ
i aν

j S
λ
l + [2gi j (t1)gil (t2) − 2gi j (t1)g jl (t2)]aμ

i aν
j a

λ
l

)
. (C4)

To show that H(1)
eff 
= 0, it suffices to show that any one of the unlike terms is nonzero, so we focus on the a-a-a term,∑

i jl

εμνλ[2gi j (t1)gil (t2) − 2gi j (t1)g jl (t2)]aμ
i aν

j a
λ
l . (C5)

Now, under the sum, we must have that i, j, l are distinct sites, or the antisymmetric tensor will kill the term. Without loss of
generality, let i ∈ A. Since A sites are not nearest-neighbours of A sites, we must then have j ∈ B, C (or gi j = 0 will kill the
term); again, without loss of generality, let j ∈ B.

Now, a priori, l may belong to any sublattice, so long as l 
= i, j. The various cases yield:

l ∈ A : 2gAB(t1)gAA(t2) − 2gAB(t1)gBA(t2) = −2gAB(t1)gBA(t2)

l ∈ B : 2gAB(t1)gAB(t2) − 2gAB(t1)gBB(t2) = 2gAB(t1)gBA(t2)

l ∈ C : 2gAB(t1)gAC (t2) − 2gAB(t1)gBC (t2) = 0 (C6)

The relevant time-ordered integral in the IFE, therefore, is

1

2!τ

∫ τ

0
dt1

∫ t1

0
dt2

2

τ

[(τ

2
− (t1 − t2)

)
modτ

]
gAB(t1)gAB(t2) = 7τ

648

= 0. (C7)

This implies, at least, that the a-a-a terms do not vanish.
It follows that H(1)

eff 
= 0, as expected in the absence of time-reversal symmetry, and that the ω4 scaling of the prethermal
lifetime in the nonreciprocal periodically driven spin dynamics cannot be explained perturbatively using the IFE.

APPENDIX D: DETAILS OF THE NUMERICAL SIMULATIONS

In this Appendix, we provide further details of our numerical procedures. We first discuss the construction of the initial states
in the thermal ensembles, and then give an overview of the integration of the equations of motion.

1. Initial ensemble

The initial states are constructed using heatbath Monte Carlo (MC) simulations [78], which uses the fact that the thermal
distribution of a single spin Si in its local field Si−1 + Si+1 + hẑ is exactly invertible (see also supplementary material of
Ref. [79]). We use ensembles of 2000 states, and each state begins as a completely independent random configuration. We
then perform L × 105 heatbath updates (randomly selecting the spin to be redrawn from its local thermal distribution) to cool the
state to the desired temperature. We use the same set of 2000 initial states for all dynamical evolution protocols (for a fixed L and
β), to ensure a fair comparison between the reciprocal and nonreciprocal drives, and between the exact nonreciprocal dynamics
and the dynamics given by the effective Floquet-Magnus Hamiltonian; we have checked that using different initial ensembles
does not change the reported results.
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2. Dynamical evolution

We now turn to the details of the dynamical evolution. The nonreciprocal drive, Eq. (1), and the reciprocal drive in Eq. (B1),
can be integrated to machine precision, since the exact solution can be written in closed form for each step of the drive: a single
spin in a constant magnetic field evolves as

Ṡ = M × S ⇒ S(t ) = exp(M · R t )S(0), (D1)

where R denotes the (vector of) the generators of rotations. For the nonreciprocal drive, half of the spins Si evolve in the
constant (over the half-period) field Si−1 + Si+1; for the reciprocal drive, the spins on a bond {i, i + 1} evolve in the constant
field Si + Si+1.

The fact that each step of the drive is exactly solvable means that the numerical evolution is very efficient and accumulates
only machine precision errors, allowing us to evolve to long times t f = 108 or even t f = 109. The values of the energy H∞ and
the magnetization Mz are stored at 104 stroboscopic times on a log-spaced (to the nearest stroboscopic time t ∈ τZ) grid.

In contrast, the dynamics generated by the effective Hamiltonians H(1)
F and H(2)

F are not exactly integrable, and we use the
standard fourth-order Runge-Kutta (RK4) method with a timestep of δt = 0.001 (in units of |J| = 1). We store the values of
the observables at the stroboscopic times on the log-spaced grid used for the exact dynamics, up to the final time of the RK4
simulations, t f = 106. With these values of δt and t f , the typical error in the energy density over the simulations (which should
be conserved by the nonreciprocal drive and its effective Hamiltonians) is ∼10−12.

APPENDIX E: CONTRADICTIONS IN THE CANONICAL QUANTIZATION OF THE NONRECIPROCAL PERIODIC DRIVE

In this section, we argue that a physical quantum version of the nonreciprocal periodic drive in Eq. (1) does not exist. In
particular, we show that there exists no completely positive trace-preserving (CPTP) time-periodic map, such that: (i) in the
infinite-frequency limit, the dynamics reduces to that of the quantum Heisenberg model, and (ii) in the classical limit, the
dynamics reduces to Eq. (1).

It suffices to restrict to a two-spin system and set J = 1. Now, the classical Liouville equation for the phase space density
ρ(S1, S2; t ), which evolves following the flow field corresponding to Eq. (1), is{

∂tρ(S1, S2; t ) = Sα
2

{
Sα

1 , ρ(S1, S2; t )
}
, t ∈ [

0, τ
2

)
,

∂tρ(S1, S2; t ) = Sα
1

{
Sα

2 , ρ(S1, S2; t )
}
, t ∈ [

τ
2 , τ

)
,

(E1)

where, {·, ·} denotes the Poisson bracket. These equations satisfy condition (i) above, which can be seen by taking the time
average.

Naively, quantizing Eqs. (E1) is straightforward: one replaces the spin variables by the corresponding operators, {·, ·} �→
−i[·, ·], and the product of two functions by half their anticommutator, f (S1, S2)g(S1, S2) �→ 1

2 [ f (S1, S2), g(S1, S2)]+. This
leads to a von Neumann-like equation for the quantum density matrix:{

∂t ρ̂(t ) = − i
2

[
Sα

2 ,
[
Sα

1 , ρ̂(t )
]]

+ , for t ∈ [
0, τ

2

)
,

∂t ρ̂(t ) = − i
2 [Sα

1 ,
[
Sα

2 , ρ̂(t )
]]

+ , for t ∈ [
τ
2 , τ

)
.

(E2)

Note that the second equation is equivalent to the first under the exchange of the spin variables, S1 ↔ S2, as expected.
Next, we rewrite these equations to single-out the period-averaged contribution:{

∂t ρ̂(t ) = − i
2

[
Sα

1 Sα
2 , ρ̂(t )

] − i
2

(
Sα

2 ρ̂Sα
1 − Sα

1 ρ̂Sα
2

)
, for t ∈ [

0, τ
2

)
,

∂t ρ̂(t ) = − i
2

[
Sα

1 Sα
2 , ρ̂(t )

] − i
2

(
Sα

1 ρ̂Sα
2 − Sα

2 ρ̂Sα
1

)
, for t ∈ [

τ
2 , τ

)
.

(E3)

Clearly, Eqs. (E3) obey conditions (i) and (ii). Moreover, it is straightforward to check that Eqs. (E3) preserve the trace of the
density matrix ρ̂. However, Eqs. (E3) do not define completely positive maps—that is, some eigenvalues of ρ̂(t ) may become
negative; a contradiction if the density matrix is to be interpreted as a probability distribution. To see this, it suffices to focus on
the first half-cycle and rewrite the second term as

− i

2

(
Sα

2 ρ̂Sα
1 − Sα

1 ρ̂Sα
2

) = − i

2

(
Sα

2 ρ̂Sα
1 − Sα

1 ρ̂Sα
2 − 1

2

[
Sα

1 Sα
2 , ρ̂

]
+ + 1

2

[
Sα

1 Sα
2 , ρ̂

]
+

)
=:

∑
m,n

hmn

(
Lmρ̂L†

n − 1

2
[L†

nLm, ρ̂]+

)
, (E4)

with Lm = (Sx
1, Sy

1, Sz
1, Sx

2, Sy
2, Sz

2)m and L†
n = (Sx

2, Sy
2, Sz

2, Sx
1, Sy

1, Sz
1)n. One can convince oneself that, with the above definition,

hmn = h∗
nm ∈ iR is both Hermitian and purely imaginary. Hence, the eigenvalues of h come in pairs, (−λi, λi ), of positive and

negative numbers. This implies that h is not positive semidefinite, and thus the above equation does not define a completely
positive map, despite its formal similarity with the Lindblad master equation. It follows that the quantized equations of motion,
Eq. (E3), are not CPTP maps, and thus do not govern the dynamics of a physical quantum system.

This implies the nonreciprocal drive provides an example of a system with a well-defined classical phase space dynamics [via
Eq. (E1)] for which no quantum equivalent exists. Recently, it was demonstrated that periodically driven open quantum systems
do not always possess a Floquet Lindbladian [80], which might be related to symplecticity breaking.
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